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Abstract

The stability of networked systems is considered under time-delayed diffusive
coupling. Necessary conditions for stability are given for general directed and
weighted networks with both positive and negative weights. Exact stability con-
ditions are obtained for undirected networks with nonnegative weights, and it is
shown that the largest eigenvalue of the graph Laplacian determines the effect of
the connection topology on stability. It is further shown that the stability region in
the parameter space shrinks with increasing values of the largest eigenvalue, or of
the time delay of the same parity. In particular, unstable fixed points of the individ-
ual maps can be stabilized for certain parameter ranges when they are coupled with
an odd time delay, provided that the connection structure is not bipartite. Fur-
thermore, signal propagation delays are compared to signal processing delays and
it is shown that delay-induced stability cannot occur for the latter. Connections to
continuous-time systems are indicated.
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1 Introduction

Dynamical networks constitute a class of dynamical systems that has increasingly been
attracting interest over the recent years. The underlying discrete space can often be
described by a graph where each node corresponds to a dynamical system. Consequently,
the analysis of the rich spectrum of spatio-temporal dynamics of the overall network
necessitates a synthesis of knowledge from the fields of differential or difference equations
and of graph theory. Additionally, modeling of real-world systems usually requires taking
into account the inevitable presence of time delays in the information flow in the network,
which can cause a range of interesting dynamical behavior [1]. One such phenomenon is
delay-induced stability, sometimes called amplitude death or oscillator death in certain
contexts, where oscillatory or even chaotic units exhibit a stable equilibrium solution
when they are coupled to form a network. In this paper, we study the stability of
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discrete-time systems on networks where information transmission is subject to time
delays. Our aim is to understand the role of both time delays and the graph structure
on the stability of coupled systems.

We consider coupled identical maps of the form

n

i+ 1) = F(oalt) + 5 D aigglay(t - 7),i(0). 0

=1

Here x;(t) € R™, i = 1,...,n, denotes the state of the ith map at discrete time ¢ € Z,
f : R™ — R™ describes the individual dynamics of the maps in isolation, and ¢ :
R™ x R™ — R™ represents the pairwise interaction between the maps. Both f and g
are assumed to be differentiable functions. We study two types of diffusive interaction,
namely, linear diffusion where

g(z,y) = Kz —y), (2)

and the function
9(x,y) = £(f(z) = f()) 3)
which arises in the paradigm of coupled map lattices [2]. In both cases k is a scalar

representing a diffusion coefficient or coupling strength in the network. The interaction
between the units can account for the finite speed of information transmission by allowing
a time delay 7 € ZT, where Z* denotes the nonnegative integers. The numbers a;; € R
determine the connection structure, and d; = j Gij 18 the in-degree of the ith node,
which in this paper is assumed to be nonzero for all 7. In the simplest case, a;; takes on
binary values depending on whether or not there is a connection between the nodes ¢ and
j. In other words, a;; = 1 if there is a (directed) edge from j to i, and a;; = 0 otherwise;
thus A = [a;;] defines the transpose of the adjacency matrix of the underlying graph
with n vertices. For simple graphs a; = 0 Vi, and for undirected graphs a;; = a;; Vi, j.
We will also consider more general cases: Allowing a;; to be nonnegative real numbers
yields a weighted graph, and if a;; is not necessarily equal to aj; then one obtains a
directed graph. Furthermore, if a;; are arbitrary real numbers with mixed signs we have
the case of a weighted signed graph, which arises in some important applications, such
as neuronal networks, where one needs to distinguish between excitatory and inhibitory
connections.

Our interest in this paper is the stability of spatially uniform equilibrium solutions
of (1). By the form of the interaction function (2) or (3), it is easy to see that x* :=
(x*,...,z*) € R™ is a spatially uniform equilibrium solution of (1) if and only if
z* € R™ is a fixed point of f. The main question is how the local stability of x* for the
coupled system is related to the stability of z* for the individual maps.

The local stability of x* = (z*,...,z*) is determined by the linear variational equa-
tion
1 n
ui(t +1) = Bu;(t) + Eczaij[uj(t — ) —w(t)], i=1,...n, (4)
7 =1

where u; = x; — z* € R™, B is the Jacobian matrix of f at the fixed point z*, and
the matrix C' € R™*™ is equal to either kI, or kB depending on whether g has the



form (2) or (3), respectively. Let u € R™ denote the concatenation (uy,...,u,) and
D = diag{d,,...,d,} denote the diagonal matrix of vertex degrees. Then (4) can be
written as

ut+1)=(I,® (B-C)u(t)+ (DA C)u(t — 1), (5)

with ® denoting the Kronecker product. The asymptotic stability of the zero solution
of the linear equation (4) or (5) is equivalent to the exponential stability of x* in the
nonlinear equation (1) (see e.g. [3]).

The present paper deals with the stability of (5), in particular stability induced by
delays. To appreciate the use of the term “delay-induced stability”, consider (5) with
7=0:

ut+1) = [[,®B+ (D 'A-1,)®Clut)
= [I,®B —L®Clu(t) (6)

where L = I — D7'A is the (normalized) Laplacian matrix, which arises as a natural
consequence of the diffusive-type interaction (2)—(3)!. By its definition, L has zero row
sums, so L1 = 0, where 1 = (1,1,...,1)T (see also Lemma 1 later in the text). Hence
if u(0) = 1 ® v for some nonzero v € R™, then u(t) = 1 ® (B'v) by iterations of (6),
which converges to zero if and only if B is a stable matrix (i.e., all its eigenvalues are
inside the unit circle). Therefore, an unstable fixed point z* of f cannot be stabilized in
the coupled network (1) in the absence of delays. This observation holds even when the
specific forms (2)—(3) are replaced by the more general diffusive condition, namely that

g(x,z) =0 VreR™, (7)

or when the normalization terms 1/d; are omitted in (1): In either case one arrives at
the linear variational equation (6) with an appropriate Laplacian matrix having zero
row sums. Therefore, time delays are necessary to stabilize an unstable fixed point of
the map f in a diffusively coupled network.

In the following sections, we will mainly be interested in the case when the Jacobian
B is unstable but the zero solution of the coupled system (5) is stable. Since delays
are often known for their destabilizing effects, it can be expected that delay-induced
stability occurs only for rather restricted parameter sets. Section 2 confirms this by
proving several necessary conditions for stability in general signed networks, and shows
how delay-induced stability can be ruled out in many cases, for instance in bipartite
networks. For the more conventional undirected graphs with nonnegative weights, exact
stability conditions are given in Section 3 for the case when the Jacobian has real
eigenvalues, which generalize the existing results on scalar maps [5] to higher-dimensions.
In particular, it will be seen that that the effect of the network structure on stability is
completely determined by a single scalar quantity, namely the largest eigenvalue of the
Laplacian. Moreover, the stability properties of the system depend monotonically on
the largest eigenvalue, or on the delay magnitude for delays of the same parity. In view
of the above-observed impossibility of stability for 7 = 0, the monotonicity property
entails in particular that delay-induced stabilization is not possible for any even delay.
The implication for the nonlinear system (1) is that (odd) delays may induce stability

!The normalized Laplacian also arises in other contexts, such as random walks on graphs [4].



for maps undergoing period-doubling bifurcations but not necessarily for other type of
bifurcations. A numerical example in Section 3.3 demonstrates delay-induced stability
in coupled chaotic Hénon maps. As opposed to the signal transmission delays modeled
in (1), Section 4 considers a slightly different model treating signal processing delays,
and shows that stabilization is not possible in this case. The paper is concluded in
Section 5 with some remarks on continuous-time systems.

2 General signed graphs and bipartite structures

Let A = [a;5], a;j € R, denote the transposed adjacency matrix of the graph describing
the connection structure of the network. Thus, there is a (directed) link from vertex j
to 4 if and only if a;; # 0. For the purposes of this section, A need not be symmetric and
the numbers a;; can have arbitrary magnitudes and signs. The in-degrees d; = Z?Zl aij
of vertices can thus have different signs and magnitudes. We say that the vertex 7 is
quasi-isolated if d; = 0. We consider only graphs without quasi-isolated vertices, and
define the normalized Laplacian by L = I — D~'A. In general L can have complex
eigenvalues, and its spectrum is not uniformly bounded since the vertex degrees can be
arbitrarily close to zero. A signed graph is called bipartite if its vertex set can be divided
into two parts such that a;; = 0 whenever 7 and j belong to the same partition. The
next lemma shows that some familiar spectral properties carry over to signed graphs.

Lemma 1 For a signed graph G without quasi-isolated vertices, zero is always an eigen-
value of L(G). If G is bipartite, then 2 is also an eigenvalue of L(G).

Proof. By definition, the row sums of L are 0, so 0 is an eigenvalue of L corresponding to
the eigenvector 1 = (1,...,1)". On the other hand, if G is bipartite, then after possible
relabeling of vertices, A can be written in the block form

[0 A
a0 ]

where A; € RP*? and Ay € RI*P for some positive integers p,q such that p + ¢ = n.

Then the matrix D~ A has the block form,
_ 0 A
D'A=|

[ Az 0 ]

with the same block sizes as A, where each row has the same sum 1. It can be checked
that the vector 1% :=(1,...,1,—1,...,—1)T with p positive and ¢ negative entries is
an eigenvector of D™'A corresponding to the eigenvalue —1. Hence I — D™'A has an
eigenvalue equal to 2. O

We next prove some necessary conditions for delay-induced stability.

Proposition 2 Suppose that the Jacobian of f at the fixed point x* has an eigenvalue
B such that |B| > 1. Then the following statements are necessary for the stability of the
equilibrium solution x* = (z*,...,x*) of the coupled system (1):
—1
5l-1
2|4

(i) 2(18] = 1) < || < 1 when the interaction function is given by (2), and



1
k| < Il when it is given by (3).
(i) [B] < 3.

(iii) If B is real, then —3 < f < —1 and T is a positive odd integer.

Proof. By Lemma 1, zero is an eigenvalue of L, or equivalently, 1 is an eigenvalue
of D™'A, and D7'A1 = 1, with 1 = (1,1,...1)T. Let b denote the eigenvector of
B corresponding to the eigenvalue 3. Note that Cb = cb where ¢ equals x or xf,
respectively, depending on whether the interaction has the form (2) or (3). It follows
that the subspace spanned by the vector 1 ® b is invariant under the dynamics of (5).
That is, if u(s) = a(s)1 ® b for some scalars a(s), s =t —7,...,t, then by (5),

ut+1)=[(f—c)a(t)+ca(t—7)]1®@b
Hence, the coefficients « obey the equation
at+1) = (B —c)a(t) + calt — 1) (8)

and describe the dynamics on the subspace spanned by 1 ® b. The characteristic poly-
nomial corresponding to (8) is

X(s) =8 —(B—c)s" —c. (9)

Clearly, the condition
o] <1 (10)

is necessary for the stability of (8) since the product of the characteristic roots equals
(—=1)7c. We further claim that the condition

2l > 18] — 1 (11)

is necessary for stability. To see this, we write the characteristic polynomial as x(s) =
x1(8) + x2(s), where x1(s) = s7t! — 857 and xa(s) = cs™ — ¢. Note that x; has a root
outside the unit circle by the assumption |5 > 1. If (11) does not hold, then for s on
the unit circle,

xa(s)] > [1Blls™] = [s7H| = 18] = 1> 2]e] > |x2(s)]

so that by Rouché’s theorem x;1 and y1 + x2 have the same number of roots inside the
unit circle, i.e., x has a root outside the unit circle. This proves the necessity of (11)
for stability. Putting ¢ = k or ¢ = k3 in the conditions (10) and (11) proves statement
(i). Moreover, combining (10) and (11) gives |f| — 1 < 2, which establishes (ii). To
show (iii), consider the characteristic polynomial x(s) as a real-valued function of the
real argument s. Suppose 5 > 1. Then x(1) =1 — 3 < 0. Since limg_,o x(s) = +00, X
has a real root greater than 1. Hence, stability is not possible for S > 1 for any value
of the delay. Suppose now < —1 and 7 is even. Then x(—1) = —1 — 3 > 0, and
since limg, o, x(8) = —o0, x has a real root less than —1. Thus, in case 3 is real,
stabilization is only possible if 8 < —1 and 7 is odd. Combining with (ii) establishes
(ii). O



Statement (iii) of Proposition 2 is particularly relevant for bifurcations of the non-
linear system (1). Hence, instabilities arising from a real eigenvalue § crossing the unit
circle can be stabilized in the network only for flip bifurcations (5 crossing —1) but not
for others (8 crossing +1); furthermore, stabilization is not possible for even delays. We
next show that it is also not possible in bipartite topologies. Later in Section 3 we will
give exact conditions for stabilization of eigenvalues § < —1 and demonstrate with a
numerical example in Section 3.3 that odd delays can indeed stabilize flip bifurcations
in appropriate coupling topologies.

Proposition 3 Consider (1) where the coefficients a;; define the transposed adjacency
matriz of a signed bipartite graph. If the Jacobian of f at the fized point x* has a real
eigenvalue || > 1, then x* = (z*,...,x*) is an unstable fized point of (1).

Proof. By Proposition 2 it suffices to consider the case when 7 is odd and 5 < —1.
By Proposition 1, the Laplacian L has an eigenvalue equal to 2, or equivalently, D~ A
has an eigenvalue equal to —1, with eigenvector 1+ =(1,...,1,—1,..., —1)T7 as defined
in the proof of Proposition 1. Similar to the proof of Proposition 2, we let b denote
the eigenvector of B corresponding to the eigenvalue 3, and observe that the subspace
spanned by the vector 1* @ b is invariant under the dynamics of (5). Writing u(t) =
a(t)1* ® b and substituting into (5), it is seen that the scalars «(t) obey

alt+1) = (B —c)a(t) — ca(t — 1)
whose characteristic polynomial is
x(s) =51 — (B —c)s” +ec. (12)

Consider x as a mapping x : R — R. We have y(—1) =1+ <0, and lim,_,_~ x(s) =
00. So, x has a real root less than —1, and hence is an unstable polynomial. O

Proposition 3 hints at the important role played by the network structure in sta-
bility, which will be fully characterized in the next section for undirected graphs with
nonnegative weights in terms of the largest Laplacian eigenvalue.

3 Undirected graphs with nonnegative weights

In this section we restrict ourselves to undirected graphs with nonnegative weights;
a;j > 0 and a;; = aj; for all i,j. Note that even though A = [a;;] is a symmetric
matrix, L = I — D™'A need not be symmetric. Nevertheless, the observation that
L= D"Y?(I-D"Y2AD~Y/2)D'/? shows that L is similar to the real symmetric matrix
I — D 12ADY2 = [0ij — a;j/+/did;]. Thus, the eigenvalues A\ of L are real and the
corresponding eigenvectors {vy,...,v,} form a complete basis for R”. An application
of Gershgorin’s theorem (e.g. [0]) shows that the eigenvalues are confined to the interval
[0, 2], and the smallest eigenvalue is always zero (e.g. Lemma 1). The largest eigenvalue
will play a special role on the stability analysis, and it will be denoted A, ax in the sequel.
It is easy to see that n/(n — 1) < Apax < 2: The upper bound follows by the general
bound on eigenvalues noted above, and is achieved by bipartite graphs (Lemma 1). The
lower bound follows from the observation that the trace of the Laplacian, and hence the



sum of the eigenvalues, equals n, and there is always a zero eigenvalue. It can be easily
checked that A =n/(n — 1) when a;; = 1 for all i # j, i.e., for complete graphs.

We also assume in this section that the Jacobian B has a complete set of eigenvectors
{biy,...,b,,} and real eigenvalues {fi,...,[8,}. This condition is clearly satisfied for
scalar maps, but it also holds for some familiar higher-dimensional maps such as the
Hénon map (see Section 3.3) and makes it possible to give a complete stability analysis

of (4).

3.1 Exact stability conditions

Note that {v;®@b; :i = n, j =1,...,m} is a basis for R""; hence u(t) in (5) can
be written as u(¢ ) Z j( )VZ ® b; for some scalars u;j. Furthermore, Bb; = §;b;
and D~ 'Av; = (I — L)v; = (1 — \;)vy, Vi, j. It then follows from (5) that

wi(t +1) = (Bj = ¢j)uig(t) + ¢;(1 = XiJuig(t — 7) (13)

where ¢; = k or ¢;=r[; depending on whether g is given by (2) or (3), respectively. The
characteristic equation corresponding to (13) is

ST—H - (ﬂj — Cj)ST — Cj(l — )\7) = 0. (14)

Hence, the spatially uniform equilibrium solution x* of (1) is exponentially stable if
and only if all roots of the equation (14) are inside the unit circle for i = 1,...,n,
j=1,...,m. The next theorem gives the precise conditions for stability.

Theorem 4 Let 7 be a positive integer. For j = 1,...,m, let ®; denote the unique
number satisfying
sin((7 + 1)®;) T
—— = |3 — ¢, P, e |0,— ). 15
sin(7®;) 185 — il J T+1 (15)

Then the zero solution of (4) is asymptotically stable if and only if one of the following
holds for both A = 0 and X = Apax (i-e. for the smallest and the largest eigenvalues of
the Laplacian) and all j =1,...,m

(i) T is odd and

1B — il = 1< —c;(1 = X) < /(B — ) +1 - 2|8 — ¢j| cos ; (16)

(ii) T is even,

|Bj —cjAl <1, and (17)

]cj|<\/(ﬁ —¢j)2+1—-2|6j —cj|cos ;. (18)
On the other hand, for T = 0, the zero solution is asymptotically stable if and only if
(17) holds for A\ =10 and A = Apax and all j =1,...,m

The proof is an extension of a similar result which was proved for scalar maps [,
Theorem 2], and will be omitted here.

We remark that the role of the coupling topology is completely determined by the
largest eigenvalue Apax of the graph Laplacian. Since Apnax = 2 for bipartite graphs
(Lemma 1), it follows that all bipartite graphs have the same stability properties when
other parameters are kept constant. This is an analogue of a corresponding result given
in [7] for continuous-time systems.




3.2 Monotonicity properties

We present two results that show how the stability is affected by delays and the con-
nection topology. The first result shows that the stability domains in the parameter
space are nested with respect to varying delays of the same parity, where a larger delay
delays implies a smaller stability region. It should be noted that the statement does not
necessarily hold when comparing delays of different parity.

Proposition 5 Let 71 and 12 be positive integers, 71 < T2, which are both odd or both
even. If the zero solution of (4) is asymptotically stable for T = 7o, then it is also
asymptotically stable for 7 = 7.

Proof. Suppose 1 and 1 are both odd or both even, with 71 < 7. Fix j and let
®; = ®;(7) be the solution of (15) belonging to the interval (0,7/(7 + 1)). By Lemma
5 in the Appendix of [5], ®; is a decreasing function of 7, so cos ®; is increasing in 7.
Therefore, the radicands in (16) and (18) are decreasing functions of 7, which implies
that (16) or (18) is satisfied for ®;(72) whenever it is satisfied for ®;(). O

A similar monotonicity holds with respect to the largest Laplacian eigenvalue Apax,
a smaller value of Ay .y implying a larger stability region in the parameter space.

Proposition 6 Let G, and Gy, be two graphs with corresponding largest Laplacian eigen-
values X%, < \b If the zero solution of (4) is asymptotically stable under the con-

max max-’

nection topology of Gy, then it is also asymptotically stable for G,.

Proof. Suppose that the zero solution of (4) is asymptotically stable under the con-
nection topology of Gp. Then by Theorem 4, 5; and c¢; satisfy either (16) or (17)-(18)
depending on whether 7 is odd or even, for both A = 0 and X\ = X\ Because these

max*
inequalities are linear in A, they also hold for each A\ € (0,2 ), and in particular for

A =A% (see Lemma 2 in [5]). Since the conditions (16) or (17)—(18) are also sufficient
for stability, the theorem is proved. O

It follows by the above theorem that complete graphs have the best stability char-
acteristics among all graphs of a given size, whereas bipartite graphs have the worst
stability among all graphs of all sizes. Furthermore, as seen in Proposition 2, in case
of real eigenvalues, stabilization can only be achieved by odd delays. Combining with
Propositions 5 and 6, we see that the largest stability domain is obtained for complete
graphs and 7 =1 .

3.3 Stabilizing chaotic maps: A numerical example

Consider the two-dimensional Hénon map
f($7y> = (y +1- CLI‘Q,I)%)-

For the choice of parameters a = 1.4 and b = 0.3, the Hénon map is known to be
chaotic. It has two unstable fixed points: The first one is at (—1.1314, —0.3394), where
the Jacobian eigenvalues are 51 = 3.2598 and (B2 = —0.0920, and the second one is at
(0.6314,0.1894) with Jacobian eigenvalues 51 = —1.9238 and [, = 0.1894. By the fore-
going results, the first fixed point cannot be stabilized in a diffusively-coupled network,
while second fixed point can be stabilized using an odd delay.
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Figure 1: Stabilization in a network of coupled chaotic Hénon maps. The coupling is
turned on at ¢ = 50, after which the chaotic dynamics is replaced by a transient to a
stable equilibrium solution. The first plot shows the time evolution of the z-component
of a randomly selected unit, and the plot below shows the variance over the vertices of
the network, indicating that each unit asymptotically approaches the same equilibrium
value. The network is a complete graph on 40 vertices which are coupled through the
interaction function (3) with x = 0.51 and 7 = 1.

To demonstrate delay-induced stability, we consider identical Hénon maps coupled in
a complete graph topology through the interaction function (3). Starting from random
initial conditions, the maps are run without coupling (x = 0) for 50 time steps, and
afterwards the coupling is turned on with x = 0.51 and 7 = 1. It can be checked from
Theorem 4 that the chosen parameter values yield stability at the second fixed point of
f. Figure 1 confirms that chaotic dynamics is indeed replaced by equilibrium behavior
in the coupled network.

4 Signal processing delays

The way delay enters the coupled system (1) is motivated by the finite speed of signal
transmission in spatially extended systems, where the information from vertex j reaches
1 after some time delay and processed together with the current state of vertex ¢. In a



similar fashion, one can model signal processing delays in the form
1 n
wilt+1) = flait)) + > aijglai(t —7),2i(t — 7). (19)
7 j:1

Here, the states of both the vertices 4, are instantly available, but the processing of
the information takes some time 7. We show that delay-induced stability is not possible
under this scheme for any diffusive-type interaction g satisfying (7). Hence, the system
(1) considered in this paper is a relevant prototype for studying stability caused by
delays.

Theorem 7 Suppose g satisfies the general diffusive condition (7). If z* is an unstable
fized point of f, then x* = (z*,...,x*) is an unstable fized point of (19).

Proof. Since by assumption z* is an unstable fixed point of f, there exists an € > 0 such
that for any ¢ > 0 one can find u € R™, |lu|| <4, and ¢t € ZT satisfying

IFO @+ u) — 2" > e, (20)

where f®) denotes the t-th iterate of f. If in (19) we choose initial conditions z;(s) =
¥ +wuforali=1,...,nand s = —7,...,0, and use the fact that ¢ satisfies (7), we
obtain z;(t) = f® (z* + u). Hence by (20),

|xi(t) —z*|| > e Vi,

proving that (z*,...,z*) is an unstable fixed point of (19). O

5 Remarks on continuous-time systems

The discrete-time systems considered in this paper are subject to integer-valued delays;
hence, the characteristic equation responsible for stability is a polynomial, with a fi-
nite number of roots. Continuous-time systems with delays, on the other hand, have
transcendental characteristic equations with an infinite number of roots, making their
analysis generally more difficult. A particular case where an explicit analysis can be
given arises when the individual units in the network are near a Hopf bifurcation [7]. In
this case, the results obtained for undirected networks are in many ways similar to those
given in Section 3. For instance, it is true also for continuous-time systems that the
largest eigenvalue of the Laplacian determines the role of network topology on stability,
and complete graphs have the best stability characteristics, whereas bipartite graphs
have the worst [7]. In fact, Proposition 6 holds without change. The distinction be-
tween even and odd delays are of course absent when delays are allowed to be arbitrary
nonnegative numbers; so Proposition 5 as such does not apply to the continuous-time
case. The corresponding analogy for continuous-time systems is the so-called stability
switches in linear systems [3] or stability islands in coupled nonlinear networks [9], where
stability may be lost and regained several times as the value of delay is continuously
increased. Finally, the impossibility of delay-induced stability under processing delays,

10



as stated in Theorem 7, holds in continuous time as well, with an identical proof up to
obvious modifications.

It is worth noting the similarity of the two settings where delays prove to be efficient
stabilizing mechanisms, namely near flip bifurcations in discrete time and Hopf bifur-
cations in continuous time, which are both linked to instabilities leading to the birth
of periodic solutions in their respective cases. Hence, under appropriate conditions, the
well-known oscillatory instabilities typically associated with time delays can be used to
advantage to counteract the intrinsic instabilities in the system, thereby yielding overall
stability. The effects of delays on instabilities resulting from other types of local and
global bifurcations of spatially uniform and non-uniform fixed points, or of non-constant
solutions, remain problems for future investigations.

References

[1] F. M. Atay, editor. Complex Time-Delay Systems. Springer, Berlin Heidelberg, 2010.

[2] K. Kaneko, editor. Theory and applications of coupled map lattices. Wiley, New
York, 1993.

[3] S.Elaydi. An Introduction To Difference Equations. Springer, New York, 3rd edition,
2005.

[4] F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, Provi-
dence, 1997.

[5] F. M. Atay and O. Karabacak. Stability of coupled map networks with delays. SIAM
J. Appl. Dynamical Systems, 5(3):508-527, 2006.

[6] R. A. Horn and C. R. Johnson. Matriz Analysis. Cambridge University Press,
Cambridge, 1985.

[7] F. M. Atay. Oscillator death in coupled functional differential equations near Hopf
bifurcation. J. Differential Equations, 221(1):190-209, 2006.

[8] K. L. Cooke and Z. Grossman. Discrete delay, distributed delay and stability
switches. J. Math. Anal. Appl., 86:592—-627, 1982.

[9] D. V. Ramana Reddy, A. Sen, and G. L. Johnston. Time delay effects on coupled
limit cycle oscillators at Hopf bifurcation. Physica D, 129(1-2):15-34, 1999.

11



	Introduction
	General signed graphs and bipartite structures
	Undirected graphs with nonnegative weights
	Exact stability conditions
	Monotonicity properties
	Stabilizing chaotic maps: A numerical example

	Signal processing delays
	Remarks on continuous-time systems

