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Abstract

In this paper, the tensor-structured numerical evaluation of the Coulomb and ex-
change operators in the Hartree-Fock equation is supplemented by the usage of recent
quantized-TT (QTT) formats. It leads to O(logn) complexity at computationally ex-
tensive stages in the rank-structured calculation with the respective 3D Hartree and
exchange potentials discretized on large n x n x n Cartesian grids. The numerical
examples for some volumetric organic molecules confirm that the QTT ranks of these
potentials are nearly independent of the one-dimension grid size n. Thus, paradoxically,
the complexity of the grid-based evaluation of the Coulumb and exchange matrices be-
comes almost independent of the grid size, being regulated only by the structure of a
molecular system. As a result, the grid approximation of the Hartree-Fock equation
allows to gain the high resolution with a guaranteed accuracy.

Key words: Tensor-structured methods, QTT format, electronic structure calculations,
Hartree-Fock equation, Coloumb and exchange operators.
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1 Introduction

The Hartree-Fock equation is a nonlinear eigenvalue problem with the Fock operator incor-
porating the convolution integrals in R®, which depend on the eigenfunctions in question.
This 3D eigenvalue problem can be solved only iteratively, using the self-consistent field iter-
ations. In view of its dimensionality and in presence of strong cusps in the electron density
and molecular orbitals, it presupposes an inherent concept of the separation of variables.
This principal background has led to the conventional approaches based on the analytical
precomputation of the two-electron integrals requiring the usage of the naturally separable
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basis (Gaussian type basis sets) [17, 34]. In electronic structure calculations, the employ-
ment of analytically separable basis functions has a long history [5, 1]. Tt concerns both the
Gaussian-type basis sets, and the plane waves bases, which in spite of intrinsic limitations,
are the cornerstone for the DFT calculations [10, 41].

In recent decades, a number of the state-of-the-art program packages have been developed
for the solution of the Hartree-Fock equation. Mostly, they are based on the analytical
precalculation of the two-electron integrals in the precisely selected Gaussian bases [45, 11],
hence requiring a large number of precomputed parameters, which are incorporated as the
data sets for certain types of molecules. Furthermore, improving the accuracy by increasing
the number of Gaussian type basis functions is limited by the increasing instability of these
bases.

Meanwhile, a substantial progress has been achieved in the computer science community
on the tensor decomposition techniques in the multilinear algebra via the canonical and the
Tucker models, see [6, 33]. Moreover, there are interesting results on the tensor-product
approximation of the 3D Newton and Yukawa potentials in the framework of the wavelet-
and polynomial-based multiresolution schemes [16, 4], as well as using the grid-based ap-
proximations [13, 8, 25, 29].

The rank-structured algorithms of the multilinear algebra based on the Tucker-canonical
type approximation applied to the class of function related tensors in R%, d > 3, are con-
sidered in [24] (see also references therein). Owing to this concept, the grid-based tensor
approximation of functions and operators in the Hartree-Fock equation led to efficient tensor
numerical algorithms for electronic structure calculations:

e low-rank representation of the Galerkin and collocation discretizations of the Newton
and Yukawa convolving kernels [3],

e fast 3D (nD) convolution with the Green kernels in 1D complexity [25],

e robust multigrid canonical-to-Tucker-to-canonical rank reduction scheme, in 1D com-
plexity for 3D case [28, 24],

e tensor calculation of the Coulomb and exchange integrals in R by means of a combi-
nation of 1D Hadamard and scalar products and 1D convolutions [30, 23, 24].

We summarize that the main advantage of the multilevel tensor-structured methods
is in the “black-box”-type evaluation of the 3D/6D integral operators with the Green’s
convolving kernels employing the low-rank algebraic separability of the discretized operators
and functions in R?, d > 3. Another gain of the rank-structured techniques is flexibility
in the choice of the grid-based basis functions admitting the separation ranks larger than
1 (say, the Slater-type basis). This approach does not need the analytical precomputation
of the two-electron integrals and can be applied to rather general many-electron systems
discretized on large tensor grids.

In the present paper we make the next step in the development of the grid-based meth-
ods using the rank-structured tensor representation of functions and operators in electronic
structure calculations by imposing the so-called quantized tensor representation. Recently
introduced quantics-TT (QTT) tensor format [26, 35, 31] provides O(logn)-complexity of
the 3D tensor operations, where n is the univariate grid size (see §2 for more detail). Its
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application to the problems of computational chemistry leads to paradoxically almost " mesh-
independent” grid-based methods. In this paper, we apply the QTT format in the tensor-
structured numerical solution of the Hartree-Fock equation [30, 24]. It is shown that the
complexity of order O(logn) is achieved at the most time consuming steps in the tensor
calculation of the Coulomb and exchange operators.

The rest of the paper is organized as follows. In Section 2 we recall the operators and
functions in the Hartree-Fock equation and outline the tensor methods for its solution.
Section 3 describes the basic tensor formats and tensor-structured operations. Section 4
recalls the tensor formulation of the Galerkin problem for the grid-based multilevel numerical
solution of the Hartree-Fock equation. It presents the main results of the paper, showing
that in the essential parts of the rank-structured evaluation of the Fock operator, the QTT
format leads to an almost grid independent complexity bound. We present the numerical
experiments for a number of moderate size molecules, where the computations are performed
on large 3D tensor grids.

2 The Hartree-Fock equation

One of the important problems in electronic structure calculations is to solve numerically
the electronic Schrodinger equation

HY = BV,
with the electronic Hamiltonian
1 MYz
H=—-5> Vi- 4
DN D NS R NN

for a system with M nuclei and N electrons. For the computation of the ground state
energy of a many-electron system, one can minimize the energy functional for the electronic
Hamiltonian with the antisymmetric Slater determinant wavefunction ansatz. This yields
the Hartree-Fock equation (we consider a closed shell system)

f@"l}z( )— )\ @Z)z / ¢Z¢jd$ - 51]7 [ ] - 1 N (1)

which is an eigenvalue problem with respect to the molecular orbitals ;. Here Fg is a
nonlinear Fock operator

1
Fo I—§A+‘/C+VH—]C

with the nuclear potential
Z . Z,>0, a, €R.
Hx -
Here the Hartree potential Vi (x)

,_ p(y) " 3
Vil = [ e <R <2>
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and the nonlocal exchange operator IC

o0 @) = [T vty 3

with the density matrix 7(z,y), and electron density p(x),

T(@,y) :=2)  val@)taly), ple) = r(z,2).

are the functions of the desired solution of (1). Thus, due to the nonlinear dependence of
the Hartree-Fock equation (1) on its solution, this eigenvalue problem can be solved only
iteratively. Mostly, improved modifications of the self-consistent iteration are applied. It is
discretized by the standard Galerkin scheme applied to the initial problem in the form (1)
posed in H'(R?) [34]. As an established standard, the naturally separable Gaussian basis set
{gm}1<m<n, can be used which is well suited for the analytical computation of the arising
3D and 6D integrals. On the other hand, the plane waves and finite element basis sets might
be the possible alternative.

Traditionally, the molecular orbitals in the given basis set { g, }1<m<n, are expanded as

Ny
=Y Chragm(z), a=1,..N, (4)
m=1
implying

xy_zzwa Jaly —2Z<Zcmagm )(Zcmagm )

and the respective representation for p(x). Consequently, we have

ECmagm()2
Vir(a) = p o o) /Z( — )dy.

In this way, the mass (overlap) matrix S = {S,, }i<uv<n,, is given by

S;w:/ Gugvdz.
R3

The core Hamiltonian part H = {hy,} of the stiffness matrix H = —1A + V,

1
h;u/ - _/ Vgu : ngd$ +/ ‘/c(x)gugl/dxa 1 S m, v S Nba
2 R3 R3

includes the kinetic energy of electrons and the nuclear-electron interaction potential.
In the tensor approach [24, 30] the Galerkin Hartree J(C') and exchange K (C') matrices
are expressed as

IO = [ Vil)gy(e)anla)ds = Vir, 9,0 e 9
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x)dydx 6

-3 JL e R

000) (3 Coatm(v))

// |z — | Gu() (gN:b:l Cmagm(a:)> dyd,

respectively. The complete Fock matrix I’ = F(C') is then given by

F(C) = H+G(C), G(C)=J(C)+ K(C). (7)

The Galerkin approximation scheme applies to the unknown coefficients matrix C' =
{Crna} € RY*™ Now the traditional Galerkin system of nonlinear equations for (1) describ-
ing the coefficients matrix C' € R™*" takes the form,

F(C)C:SCA, A:diag()\l,...,)\Nb),
C*SC = Iy,

where the second equation represents the orthogonality constraints fRS iy = 05, with I,
being the N, x N, identity matrix.

This nonlinear eigenvalue problem is solved by the self-consistent field iteration using
the standard direct inverse of the iterative subspaces (DILS) method [39] providing fast local
convergence. The Hartree and exchange matrices J(C') and K (C) have to be recomputed at
each iterative step.

In our Galerkin scheme the basis functions {g¢,,}1<m<n, are first represented on fine
enough 3D tensor grid required for the resolution of multiple cusps in the electron density.
Hence, the key point in the tensor approach is the efficient calculation of 3D and 6D integrals
in (5) and (6) by using fast multilinear operations via the grid-based low-rank tensor repre-
sentation of all potentials and convolution kernels involved. Application of the QTT tensor
format, as proposed in this paper, leads to O(logn) complexity scaling in the univariate
grid-size n enabling us the high spatial resolution via the fine mesh.

3 Tensor-structured formats

In this section, for the ease of exposition, we present a short description of the basic additive
and multiplicative tensor-structured formats.

Tensor of order d is defined as an element of finite dimensional tensor-product Hilbert
space W,, = W, 4 of the d-fold, n; x ... X ng real-valued arrays, and equipped with the
Euclidean (Frobenius) scalar product (-,-) : W, x W, — R. Each tensor in W,, n =
(nq,...,nq), can be represented componentwise,

A = [A(’Ll, ,’Ld)] with iy € I, := {1, ...,TL@},

where for the ease of presentation, we mainly consider the equal-size tensors, i.e., ny = n
(¢ =1,...,d). We call the elements of W, = R1>**ld a5 n-d tensors. Dimension of the
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tensor-product Hilbert space W,, scales exponentially in d, dim W, = n? implying the
exponential storage cost for a general n-d tensor.

The basic additive type separable representations of tensors are described by the so-called
canonical and Tucker formats. We say that A € W, belongs to the rank-R canonical format
if

R
A(’il, cey Zd) = Z A(l) (’il, Oé) c. A(d)<id, Oé), A(k)<, Oé) e R".
a=1

Now the storage cost is bounded by dRn. Furthermore, we say that A € V, belongs to the
rank r = [rqy,...,ry Tucker format if

r

Ay i) = 3 Glan,..,a)AD (g, ar) ... AD iy, ay).

aq,...,aq=1

In this case the storage cost is estimated by drn + r?.

The matrix product representation of a dth order tensor reduces the complexity of stor-
age to O(dr?n), where r is the maximal mode rank, (cf. matrix product states (MPS) in
DMRG quantum computations [46, 43, 44]). The matrix product type tensor approximation
was proved to be efficient in high-dimensional electronic/molecular structure calculations, in
quantum computing and in stochastic PDEs (see the survey publications [27, 42, 20]). In the
recent mathematical literature the various versions of matrix product tensor decomposition
were discussed as the tensor train (TT) [36, 38|, the tensor chain (TC) [26] and the closely
related hierarchical Tucker [15] formats. Further reduction of the asymptotic storage com-
plexity was proved to be efficient based on the so-called quantized TT (QTT) representation
[26] (see also [35]) obtained by folding of the initial tensor to a higher dimensional 2 x ... x 2
array. In the following we make use of the both TT and QTT formats.

Tensor chain/train formats are defined as follows. For a given rank parameter r =
(ro,...,7q), and the respective index sets J, = {1,...,r,} (¢{ = 0,1,...,d), with the peri-
odicity constraints Jy = Jy (i.e., rg = r4), the rank-r TC format contains all elements
A = [A(iq,...,iq)] € W, which can be represented as the chain of contracted products of
3-tensors over the d-fold product index set J := x¢_, Jy,

A<i17 aeey Zd) = Z te Z A(l) (Oéd7,i17 O[1>A(2)<o{17i27 (){2) T A(d) (Oédflu Z.d7 Oéd).

ai1€Jy ag€Jy

In the matrix form we have the entrywise MPS representation
L AW 4@ (d)
Aliy, g, ... 0q) = A; AL A, (8)

where each Al(f) is ry_; X 7p matrix.

In the case Jy = J; = {1}, the TC format coincides with TT representation. The TC/TT
format reduces the storage cost of n-d tensor to log-volume size O(dr?n), r = maxry.

It was shown in [26] that the computational gain of the QTT representation is due to
the fact that a class of discrete exponential (resp. trigonometric) n-vectors allows the rank-
1 (resp. TT rank-2) dyadic folding representation, reducing the storage complexity O(n)
to the logarithmic bound O(2log,n); similar result holds for polynomial vectors sampled
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over uniform or properly refined grids. The efficient QTT representation for a class of
multidimensional operators and potentials was proven in [21, 32]. Moreover, the basic tensor
operations like FFT and convolution transform can be performed in O(2log, n) operations
either [7, 22].

We suppose that n = 2% with some L = 1,2, .... Next definition introduces the folding
of n-d tensors into the elements (quantized 2 x ... X 2 tensors) of auxiliary D-dimensional
tensor space with D = dlog, n. The respective binary folding transform of degree 2 < L,

]:d,L : Wn,d - Wm,dLa m = (mla ) md), my, = (mm, "'7mZ,L>7

with my, =2 forv=1,...,L, (¢ = 1,...,d), that reshapes the initial n-d tensor in W, 4 to
the elements of tensor product space

d d L
Wnar = QK™ = Q) QK.
=1

=1 j=1

is defined as follows:
(A) For d =1 a vector X = [X(i)];er € W,, 1, is reshaped to the element of Wy 1, by

Frp: X =Y =[Y({)]:=[X0E], Jj={j, i}

with j, € {1,2} for v = 1, ..., L. For fixed i, j, = j,(¢) is defined by j, — 1 = C_1,,, where
the C_1, are found from the binary representation (binary coding) of i — 1,

L
i—1=Co+Ci2' 4+ +Cp2' =) (G, — 1277
v=1
(B) For d > 1 the construction is similar.

Notice that every 2-(dL) tensor in high-dimensional space W4, can be represented
(approximated) in the low rank TT format. This leads to the so-called QTT representation
of n-d tensors. Assuming that r, < r, k = 1,...,dL, the complexity of QTT representation
can be estimated by O(dr?logn), providing log-volume asymptotics in the size of initial
tensor O(n?).

It is worth to note that the important multilinear algebraic operations with canonical,
Tucker and T'T tensors can be implemented with linear complexity scaling in n. In particular,
for the rank-R; and rank-Rs canonical tensors X,Y we have

R1 Ro

ZZH(X” ). YO m)),

k=1 m=1 (=1

while the Hadamard product is computed by

XOY = ZZ (XD oYY m)e...0 (XD k)oY D( m).

k=1 m=1
The convolution product of two tensors in the canonical format is given by

R1 Ra

XY = S (XD k)« YO m) @0 (XD k)« YD (- m)), (9)

k=1 m=1
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leading to the asymptotic complexity O(dnlognR;Rs).
For the Hadamard product in TT format we have

Z=X0Y: ZW(@,)=XP(i) o Y® (),

implying the formatted representation of the scalar product (in O(dr®n) < n? operations
[36])
(X,Y) = (X0 Y,1).

Consequently, the standard multilinear operations like the scalar, Hadamard, contracted
and convolution products can be implemented in O(dlogn) operations and storage costs in
the quantized-canonical or quantized-TT representations. This allows fast computations on
large spacial grids, where n is usually associated with the univariate grid size.

4 Tensor-structured evaluation of the Hartree and ex-
change operators

4.1 Discretization on tensor grid

As it was mentioned, the tensor-structured numerical calculation of the Hartree and ex-
change operators [30, 24] does not require the analytical precomputation of the two-electron
integrals. Instead, the evaluation of the 3D and 6D convolution integrals (2) and (5) is
substituted by a combination of the univariate convolutions, Hadamard and scalar products
leading to 1D complexity. Hence, the corresponding tensor operations are carried out using
fast multilinear algebra in the canonical and Tucker formats supplemented by the correspond-
ing rank optimization (tensor truncation) using the robust canonical-to-Tucker-to-canonical
transform.

Here, we combine the canonical, Tucker and ultimately, the QTT formats for fast com-
putation of the Coulomb (5) and exchange (6) matrices which requires tensor evaluation of
Ny(Np + 1)/2 matrix elements.

We suppose that the initial problem is posed in the finite volume box Q = [~b,b]* € R3
subject to the homogeneous Dirichlet boundary conditions on 0€2. For given discretization
parameter n € N, introduce the equidistant tensor grid ws, with the mesh-size h = 2b/n.
Then define the set of piecewise constant basis functions {¢;}, 1 € Z := {1, ...,n}3, associated
with the respective grid-cells in ws,, (indicator functions), and introduce the set of colloca-
tion discretization of GTO basis functions, {g,}, represented in this basis by the rank-1
coefficients tensor {Gr} € R? (k = 1,..., ;). Note that we use the discretized Gaussians
{7} for the ease of the comparison of the results with the benchmark package MOLPRO
[45]. Our approach is applicable for rather general grid-based basis sets with low tensor
ranks.

The projected Newton potential is accurately represented in basis set {¢;} by the low-
rank canonical tensor Py € R% | see [3].

For the numerical calculations of the Hartree and exchange operators in tensor format
we apply the MATLAB package developed by V. Khoromskaia [24]. For fast computation of
scalar products (with almost grid independent complexity scaling) we then apply the QTT
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Figure 1: The finite volume box Q = [—b,b]* € R?, b = 14.6 au for the CyHg molecule.

tensor format by using the respective subroutines in the MATLAB TT-Toolbox (I. Oseledets,
S. Dolgov, http://github.com/oseledets/TT-Toolbox). Here, the practical use of the QTT
operations requires the preliminary multigrid rank reduction algorithms from [24].

4.2 Computation of the Coulomb matrix

The tensor-structured computational scheme for the Coulomb matrix (5) can be written by
the following tensor operations [30, 24]. First, represent the electron density by a low-rank

canonical tensor:
Nm"b Nb
p=p= E ( E Cnac)\aG/@ O] GA) )

KA=1

and then compute the Hartree potential by the tensor-product convolution [25]
1

R ~ px*Py, (10)

with Py € W, being the projection tensor for the Newton potential. Then the tensor

representation of the Coulomb matrix in (5) is obtained by

Vg =px*

(O = (9,(2)7, (1), Vi (2)) = (G © Gy, pxPy), 1< v <Ny (11)

Here the canonical rank(G,) = 1, while 3rd order tensors p and Py are approximated by
low-rank tensors. Here, we supplement the evaluation of the Coulomb matrix by further
QTT data compression techniques, thus performing the following steps:

e Hadamard products of discretized Gaussians to generate electron density tensor p.
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5 10 11

7 8 9
grid level

Figure 2: QTT ranks of the Hartree potential (blue lines) and the average QTT rank Torr
(red) for CHy (left). Average ranks of the QTT cores for CHy, CoHg, HoO vs. the levels L
of the one-dimension grid size n = 2% (right).

e MG canonical-to-Tucker rank reduction for the density tensor p [28].

e Compute p * Py in the canonical format, by the tensor-product convolution [25].

e MG canonical-to-Tucker-to-canonical rank reduction to represent the Hartree potential
Vi (note that the QTT decomposition algorithms cannot be applied directly due to
large-ranks tensor p * Py).

e Make the TT and QTT representation of the rank-optimized tensors p * Py and
G,0G,.

e (Calculate the Coulomb matrix by the scalar products in the QTT format.

Figure 2 (left) and Figure 4 represent QTT ranks of the optimized tensor p x Py (accuracy
107°) for the CHy, CoHg and HyO molecules vs. the number of the QTT cores which depends
logarithmically on the grid size. We use the grids with n® = 23% L < 14 for CHy, and L = 11
for H,O and CyHg, with the number of the QTT cores D = dL = 3L, for d = 3. The red
line here corresponds to the average QTT rank for the corresponding grid size, given by

rorT =

1 D-1
527’ka+1, D =3L.
k=0

Since the QTT ranks are not uniformly distributed, the ranks in the “middle” modes appear
to be much larger than at the border modes. With this notation the storage cost of the
QT T-tensor is bounded by (in our application d = 3)

Stor(A) < 2dT5plogn.

Figure 3 shows the times for the QTT (blue line) format in comparison with the canonical
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Figure 3: Times for 3D computations vs. the levels L of the one-dimension grid size n = 2% in
the calculation of the Coulomb operator for CH,. The maximum grid size is n® = 242 ~ 102,

format computation (green line) of the Coulomb matrix for CHy. The red line displays the
time for the necessary step of the multigrid accelerated rank reduction [28] preceding to the
TT-QTT transforms. Notice that the canonical computation of the Hartree potential Vi
yields the canonical tensor of the initial rank ~ 10%, which is not tractable for the TT-QTT
transform. The MG rank optimization reduces the canonical rank to ~ 102, then we apply
the TT-QTT transforms. Here the T'T transform also scales linearly in the grid size n, see
(magenta) line “T'T-time” in Figure 3 (right). The “Coulomb-can” (green) line in Figure 3
shows the computational time for the Coulomb matrix without reduction of the rank of Vy,
which is not shown for the grids with n > 2'? (L > 12). The maximum one-dimension grid
size of all the other computations presented in Figure 3 attains n = 2, which corresponds
to a volume size with huge number of entries n® = 243 ~ 102,

4.3 Computation of the exchange matrix

The exchange matrix K (C') is computed in three steps, see [23, 24]. For a = 1, ..., Ny, and
v =1,..., Ny, compute the convolution integrals,

(iZ/ ~ ‘4/11y =

9.,(y) % CmaTm(Y)
W () = /R = “Py,  (12)

Np
Gu © Z CmaGm
m=1

[l = yll

and then the scalar products (u,v =1,..., V),

Np
Ko = /3 [Z cmagm(:c)] G, ()W (z)dr =~ K e = (GO
R m=1

Np
> cmaGm] Wa). (13)
m=1
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Figure 4: QTT ranks of Vi for all electron case of HoO (left) and CyHg (right).

Finally, the entries of the exchange matrix are given by sums over all orbitals,

Norp

KO =Y Kuwar v =1,.., Np. (14)
a=1

This scheme gains from the low-rank separable approximation of the Newton kernel, the
discretized electron density p(x), and of auxiliary potentials W, (z) at step (12), that ensures
low complexity of the three-dimensional tensor-structured operations including the rank
reduction algorithms.

Again, as for the Coulomb matrix, we compute the time consuming N7 scalar products
in the QTT format. Thus yielding the following steps in the evaluation of the one orbital
contribution of the exchange matrix:

e Compute the convolution integrals W, in the canonical format (see [23]).

e Reduce the canonical rank of W, by using the canonical-to-Tucker and Tucker-to-
canonical transforms.

Ny
e Represent the canonical tensors W, and G, ® ) ¢neGy, in TT and QTT formats.
m=1

e Compute the entries of the exchange matrix as scalar products (13) in QTT format.

Figure 5 represents average QTT ranks of the Gaussians (Hadamard products G, ® G))
vs. one-dimension grid-size n, ¢ = 1079 (left) and vs. &, n = 1024 (right), in the case of CH,
molecule. It is clearly seen that the average QTT ranks are almost uniformly bounded in n
and depend logarithmically on the approximation accuracy e.

Figure 6 gives the examples of QTT ranks in the computation of the exchange potential

Ny
for HoO. QTT ranks of tensors W, (left) and G, ® > ¢,.Gy, (right) are given for the
m=1
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Figure 5: Average QTT ranks of the 3D Gaussians (Hadamard products G, ® G,) vs. 1D

grid-size n, € = 107¢ (left) and vs. &, n = 1024 (right).
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Figure 6: Examples of the QT'T ranks of the exchange potential for H,O: Tensors W, (left)

N
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m=1
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grid size n = 2, L = 10,11,12. It is easily seen that the averaged QTT cores ranks for
these tensors are almost independent on the grid size n.

5 Conclusions

The tensor-structured numerical evaluation of the Coulomb and exchange operators in the
Hartree-Fock equation is supplemented by the usage of the QTT format, leading to O(logn)
complexity represention of the respective 3D convolution integrals discretized on the large
n x n x n Cartesian grid.

We demonstrate that the QTT ranks of the discretized Hartree and exchange potentials
are nearly independent of the one-dimension grid-size n. Hence, the complexity of the 3D
grid-based tensor operations for evaluation of the Coulomb and exchange matrices, J(C)
and K(C), becomes almost independent on n, being regulated only by the tensor ranks
characterising the topology of a molecular system. We present numerical illustrations of the
QTT approximation to the Hartree and exchange integral operators of some moderate size
molecules for the grid-size in the range n < 24,

Our results demonstrate that the grid-based QTT tensor-structured solution of the
Hartree-Fock equation (taking into account [22]) can be realized on large 3D grids thus
providing a guaranteed precision.
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