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SYMMETRIES OF NULL GEOMETRY IN INDEFINITE KENMOTSU
MANIFOLDS

FORTUNÉ MASSAMBA*

ABSTRACT. Null hypersurfaces have metrics with vanishing determinants and
this degeneracy of these metrics leads to several difficulties. In this paper, null
hypersurfaces of indefinite Kenmotsu space forms, tangent to the structure vector
field, are studied with specific attention to locally symmetric, semi-symmetric
and Ricci semi-symmetric null hypersurfaces. We show that locally symmetric
and semi-symmetric null hypersurfaces are totally geodesic and parallel. These
also hold for Ricci semi-symmetric null hypersurfaces, under a certain condition.
We prove that, in null Einstein hypersurfaces of an indefinite Kenmotsu space
form, tangent to the structure vector field, the local symmetry, semi-symmetry
and Ricci semi-symmetry notions are equivalent. For totally contact umbilical
null hypersurfaces, we show that there are η-“Weyl” connections adapted to the
induced structure on the null hypersurface.

1. INTRODUCTION

A semi-Riemannian manifold is locally symmetric if its curvature tensor R is
parallel, i.e. ∇R = 0, where ∇ is the Levi-Civita connection on semi-Riemannian
manifold extended to act on tensors as a derivation and R is the corresponding
curvature tensor. This class of manifolds contains one of manifolds of constant
curvature. The integrability condition of ∇R = 0 is R · R = 0, where again R
is extended to act on tensors as a derivation. Manifolds which satisfy the latter
condition are called semi-symmetric and have been classified by Szabó ([29] and
[30], for details). A semi-Riemannian manifold is called Ricci semi-symmetric, if
R ·Ric = 0. The set of all manifolds which are Ricci semi-symmetric contains the
set of manifolds which are semi-symmetric. This means that every semi-symmetric
manifold is Ricci semi-symmetric. The converse is not true in general.

We are again interested to answer the following question: “Are conditions R ·
R = 0 and R · Ric = 0 equivalent on null hypersurfaces of semi-Riemannian
manifolds?” and also its extension to ∇R = 0. These equivalences are not true in
general. In [27], Ryan raised the following question for hypersurfaces of Euclidean
spaces: Are conditions R · R = 0 and R · Ric = 0 equivalent for hypersurfaces
of Euclidean spaces? However, there are many results which contributed to the
solution of the above question in the affirmative under some conditions (see [6],
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[7], [26] and references therein). In [5] a survey on Ricci semi-symmetric spaces
and contributions to the solution of above problem are given. In virtue of results
given by Günes et al ([11], Theorem 3.1) and Sahin ([28], Theorem 4.2), we see
that the conditions ∇R = 0 and R · R = 0 are equivalent for null hypersurfaces
of semi-Euclidean space under conditions Ric(E,X) = 0 and ANE a vector field
non-null. In [17], the authors proved that the conditions ∇R = 0, R · R = 0 and
R · Ric = 0 are equivalent for lightlike hypersurfaces of an indefinite Sasakian
space form, tangent to the structure vector field under some conditions (Theorem
8 and Theorem 12). In this paper we give an affirmative answer to the question
above for Einstein null hypersurfaces of indefinite Kenmotsu space forms, tangent
to the structure vector field (Theorem 4.14).

As is well known, the geometry of null (lightlike) submanifolds [3] is different
because of the fact that their normal vector bundle intersects with the tangent bun-
dle. Thus, the study becomes more difficult and strikingly different from the study
of non-degenerate submanifolds. This means that one cannot use, in the usual
way, the classical submanifold theory to define any induced object on a null sub-
manifold. To deal with this anomaly, the null submanifolds were introduced and
presented in a book by Duggal and Bejancu [3]. They introduced a non-degenerate
screen distribution to construct a non-intersecting null transversal vector bundle
of the tangent bundle. Several authors have studied null hypersurfaces of semi-
Riemannian manifolds ([10] and many more references therein). Concerning the
null contact geometry, some specific discussions can be found in [17], [18], [19],
[20], [21], [22], [23], [24] and [25].

In the present paper, we investigate some symmetries of null hypersurfaces in
indefinite Kenmotsu manifolds, tangent to the structure vector field, by particu-
larly paying attention to the locally symmetry, semi-symmetry and Ricci semi-
symmetry, as well as their relationships with induced connections studied, for in-
stance in [3], with the choice of screen distribution. By defining an η-Weyl con-
nection, we remark that an induced connection cannot be an η-Weyl connection.

The paper is organized as follows. In Section 2, we give basic definition on
indefinite Kenmotsu manifolds and null hypersurfaces of semi-Riemannian mani-
folds. In section 3, we give the decomposition of almost contact metrics of null hy-
persurfaces in indefinite Kenmotsu manifolds, tangent to the structure vector field,
supported by an example. In Section 4, we consider a null hypersurface M of an
indefinite Kenmotsu space form M(c) and study local symmetry, semi-symmetry
and Ricci semi-symmetry conditions on this hypersurface. We prove, among other
results, that in an null Einstein hypersurface of an indefinite Kenmotsu space forms,
tangent to the structure vector field, the mentioned three symmetries are equivalent.
We also prove that local symmetry property of a screen integrable null hypersur-
face of an indefinite Kenmotsu space form is related with local symmetry property
of leaves of its screen distribution (Theorem 4.8). Finally in Section 5, we intro-
duce a concept of η-Weyl connection ( η-semi-conformal connection) and we give
a total contact umbilicity criterion which shows that there are η-Weyl connections
for any totally contact umbilical null hypersurfaces.
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2. PRELIMINARIES

Let M be a (2n + 1)-dimensional manifold endowed with an almost contact
structure (φ, ξ, η), i.e. φ is a tensor field of type (1, 1), ξ is a vector field, and η is
a 1-form satisfying

φ
2
= −I+ η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0 and φξ = 0. (2.1)

Then (φ, ξ, η, g) is called an almost contact metric structure on M if (φ, ξ, η) is an
almost contact structure on M and g is a semi-Riemannian metric on M such that,
for any vector field X , Y on M [2]

η(X) = g(ξ,X), g(φX, φY ) = g(X,Y )− η(X) η(Y ). (2.2)

If, moreover, (∇Xφ)Y = g(φX, Y )ξ − η(Y )φX, where ∇ is the Levi-Civita
connection for the semi-Riemannian metric g, we call M an indefinite Kenmotsu
manifold (see [13] for details). Here, without loss of generality, the vector field ξ
is assumed to be spacelike, that is, g(ξ, ξ) = 1.

A plane section σ in TpM is called a φ-section if it is spanned by X and φX ,
where X is a unit tangent vector field orthogonal to ξ. The sectional curvature of
a φ-section σ is called a φ-sectional curvature. If a Kenmotsu manifold M has
constant φ-sectional curvature c, then, by virtue of the Proposition 12 in [14], the
curvature tensor R of M is given by

R(X,Y )Z =
c− 3

4

{
g(Y ,Z)X − g(X,Z)Y

}
+

c+ 1

4

{
η(X)η(Z)Y

−η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y ,Z)η(X)ξ + g(φY ,Z)φX

− g(φX,Z)φY − 2g(φX, Y )φZ
}
, X, Y , Z ∈ Γ(TM). (2.3)

A Kenmotsu manifold M of constant φ-sectional curvature c will be called Ken-
motsu space form and denoted M(c).

If a (2n + 1)-dimensional Kenmotsu manifold M has a constant φ-sectional
curvature c, then the Ricci tensor Ric and the scalar curvature r are given by [14]

Ric =
1

2
{n(c− 3) + c+ 1} g − 1

2
(n+ 1)(c+ 1)η ⊗ η, (2.4)

r =
1

2
{n(2n+ 1)(c− 3)− n(c+ 1)} . (2.5)

This means that M is η-Einstein. Since M is Kenmotsu and η-Einstein, by Corol-
lary 9 in [14], M is an Einstein one and consequently, c + 1 = 0, that is, c = −1.
So, the Ricci tensor (2.4) becomes Ric = −2ng and the scalar curvature is given
by r = −2n(2n+ 1).

Thus, if a Kenmotsu manifold M is a space form, then it is Einstein and c = −1.
This means that, it is a space of constant curvature −1, so, in the Riemannian case
M(c = −1) is locally isometric to the hyperbolic H2n+1(−1) and in the proper
semi-Riemannian case M(c = −1) is locally isometric to the pseudo hyperbolic
space H2n+1

s (−1), s being the index of the metric g.
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Example 2.1. We consider the 7-dimensional manifold

M
7
= {(x1, x2, ..., x7) ∈ R7 : x7 > 0},

where x = (x1, x2, ..., x7) are the standard coordinates in R7. The vector fields,

ep = x7
∂

∂xp
, eq = −x7

∂

∂xq
,

for any p = 1, 2, 3, 4, q = 5, 6, 7, are linearly independent at each point of M7.
Let g be the semi-Riemannian metric defined by

g(ei, ej) = 0, ∀ i 6= j, i, j = 1, 2, ..., 7,

g(el, el) = 1, ∀ l = 1, 2, 3, 4, 7 and g(em, em) = −1, ∀m = 5, 6.

Its tensor product form is given by

g =
1

(x7)2
{dx21 + dx22 + dx23 + dx24 − dx25 − dx26 + dx27}.

Let η be the 1-form defined by η(X) = g(X, e7), for any X ∈ Γ(TM
7
). Let φ be

the (1, 1) tensor field defined by, for any r = 1, 2, ..., 6, φe2r−1 = −e2r, φe2r =

e2r−1 and φe7 = 0. Then using the linearity of φ and g, we have φ
2
X =

−X + η(X)e7, g(φX, φY ) = g(X,Y )− η(X)η(Y ), for any X , Y ∈ Γ(TM
7
).

Thus, for e7 = ξ, (φ, ξ, η, g) defines an almost contact metric structure on M
7.

Let ∇ be the Levi-Civita connection with respect to the metric g. Then, we have
[er, e7] = ei, ∀ r = 1, 2, ..., 6 and [er, es] = 0, ∀ r 6= s, r, s = 1, 2, ..., 6. The
metric connection ∇ of the metric g is given by

2g(∇XY ,Z) = X.g(Y ,Z) + Y .g(Z,X)− Z.g(X,Y )− g(X, [Y ,Z])

− g(Y , [X,Z]) + g(Z, [X,Y ]),

which is known as Koszul’s formula. Using this formula, the non-vanishing co-
variant derivatives are given by, for any p = 1, 2, 3, 4, m = 5, 6, r = 1, 2, 3, ..., 6,
∇epep = −e7, ∇emem = e7, ∇ere7 = er. From these relations, it follows
that the manifold M satisfies (∇Xφ)Y = g(φX, Y ) − η(Y )φX. Hence, M is
indefinite Kenmotsu manifold.

Let (M, g) be a (2n+1)-dimensional semi-Riemannian manifold with index s,
0 < s < 2n+ 1 and let (M, g) be a hypersurface of M , with g = g|M . M is said
to be a null (lightlike) hypersurface of M if g is of constant rank (2n− 1) and the
orthogonal complement TM⊥ of tangent space TM , defined as

TM⊥ =
⋃
x∈M

{
Yx ∈ TxM : gx(Xx, Yx) = 0, ∀Xx ∈ TxM

}
, (2.6)

is a distribution of rank 1 on M [3]: TM⊥ ⊂ TM and then coincides with the
radical distribution RadTM = TM ∩ TM⊥. A complementary bundle of TM⊥

in TM is a rank (2n− 1) non-degenerate distribution over M . It is called a screen
distribution and is often denoted by S(TM). Existence of S(TM) is secured
provided M is paracompact. However, in general, S(TM) is not canonical (thus
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it is not unique) and the null geometry depends on its choice but it is canonically
isomorphic to the vector bundle TM/RadTM [16].

A lightlike hypersurface endowed with a specific screen distribution is denoted
by the triple (M, g, S(TM)). As TM⊥ lies in the tangent bundle, the following
result has an important role in studying the geometry of a null hypersurface.

Theorem 2.2. [3] Let (M, g, S(TM)) be a lightlike hypersurface of (M, g). Then,
there exists a unique vector bundle N(TM) of rank 1 over M such that for any
non-zero section E of TM⊥ on a coordinate neighborhood U ⊂ M , there exists a
unique section N of N(TM) on U satisfying

g(N,E) = 1 and g(N,N) = g(N,W ) = 0, ∀W ∈ Γ(S(TM)|U ). (2.7)

Throughout the paper, all manifolds are supposed to be paracompact and smooth.
We denote by ⊥ and ⊕ the orthogonal and nonorthogonal direct sum of two vector
bundles. By Theorem 2.2 we may write down the following decompositions

TM = S(TM) ⊥ TM⊥, (2.8)

TM = TM ⊕N(TM) = S(TM) ⊥ (TM⊥ ⊕N(TM)). (2.9)

Let ∇ be the Levi-Civita connection on (M, g), then by using decomposition of
(2.9) and considering a normalizing pair {E,N} as in Theorem 2.2, we have the
Gauss and Weingarten formulae in the form,

∇XY = ∇XY + h(X,Y ) (2.10)

and ∇XV = −AV X +∇⊥
XV, (2.11)

for any X , Y ∈ Γ(TM |U ), V ∈ Γ(N(TM)), where ∇XY , AV X ∈ Γ(TM) and
h(X,Y ), ∇⊥

XV ∈ Γ(N(TM)). ∇ is an induced symmetric linear connection on
M , ∇⊥ is a linear connection on the vector bundle N(TM), h is a Γ(N(TM))-
valued symmetric bilinear form and AV is the shape operator of M concerning
V .

Equivalently, consider a normalizing pair {E,N} as in Theorem 2.2. Then
(2.10) takes the following form,

∇XY = ∇XY +B(X,Y )N (2.12)

and ∇XN = −ANX + τ(X)N, (2.13)

where B, AN , τ and ∇ are called the local second fundamental form, the local
shape operator, the transversal differential 1-form and the induced linear torsion-
free connection, respectively, on TM |U .

It is important to mention that the second fundamental form B of M is indepen-
dent of the choice of screen distribution and B(·, E) = 0. In fact, from (2.12), we
obtain, for any X , Y ∈ Γ(TM |U ), B(X,Y ) = g(∇XY,E) and

τ(X) = g(∇⊥
XN,E). (2.14)
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Let P be the projection morphism of TM on S(TM) with respect to the or-
thogonal decomposition of TM . We have,

∇XPY = ∇∗
XPY + C(X,PY )E, (2.15)

and ∇XE = −A∗
EX − τ(X)E, (2.16)

for any X , Y ∈ Γ(TM |U ), E ∈ Γ(TM⊥), where ∇∗
XPY and A∗

EX belong to
Γ(S(TM)). C, A∗

E and ∇∗ are called the local second fundamental form, the local
shape operator and the induced linear metric connection, respectively, on S(TM).
The induced linear connection ∇ is not a metric connection and we have

(∇Xg)(Y, Z) = B(X,Y )θ(Z) +B(X,Z)θ(Y ), (2.17)

where θ is a differential 1-form locally defined on M by

θ(·) := g(N, ·). (2.18)

The local second fundamental forms B and C, respectively, of M and on S(TM)
are related to their shape operators by

g(A∗
EX,PY ) = B(X,PY ), g(A∗

EX,N) = 0, (2.19)

g(ANX,PY ) = C(X,PY ), g(ANX,N) = 0. (2.20)

Denote by R and R the Riemann curvature tensors of M and M , respectively.
From Gauss-Codazzi equations, we have, for any X , Y , Z ∈ Γ(TM|U ),

R(X,Y )Z = R(X,Y )Z +B(X,Z)ANY −B(Y, Z)ANX + {(∇XB)(Y, Z)

− (∇Y B)(X,Z) + τ(X)B(Y, Z)− τ(Y )B(X,Z)}N, (2.21)

g(R(X,Y )Z,N) = g(R(X,Y )Z,N), (2.22)

g(R(X,Y )PZ,N) = ∇XC)(Y, PZ)− (∇Y C)(X,PZ) + τ(Y )C(X,PZ)

− τ(X)C(Y, PZ), (2.23)

g(R(X,Y )E,N) = C(Y,
∗
Aξ X)− C(X,

∗
Aξ Y )− 2dτ(X,Y ). (2.24)

3. NULL HYPERSURFACES OF INDEFINITE KENMOTSU MANIFOLDS

Let (M,φ, ξ, η, g) be an indefinite Kenmotsu manifold and (M, g) be a null
hypersurface of (M, g), tangent to the structure vector field ξ (ξ ∈ TM ).

If E is a local section of TM⊥, it is easy to check that φE 6= 0 and g(φE,E) =
0, then φE is tangent to M . Thus φ(TM⊥) is a distribution on M of rank 1 such
that φ(TM⊥) ∩ TM⊥ = {0}. In fact, if φ(TM⊥) ∩ TM⊥ 6= {0}, there exists
a non-zero smooth real valued function f such that φE = µE. Applying φ to
this and using (2.1), we obtain (µ2 + 1)E = 0, which implies µ2 + 1 = 0. It
is an impossible case for real submanifold M . Therefore, we have φ(TM⊥) ∩
TM⊥ = {0} . This enables us to choose a screen distribution S(TM) such that
it contains φ(TM⊥) as a vector subbundle. If we consider a local section N of
N(TM), we have φN 6= 0. Since g(φN,E) = −g(N,φE) = 0, we deduce
that φE belongs to S(TM) and φN is also tangent to M . At the same time, since
g(φN,N) = 0, we see that the component of φN , with respect to E, vanishes.
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Thus φN ∈ Γ(S(TM)), that is, φ(N(TM)) is also a vector subbundle of S(TM)
of rank 1. We have

Lemma 3.1. Let (M, g, S(TM)) be a null hypersurface of an indefinite Kenmotsu
manifold (M, g). Then, the distributions φ(TM⊥) and φ(N(TM)) are vector
subbundles of S(TM) of rank 1.

From (2.1), we have g(φN, φE) = 1. Therefore, φ(TM⊥) ⊕ φ(N(TM)) is a
non-degenerate vector subbundle of S(TM) of rank 2.

If M is tangent to the structure vector field ξ, we may choose S(TM) so that ξ
belongs to S(TM). Using this, and since g(φE, ξ) = g(φN, ξ) = 0, there exists a
non-degenerate distribution D0 of rank 2n− 4 on M such that

S(TM) =
{
φ(TM⊥)⊕ φ(N(TM))

}
⊥ D0 ⊥< ξ >, (3.1)

where 〈ξ〉 is the distribution spanned by ξ. The distribution D0 is invariant under
φ, i.e. φ(D0) = D0. Moreover, from (2.8) and (3.1) we obtain the decompositions

TM =
{
φ(TM⊥)⊕ φ(N(TM))

}
⊥ D0 ⊥< ξ >⊥ TM⊥, (3.2)

TM =
{
φ(TM⊥)⊕ φ(N(TM))

}
⊥ D0 ⊥< ξ >⊥ (TM⊥ ⊕N(TM)). (3.3)

Example 3.2. Let M be a hypersurface of (M7
, φ, ξ, η, g), indefinite Kenmotsu

manifold defined in the Example 2.1, given by

x5 =
√
2(x2 + x3),

where (x1, x2, ..., x7) is a local coordinate system for R7. Thus, the tangent space
TM is spanned by {Ui}1≤i≤6, where U1 = e1, U2 = e2−e3, U3 =

1√
2
(e2+e3)−

e5, U4 = e4, U5 = e6, U6 = ξ and the 1-dimensional distribution TM⊥ of rank
1 is spanned by E, where E = 1√

2
(e2 + e3) − e5. It follows that TM⊥ ⊂ TM .

Then M is a 6-dimensional null hypersurface of M7. Also, the transversal bundle
N(TM) is spanned by N = 1

2{
1√
2
(e2 + e3)+e5}. On the other hand, by using the

almost contact structure of M7 and also by taking into account the decomposition
(3.1), the distribution D0 is spanned by

{
F, φF

}
, where F = U2, φF = U1 + U4

and the distributions 〈ξ〉, φ(TM⊥) and φ(N(TM)) are spanned, respectively, by
ξ, φE = 1√

2
(U1 − U4) + U5 and φN = 1

2{
1√
2
(U1 − U4) − U5}. Hence, M is a

null hypersurface of M7.

Now, we consider the distributions on M , D := TM⊥ ⊥ φ(TM⊥) ⊥ D0,
D′ := φ(N(TM)). Then, D is invariant under φ and

TM = (D ⊕D′) ⊥ 〈ξ〉. (3.4)

Let us consider the local null vector fields U := −φN , V := −φE. Then, from
(3.4), any X ∈ Γ(TM) is written as X = RX + QX + η(X)ξ, QX = u(X)U ,
where R and Q are the projection morphisms of TM into D and D′, respectively,
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and u is a differential 1-form locally defined on M by u(X) := g(V,X), ∀X ∈
Γ(TM). Applying φ to X and (2.1), one obtains

φX = φX + u(X)N, (3.5)

where φ is a tensor field of type (1, 1) defined on M by φX := φRX . In addition,
we obtain, φ2X = −X+η(X)ξ+u(X)U and ∇Xξ = X−η(X)ξ. Using (2.1),
we derive g(φX, φY ) = g(X,Y )− η(X)η(Y )− u(Y )v(X)− u(X)v(Y ), where
v is a differential 1-form locally defined on M by v(·) = g(U, ·). We have the
following identities, for any X ∈ Γ(TM), ∇Xξ = X − η(X)ξ and

B(X, ξ) = 0, (3.6)

C(X, ξ) = θ(X), (3.7)

B(X,U) = C(X,V ). (3.8)

A section X ∈ Γ(TM) is said to be an η-conformal Killing vector field if

LXg = Ω(g − η ⊗ η), (3.9)

where Ω is a smooth function on U ⊂ M .

Lemma 3.3. Let M be a null hypersurface of an indefinite Kenmotsu manifold
M with ξ ∈ TM . Then ξ is an η-conformal Killing vector field on M , that is,
Lξg = Ω(g − η ⊗ η), with Ω = 2.

Proof. The proof follows by direct calculation. �

Although the use of a non-degenerate screen distribution S(TM) has been help-
ful in defining induced objects on the null spaces, because of the degenerate metric,
S(TM) is not unique. Therefore, a lot of induced geometric objects depend on the
choice of a screen, which creates a problem. For this reason, it is desirable to look
for a unique or canonical screen distribution so that the induced objects on M are
well-defined. To clarify this point, we first present a brief review of the dependence
on the choice of a screen distribution.

By Theorem 2.2 and relation (2.8), we say that there exists a quasi-orthonormal
basis of M along M , given by

{E, N, Wi}, i ∈ {1, ..., 2n− 1}, (3.10)

where {E}, {N} and {Wi} are the null basis of TM⊥, N(TM) and the orthonor-
mal basis of S(TM), respectively. Consider two quasi-orthonormal frames fields
{E, N, Wi} and {E, N ′, W ′

i} induced on U ⊂ M by {S(TM), N(TM)} and
{S(TM)′, N(TM)′}, respectively for the same E. Using (2.7) and (2.9), we ob-
tain

W ′
i =

2n−1∑
j=1

W j
i (Wj − εjfjE) , (3.11)

N ′ = N + fE +

2n−1∑
i=1

fiWi, (3.12)
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where εi are signature of the orthonormal basis {Wi} and W j
i , f and fi are smooth

functions on U such that {W j
i } are (2n− 1)× (2n− 1) semi-orthogonal matrices.

Computing g(N ′, N ′) = 0 by (2.7) and g(Wi,Wi) = 1 we get

2f +
2n−1∑
i=1

εi(fi)
2 = 0.

Using this in the second relation of the above two equations, we have

W ′
i =

2n−1∑
j=1

W j
i (Wj − εjfjE) , (3.13)

N ′ = N − 1

2
{
2n−1∑
i=1

εi(fi)
2}E +

2n−1∑
i=1

fiWi. (3.14)

The above two relations are used to investigate the transformation of the induced
objects when one changes the pair {S(TM), N(TM)} with respect to a change
in the basis. Using (2.12) for both screens we have

B(X,Y ) = g(∇XY,E) = B′(X,Y ), ∀ X, Y ∈ Γ(TM |U ). (3.15)

Thus, B = B′ on U . Take E = αE, for some positive smooth function α on M .
Then, it follows that N = (1/α)N . From (2.12) and (2.13), the associated local
fundamental form B and 1-form τ are related to B and τ , respectively, by

B = αB, (3.16)

τ(X) = τ(X) +X(lnα), (3.17)

for any X ∈ Γ(TM |U ), which proves that B and τ depend on the section E on U .
Finally, taking the exterior derivative d on both sides of (3.17) we get dτ = dτ on
U , that is, dτ is independent of the section E.

Define the Ricci tensor Ric of M and induced Ricci type tensor R(0,2) of M ,
respectively, as

Ric(X,Y ) = trace(Z −→ R(Z,X)Y ),∀X, Y ∈ Γ(TM), (3.18)

R(0,2)(X,Y ) = trace(Z −→ R(Z,X)Y ),∀X, Y ∈ Γ(TM). (3.19)

Since the induced connection ∇ on M is not a Levi-Civita connection, in general,
R(0,2) is not symmetric. Therefore, in general, it is just a tensor quantity and has
no geometric or physical meaning similar to the symmetric Ricci tensor of M .

Let consider a local quasi-orthogonal frame field {X0, N,Xi}i=1,...,2n−1 on M
where {X0, Xi} is a local frame field on M with respect to the decomposition
(3.3) with N , the unique section of transversal bundle N(TM) satisfying (2.7),
and E = X0. It is easy to obtain from (3.19) the following local expression for the
Ricci tensor

R(0,2)(X,Y ) = gijg(R(Xi, X)Y,Xj) + g(R(X0, X)Y,N). (3.20)
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From this we obtain

R(0,2)(X,Y )−R(0,2)(Y,X) = gij{C(Y,Xj)B(X,Xi)− C(X,Xj)B(Y,Xi)}
− g(R(X,Y )X0, N). (3.21)

Put R(0,2)
ls := R(0,2)(Xs, Xl) and R

(0,2)
0k := R(0,2)(Xk, X0). Using the frame field

{X0, N,Xi} and replacing X and Y by Xs and Xl respectively, a direct calculation
gives locally

R
(0,2)
ls −R

(0,2)
sl = Ai

sBil −Ai
lBis +R

0
0ls = 2dτ(Xl, Xs) (3.22)

and R
(0,2)
0k −R

(0,2)
k0 = −Ai

0Bik +R
0
00k = 2dτ(X0, Xk), (3.23)

where R
0
ijk = g(R(Xk, Xj)Xi, N). The Gauss-Codazzi equations are expressed

locally by using coefficients of ∇ and local components of h, AN and τ and they
are given by ([3])

R
0
00s = Ai

0Bis + 2dτ(X0, Xs), (3.24)

and R
0
0js = R0

0js = Ai
jBis −Ai

sBij + 2dτ(Xj , Xs). (3.25)

Putting (3.24) and (3.25) into (3.22) and (3.23), respectively, we have

R
(0,2)
ls −R

(0,2)
sl = 2dτ(Xl, Xs) and R

(0,2)
0k −R

(0,2)
k0 = 2dτ(X0, Xk). (3.26)

This means that R(0,2) is symmetric on M if and only if dτ = 0 on U ⊂ M , that is
τ is closed. Suppose R(0,2) is a symmetric Ricci tensor Ric. Then, the 1-form τ is
closed. Thus there exists a smooth function f on U such that

τ = df. (3.27)

Consequently we get τ(X) = X(f). This relation, using (3.17), for α = exp(f),
yields

τ(X) = τ(X) +X(lnα) = τ(X) + τ(X),

therefore τ(X) = 0, for any X ∈ Γ(TM |U ). Then, by taking E = exp(f)E, one
obtains τ = 0 on U . The corresponding N is N = (1/ exp(f))N . We call the pair
{ξ,N} on U such that the corresponding 1-form τ vanishes the canonical null pair
of M .

As it is mentioned above, we observe that the existence of a symmetric Ricci
tensor on M is equivalent to dτ = 0, on any U ⊂ M and τ need not vanish.
Therefore, only vanishing of dτ is needed to get a symmetric Ricci tensor for M .

If M is an indefinite Kenmotsu space form (M(c), g), then, the relation (2.3)
becomes, for any X , Y , Z ∈ Γ(TM),

R(X,Y )Z = g(X,Z)Y − g(Y,Z)X. (3.28)

Using (2.21), a direct calculation gives

R(0,2)(X,Y ) = −(2n− 1)g(X,Y ) +B(X,Y )trAN −B(ANX,Y ), (3.29)
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where trace tr is written with respect to g restricted to S(TM). Note that the Ricci
tensor does not depend on the choice of the vector field E of the distribution TM⊥.
From (3.29), we have

R(0,2)(X,Y )−R(0,2)(Y,X) = B(ANX,Y )−B(ANY,X). (3.30)

The tensor field R(0,2) of a null hypersurface M of an indefinite Kenmotsu mani-
fold M is called induced Ricci tensor if it is symmetric [8] .

4. SYMMETRIES OF NULL HYPERSURFACES IN INDEFINITE KENMOTSU
MANIFOLDS

This section deals with locally symmetric, semi-symmetric and Ricci semi-
symmetric null hypersurfaces of indefinite Kenmotsu manifolds, tangent to the
structure vector field ξ. Let (M, g) be a null hypersurface of an indefinite Ken-
motsu space form (M(c), g) with ξ ∈ TM . Let us consider the pair {E,N}
on U ⊂ M (Theorem 2.2). The relation (3.28) implies that, for any X , Y ,
Z ∈ Γ(TM),

g(R(X,Y )Z,E) = 0, (4.1)

and g(R(X,Y )Z,N) = g(X,Z)θ(Y )− g(Y, Z)θ(X). (4.2)

From (2.21) and (3.5) and comparing the tangential and transversal parts, we obtain

R(X,Y )Z = g(X,Z)Y − g(Y,Z)X +B(Y,Z)ANX −B(X,Z)ANY, (4.3)

and

(∇XB)(Y, Z)− (∇Y B)(X,Z) = τ(Y )B(X,Z)− τ(X)B(Y, Z). (4.4)

Using (4.3), then, for any X , Y ∈ Γ(TM),

R(X,Y )ξ = η(X)Y − η(Y )X. (4.5)

Proposition 4.1. A lightlike hypersurface (M, g) of an indefinite Kenmotsu space
form (M(c), g) with ξ ∈ TM , cannot be flat.

Proof. Let M be a lightlike hypersurface of an indefinite Kenmotsu space form
(M(c), g) with ξ ∈ TM . If M is flat, then from (4.5), we obtain, for any Z ∈
Γ(TM),

η(X)g(Y, Z) = η(Y )g(X,Z),

from which we obtain g(φY, φZ) = 0, a contradiction. �

The Theorem 4.1 shows that the curvature tensor R and Ricci tensor Ric of
a lightlike hypersuface M of an indefinite Kenmotsu space form M(c) are not
vanishing. This guarantees the fact that we are dealing with non-trivial curvature
and Ricci tensors.

In the sequel, we need the following identities. For any X , Y ∈ Γ(TM) and
Z ∈ Γ(S(TM)),

g((∇XA∗
E)Y,Z) = (∇XB)(Y,Z), g((∇XAN )Y, Z) = (∇XC)(Y, Z). (4.6)
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A null hypersurface (M, g, S(TM)) of a semi-Riemannian manifold (M, g) is
said to be locally symmetric if the curvature tensor R of M satisfies ([17])

g((∇WR)(X,Y )Z,PT ) = 0 and g((∇WR)(X,Y )Z,N) = 0, (4.7)

for any X , Y , Z, W , T ∈ Γ(TM) and N ∈ Γ(N(TM)). From this definition, we
have (∇WR)(X,Y )Z = 0, ∀ X, Y, Z ∈ Γ(TM).

Note that, using the relation (3.28), it is easy to see that an indefinite Kenmotsu
space form (M(c), g) is locally symmetric.

Proposition 4.2. Let (M, g, S(TM)) be a null hypersurface of an indefinite Ken-
motsu space form (M(c), g) with ξ ∈ TM . Then,

g((∇WR)(X,Y )Z, T ) = B(Y, Z)(∇WC)(X,T )−B(X,Z)(∇WC)(Y, T )

+ {B(W,X)g(Y, T )−B(W,Y )g(X,T )}θ(Z) + (∇WB)(Y, Z)C(X,T )

− (∇WB)(X,Z)C(Y, T ) +B(W,Z){θ(X)g(Y, T )− θ(Y )g(X,T )}, (4.8)

and

g((∇WR)(X,Y )Z,N) = B(Y,Z)C(X,ANW )−B(X,Z)C(Y,ANW )

+ {B(W,X)θ(Y )−B(W,Y )θ(X)}θ(Z), (4.9)

for any X , Y , Z, W ∈ Γ(TM), T ∈ Γ(S(TM)) and N ∈ Γ(N(TM)).

Proof. Using (4.3), the covariant derivative of R gives, for any X , Y , Z ∈ Γ(TM),

(∇WR)(X,Y )Z = ∇WR(X,Y )Z −R(∇WX,Y )Z −R(X,∇WY )Z

−R(X,Y )∇WZ

= B(Y, Z)(∇WAN )X −B(X,Z)(∇WAN )Y + (∇W g)(X,Z)Y

+ (∇WB)(Y, Z)ANX − (∇WB)(X,Z)ANY − (∇W g)(Y, Z)X, (4.10)

which implies, for any T ∈ Γ(S(TM)) and N ∈ Γ(N(TM)),

g((∇WR)(X,Y )Z, T ) = B(Y, Z)(∇WC)(X,T )−B(X,Z)(∇WC)(Y, T )

+ {B(W,X)g(Y, T )−B(W,Y )g(X,T )}θ(Z) +B(W,Z){θ(X)g(Y, T )

− θ(Y )g(X,T )}+ (∇WB)(Y,Z)C(X,T )− (∇WB)(X,Z)C(Y, T ),

and

g((∇WR)(X,Y )Z,N) = B(Y,Z)C(X,ANW )−B(X,Z)C(Y,ANW )

+ {B(W,X)θ(Y )−B(W,Y )θ(X)}θ(Z),

which completes the proof. �
Theorem 4.3. Let (M, g, S(TM)) be a null hypersurface of an indefinite Ken-
motsu space form (M(c), g) with ξ ∈ TM . Then, M is locally symmetric if and
only if it is totally geodesic.

Proof. Let (M, g) be a null hypersurface of an indefinite Kenmotsu space form
(M(c), g) with ξ ∈ TM . Suppose that M is locally symmetric. Then, for any W ,
Y , Z ∈ Γ(TM), (∇WR)(X,Y )Z = 0. Taking Y = E and Z = ξ in (4.8), one
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obtains 0 = g((∇WR)(X,E)ξ,N) = B(W,X), which implies that M is totally
geodesic. The converse is obvious. �

Let M(c) be an indefinite Kenmotsu space form and M be a null hypersurface
of M(c). Let us consider the pair {E,N} on U ⊂ M (Theorem 2.2) and by using
(2.21), we obtain

(∇XB)(Y,Z)− (∇Y B)(X,Z) = τ(Y )B(X,Z)− τ(X)B(Y, Z). (4.11)

Lemma 4.4. Let M be a null hypersurface of an indefinite Kenmotsu space form
M with ξ ∈ TM . Then, the Lie derivative of the local second fundamental form B
with respect to ξ is given by

(LξB)(X,Y ) = (1− τ(ξ))B(X,Y ), ∀X, Y ∈ Γ(TM). (4.12)

Proof. Using (2.21), we obtain

(∇ξB)(X,Y ) = (LξB)(X,Y )− 2B(X,Y ). (4.13)

Likewise, using again (2.21), we have

(∇XB)(ξ, Y ) = −B(X,Y ). (4.14)

Subtracting (4.13) and (4.14), we obtain

(∇ξB)(X,Y )− (∇XB)(ξ, Y ) = (LξB)(X,Y )−B(X,Y ). (4.15)

From (4.11) and after calculations, the left hand side of (4.15) becomes

(∇ξB)(X,Y )− (∇XB)(ξ, Y ) = −τ(ξ)B(X,Y ). (4.16)

The relations (4.15) and (4.16) imply (LξB)(X,Y ) = (1− τ(ξ))B(X,Y ). �
Next, we give characterization on parallel null hypersuface of an indefinite Ken-

motsu manifold. In fact, it shows that there do not exist non-totally geodesic to-
tally umbilical null hypersurfaces of indefinite Kenmotsu manifolds, tangent to the
structure vector field ξ.

The second fundamental form h of M is said to be parallel if (∇Xh)(Y, Z) =
0, ∀X, Y, Z ∈ Γ(TM). That is,

(∇XB)(Y, Z) = −τ(X)B(Y, Z). (4.17)

In [28], Sahin characterizes lightlike hypersurfaces with parallel second funda-
mental form in Lorentzian manifold. He showed that there do not exist non-totally
geodesic parallel lightlike hypersurfaces in a Lorentzian manifold.

Theorem 4.5. Let M be a null hypersurface of an indefinite Kenmotsu space form
M(c), with ξ ∈ TM . If the second fundamental form h of M is parallel, then M
is totally geodesic.

Proof. Suppose that the second fundamental form h of M is parallel. Then (4.17)
is satisfied. Using (4.17), we obtain

(∇ξB)(X,Y ) = −τ(ξ)B(X,Y ). (4.18)

From (2.21) and using (4.12), the left hand side of (4.18) becomes

(∇ξB)(X,Y ) = (LξB)(X,Y )− 2B(X,Y ) = −(1 + τ(ξ))B(X,Y ). (4.19)
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From the expressions (4.18) and (4.19) we complete the proof. �
To study the dependence of the induced objects {τ, ∇} on the screen distribu-

tion S(TM), let {τ ′, ∇′} be another set of induced objects with respect to another
screen distribution S(TM)′ and its transversal N(TM)′. Consider two quasi-
orthonormal frames fields {E, N, Wi} and {E, N ′, W ′

i} induced on U ⊂ M
by {S(TM), N(TM)} and {S(TM)′, N(TM)′}, respectively. Using the trans-
formation equations (3.15) and (3.17), we obtain relationship between the geomet-
rical objects induced by the Gauss-Weingarten equations with respect to S(TM)
and S(TM)′ as follows:

τ ′(X) = τ(X) +B(X,N ′ −N), (4.20)

∇′
XY = ∇XY +B(X,Y ){1

2
g(W,W )E −W}, (4.21)

for any X , Y ∈ Γ(TM |U ), where W =
∑2n−1

i=1 fiWi is the characteristic vector
field of the screen change.

The covariant derivative of the second fundamental form h depends on ∇, N and
τ which depend on the choice of the screen vector bundle. The covariant derivatives
∇ of h = B ⊗N and ∇′ of h′ = B ⊗N ′ in the screen distributions S(TM) and
S(TM)′, respectively, are related as follows: for any X , Y , Z ∈ Γ(TM),

g((∇′
Xh′)(Y, Z), E) = g((∇Xh)(Y, Z), E) + L(X,Y )Z,

with L(X,Y )Z = B(X,Y )B(Z,W ) + B(X,Z)B(Y,W ) + B(Y, Z)B(X,W ). It
is easy to check that the parallelism of h is independent of the screen distribution
S(TM) (∇′h′ ≡ ∇h) if and only the second fundamental form B of M vanishes
identically on M .

In virtue of Theorem 4.3, we have the following result.

Theorem 4.6. Let (M, g, S(TM)) be a null hypersurface of an indefinite Ken-
motsu space form (M(c), g) with ξ ∈ TM . Then, M is locally symmetric if and
only if it is parallel.

It is known that null submanifolds whose screen distribution is integrable have
interesting properties. Referring to the decomposition (3.2) and for any X ∈
Γ(TM), Y ∈ Γ(D ⊥ 〈ξ〉), we have

∇XY = ∇D⊥〈ξ〉
X Y + hD⊥〈ξ〉(X,Y ), (4.22)

where ∇D⊥〈ξ〉 is a linear connection on D ⊥ 〈ξ〉 and hD⊥〈ξ〉 : Γ(TM) × Γ(D ⊥
〈ξ〉) −→ D′ is F(M)-bilinear. Let U ⊂ M be a coordinate neighborhood as fixed
in Theorem 2.2. Then, using (3.2), (4.22) can be rewritten locally as,

∇XY = ∇D⊥〈ξ〉
X Y + g(∇XY, V )U = ∇D⊥〈ξ〉

X Y +B(X,φY )U, (4.23)

for any X ∈ Γ(TM), Y ∈ Γ(D ⊥ 〈ξ〉) and the local expression of hD⊥〈ξ〉 is

hD⊥〈ξ〉(X,Y ) = B(X,φY )U. (4.24)

This means that hD⊥〈ξ〉 is symmetric on D ⊥ 〈ξ〉 if and only if B(X,φY ) =
B(φX, Y ), ∀ X, Y ∈ Γ(D ⊥ 〈ξ〉). Since u([X,Y ]) = B(X,φY ) − B(φX, Y ),
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we deduce that hD⊥〈ξ〉 is symmetric on D ⊥ 〈ξ〉 if and only if D ⊥ 〈ξ〉 is in-
tegrable. Moreover the integrability of D ⊥ 〈ξ〉 implies that ∇D⊥〈ξ〉 is a linear
symmetric connection on the integral manifolds.

In the following this property is considered.

Definition 4.7. Let (M, g, S(TM)) be a screen integrable null hypersurface of a
semi-Riemannian manifold (M, g). A leaf M ′ of S(TM) immersed in M as a non-
degenerate submanifold is said to be locally symmetric if the induced curvature R∗

of Levi-Civita connection ∇∗ satisfies

(∇∗
WR∗)(X,Y )Z = 0, ∀W,X, Y, Z ∈ Γ(TM ′). (4.25)

In the following theorem, we show that local symmetry property of a screen
integrable null hypersurface of an indefinite Kenmotsu space form is closely related
to the local symmetry property of leaves of its screen distribution. First of all, we
note that when null hypersurface M of an indefinite Kenmotsu space form M(c)
with ξ ∈ TM is locally symmetric, then the following identities

R(E, Y, Z, T ) = 0, R(X,E,Z, T ) = 0, R(X,Y,E, T ) = 0, (4.26)

for any X , Y , Z, T ∈ Γ(TM), hold.
Let (M, g, S(TM)) be a screen integrable null hypersurface of an indefinite

Kenmotsu space form M(c) with ξ ∈ TM . Using Gauss and Weingarten equa-
tions, we have,

R(X,Y )Z = R∗(X,Y )Z + C(X,Z)A∗
EY − C(Y, Z)A∗

EX

+ {(∇XC)(Y, Z)− (∇Y C)(X,Z) + τ(Y )C(X,Z)

− τ(X)C(Y,Z)}E, ∀X,Y, Z ∈ Γ(TM ′), (4.27)

where (∇XC)(Y, Z) = X.C(Y, Z) − C(∇∗
XY, Z) − C(Y,∇∗

XZ). By covariant
derivative, we have for any W , X , Y , Z ∈ Γ(TM ′),

(∇WR)(X,Y )Z = (∇∗
WR∗)(X,Y )Z + (∇WC)(X,Z)A∗Y

− (∇WC)(Y, Z)A∗X + C(X,Z)(∇WA∗)Y − C(Y, Z)(∇WA∗)X

−
{
(∇XC)(Y, Z)− (∇Y C)(X,Z) + τ(Y )C(X,Z)

− τ(X)C(Y,Z)
}
A∗W +

{
(∇W∇XC)(Y, Z)− (∇W∇Y C)(X,Z)

+ C(X,Z)(∇W τ)Y − C(Y, Z)(∇W τ)X + τ(Y )(∇WC)(X,Z)

− τ(X)(∇WC)(Y,Z) + τ(W )(∇Y C)(X,Z)− τ(W )(∇XC)(Y, Z)

+ τ(W )τ(X)C(Y, Z)− τ(W )τ(Y )C(X,Z) + C(X,Z)C(W,A∗Y )

− C(Y, Z)C(W,A∗X) + (∇∇∗
WY C)(X,Z)− (∇∇∗

WXC)(Y, Z)

+ C(W,R∗(X,Y )Z)
}
E −R(C(W,X)E, Y )Z −R(X,C(W,Y )E)Z

−R(X,Y )C(W,Z)E. (4.28)
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So, for any W,X, Y, Z, T ∈ Γ(TM ′), we have,

g((∇WR)(X,Y )Z, T ) = g((∇∗
WR∗)(X,Y )Z, T ) +B(Y, T )(∇WC)(X,Z)

−B(X,T )(∇WC)(Y, Z) + C(X,Z)g((∇WA∗)Y, T )

− C(Y,Z)g((∇WA∗)X,T ) +B(W,T )(∇Y C)(X,Z)

−B(W,T )(∇XC)(Y, Z) +B(W,T )τ(X)C(Y, Z)

−B(W,T )τ(Y )C(X,Z)− C(W,X)R(E, Y, Z, T )

− C(W,Y )R(X,E,Z, T )− C(W,Z)R(X,Y,E, T ). (4.29)

By virtue of the relation (4.6), we have

g((∇WA∗)Y, T ) = (∇WB)(Y, T ).

If M is locally symmetric, then, using Theorem 4.3, B = 0. By relations in (4.26),
g((∇∗

WR∗)(X,Y )Z, T ) = 0, that is M ′ is locally symmetric in M . Therefore,

Theorem 4.8. Let (M, g, S(TM)) be a screen integrable null hypersurface of an
indefinite Kenmotsu space form M(c) with ξ ∈ TM . If M is locally symmetric,
then any leaf M ′ of S(TM) immersed in M as a non-degenerate submanifold is
locally symmetric.

Note that the locally symmetry has an integrability condition, namely, the semi-
symmetry. Now, we deal with semi-symmetric null hypersurfaces of indefinite
Kenmotsu spaces form, tangent to the structure vector field ξ.

A null hypersurface M of a semi-Riemannian manifold M is said to be semi-
symmetric if the following condition is satisfied ([10])

(R(W1,W2) ·R)(X,Y, Z, T ) = 0, ∀W1,W2, X, Y, Z, T ∈ Γ(TM), (4.30)

where R is the induced Riemann curvature on M .
This is equivalent to

−R(R(W1,W2)X,Y, Z, T )− ...−R(X,Y, Z,R(W1,W2)T ) = 0.

In general the condition (4.30) is not equivalent to (R(W1,W2) · R)(X,Y )Z = 0
like in the non-degenerate case.

Next, we investigate the effect of semi-symmetry condition on geometry of null
hypersurfaces in an indefinite Kenmotsu space form.

Theorem 4.9. Let (M, g, S(TM)) be a null hypersurface of an indefinite Ken-
motsu space form (M(c), g), with ξ ∈ TM . Then M is semi-symmetric if and only
if it is totally geodesic.

Proof. From (4.30), we have, for any X , Y , Z, T ∈ Γ(TM),

(R(E,X) ·R)(E, Y, Z, T ) = −B(X,Y )B(ANE,Z)g(ANE, T )

−B(Y,ANE)B(X,Z)g(ANE, T )−B(Y, Z)B(X,T )g(ANE,ANE). (4.31)

If M is semi-symmetric, the left hand side of (4.31) vanishes and we have,

0 = B(X,Y )B(ANE,Z)g(ANE, T ) +B(Y,ANE)B(X,Z)g(ANE, T )

+B(Y, Z)B(X,T )g(ANE,ANE).
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which leads, by taking T = ξ and using (3.7), to

0 = B(ANE,B(X,Y )Z +B(X,Z)Y )

= g(A∗
EANE,B(X,Y )Z +B(X,Z)Y ). (4.32)

This means that

B(X,Y )Z +B(X,Z)Y = {B(X,Y )θ(Z) +B(X,Z)θ(Y )}E
+ {B(X,Y )η(Z) +B(X,Z)η(Y )}ξ,

that is,

B(X,Y ){Z − θ(Z)E − η(Z)ξ} = B(X,Z){Y − θ(Y )E − η(Y )ξ}.

Taking PZ ′ = Z − θ(Z)E − η(Z)ξ and PY ′ = Y − θ(Y )E − η(Y )ξ, we have

B(X,Y )PZ ′ = B(X,Z)PY ′. (4.33)

Now suppose that there exists a vector field Y ′
0 on some neighborhood of M such

that B(X,Y0) 6= 0, for any X ∈ Γ(TM), at some point p in the neighborhood.
Then, from (4.33) it follows that all vectors of the fibre (S(TM) − 〈ξ〉)p :=(
φ(TM⊥)⊕ φ(N(TM)) ⊥ D0

)
p
⊂ S(TM)p are collinear with (PY ′

0)p. This
contradicts dim(S(TM) − 〈ξ〉)p > 1. This implies that B(X,Y ) = 0. The con-
verse is obvious. �

In virtue of Theorem 4.3 and Theorem 4.9, we have the following result.

Theorem 4.10. Let (M, g, S(TM)) be a null hypersurface of an indefinite Ken-
motsu space form (M(c), g) with ξ ∈ TM . Then M is locally symmetric if and
only if it is semi-symmetric.

Next, we study Ricci semi-Symmetric null hypersurfaces of an indefinite Ken-
motsu spaces form, tangent to the structure vector field ξ. We prove that Ricci
semi-Symmetric null hypersurfaces are totally geodesic under some condition.

A null submanifold M of a semi-Riemannian manifold M is said to be Ricci
semi-symmetric if the following condition is satisfied ([5])

(R(W1,W2) ·Ric)(X,Y ) = 0, ∀W1,W2, X, Y ∈ Γ(TM), (4.34)

where R and Ric are induced Riemannian curvature and Ricci tensor on M , re-
spectively. The latter condition is equivalent to

−Ric(R(W1,W2)X,Y )−Ric(X,R(W1,W2)Y ) = 0.

In the following result we show the effect of Ricci semi-symmetric condition on
the geometry of null hypersurfaces of an indefinite Kenmotsu space form.

Theorem 4.11. Let (M, g, S(TM)) be a Ricci semi-symmetric null hypersurface
of an indefinite Kenmotsu space form (M(c), g) with ξ ∈ TM . Then either M is
totally geodesic or Ric(E,ANE) = 0.
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The proof of this theorem is similar to the one of Theorem 10 in [17] in case of
indefinite Sasakian space form of constant curvature 1.

Let us consider the following distribution

D̂ =
{
φ(TM⊥)⊕ φ(N(TM))

}
⊥ D0 (4.35)

so that the tangent space of M is written

TM = D̂ ⊥ 〈ξ〉 ⊥ TM⊥. (4.36)

Let P̂ be the morphism of S(TM) on D̂ with respect to the orthogonal decompo-
sition of S(TM) such that

P̂X = PX − η(X)ξ, (4.37)

for any X ∈ Γ(TM). Using (4.37), one obtains

P̂ 2X = P̂ (PX − η(X)ξ = P 2X − η(X)ξ = P̂X.

This means that the morphism P̂ is a projection.
A submanifold M is said to be Einstein if its induced Ricci tensor Ric satisfies

Ric = ag, (4.38)

where the non-zero function a is not necessarily constant on M .
Note that when the null hypersurface M is totally geodesic, by relation (3.29),

M is Einstein. This also occurs when M is parallel or totally umbilical (see [23]
for details). Below we have another characterization of Einstein null hypersurface
and this is related with the shape operator concerning the normal vector field N .

If the null hypersurface M of an indefinite Kenmotsu manifold M with ξ ∈
TM , is Einstein, then, using (3.29), the function a satisfies

a = −(2n− 1). (4.39)

Due to the symmetry of the induced degenerate metric g, the induced Ricci type
tensor R(0,2) is symmetric, and the notion of Einstein manifold does not depend on
the choice of the screen distribution S(TM).

In this case, using (3.29) and (4.38), we have, for any X , Y ∈ Γ(TM),

−(2n− 1)g(X,Y ) +B(X,Y )trAN −B(ANX,Y ) = ag(X,Y ). (4.40)

This implies that
B(X,Y )trAN −B(ANX,Y ) = 0, (4.41)

which is equivalent to g((trAN )X − ANX,A∗
EY ) = 0. Therefore, (trAN )X −

ANX = α1E + α2ξ. It is easy to check that α1 = (trAN )θ(X) and α2 =
(trAN )η(X)− θ(X). Hence

ANX = (trAN )P̂X + θ(X)ξ. (4.42)

From the relation (4.42), we have

Lemma 4.12. The screen distribution S(TM) of any null Einstein Einstein hyper-
surface M of an indefinite Kenmotsu space form with ξ ∈ TM , is totally contact
umbilical in the direction of the Kernel of the differential 1-form θ in (2.18).
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Using (4.3), the left hand-side of (4.34) is deduced as, for any W1, W2, X ,
Y ∈ Γ(TM),

(R(W1,W2) ·Ric)(X,Y ) = −aB(W2, X)C(W1, Y ) + aB(W1, X)C(W2, Y )

− aB(W2, Y )C(W1, X) + aB(W1, Y )C(W2, X). (4.43)

Taking W1 = E and Y = ξ in (4.43), we have

(R(E,W2) ·Ric)(X, ξ) = (2n− 1)B(W2, X). (4.44)

Theorem 4.13. Let (M, g, S(TM)) be an null Einstein hypersurface of an in-
definite Kenmotsu space form (M(c), g) with ξ ∈ TM . Then M is Ricci semi-
symmetric if and only if it is totally geodesic.

By Theorems 4.10 and 4.13, we have

Theorem 4.14. Let (M, g, S(TM)) be an null Einstein hypersurface of an indefi-
nite Kenmotsu space form (M(c), g) with ξ ∈ TM . Then, the following assertions
are equivalent:

(i) M is locally symmetric.
(ii) M is semi-symmetric.

(iii) M is Ricci semi-symmetric.

As an example to this Theorem 4.14, we have

Example 4.15. Let M be a hypersurface of M7, of Example 3.2, given by

x5 =
√
2 (x2 + x3) ,

where (x1, ..., x7) is a local coordinate system for M7. As explained in Example
3.2, M is a null hypersurface of M7 having a local quasi-orthogonal field of frames
{U1 = e1, U2 = e2−e3, U3 = E = 1√

2
(e2+e3)−e5, U4 = e4, U5 = e6, U6 =

ξ, N = 1
2{

1√
2
(e2 + e3)+e5}} along M . Denote by ∇ the Levi-Civita connection

on M
7. Then, we obtain ∇U3N = −ξ and ∇XN = 0, ∀X ∈ Γ(TM), X 6= U3.

Using these equations above, the differential 1-form τ vanishes i.e. τ(X) = 0, for
any X ∈ Γ(TM). So, from the Gauss and Weingarten formulas we have

ANU3 = ξ, ANX = 0, ∀X ∈ Γ(TM), X 6= U3, (4.45)

A∗
EX = 0, ∇XE = 0, ∀X ∈ Γ(TM). (4.46)

From (4.45) and (4.46), C(U3, ξ) = 1, trAN = 0 and trA∗
E = 0, i.e. the shape

operators AN and A∗
E are trace-free. Then, the null hypersurface M is totally

geodesic and its screen distribution is not parallel. The non-zero components of
the curvature tensor are given by

R(ei, ej)ei = ej , ∀ i, j, i 6= j, R(ei, em)em = ei, ∀ i, m = 5, 6,

R(ei, el)el = −ei, ∀ i 6= l, l = 1, 2, 3, 4, 7,

and those for the Ricci tensor are

Ric(el, el) = −5, ∀ l = 1, 2, 3, 4, 7, Ric(em, em) = 5, ∀m = 5, 6.
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Using these relations, it is easy to check that M is Einstein with a = −5, and the
components of ∇R, R ·R and R ·Ric vanish, that is,

(∇erR)(ep, eq)es = 0, (R(·, ·) ·R)(ep, eq, er, es) = 0,

(R(·, ·) ·Ric)(ep, eq) = 0, ∀ p, q, r, s.

This means M is locally symmetric, semi-symmetric and Ricci semi-symmetric.

5. TOTAL CONTACT UMBILICITY OF NULL HYPERSURFACES IN INDEFINITE
KENMOTSU MANIFOLDS

In this section, we deal with the totally contact umbilical null hypersurface M
of an indefinite Kenmotsu space form M(c) by introducing a new concept. First
of all, a submanifold M is said to be a totally umbilical null hypersurface of a
semi-Riemannian manifold M if its local second fundamental form B satisfies

B(X,Y ) = ρg(X,Y ), ∀X, Y ∈ Γ(TM) (5.1)

where ρ is a smooth function on U ⊂ M . If we assume that M is a totally umbilical
null hypersurface of an indefinite Kenmotsu manifold M with ξ ∈ TM , using
(3.6), we have 0 = B(ξ, ξ) = ρ. Hence M is totally geodesic. Therefore we have

Proposition 5.1. Let (M, g, S(TM)) be a null hypersurface of an indefinite Ken-
motsu manifold (M, g) with ξ ∈ TM . If M is totally umbilical, then M is totally
geodesic.

It follows from the Proposition 5.1 that a Kenmotsu M(c) does not admit any
non-totally geodesic, totally umbilical null hypersurface. From this point of view,
Bejancu [1] considered the concept of totally contact umbilical semi-invariant sub-
manifolds. The notion of totally contact umbilical submanifolds was first defined
by Kon [15]. We follow Bejancu [1] definition of totally contact umbilical sub-
manifolds and state the following definition for totally null hypersurfaces.

A submanifold M is said to be totally contact umbilical if its second fundamen-
tal form h = B ⊗N satisfies ([1], [19])

h(X,Y ) = {g(X,Y )− η(X)η(Y )}H + η(X)h(Y, ξ) + η(Y )h(X, ξ), (5.2)

for any X , Y ∈ Γ(TM), where H is a normal vector field to M , that is, H = λN ,
λ is a smooth function on U ⊂ M . Using (3.6), it is easy to check that a totally
contact umbilical null hypersurface of an indefinite Kenmotsu manifold is η-totally
umbilical.

Using the projection morphism P̂ , we have the following identity,

B(X,PY ) = B(X, P̂Y ), (5.3)

for any X , Y ∈ Γ(TM).
The relation (5.2) is now equivalent to

A∗
EX = λP̂X, ∀X ∈ Γ(TM |U). (5.4)

If the function λ is nowhere vanishing on M , then the latter is said to be proper
totally contact umbilical. It is easy to check that this is an intrinsic notion that is
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independent, on U , of the choice of a screen distribution, E, and hence N as in
Theorem 2.2.

Note that totally contact umbilicity is the nearest situation from being totally
geodesic (λ is identically zero). The null hypersurface M is totally umbilical in the
direction of D̂. Then, taking into account (5.3), the relation (5.4) may be rewritten
for a given E in TM⊥ as

g(∇X P̂ Y, E) = ϕ(E)g(X, P̂Y ), (5.5)

with ϕ a 1-form on TM⊥ which coincides with the function λ of normal vector
H = λN in (5.2), that is, ϕ(E) = λ on M . Therefore, the map

(X,Y ) 7−→ g(∇XE, P̂Y ) = −ϕ(E)g(X, P̂Y ), (5.6)

is a bilinear symmetric form on TM . Since g(∇XE, P̂Y ) = g(∇XE, Y ) and
g(X, P̂Y ) = g(X,Y )− η(X)η(Y ), the map (5.6) redefined as

(X,Y ) 7−→ g(∇XE, Y ) = −ϕ(E){g(X,Y )− η(X)η(Y )}. (5.7)

Lemma 5.2. Let (M, g, S(TM)) be a null hypersurface of an indefinite Kenmotsu
space form (M(c), g) with ξ ∈ TM . Then, M is totally contact umbilical if and
only if TM⊥ is an η-conformal Killing distribution, that is, there exists a 1-form ϕ
on TM⊥ such that, for any section E of TM⊥,

LEg = −2ϕ(E){g − η ⊗ η}. (5.8)

Proof. The proof follows from the relation (LEg)(X,Y ) = −2B(X,Y ), for any
X , Y ∈ Γ(TM), obtained by using (2.16). �

In a (pseudo-) Riemannian setting, manifolds M with conformal structure [g]
and torsion-free connection D, such that parallel translation induces conformal
transformations, are called Weyl manifolds. If D is locally the Levi-Civita con-
nection of a compatible metric in [g], the structure is said to be closed, and the
D-compatible metric is locally Einstein [12].

A conformal change of the metric leads to a metric which is no more compatible
with the almost contact structure. This can be corrected by a convenient change of
the structure vector field ξ and the 1-form η, which implies rather strong restric-
tions. Therefore, in case there is an integral manifold, of an integrable distribution
of M , which has an indefinite Kenmotsu structure, we may consider a change of
the form

φ′ = φ, ξ′ = eρξ, η′ = e−ρη, g′ = e−2ρg, (5.9)
where ρ is a differential function on considered integral manifold, to preserve the
relations given by the Kenmotsu structure. To support this statement, we have
the following example of integral manifolds. Suppose the distribution D0 ⊥ 〈ξ〉
is integrable. Let M0 be a leaf of D0 ⊥ 〈ξ〉, then for any p ∈ M0, we have
TpM0 = (D0 ⊥ 〈ξ〉)p and dimM0 = 2n− 3. If X0 = X ′

0 + η(X0)ξ ∈ Γ(TM0),
φX0 = φRX ′

0 = φX ′
0 = φX0, where R : Γ(TM) −→ Γ(D ⊥ 〈ξ〉) being

the projection morphism and D = TM⊥ ⊥ φ(TM⊥) ⊥ D0 ⊥ 〈ξ〉. We put
◦
φ= φ|D0⊥〈ξ〉 and

◦
η= η|D0⊥〈ξ〉, so φ∗ defines an (1, 1)-type tensor field on M0
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because φ(D ⊥ 〈ξ〉) ⊂ D. Now we consider (M0, φ0, ξ, η0, g) and check that
this is an indefinite Kenmotsu structure. We know that φ2X = −X + η(X)ξ +
u(X)U , for any X ∈ Γ(TM), and that u(X) = 0 for any X ∈ Γ(D), so we

deduce (
◦
φ)2X0 = −X0 + η(X0)ξ, for any X0 ∈ Γ(TM0). Then

◦
η (ξ) = 1

and (φ0, ξ, η0) is an almost contact structure. Now, we prove the compatibility
between the (φ0, ξ, η0)-structure and the metric g on M∗. By relation (3.5), for

any X0, Y0 ∈ Γ(TM0), we have g(
◦
φ X0,

◦
φ Y0) = g(X0, Y0) − η(X0)η(Y0).

Let
◦
∇ be a linear connection on the bundle D0 ⊥ 〈ξ〉. For any X ∈ Γ(TM),

Y0 ∈ Γ(D0 ⊥ 〈ξ〉), we have

∇XY0 =
◦
∇X Y0+

◦
h (X,Y0), (5.10)

where
◦
h: Γ(TM) × Γ(D0 ⊥ 〈ξ〉) −→ Γ({φ(TM⊥) ⊕ φ(N(TM))} ⊥ TM⊥)

is F(M)-bilinear. Let U ⊂ M be a coordinate neighborhood as fixed in Theorem
2.2. Then, for any X0, Y0 ∈ Γ(D0 ⊥ 〈ξ〉)

∇X0Y0 =
◦
∇X0 Y0 + C(X0, φY0)V +B(X0, φY0)U + C(X0, Y0)E, (5.11)

and the local expression of
◦
h is

◦
h (X0, Y0) = C(X0, φY0)V + B(X0, φY0)U +

C(X0, Y0)E. Since D0 ⊥ 〈ξ〉 is integrable,
◦
h is symmetric, that is C(X0, φY0) =

C(Y0, φX0), B(X0, φY0) = B(Y0, φX0) and C(X0, Y0) = C(Y0, X0). The Levi-

Civita conncection ∇ on M and the induced connection
◦
∇ are related as

∇X0Y0 =
◦
∇X0 Y0 +B(X0, Y0)N+

◦
h (X0, Y0). (5.12)

It easy to check that
◦
∇X0 Y0 ∈ Γ(D0 ⊥ 〈ξ〉), for any X0, Y0 ∈ Γ(D0 ⊥ 〈ξ〉), that

is, the distribution D0 ⊥ 〈ξ〉 defines a totally geodesic foliation. Hence M0 is a

totally geodesic leaf in both M and M . Moreover,
◦
∇ is the Levi-Civita connection

on M0. In fact, using (5.10) and (5.12), and since D0 ⊥ 〈ξ〉 ⊂ S(TM), for any
X0, Y0, Z0 ∈ Γ(D0 ⊥ 〈ξ〉), we have

(
◦
∇X0 g)(Y0, Z0) = (∇X0g)(Y0, Z0) = 0, (5.13)

(
◦
∇X0

◦
φ)Y0 = g(

◦
φ X0, Y0)ξ−

◦
η (Y0)

◦
φ X0. (5.14)

Therefore, (M0, φ0, ξ, η0, g) has an indefinite Kenmotsu structure.
Note that being null is invariant under conformal change of the metric. In this

respect we define the following.
A connection ∇ on a null hypersurface (M, g) is said to be η-conformal if the

covariant derivative of g is proportional to g−η⊗η, that is, there exists a differential
1-form β such that the following

∇g = −β ⊗ {g − η ⊗ η}, (5.15)

holds. If in addition, ∇ is torsion-free, it is said to be Weyl-connection [12] in the
direction of the distribution Ker(η). But on M , such a connection will be called
η-Weyl connection.
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Suppose now that ∇ is an η-conformal connection on the null hypersurface
(M, g) of an indefinite Kenmotsu space form (M, g) with ξ ∈ TM . From (5.15),
we have

0 = (∇ξg)(X,Y ) + β(ξ){g(X,Y )− η(X)η(Y )}
= (Lξg)(X,Y ) + (β(ξ)− 2){g(X,Y )− η(X)η(Y )}. (5.16)

This relation leads to (Lξg)(X,Y ) = (2−β(ξ)){g(X,Y )−η(X)η(Y )} and using
Lemma 3.3, we have β(ξ) = 0. This means that the differential 1-form β vanishes
in the direction of the distribution 〈ξ〉.

If we denote by XT the component of X orthogonal to ξ, then, using (2.17) we
have for arbitrary vector fields X , Y , Z on M ,

0 = (∇Xg)(Y, Z) + β(X){g(X − η(X)ξ, Y − η(Y )ξ)}
= B(XT , Y T )θ(ZT ) +B(XT , ZT )θ(Y ) + β(XT )g(Y T , ZT )

= (∇XT g)(Y T , ZT ) + β(XT )g(Y T , ZT ).

That is, the relation (5.15) is equivalent to

(∇XT g)(Y T , ZT ) = −β(XT )g(Y T , ZT ). (5.17)

Assume that the induced connection ∇ satisfies (5.15) for some smooth 1-form
β on M . Then, from (2.7) we get

0 = (∇Xg)(Y, Z) + β(X){g(Y,Z)− η(Y )η(Z)}
= B(X,Y )θ(Z) +B(X,Z)θ(Y ) + β(X){g(Y,Z)− η(Y )η(Z)}, (5.18)

for any X , Y and Z in Γ(TM). Taking Y = E in (5.18), we have B(X,Z) = 0,
for all vector fields X and Z in TM , which is equivalent to saying that (M, g) is
totally geodesic. If M is a proper totally contact umbilical null hypersurface, the
local fundamental form B is nowhere vanishing. Therefore, we have

Theorem 5.3. Let (M, g, S(TM)) be a null hypersurface of an indefinite Ken-
motsu space form (M(c), g) with ξ ∈ TM . Then, the induced connection is an
η-Weyl connection if and only if M is totally geodesic. Moreover, the induced con-
nection on a proper totally contact umbilical null hypersurface is never an η-Weyl
connection.

The Theorem 5.3 shows that the connection associated to a screen distribution
on M is never a η-Weyl connection unless M is totally geodesic. Note that, for a
totally geodesic null hypersurface (M, g) , not all metrics in the conformal class
of g guarantee the geometric condition of geodesibility. Therefore, only an ap-
propriate conformal structure on a given totally geodesic submanifold should be
considered.

The Theorem 4.14 can be extended to the one above as follows.

Theorem 5.4. Let (M, g, S(TM)) be an null Einstein hypersurface of an indefinite
Kenmotsu space form (M(c), g) with ξ ∈ TM . Then, the following assertions are
equivalent:

(i) M is totally geodesic.
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(ii) M is locally symmetric.
(iii) M is semi-symmetric.
(iv) The induced connection ∇ is torsion-free and η-conformal.
(v) M is Ricci semi-symmetric.

Now, we shall show that, indeed, there always exists η-Weyl connections on a
proper totally contact umbilical null hypersurfaces.

Suppose there exists an η-Weyl connection ∇ on (M, g), that is, ∇ is torsion-
free and there exists on M a smooth 1-form β such that ∇g = −β ⊗ {g − η ⊗ η}.
Using thus relation and for any X and Y in TM , we obtain

(∇Eg)(X,Y ) = −β(E){g(X,Y )− η(X)η(Y )}, (5.19)

or equivalently, since ∇ is torsion-free,

(LEg)(X,Y ) = −β(E){g(X,Y )− η(X)η(Y )}+ g(∇XE, Y )

+ g(X,∇Y E). (5.20)

Since ∇g = −β ⊗ {g − η ⊗ η}, for any X , Y ∈ Γ(TM) and E ∈ Γ(TM⊥),

0 = −β(X){g(E, Y )− η(E)η(Y )} = (∇Xg)(E, Y ) = −g(∇XE, Y ). (5.21)

Then, g(∇XE, Y ) = 0, ∀ X , Y ∈ Γ(TM) and the relation (5.20) becomes
(LEg)(X,Y ) = −β(E){g(X,Y ) − η(X)η(Y )} which from Lemma 5.2 means
that M is totally contact umbilical with ϕ(E) = 1

2β(E).
Now, assume that (M, g) is a proper totally contact umbilical null hypersurface.

The 1-form ϕ in (5.7) is related to the means curvature H of M as H = λN =
ϕ(E)N . Hence, the 1-form ϕ is a section of (TM⊥)∗ and the latter is canonically
isomorphic to (TM |M )/TM . Since the projection

TM |M −→ (TM |M )/TM, (5.22)

has contractible fibres, then there exists a section ϕ] of TM |M such that g(ϕ], E) =
ϕ(E), ∀E ∈ Γ(TM⊥). In fact, the section ϕ] is the metrical dual vector of ϕ.
We also observe that two sections ϕ] differ by exactly one section of TM . Let β
be the differential 1-form on M , locally defined by

β(X) = 2g(ϕ], X), (5.23)

and we define ∇β as

∇β
XY = DXY + σXY, (5.24)

where σ is the symmetric (1, 2)-tensor field on M , locally defined by

σXY =
1

2
β(X){Y − η(Y )ξ}+ 1

2
β(Y ){X − η(X)ξ}

− {g(X,Y )− η(X)η(Y )}ϕ] − 2ϕ(E)θ(X)θ(Y )E, (5.25)

and D is the Levi-Civita connection on the ambient manifold (M, g). Note that,
for any X , Y ∈ Γ(TM), we have

g(σXY,E) = −ϕ(E){g(X,Y )− η(X)η(Y )}. (5.26)
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Lemma 5.5. Let (M, g, S(TM)) be a proper totally contact umbilical null hyper-
surface of an indefinite Kenmotsu space form (M(c), g) with ξ ∈ TM . Then, ∇β

in (5.24) is a torsion-free connection on M and for any X , Y ∈ Γ(TM),

∇β
XY ∈ Γ(TM).

Proof. ∇β is clearly a torsion-free connection on M . Using the relation (5.7) and
for any X , ∈ Γ(TM), we have

g(∇β
XY,E) = g(DXY,E) + g(σXY,E) = ϕ(E){g(X,Y )− η(X)η(Y )}

− ϕ(E){g(X,Y )− η(X)η(Y )} = 0,

which completes the proof. �

Finally, we show that ∇β is η-conformal. Using Lemma 5.5 and (5.24), and let
X , Y and Z be tangent vector fields to M . We have

(∇β
Xg)(Y,Z) = X(g(Y, Z))− g(∇β

XY, Z)− g(Y,∇β
XZ)

= g(DXY,Z) + g(Y,DXZ)− g(DXY, Z)

− g(σXY, Z)− g(Y,DXZ)− g(Y, σXZ)

= −g(σXY, Z)− g(Y, σXZ). (5.27)

From (5.25), we have

g(σXY,Z) =
1

2
β(X){g(Y, Z)− η(Y )η(Z)}+ 1

2
β(Y ){g(X,Z)− η(X)η(Z)}

− g(ϕ], Z){g(X,Y )− η(X)η(Y )}, (5.28)

and

g(Y, σXZ) =
1

2
β(X){g(Y,Z)− η(Y )η(Z)}+ 1

2
β(Z){g(X,Y )− η(X)η(Y )}

− g(ϕ], Y ){g(X,Z)− η(X)η(Z)}. (5.29)

Putting these relations together into (5.27), one obtains

(∇β
Xg)(Y, Z) = −β(X){g(Y, Z)− η(Y )η(Z)}

+ {g(ϕ], Y )− 1

2
β(Y )}{g(X,Z)− η(X)η(Z)}

+ {g(ϕ], Z)− 1

2
β(Z)}{g(X,Y )− η(X)η(Y )}. (5.30)

By (5.23), the last two terms in (5.27) are zero. Therefore

(∇β
Xg)(Y, Z) = −β(X){g(Y, Z)− η(Y )η(Z)}, (5.31)

for any tangent vector fields X , Y and Z in M . We have

Theorem 5.6. Let (M, g, S(TM)) be a null hypersurface of an indefinite Ken-
motsu space form (M(c), g) with ξ ∈ TM . For M to be proper totally contact
umbilical, it is necessary and sufficient that it admits an η-Weyl connection.



26 FORTUNÉ MASSAMBA

Let K be a (0, 3)-tensor, locally defined by

K(X,Y, Z) := (∇XT g)(Y T , ZT ) + β(XT )g(Y T , ZT ). (5.32)

Here K(X,Y, Z) = K(XT , Y T , ZT ). We replace g and the 1-form β by

(g′, β′) = (e−2ρg, β + 2dρ). (5.33)

We call the replacement a conformal gauge change. Under the conformal gauge
change, we have

K ′(X,Y, Z) = (∇XT g′)(Y T , ZT ) + β′(XT )g′(Y T , ZT )

= e−2ρ{(∇XT g)(Y T , ZT ) + β(XT )g(Y T , ZT )}
= e−2ρK(X,Y, Z). (5.34)

This formula implies that the tensor K is not a conformal gauge invariant. Then,
the definition of η-Weyl connection (i.e. K ≡ 0) is invariant under conformal
gauge change (5.33).

If the (0, 3)-tensor K satisfies, for any X , Y , Z ∈ Γ(TM),

K(X,Y, Z) = K(Y,X,Z), (5.35)

then the connection ∇ is said to be η-semi-conformal.
Suppose the induced connection ∇ on the null hypersurface M is η-semi-conformal.

Then, K is symmetric for all variables and the definition of η-semi-conformal is
invariant under conformal gauge change (5.33). If the 1-form β vanishes, the in-
duced connection ∇ will be called statistical connection (see [26] for details). This
connection appears in, for instance, all totally umbilical, parallel, totally geodesic
null hypersurfaces of indefinite Kenmotsu manifolds.

Theorem 5.7. Let (M, g) be a null hypersurface of an indefinite Kenmotsu space
form M(c) with ξ ∈ TM . If the induced connection ∇ on M is an η-semi-
conformal connection, then M is totally contact umbilical.

Proof. Suppose that the induced connection is an η-semi-conformal connection.
Then, for any X , Y and Z tangent vector fields to M , we have

(∇Xg)(Y, Z) + β(X)g(Y, P̂Z) = (∇Y g)(X,Z) + β(Y )g(X, P̂Z).

This relation leads, by using (2.17), to

B(X,Z)θ(Y ) + β(X){g(Y, Z)− η(Y )η(Z)}
= B(Y, Z)θ(X) + β(Y ){g(X,Z)− η(X)η(Z)}.

Taking Y = E in this, one obtains B(X,Z) = β(E){g(X,Z)− η(X)η(Z)}, that
is, M is totally contact umbilical and this completes the proof. �

By Theorems 5.6 we note that a null hypersurface of an indefinite Kenmotsu
space form, tangent to the structure vector field ξ and endowed with an η-semi-
conformal structure admits an η-Weyl connection.

Now taking into account all studied aspects, we remark that if the section ϕ] ∈
TM |M is tangent to M , then ϕ(E) is identically zero and the null hypersurface
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M becomes totally geodesic. Otherwise, ϕ] is nowhere tangent to M and conse-
quently, ϕ(E) is everywhere zero and M is proper totally contact umbilical.

In [25], the author showed that screen conformal null hypersurfaces M of in-
definite Kenmotsu space forms M(c) with ξ ∈ TM are proper totally contact
umbilical as well as the leaves of its screen distributions. This result guarantees
the existence of proper totally contact umbilical in null hypersurfaces of indefinite
Kenmotsu space forms, tangent to the structure vector field ξ.

It is well known that the second fundamental form and the shape operator of
a non-degenerate hypersurface (in general, submanifold) are related by means of
the metric tensor field. Contrary to this, we see from (2.10)-(2.16) that in the case
of null hypersurfaces, there are interrelations between these geometric objects and
those of its screen distributions. So, the geometry of null hypersurfaces depends on
the vector bundles S(TM), S(TM⊥) and N(TM). In this case, it is known that
the local second fundamental form of M on U is independent of the choice of the
above vector bundles. This means that all results of this paper which depend only
on B are stable with respect to any change of those vector bundles.

Denote by ω is the dual 1-form of W =
∑2n−1

i=1 fiWi, characteristic vector field
of the screen change, with respect to the induced metric g of M , that is ω(X) =
g(X,W ), ∀ X ∈ Γ(TM). Using (3.14), it is easy to check that θ′(X) = θ(X) +
ω(X), for any X , Y ∈ Γ(TM). The relationship between the symmetric (1, 2)-
tensor fields σ and σ′ of the screen distribution S(TM) and S(TM)′, respectively,
is given by

σ′
XY = σXY − β(E){θ(X)ω(Y ) + θ(Y )ω(X) + ω(X)ω(Y )}. (5.36)

The symmetric (1, 2)-tensor field σ is independent of the screen distribution S(TM)
if and only if ω vanishes identically on M .
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