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Fast Quadrature Te
hniques for RetardedPotentials Based on TT/QTT TensorApproximationB. N. Khoromskij∗ S. Sauter† A. Veit‡§
Abstra
tWe 
onsider the Galerkin approa
h for the numeri
al solution of retarded boundaryintegral formulations of the three dimensional wave equation in unbounded domains.Re
ently smooth and 
ompa
tly supported basis fun
tions in time were introdu
edwhi
h allow the use of standard quadrature rules in order to 
ompute the entries of theboundary element matrix. In this paper we use TT and QTT tensor approximations toin
rease the e�
ien
y of these quadrature rules. Various numeri
al experiments showthe substantial redu
tion of the 
omputational 
ost that is needed to obtain a

urateapproximations for the arising integrals.AMS Subje
t Classi�
ation: 65F30, 65F50, 65N35, 65F10Key words: Multi-dimensional problems, tensor approximation, quantized representation ofve
tors, model redu
tion, retarded potentials, 3D wave equation, quadrature rules.1 Introdu
tionA
ousti
 and ele
tromagneti
 s
attering problems in three dimensions have a wide rangeof pra
ti
al appli
ations in physi
s and engineering. An important model problem for thedevelopment of e�
ient and a

urate numeri
al methods for su
h types of time-dependentphysi
al appli
ations is the three-dimensional wave equation in unbounded exterior domains.Here, boundary element methods show their natural strength, redu
ing the problem in theunbounded domain to integral equations on the bounded surfa
e of the s
atterer.The e�
ient numeri
al solution of su
h retarded boundary integral equations has gainedgrowing attention in the last years. Existing approa
hes in
lude methods based on 
onvo-lution quadrature (
f. [3, 4, 5, 11, 12℄) and methods based on bandlimited interpolationand extrapolation (
f. [32, 33, 34, 36℄). Here, we 
onsider a Galerkin method in order to
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dis
retize the integral equations in spa
e and time (
f. [2, 6, 8, 9℄). It 
an be shown thatthe 
orresponding spa
e-time variational formulation in this approa
h satis�es a 
oer
ivityproperty whi
h ensures the un
onditional stability of 
onforming Galerkin s
hemes. Fur-thermore, this approa
h is very �exible with regard to the use of variable time steppingand spatially 
urved s
atterers. The standard Galerkin approa
h uses pie
ewise polynomialbasis fun
tions in time. The drawba
k of the method in this 
ase is that due to the retardedtime argument the domain for the spatial integration is the interse
tion of (possibly 
urved)pairs of surfa
e panels with the dis
rete light 
one. The stable numeri
al handling of theseinterse
tions is 
ompli
ated even for �at panels and might be intra
table for 
urved surfa
epat
hes. We refer to [7, 21, 29℄ for examples of quadrature s
hemes tailored to this problem.In [26℄ smooth and 
ompa
tly supported basis fun
tions in time were introdu
ed. This
hoi
e 
ir
umvents the problem of integrating on the 
ompli
ated interse
tions of the dis-
rete light 
one with the spatial surfa
e mesh and allows to apply standard quadrature rulesto 
ompute the entries of the boundary element matrix. Due to the 
ompa
t support ofthe basis fun
tions the sparsity of the system matrix is maintained. On the other hand thisleads to C∞ but, in general, non-analyti
 integrands, whi
h makes the quadrature problemmore di�
ult. In general, more quadrature points have to be used as for analyti
 integrandsas they arise, e.g., for boundary element methods applied to ellipti
 boundary value prob-lems. In this paper we therefore address the problem how to e�
iently evaluate the arisingintegrals using tensor Gauss quadrature and TT/QTT approximation.The integrals whi
h de�ne the entries of the blo
k system matrix are de�ned over pairs ofsurfa
e panels. They are transformed to the referen
e triangle in Eu
lidean spa
e and byapplying simplex 
oordinates the quadrature problems boils down to the approximation ofan integral over the four-dimensional unit 
ube. A tensor quadrature rule applied to theseintegrals leads to a four dimensional tensor A of size N ×N ×N ×N whose entries are thevalues of the integrand evaluated at the di�erent quadrature points.To redu
e the storage and 
omputational 
osts to handle this large data array, we applythe methods of tensor approximation based on the idea of separation of variables. Thereare various tensor-produ
t formats whi
h allow the low parametri
 representation of high-dimensional data. The most 
ommonly used are the 
anoni
al, Tu
ker formats as well asthe 
lass of so-
alled matrix produ
t states (MPS) representations [35, 30, 31℄ 
ommonlyused in high-dimensional quantum 
omputations (see survey paper [16℄ for more details).Re
ently these types of tensor formats have attra
ted mu
h attention in the 
ommunity ofnumeri
al anylysis. In parti
ular, the hierar
hi
al Tu
ker [13℄, the tensor train (TT) [23℄and the tensor 
hain (TC) [17℄ formats were 
onsidered. In the following we make useof the TT format applied to both the initial fourth order tensor and to its quantized-TT(QTT) representation. Su
h representations allow to redu
e the asymptoti
al storage and
omputational 
osts from O(N4) to O(r2N) or even to O(r2 logN), where r is the smallrank parameter, 
hara
terizig the separability properties of the target tensor A. Noti
e thatthe hierar
hi
al Tu
ker format was re
ently applied in 
omputation of 
ertain multivariateintgrals arising in boundary element methods [1℄.Various numeri
al experiments show that these tensors have usually a low rank represen-tation in TT and QTT format whi
h redu
es the storage and 
omputational 
ost substan-tially. The evaluation of the quadrature then 
orresponds to a simple s
alar produ
t of theTT/QTT representation of A and a rank-1 tensor 
ontaining the weights of the quadraturerule. This evaluation 
an be performed 
onsiderably faster 
ompared to the standard ap-proa
h. In order to 
ompute the TT/QTT approximation of A dire
tly, without 
omputing2



A itself, we use a TT/QTT 
ross approximation s
heme (
f. [24℄). This further redu
es the
omputational 
ost, sin
e 
onsiderably less evaluations of the integrand are required. Weperform numeri
al experiments to show the e�
ien
y of this s
heme in our 
ase.Note that our sparse approximation method for high-dimensional quadrature problems isby no means restri
ted to the retarded potential integral equation but, potentially, 
anbe applied to a mu
h larger 
lass of problems. We restri
ted to this appli
ation be
ausequadrature is the major bottlene
k for the dire
t dis
retization of retarded potentials.2 Problem SettingLet Ω ⊂ R
3 be a Lips
hitz domain with boundary Γ. We 
onsider the homogeneous waveequation

∂2
t u− ∆u = 0 in Ω × [0, T ] (2.1a)with initial 
onditions
u(·, 0) = ∂tu(·, 0) = 0 in Ω (2.1b)and Diri
hlet boundary 
onditions

u = g on Γ × [0, T ] (2.1
)on a time interval [0, T ] for T > 0. In appli
ations, Ω is often the unbounded exterior ofa bounded domain. For su
h problems, the method of boundary integral equations is anelegant tool where this partial di�erential equation is transformed to an equation on thebounded surfa
e Γ. We employ an ansatz as a single layer potential for the solution u
u(x, t) := Sφ(x, t) :=

∫

Γ

φ(y, t− ‖x− y‖)

4π‖x− y‖
dΓy, (x, t) ∈ Ω × [0, T ] (2.2)with unknown density fun
tion φ. S is also referred to as retarded single layer potential dueto the retarded time argument t− ‖x− y‖ whi
h 
onne
ts time and spa
e variables.The ansatz (2.2) satis�es the wave equation (2.1a) and the initial 
onditions (2.1b). Sin
ethe single layer potential 
an be extended 
ontinuously to the boundary Γ, the unknowndensity fun
tion φ is determined su
h that the boundary 
onditions (2.1
) are satis�ed. Thisresults in the boundary integral equation for φ,

∫

Γ

φ(y, t− ‖x− y‖)

4π‖x− y‖
dΓy = g(x, t) ∀(x, t) ∈ Γ × [0, T ] . (2.3)In order to solve this boundary integral equation numeri
ally we introdu
e the followingspa
e-time variational formulation (
f. [2, 8℄): Find φ in some Sobolev spa
e V su
h that

∫ T

0

∫

Γ

∫

Γ

φ̇(y, t− ‖x− y‖)ζ(x, t)

4π‖x− y‖
dΓydΓxdt =

∫ T

0

∫

Γ
ġ(x, t)ζ(x, t)dΓxdt (2.4)for all ζ ∈ V , where we denote by φ̇ the derivative with respe
t to time.Let VGalerkin be a �nite dimensional subspa
e of V being spanned by N basis fun
tions

{bi}
N
i=1 in time and M basis fun
tions {ϕj}

M
j=1 in spa
e. This leads to the fully dis
reteansatz

φGalerkin(x, t) =

N∑

i=1

M∑

j=1

α
j
iϕj(x)bi(t), (x, t) ∈ Γ × [0, T ] , (2.5)3



where αj
i are the unknown 
oe�
ients. Plugging this ansatz in (2.4) and rearranging termsshows that this is equivalent to: Find αj

i for i = 1 . . . , N and j = 1, . . . ,M su
h that
N∑

i=1

M∑

j=1

A
i,k
j,lα

j
i = gk

l ∀1 ≤ k ≤ N ∀1 ≤ l ≤M, (2.6)where
gk
l :=

∫ T

0

∫

Γ
ġ(x, t)ϕl(x) bk(t)dΓxdtand

A
i,k
j,l :=

∫

supp(ϕl)

∫

supp(ϕj)
ϕj(y)ϕl(x)ψi,k(‖x− y‖)dΓydΓx. (2.7)The fun
tion ψi,k 
ontains the time integration and is de�ned, for r > 0, by

ψi,k(r) :=

∫ T

0

ḃi(t− r)bk(t)

4πr
dt.Let G :=

{
τi : 1 ≤ i ≤M

} denote a �nite element mesh on Γ 
onsisting of (possibly 
urved)triangles. More pre
isely, we assume that for any τ ∈ G, there exists a smooth bije
tion
χτ : τ̂ → τ from the referen
e element τ̂ := conv {(0, 0)⊺ , (1, 0)⊺ , (1, 1)⊺} to the surfa
etriangle τ . Then, in the solution pro
ess, the following quadrature problem arises: For
τ, τ̃ ∈ G and 1 ≤ i, j ≤M , 
ompute

I
i,k
τ,τ̃ (ϕj , ϕl) :=

∫

τ

∫

τ̃
ϕj(y)ϕl(x)ψi,k(‖x− y‖)dΓydΓx, (2.8)where ϕj and ϕl, typi
ally, are lifted polynomials, i.e., ϕj ◦ χτ and ϕl ◦ χτ̃ are polynomialson τ̂ .The de�nition of smooth and 
ompa
tly supported temporal shape fun
tions was ad-dressed in [26℄ and is as follows. Let

f (t) :=






1
2 erf (2 artanh t) + 1

2 |t| < 1,
0 t ≤ −1,
1 t ≥ 1and note, that f ∈ C∞ (R). Next, we will introdu
e some s
aling. For a fun
tion g ∈

C0 ([−1, 1]) and real numbers a < b, we de�ne ga,b ∈ C0 ([a, b]) by
ga,b (t) := g

(
2
t− a

b− a
− 1

)
.We obtain a bump fun
tion on the interval [a, c] with joint b ∈ (a, c) by

ρa,b,c (t) :=






fa,b (t) a ≤ t ≤ b,

1 − fb,c (t) b ≤ t ≤ c,

0 otherwise.Let us now 
onsider the 
losed interval [0, T ] and 2N (not ne
essarily equidistant) timesteps
0 = t0 < t1 < . . . t2N−2 < t2N−1 = T.4



We de�ne τi := [ti−1, ti] for i = 1, ..., 2N − 1. Then T := {ωi : 1 ≤ i ≤ 2N − 1} with
ω1 := τ1, ω2N := τ2N−1, ∀2 ≤ i ≤ 2N − 1 ωi := τi−1 ∪ τide�nes a 
over of [0, T ]. A smooth partition of unity subordinate to T then is de�ned by

ϕ1 := 1 − ft0,t1 , ϕ2N := ft2N−2,2N−1
, ∀2 ≤ i ≤ 2N − 1 : ϕi := ρti−2,ti−1,ti .Smooth and 
ompa
tly supported basis fun
tions in time {bi}

2N
i=1, 
an then be obtained bymultiplying these partition of unity fun
tions with suitably s
aled Legendre polynomials (
f.[26℄ for details).Remark 2.1. It holds1. suppψi,k ⊂ [tk−2 − ti, tk − ti−2].2. In parti
ular, ψi,k = 0 for k ≤ i− 2.3. LetR (τ, τ̃) := [dist (τ, τ̃) ,maxdist (τ, τ̃)], where maxdist (τ, τ̃) := sup(x,y)∈τ×τ̃ ‖x− y‖.Then,

I
i,k
τ,τ̃ (ϕj , ϕl) = 0 if R (τ, τ̃) ∩ [tk−2 − ti, tk − ti−2] = ∅.Let

I (τ, τ̃) :=
{

(i, k) ∈ {1, 2, . . . , N}2 | Ii,k
τ,τ̃ (ϕj , ϕl) 6= 0

}and, vi
e versa,
I (i, k) :=

{
(τ, τ̃) ∈ G × G | Ii,k

τ,τ̃ (ϕj , ϕl) 6= 0
}
.Note that the index sets I (τ, τ̃) and I (i, k) are sparse.Our goal is, in the following, to approximate Ii,k

τ,τ̃ (ϕj , ϕl) e�
iently using TT- and QTT-approximations. For simpli
ity we assume that we have pie
ewise 
onstant basis fun
tionsin spa
e so that suppϕl = τ and suppϕk = τ̃ with τ, τ̃ ∈ G. In general these basis fun
tionsare lifted pie
ewise polynomials and typi
ally of low order. Therefore we do not expe
t asevere impa
t of higher order basis fun
tions in spa
e on the rank de
omposition in TT/QTTformat. Let us denote by τ̂ = conv
{
(0, 0)T, (1, 0)T , (1, 1)T} the referen
e triangle in R

2.The pullba
ks of the surfa
e panels to the referen
e triangle are denoted by χτ : τ̂ → τ and
χτ̃ : τ̂ → τ̃ and assumed to be smooth bije
tions. Be
ause simplex 
oordinates transformtriangles to squares, integrals of the form (2.8) 
an be written as

∫

τ

∫

τ̃
ψi,k (‖x− y‖) dΓydΓx = (2.9)
∫

[0,1]4
4π|τ ||τ̃ |ξxξy ψi,k(‖χτ (ξx, ξxηx) − χτ̃ (ξy, ξyηy)‖)︸ ︷︷ ︸

=:f(ξx,ηx,ξy,ηy)

dηydξydηxdξx.We apply properly s
aled tensor Gauss-Legendre quadrature rules for the numeri
al approx-imation of the arising integrals over the four-dimensional unit 
ube. Let n1, n2, n3, n4 ∈ N>0be the number of Gauss quadrature points in the �rst/se
ond/third/forth dimension withnodes
(x1,i)

n1

i=1, (x2,j)
n2

j=1, (x3,k)n3

k=1, (x4,l)
n4

l=1 ∈ [0, 1]5



and weights
(w1,i)

n1

i=1, (w2,j)
n2

j=1, (w3,k)
n3

k=1, (w4,l)
n4

l=1 ∈ R.Then,
∫

[0,1]4
f(ξx, ηx, ξy, ηy) dηydξydηxdξx ≈

n1∑

i=1

n2∑

j=1

n3∑

k=1

n4∑

l=1

w1,iw2,jw3,kw4,lf(x1,i, x2,j , x3,k, x4,l).(2.10)For simpli
ity and in order to test the QTT approximation we set n1 = n2 = n3 =
n4 =: NG and assume that NG is a power of 2. The evaluation of an approximation inthe form (2.10) requires O(N4

G) additions/multipli
ations and furthermore O(N4
G) fun
tionevaluations. Sin
e f , or more spe
i�
ally ψi,k, 
ontains itself an integral, su
h fun
tionevaluations might be expensive. Due to the non-analyti
ity of f and the need to 
omputethe integrals (2.9) a

urately in order to obtain stable solutions of the time-domain boundaryintegral equations, we need a medium number of quadrature points in ea
h dire
tion. Thus,depending on the required a

ura
y of the approximation, the quadrature problem 
anbe
ome 
ostly. Therefore the question arises if the right hand side in (2.10) 
an be evaluatedmore e�
iently. For this purpose we will investigate, in the following, the TT and QTT lowrank approximations to the fourth order tensor A = [A(i, j, k, l)] de�ned entrywise by

A(i, j, k, l) = f(x1,i, x2,j , x3,k, x4,l), (i, j, k, l) ∈ {1, ..., NG}
4. (2.11)Note that for the singular 
ase, where dist (τ, τ̃ ) = 0, regularizing 
oordinate transformshave to be applied to remove the singularity of the kernel fun
tion (
f. [28℄, [25℄). Alsoin this 
ase, the transformed integral is (a sum of integrals) over the four-dimensional unit
ube and our 
ompression method 
an be applied also to these 
ases. However, sin
e only

O (M) integrals are singular (
ompared to O (
M2

) regular ones) we restri
t in this paperto the approximation of the regular integrals.3 Tensor Approximation of I
i,j
τ,τ̃ (ϕj, ϕl)In the following we apply the matrix-produ
t states (MPS) type tensor representations in theform of tensor train (TT) and quantized-TT (QTT) formats to represent sparsely the fourthorder 
oe�
ients tensor arising in the quadrature approximation of the above integrals (see(2.10)).3.1 Matrix-produ
t states (MPS) tensor formatsA tensor of order d is de�ned as an element of �nite dimensional tensor-produ
t Hilbert spa
e

Wn ≡ W
n,d of the d-fold, N1 × ...×Nd real-valued arrays, and equipped with the Eu
lidean(Frobenius) s
alar produ
t 〈·, ·〉 : Wn ×Wn → R. Ea
h tensor in Wn, n = (N1, ..., Nd), 
anbe represented 
omponentwise,

A = [A(i1, ..., id)] with iℓ ∈ Iℓ := {1, ..., Nℓ},where for the ease of presentation, we mainly 
onsider the equal-size tensors, i.e., Nℓ = N(ℓ = 1, ..., d). We 
all the elements of Wn = R
I1×...×Id as N -d tensors. The dimension ofthe tensor-produ
t Hilbert spa
e Wn s
ales exponentially in d, dim W

n,d = Nd implyingthe exponential storage 
ost for a general N -d tensor.6



In our appli
ation the quadrature 
oe�
ients for approximating Ii,k
τ,τ̃ (ϕj , ϕl) 
onstitutethe N ×N ×N ×N tensor A of order 4 as in (2.11), requiring N4 storage size. Hen
e, inthe 
ase of multiple 
omputations of a tensor and high numeri
al 
ost of evaluation a singleentry, the 
al
ulations be
ome nontra
table already for N of order several tens.The MPS representation of a d-th order tensor redu
es the 
omplexity of storage to

O(dr2N), where r is the maximal mode rank [35, 30℄. The MPS tensor approximationwas proved to be e�
ient in high-dimensional ele
troni
/mole
ular stru
ture 
al
ulations,in quantum 
omputing and in sto
hasti
 PDEs (see survey paper [16℄ for more details). Inthe re
ent mathemati
al literature the various versions of MPS tensor de
omposition weredis
overed as the hierar
hi
al Tu
ker [13℄, the tensor train (TT) [23℄ and the tensor 
hain(TC) [17℄ formats. In the following we make use of the TT format applied to both the initial
N -d tensor and to its quantized representation (quanti
s-TT).De�nition 3.1. (Tensor 
hain/train format) For a given rank parameter r = (r0, ..., rd),and the respe
tive index sets Jℓ = {1, ..., rℓ} (ℓ = 0, 1, ..., d), with the periodi
ity 
onstraints
J0 = Jd (i.e., r0 = rd), the rank-r TC format 
ontains all elements A = [A(i1, ..., id)] ∈ Wnwhi
h 
an be represented as the 
hain of 
ontra
ted produ
ts of 3-tensors over the d-foldprodu
t index set J := ×d

ℓ=1Jℓ,
A(i1, ..., id) =

∑

α1∈J1

· · ·
∑

αd∈Jd

A(1)(αd, i1, α1)A
(2)(α1, i2, α2) · · ·A

(d)(αd−1, id, αd).In the matrix form we have the entrywise MPS representation
A(i1, i2, . . . , id) = A

(1)
i1
A

(2)
i2
. . . A

(d)
id
, (3.1)where ea
h A(ℓ)

iℓ
is rℓ−1 × rℓ matrix.In the 
ase J0 = Jd = {1}, the TC format 
oin
ides with TT representation in [23℄.The TC/TT format redu
es the storage 
ost of N -d tensor to O(dr2N), r = max rℓ.The important multilinear algebrai
 operations with TT tensors 
an be implemented withlinear 
omplexity s
aling in d and N . In parti
ular, for the Hadamard produ
t we have

Z = X ◦ Y : Z(k)(ik) = X(k)(ik) ⊗ Y (k)(ik),implying the formatted representation of the s
alar produ
t (in O(dr3N) ≪ Nd operations)
〈X,Y〉 = 〈X ◦ Y,1〉.3.2 Quantized-TT (QTT) Approximation of N-d tensorsFurther redu
tion of the asymptoti
 storage 
omplexity 
an be based on the so-
alledquantized-TT (QTT) representation obtained from the initial N × N × N × N tensor bysimple folding (reshaping) to higher dimensional 2× ...× 2 array. It was shown in [17℄ thatthe 
omputational gain of the QTT representation is due to the fa
t that a 
lass of dis
reteexponential (resp. trigonometri
) N -ve
tors allows the rank-1 (resp. TT rank-2) dyadi
folding representation, redu
ing the storage 
omplexity O(N) to the logarithmi
 bound

O(2 log2N); similar result holds for polynomial ve
tors sampled over uniform or gradedsurfa
e meshes.We suppose thatN = 2L with some L = 1, 2, .... The next de�nition introdu
es the foldingof N -d tensors into the elements (quantized 2 × ... × 2 tensors) of auxiliary D-dimensionaltensor spa
e with D = d log2N . 7



De�nition 3.2. ([17℄) Introdu
e the binary folding transform of degree 2 ≤ L,
Fd,L : W

n,d → W
m,dL, m = (m1, ...,md), mℓ = (mℓ,1, ...,mℓ,L),with mℓ,ν = 2 for ν = 1, ..., L, (ℓ = 1, ..., d), that reshapes the initial n-d tensor in W

n,d tothe elements of quantized spa
e W
m,dL as follows:(A) For d = 1 a ve
tor X = [X(i)]i∈I ∈ WN,1, is reshaped to the element of W2,L by

F1,L : X → Y = [Y (j)] := [X(i)], j = {j1, ..., jL},with jν ∈ {1, 2} for ν = 1, ..., L. For �xed i, jν = jν(i) is de�ned by jν − 1 = C−1+ν , wherethe C−1+ν are found from the binary representation of i− 1,
i− 1 = C0 + C12

1 + · · · + CL−12
L−1 ≡

L∑

ν=1

(jν − 1)2ν−1.(B) For d > 1 the 
onstru
tion is similar.Noti
e that the folding transform Fd,L is the linear isometry between WN,d and W2,dL(see [17℄).Remark 3.3. Every 2-dL tensor in the quanti
s spa
e W2,dL 
an be represented (approxi-mated) in the low rank TT format. This leads to the so-
alled QTT representation of N -dtensors. Assuming that rk ≤ r, k = 1, ..., dL, the 
omplexity of QTT representation 
an beestimated by O(dr2 logN), providing log-volume asymptoti
s 
ompared with the volume sizeof initial tensor O(Nd).3.3 Sket
h of numeri
al TT/QTT approximationThe manifold [14℄ of rank-r TT tensors in Wn is known to be 
losed in the Frobenius norm[24℄.From the 
omputational point of view, one of the most attra
tive features of TT format isthe following: the numeri
al 
omputation of rk−1×rk matri
es A(k)
ik

in the TT representation(approximation) of a full format tensor A = [A(i1, ..., id)],
A(i1, i2, . . . , id) = A

(1)
i1
A

(2)
i2
. . . A

(d)
id
,
an be implemented by a stable SVD-based algorithm (MATLAB Toolbox http://spring.inm.rus.ru/osel).For the 
ompleteness of presentation, we sket
h the full-to-TT 
ompression algorithm [23℄to be applied in �4 to our parti
ular fourth order 
oe�
ients tensor.Input: a tensor A of size n1 × n2 · · · × nd and a

ura
y bound ε > 0.1: First unfolding: Nr =

∏d
k=2 nk, M := reshape(A, [n1, Nr]).2: Compute the trun
ated SVD of M ≈ UΛV , so that the approximate rank r ensures

min(n1,Nr)∑

k=r+1

σ2
k ≤

(ε · ‖A‖F )2

d− 1
.3: Set A(1) = U , M := ΛV T , r1 = r, and pro
ess modes k = 2, ..., d − 1.4: for k = 2 to d− 1 do 8



4a: Constru
t the next unfolding: Nr := Nr

nk
, M := reshape(M, [rnk, Nr]).4b: Compute the trun
ated SVD of M ≈ UΛV , so that the approximate rank r ensures

min(nk,Nr)∑

k=r+1

σ2
k ≤

(ε · ‖A‖F )2

d− 1
.4
: Set rk = r and reshape the matrix U into a tensor:

A(k) := reshape(U, [rk−1, nk, rk]).4d: Re
ompute M := ΛV .end for5: Set A(d) = M .Output: TT 
ores Ak, k = 1, . . . d, de�ning a TT ε-approximation to A.The above algorithm has the numeri
al 
omplexity O(nd+1). In the present paper we di-re
tly apply this algorithm to the fourth-order tensor of interest to demonstrate the e�
ientrank de
omposition in the TT format that redu
es drasti
ally the storage and 
omputa-tional 
ost. Moreover, assuming the existen
e of low-rank TT representation the rank-rTT approximation 
an be 
omputed by the heuristi
 algorithm 
alled TT-
ross approxima-tion [24℄ avoiding the �
urse of dimensionality� (see the numeri
al example below). Thisalgorithm also applies to QTT format (QTT-
ross approximation).Remark 3.4. Noti
e that the QTT approximation of the target N ×N ×N ×N tensor A
an be performed by the same de
omposition algorithm but applied in the parti
ular setting
nk = 2, d = 4 logN . The rank-r QTT-
ross approximation takes the advantage of low
ost O(r4 logN) sin
e, due to the main property of TT-
ross algorithm, it 
alls only for
O(r2 logN) entries of the initial tensor A. In this way, the generation of the full tensor 
anbe avoided by using the rank-r QTT-
ross approximation method that requires to 
omputeonly few entries (
hosen adaptively) of the target tensor. The numeri
al results show thatthe 
ompression is 
omparable with the 
omplete QTT approximation method (see �4.6).3.4 Computation of I

i,j
τ,τ̃ (ϕj, ϕl) using TT/QTT approximationLet us denote the TT and QTT representations of A as in (2.11) by ATT and AQTT . Anapproximation of the integral in (2.10) using these representations instead of A 
an beobtained by a simple tensor operation in the quanti
s spa
e W2,dL, d = 4, L = logNG,spe
i�
ally as the s
alar produ
t of the rank-1 
oe�
ients tensor W = w1 ⊗ w2 ⊗ w3 ⊗ w4with ATT or AQTT . Let

QG := 〈W,A〉 =

NG∑

i=1

NG∑

j=1

NG∑

k=1

NG∑

l=1

w1,iw2,jw3,kw4,lf(x1,i, x2,j , x3,k, x4,l), (3.2)
QTT := 〈W,ATT 〉, (3.3)
QQTT := 〈W,AQTT 〉, (3.4)denote the quadrature formulas based on the di�erent representations of A. As pointed outin Se
tion 3.1 the 
ost to evaluate the s
alar produ
ts QTT or QQTT s
ales with O(4r3NG),9



where r is mu
h smaller than NG, 
ompared to O(N4
G) for the exa
t evaluation of QG.Therefore the approximations QTT and QQTT 
an be 
omputed 
onsiderably faster, pro-vided that A has TT and QTT representations with low rank.Sin
e ATT and AQTT are only approximations of A, the formulas QTT and QQTT intro-du
e additional quadrature errors. An important question therefore is how a

urate theapproximations ATT/QTT have to be, su
h that the relative errors

EG,TT :=
|QG −QTT |

|QG|
and EG,QTT :=

|QG −QQTT |

|QG|
(3.5)are small and the additional error does not a�e
t the a

ura
y of the quadrature QG.4 Numeri
al ExperimentsIn the following, we investigate the 
ompression properties of A and the a

ura
y of QTTand QQTT using di�erent triangles and time meshes in order to 
over various 
ases, thatmight o

ur during the solution of the dis
rete system (2.6) . Therefore, let

τ := conv
{
(0, 0, 0)T, (1, 0, 0)T , (1, 1, 0)T }

τ̃ := cshift + conv

{
(1, 0, 0)T, (1, 1

2
, 1)T , (0, 1,

1

2
)T }with cshift ∈ R. These triangles will be used for all numeri
al experiments. Only cshift ∈ Ris variable and will be set individually for ea
h 
ase. Furthermore we will de�ne di�erenttime grids for ea
h 
ase 
onsisting of six points t1 ≤ . . . ≤ t6 ∈ R≥0. We then 
hoose basisfun
tion b(t) and b̃(t) in time su
h that supp b = [t1, t3] and supp b̃ = [t4, t6]. More pre
isely,

b and b̃ will be the smooth bump fun
tions as de�ned in Se
tion 2 multiplied with properlys
aled Legendre polynomials of degree 1 (
f. [26℄), i.e.,
b(t) = ρt1,t2,t3(t)

(
2
t− t1

t3 − t1
− 1

) and b̃(t) = ρt4,t5,t6(t)

(
2
t− t4

t6 − t4
− 1

)
. (4.1)
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Figure 4.1: ψ(r) for the time gridgiven in (4.3).

Thus, the integrals we want to approximate are ofthe form
Iτ,τ̃ :=

∫

τ

∫

τ̃
ψ (‖x− y‖) dΓydΓxwith

ψ(r) :=

∫ T

0

ḃ(t− r)b̃(t)

4πr
dt (4.2)where r ∈ R>0. Note that

suppψ = [t4 − t3, t6 − t1].We denote the domain of the spatial integration by
S =

{
z ∈ R

3 s.t. z = x− y, x ∈ τ, y ∈ τ̃
}10



and de�ne
Smin := min

z∈S
‖z‖ = dist(τ, τ̃ ), Smax := max

z∈S
‖z‖ = maxdist(τ, τ̃ ).It 
an be easily seen that the position of triangle τ̃ , i.e. cshift, has to be 
hosen su
h that

[SminSmax]∩[t4−t3, t6−t1] 6= ∅ in order to obtain Iτ,τ̃ 6= 0 (
f. Remark 2.1). In the followingwe will perform numeri
al experiments for the following 
ases:1. Smin < t4− t3 and Smax < t6− t1. Here, the domain S is only partially enlighted fromone side (
f. Figure 4.2). The 
ase Smin > t4 − t3 and Smax > t6 − t1 leads to similarnumeri
al results in our example and will not be treated separately.2. Smin > t4 − t3 and Smax < t6 − t1. In this 
ase the domain S is 
ompletely enlighted(
f. Figure 4.4).3. Smin < t4 − t3 and Smax > t6 − t1. Here, the dis
rete light 
one is a narrow strip (
f.Figure 4.6).4. Smin small. In this 
ase we examine how small distan
es between the triangles in�uen
ethe 
ompression rates.5. At last we 
onsider the 
ase of higher order basis fun
tions in time and therefore amore os
illatory fun
tion ψ.Remark. In the following numeri
al experiments the TT/QTT approximations of thetensor A were 
omputed using the TT-toolbox 1.0 for MATLAB written by I. Oseledets(http://spring.inm.rus.ru/osel).4.1 Case 1: Partially enlighted integration domainFor this 
ase we de�ne the time grid
t1 = 0.6, t2 = 1.2, t3 = 1.7, t4 = 9.8, t5 = 10.5, t6 = 11.0 (4.3)and cshift = 4.4 su
h that Smin ≈ 7.2 and Smax ≈ 9.6. This 
hoi
e of the parameters leads toa situation as illustrated in Figure 4.2. The integration domain is only partially enlightedfrom one side, whi
h leads (depending of the 
hoi
e of cshift) to many zero entries in theresulting tensor A. In this example cshift was 
hosen su
h that approximately 50% of theentries of A are nonzero.For the approximation of Iτ,τ̃ we set NG = 32, i.e., we use 32 Gauss quadrature points inea
h dire
tion leading to a tensor A with size(A) = 32 × 32 × 32 × 32. In order to test theQTT approximation we reshape A to a matrix B of size 322 × 322.The table below shows the e�
ien
y of the TT-approximation ATT and the QTT-approximation AQTT of A. We listed the mean ranks of the 
orresponding 
ores for di�erentapproximation a

ura
ies. We additionally 
omputed the singular value de
omposition of

B and listed the number of relative singular values that are greater than the pres
ribeda

ura
y. The de
ay of the singular values is shown in Figure 4.3.
11
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Figure 4.3: Relative singular values of B: Non-zero entries of B: ≈ 50%.A

ura
y Mean rank of ATT Mean rank of AQTT Rel. SV of B

10−2 5.7 8.0 7
10−3 9.4 15.2 12
10−4 13.0 23.1 18
10−5 18.7 33.4 28
10−6 25.4 45.5 41It 
an be observed that the ranks of the TT- and QTT-approximation are small, espe-
ially for low and medium a

ura
ies. The low ranks in this 
ase 
ould be found also forother 
on�gurations of the numeri
al experiment. In general it 
an be noti
ed that the
ompression is better if many entries of A are zero or in other words that the enlighted partof the integration domain is small. (That a sparse A however does not ne
essarily lead togood 
ompression rates 
an be seen in Se
tion 4.3).In the next table we 
ompare the time that is needed to 
ompute the approximations

QG, QTT and QQTT for di�erent a

ura
ies of the TT- and QTT-approximation. We as-sume that A, ATT , and AQTT are given in ea
h 
ase, so that only the di�erent s
alarprodu
ts (3.2)-(3.4) have to be evaluated. Furthermore we 
ompute the relative errors
EG,TT and EG,QTT (
f. (3.5)) in order to see the e�e
t of the additional approximation onthe quadrature result.A

ura
y Time QG Time QTT EG,TT Time QQTT EG,QTT

10−2 100 1.3 2 · 10−3 9.8 2 · 10−4

10−3 100 1.3 4 · 10−5 10.1 1 · 10−4

10−4 100 1.4 2 · 10−6 10.3 6 · 10−6

10−5 100 1.5 1 · 10−7 10.8 2 · 10−7

10−6 100 1.6 7 · 10−8 11.2 4 · 10−8It 
an be seen above that the evaluation of QTT and QQTT is 
onsiderably faster thanthe evaluation of QG due to the low ranks of ATT and AQTT and the indu
ed low number12
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Figure 4.5: Relative singular values of B. Non-zero entries of B: 100%.of arithmeti
 operations, that is needed to 
ompute the 
orresponding s
alar produ
ts.Furthermore it 
an be observed that the errors EG,TT and EG,QTT are small even for lowand medium a

ura
ies of the TT- and QTT-approximation. In this 
ase it is su�
ientto determine ATT and AQTT with relatively low a

ura
y in order to obtain a

urateapproximations for QG. On the one hand this is advantageous sin
e we bene�t from lowranks in this 
ase and on the other hand the 
omputation of ATT and AQTT dire
tly viaTT/QTT 
ross approximation be
omes 
heaper as well (
f. Se
tion 4.6).4.2 Case 2: Completely enlighted integration domainFor this 
ase we again use the time grid (4.3) and set cshift = 5.1 su
h that Smin ≈ 8.42and Smax ≈ 10.28. We are therefore in the situation where the integration domain τ × τ̃is 
ompletely enlighted (
f. Figure 4.4). Thus, A is in general densely populated with novanishing entries. We set again NG = 32 and 
ompute the mean ranks of the TT- and QTTapproximation of A. The de
ay of the relative singular values of the reshaped matrix B isshown in Figure 4.5.The results of the numeri
al experiments indi
ate that the 
ompression rates in this 
aseare very similar to Case 1. Thus a fully populated tensor A does not have a severe negativeimpa
t on the ranks of ATT and AQTT 
ompared to a situation where the integrationdomain ist only partially enlighted and similar basis fun
tions in time are used.A

ura
y Mean rank of ATT Mean rank of AQTT Rel. SV of B

10−2 6.7 10.4 9
10−3 9.8 18.2 14
10−4 13.4 29.1 20
10−5 18.4 40.5 29
10−6 25.0 53.3 42The next table shows the time that is needed to 
ompute the di�erent approximations of

Iτ,τ̃ . Thereby we again assume that A,ATT and AQTT are given for ea
h a

ura
y.13
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Figure 4.7: Relative singular values of B. Non-zero entries of B: ≈ 64%.A

ura
y Time QG Time QTT EG,TT Time QQTT EG,QTT

10−2 100 1.3 7 · 10−3 10.0 5 · 10−2

10−3 100 1.4 1 · 10−3 10.3 4 · 10−4

10−4 100 1.4 8 · 10−5 10.6 4 · 10−5

10−5 100 1.5 3 · 10−6 10.8 3 · 10−6

10−6 100 1.7 4 · 10−8 11.3 1 · 10−8As expe
ted the evaluation of the s
alar produ
t using the TT- and QTT approximationis 
onsiderably faster. Furthermore, the relative errors EG,TT and EG,QTT are, as in theprevious 
ase, small for medium a

ura
ies of ATT and AQTT .4.3 Case 3: Narrow dis
rete light 
oneHere we want to examine how a narrow dis
rete light 
one, i.e., the support of ψ is a smallinterval, in�uen
es the 
ompression rates. Therefore we 
onsider the time mesh
t1 = 0.6, t2 = 0.8, t3 = 1.0, t4 = 10.3, t5 = 10.45, t6 = 10.7su
h that suppψ = [9.3, 10.1]. Choosing cshift = 5.4 leads to the 
ase where Smin < 9.3and Smax > 10.1. We are thus in the situation illustrated in Figure 4.6. We set again

NG = 32 and 
ompute the mean ranks of the TT- and QTT approximation of A whi
hhas approximately 64% nonzero entries. The de
ay of the relative singular values of thereshaped matrix B is shown in Figure 4.7.A

ura
y Mean rank of ATT Mean rank of AQTT Rel. SV of B

10−2 14.4 21.8 23
10−3 23.3 46.8 37
10−4 33.2 69.7 60
10−5 44.3 97.1 89
10−6 57.0 130.1 12614



As one 
an see in the table above, the 
ompression rates are worse than in the previous
ases. This is not surprising sin
e ψ has the same os
illatory behavior as before but varieson a smaller interval. The approximation of the tensor A, whi
h is based on the evaluationof ψ at di�erent points in τ × τ̃ and not only in a narrow strip 
ontaining the dis
rete light
one, is therefore 
learly more di�
ult. This is 
on�rmed by various numeri
al experiments.The narrower the dis
rete light 
one is, the higher are the mean ranks of the TT- and QTTapproximation of A in general. This 
ase is therefore an example where a more sparse Adoes not lead to better 
ompression rates.Although the mean ranks of ATT and AQTT are larger here than in the previous 
ases,the 
ompression is still good enough to redu
e the 
omputing times of the quadratures
onsiderably.A

ura
y Time QG Time QTT EG,TT Time QQTT EG,QTT

10−2 100 1.3 4 · 10−1 9.0 6 · 10−1

10−3 100 1.4 1 · 10−2 9.5 2 · 10−2

10−4 100 1.6 1 · 10−4 10.2 1 · 10−3

10−5 100 1.8 5 · 10−5 11.1 5 · 10−5

10−6 100 2.1 1 · 10−6 12.4 1 · 10−6Another e�e
t that 
an be observed here is, that the errors EG,TT and EG,QTT de
ayslower than before. The approximations of A have therefore to be 
omputed with highera

ura
y in order to obtain good approximations of QG.4.4 Case 4: Near �eld integralsWe now want to test the 
ompression rates in the 
ase where the triangles in (2.9) are 
loseto ea
h other. Sin
e the integrand in (2.9) is weakly singular for x = y, the 
onvergen
e ratesof standard quadrature rules deteriorate for dist(τ, τ̃ ) → 0. We examine if low distan
esbetween the triangles also have a negative in�uen
e on the 
ompression rates of the TT- andQTT-approximation. In order to test this numeri
ally we use the triangles τ, τ̃ as beforeand set cshift = 1. In this 
ase we have
dist(τ, τ̃) ≈ 1.44 and maxdist(τ, τ̃ ) ≈ 3.20.As time grid we 
hoose

t1 = 0.6, t2 = 1.2, t3 = 1.9, t4 = 4.2, t5 = 4.7, t6 = 5.7,su
h that suppψ = [2.3, 5.1]. Thus, we are in the 
ase of a partially enlighted integrationdomain as in Case 1. Setting again NG = 32, we obtain the following mean ranks for ATTand AQTT .A

ura
y Mean rank of ATT EG,TT Mean rank of AQTT EG,QTT

10−2 5.5 4 · 10−3 7.4 1 · 10−3

10−3 9.1 2 · 10−4 13.6 6 · 10−4

10−4 13.8 2 · 10−6 22.1 4 · 10−5

10−5 20.0 9 · 10−7 33.2 5 · 10−7

10−6 27.4 1 · 10−8 46.0 3 · 10−815
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Figure 4.9: Plot of ψhigh,2As we 
an see above small distan
es between the triangles τ and τ̃ do not have an in�u-en
e on the 
ompression rates of the TT- and QTT approximation and that the ranks are
omparable to those in Case 1. Note however that the number of Gauss points NG usuallyhas to 
hosen larger for su
h near �eld integrals in order to preserve a 
ertain a

ura
y ofthe quadrature rule (
f. [25℄).As in Case 1, EG,TT and EG,QTT are qui
kly de
reasing su
h that a relatively low a

ura
yof ATT and AQTT is su�
ient for the quadrature. The 
omputing times for QTT and QQTTare very similar to those in Case 1 and we therefore refrain from listing them here.4.5 Case 5: Higher order basis fun
tions in timeAt last we examine the 
ase of a higher order of the basis fun
tions than 
onsidered before.Therefore we adopt the setting in Case 1, i.e., we use the time grid (4.3) and set cshift=4.4.Instead of using the basis fun
tion in (4.1) we �rst set
b(t) = ρt1,t2,t3(t)P2

(
2
t− t1

t3 − t1
− 1

) and b̃(t) = ρt4,t5,t6(t)P3

(
2
t− t4

t6 − t4
− 1

)
,where Pp denotes Legendre polynomials of degree p. We denote the 
orresponding fun
tion

ψ in (4.2) by ψhigh,1 (
f. Figure 4.8). As a se
ond example we 
hoose
b(t) = ρt1,t2,t3(t)P5

(
2
t− t1

t3 − t1
− 1

) and b̃(t) = ρt4,t5,t6(t)P5

(
2
t− t4

t6 − t4
− 1

)
.As above we denote the 
orresponding ψ in (4.2) by ψhigh,2 (
f. Figure 4.9). In the followingwe list the mean ranks and the relative errors for both settings.A

ura
y Mean rank of ATT EG,QTT Mean rank of AQTT EG,QTT

10−2 4.7 4 · 10−3 7.0 3 · 10−3

10−3 8.5 6 · 10−5 13.3 2 · 10−4

10−4 12.5 4 · 10−5 22.1 6 · 10−5

10−5 18.3 6 · 10−6 32.2 1 · 10−5

10−6 24.7 6 · 10−7 44.6 1 · 10−616



The table above shows the results for 
ase ψhigh,1. As we 
an see the mean ranks are nota�e
ted by the higher order of the basis fun
tions in this example. They are even slightlylower than in Case 1. This is due to the fa
t that ψhigh,1 is not 
onsiderably more os
illatingthan ψ in Case 1 even though Legendre polynomials of higher order are involved. In order tosee a negative e�e
t of higher order basis fun
tion we have to 
onsider Legendre polynomialsof degree 5, i.e. ψhigh,2, as the next table shows.A

ura
y Mean rank of ATT EG,QTT Mean rank of AQTT EG,QTT

10−2 5.5 5 · 10−1 9.1 6 · 10−1

10−3 10.7 1 · 10−2 16.8 3 · 10−3

10−4 14.3 1 · 10−3 26.8 7 · 10−5

10−5 20.8 4 · 10−5 37.7 2 · 10−5

10−6 27.5 1 · 10−5 50.9 2 · 10−5

10−7 44.3 5 · 10−7 77.6 1 · 10−6Also here we 
an see that the 
ompression rates are not 
onsiderably worse than beforeor in Case 1 even though ψhigh,2 is more os
illatory now. A negative aspe
t that be
omesevident, however, is the slower de
rease of EG,QTT and EG,QTT .4.6 Example on QTT-
ross approximationAs it was mentioned in Remark 3.4 the rank-r QTT-
ross approximation takes the advantageof the log-volume 
ost O(r4 logN) requiring an evaluation of only O(r2 logN) ≪ N4 entries.In the following we give the numeri
al illustration on QTT-
ross approximation for Case1 above. The next table presents the results on ε-QTT-
ross approximation of the targettensor A of size 32 × 32 × 32 × 32. We give the CPU time (se
.), QTT and TT ε-ranksand the relative storage size for the obtained TT and QTT approximations. In all 
ases thestorage 
ost of QTT representation is lower than those for the TT-format.
ε 10−6 10−5 10−4Time (se
.) 10.4 6.3 3.1QTT-rank 31 21 14TT-rank 18 13 9stor(TT)/stor(QTT) 1.14 1.17 1.24Finally we noti
e that the numeri
al evaluation of the full tensor A amounts to 321 se
.5 Con
lusionIn this paper, we have presented a new method for the e�
ient evaluation of the integralswhi
h arise from the dire
t dis
retization of retarded potential integral operators. Sin
ethe integrands are C∞ but, in general, not analyti
 the number of quadrature points isrelatively large while the total number of su
h integrals is huge during the generation ofthe system matrix. We have introdu
ed the TT and the QTT representations for the four-dimensional quadrature tensors arising from the evaluation of the (transformed) integrands17



at the quadrature points in the four-dimensional unit 
ube. We have systemati
ally testedthe sensitivity of the algorithm with respe
t a) to di�erent 
ases how the smeared dis
retelight 
one interse
ts the spatial mesh, b) to the distan
e of the surfa
e panels indu
ingdi�erent nearly-singular behaviors of the integrands, and 
) to the polynomial degree of thetemporal approximation. In all 
ases the 
ompression by the TT and QTT representationis impressive.Sin
e both, the TT and the QTT formats require as input the full tensor it is important tosubstitute the 
orresponding full-to-TT and full-to-QTT approximation algorithms by theiradaptive 
ross versions. We have performed numeri
al experiments whi
h show that the
ompression rates by the adaptive TT-
ross and QTT-
ross representations are 
omparablewith the original ones while the generation of the full tensor 
an be avoided.A
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