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Abstract. Quantics tensor train (QTT), a new data-sparse format for one– and
multi–dimensional vectors, is based on a bit representation of mode indices followed
by a separation of variables. A radix-2 reccurence, that lays behind the famous FFT
algorithm, can be efficiently applied to vectors in the QTT format. If input and all
intermediate vectors of the FFT algorithm have moderate QTT ranks, the resulted
QTT-FFT algorithm outperforms the FFT for large vectors. It is instructive to de-
scribe a class of such vectors explicitly. We find all vectors that have QTT ranks one on
input, intermediate steps and output of the FFT algorithm. We also give an example
of QTT-rank-one vector that has the Fourier image with full QTT ranks. By numerical
experiments we show that for certain rank-one vectors with full-rank Fourier images,
the practical ε–ranks remain moderate for large mode sizes.

Keywords: Multidimensional  arrays, quantics  tensor train, Fourier  transform, data-
sparse formats
AMS classification: 15A23, 15A69, 65F99, 65T50.

1. Introduction

For multi-dimensional data, storage and complexity grow prohibitively with the dimension
and structured low-parametric formats are necessary to make the computations feasible.
Recently, a tensor  train (TT) format was proposed [10, 13], which combines the good
properties of a canonical [8, 6, 1] and Tucker [15] formats: the number of representation
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parameters does not grow exponentially with the dimension (there is no “curse  of  dimen-
sionality”), and the approximation problem is stable and can be solved by the SVD-based
algorithm. Suprisingly, this format can be applied also to data of low dimension using the
virtual levels [16] / quantization of indices [9]. For a vector x = [x(k)]n−1

k=0 of mode size
n = 2d this is the following one-to-one mapping

k ↔ (k1, . . . kd), kp = 0, 1, p = 1, . . . , d, k = k1 . . . kd
def
=

d∑
p=1

kp2
p−1, (1)

that allows to reshape vector into a tensor X = [x(k1, . . . , kd)] with d binary indices. The
TT format for the latter is called QTT format and reads

x(k) = x(k1k2 . . . kd) = X
(1)
k1
X
(2)
k2

. . . X
(d)
kd
, (2)

where each X
(p)
jp

is an rp−1 × rp matrix and border conditions r0 = rd = 1 are introduced to
make the right-hand side a scalar for each k = k1 . . . kd.

The values rp are referred to as QTT ranks and affect the storage and complexity in
numerical work with vectors in the QTT format. As shown in [10, 12, 13], QTT ranks are
equal to the ranks of certain matricisations, i.e.

rp = rankX{p}, X{p} = [x{p}(a, b)], x{p}(k1 . . . kp, kp+1 . . . kd) = x(k1 . . . kd) = x(k). (3)

Since X{p} is a 2p × 2d−p matrix composed of the elements of x, the rank in bounded by its
sizes, rp 6 min(2p, 2d−p). In the following we will assume that the “ranks of a vector” are
the QTT ranks of the corresponding QTT decomposition.

Definition 1. Vectors with rp = 1 are referred to as rank-one vectors, and vectors with
rp = 2min(p,d−p) as full-rank vectors.

Random vector, as well as a random matrix, generally has full ranks. However, many
function-related vectors have low ranks (exp x, sin x, cos x, xp) or have low ε–ranks, i.e. can
be accurately approximated by a low-rank vectors (xα, e−αx2 , sin x

x
, 1
x

et al) [9, 5, 11].
For n = 2d, the normalized discrete Fourier transform (DFT) reads

y(j) =
1

2d/2

2d−1∑
k=0

x(k)ωjk
d , ωd = exp

(
−
2πi
2d

)
, i2 = −1, (4)

where Fd = 1

2
d/2

[ωjk
d ]

2d−1
j,k=0 is the unitary Fourier matrix. Recently, the Fourier transform

algorithm was proposed for vectors of type (2), maintaining the QTT format during the
computation [3]. The complexity of m-dimensional Fourier transform of an n×n× . . .×n

array with n = 2d is O(m2d2r3), which grows logarithmically with n. For large m and n this
algorithm is faster than the Fast Fourier transform (FFT) algorithm of O(mnm logn) com-
plexity. However, it is important that r, which is the maximum QTT rank of input, output
and all intermediate vectors of the algorithm, remains moderate. It is not easy to describe
a class of such vectors explicitely. However, it is instructive to do this in the simplest case
of rank-one vectors.
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In this paper we describe the class of rank-one vectors with rank-one Fourier images.
Also we give an example of rank-one vector that has full-rank Fourier image. This shows
that Fourier transform is nontrivial operation that can increase QTT ranks of a vector to
the maximum. Finally, by numerical experiments we show that practical ε–ranks of Fourier
images of certain rank-one vectors (including the randomly distributed vectors) are moder-
ate even for vectors of very large mode sizes.

2. Rank-one vectors with rank-one Fourier images

Since the QTT ranks do not change with vector scaling, we can consider only normalized
vectors (zero vector, a trivial answer, is not interesting). We start from three examples of
rank-one vectors that have rank-one Fourier images.

Example 1. A column of 2d × 2d identity matrix. A unit vector

x = ek∗ , i.e. x(k) = δ(k− k∗), where δ(z)
def
=

{
1, z = 0,

0, z ̸= 0,

has QTT ranks one, i.e. has the decomposition (2) with all scalar cores,

x(k) = δ(k− k∗) = δ(k1 . . . kd − k∗
1 . . . k

∗
d) = δ(k1 − k∗

1) . . . δ(kd − k∗
d).

The Fourier image, y = Fdx, is a discretized exponent function with QTT ranks one,

y(j) =
1

2d/2
exp

(
−
2πi
2d

k∗j

)
=

1

2d/2
exp

(
−
2πi
2d

k∗j1

)
exp

(
−

2πi
2d−1

k∗j2

)
. . . exp

(
−
2πi
2

k∗jd

)
.

Example 2. Vector x = 1

2
d/2

[
exp(2πi

2d
j∗k)

]2d−1

k=0
, a discretized exponent with frequency

which is an integer multiple of 2πi
2d
, is a rank-one vector with rank-one Fourier image y =

Fdx = ej∗.

Example 3. For d = 1 any vector of size 2d = 2 has both QTT ranks one, r0 = r1 = 1, as
well as its Fourier image.

In the following we will show that any rank-one vector with rank-one Fourier image can
be represented as a tensor product of the considered examples. Note that the QTT cores
of a rank-one vector are unique up to the scaling, i.e. the scaling coefficient can be arbitrary
distributed between the QTT cores without changing the result. In the following theorem
we describe a class of equivalent rank-one QTT decompositions by one element, and show
that a particular QTT representations of the rank-one vector with rank-one Fourier has a
specific form.

Theorem 1. A rank-one vector x of size 2d has rank-one Fourier image, iff the QTT de-
composition

x(k) = x(k1k2 . . . kd) = x
(1)
k1
x
(2)
k2

. . . x
(d)
kd
,
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after apropriate scaling of QTT cores can be written for some c = 1, . . . , d as follows

x
(p)
kp

= δ(kp − k∗
p), k∗

p = 0, 1, for p < c;

x
(c)
kc

is arbitrary;

x
(p)
kp

=
1√
2

exp
(

2πi
2d−p+1

j∗kp

)
, for p > c.

(5)

Proof. For d = 1 the statement holds, see Example 3. Suppose it holds for any vector of
size 2d−1 and consider rank-one vector with rank-one Fourier image of size 2d,

y
(1)
j1
y
(2)
j2

. . . y
(d)
jd

=
1

2d/2

∑
k1...kd

x
(1)
k1

. . . x
(d−1)
kd−1

x
(d)
kd
ω

jk
d .

Write these equations separetely for j1 = 0 and j1 = 1,

y
(1)
0 y

(2)
j2

. . . y
(d)
jd

=
x
(d)
0 + x

(d)
1

2d/2

∑
k1...kd−1

x
(1)
k1

. . . x
(d−1)
kd−1

ω
j ′k ′

d−1,

y
(1)
1 y

(2)
j2

. . . y
(d)
jd

=
x
(d)
0 − x

(d)
1

2d/2

∑
k1...kd−1

x
(1)
k1

. . . x
(d−1)
kd−1

ωk ′

d ω
j ′k ′

d−1,

(6)

where k = k1 . . . kd, j
′ = j2 . . . jd, k

′ = k1 . . . kd−1. We come to the radix-2 reccurence rela-
tion, that was known to Gauss [4, 7] and lays behind the Cooley-Tukey FFT algorithm [2].
If both y

(1)
0 = 0 and y

(1)
1 = 0 then y = Fdx = 0 and since Fd is nonsingular we have x = 0, a

trivial case. Three non-trivial cases are possible.
First, y(1)

0 ̸= 0 and y
(1)
1 = 0, leads to x

(d)
0 = x

(d)
1 and y ′ = Fd−1x

′, where half-size vectors
x ′ and y ′ have QTT ranks one,

x ′(k ′) = x ′(k1 . . . kd−1) = x
(1)
k1

. . . x
(d−1)
kd−1

, y ′(j ′) = y ′(j2 . . . jd) = y
(2)
j2

. . . y
(d)
jd
.

Second case, y(1)
0 = 0 and y

(1)
1 ̸= 0, leads to x

(d)
0 = −x

(d)
1 and y ′ = Fd−1Ωdx

′, where
Ωd = diag{ωk ′

d }
2d−1−1
k ′=0 and Ωdx

′ has QTT ranks one as well as x ′. With proper scaling, we
summarize these two cases to

y
(1)
j1

= δ(j1 − j∗1), x
(d)
kd

=
1√
2

exp
(
2πi
2

j∗1kd

)
, and y ′ = Fd−1Ω

j∗
1

d x
′, (7)

where j∗1 = 0, 1 and vectors y ′ and Ω
j∗
1

d x
′ have size 2d−1 and QTT ranks one. By the assump-

tion, cores of vector Ωj∗
1

d x
′ are given by (5), which means

exp
(
−

2πi
2d−p+1

j∗1kp

)
x
(p)
kp

= δ(kp − k∗
p), k∗

p = 0, 1, for p = 1, . . . , c− 1;

exp
(
−

2πi
2d−c+1

j∗1kc

)
x
(c)
kc

is arbitrary;

exp
(
−

2πi
2d−p+1

j∗1kp

)
x
(p)
kp

=
1√
2

exp
(

2πi
2d−p

j ′∗kp

)
, for p = c+ 1, . . . , d− 1.
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Moving the scaling coefficients to the core x(c), we result in (5) with j∗ = 2j ′∗ + j∗1.

Finally, consider the case y
(1)
0 ̸= 0 and y

(1)
1 ̸= 0 in (6). Then

y ′ = αFd−1x
′ = βFd−1Ωdx

′,

with above-defined x ′ and y ′ and some non-zero scalars α and β, that can be always chosen
unit in modulus. Since Fd−1 is nonsingular, the last equation gives

x ′(k ′) = eiφ exp
(
−
2πi
2d

k ′
)
x ′(k ′), k ′ = 0, . . . , 2d−1 − 1,

that holds only for columns of identity 2d−1 × 2d−1 matrix, x ′ = ek ′
∗. This vector also has

the QTT decomposition of the form (5) with c = d, that completes the proof.

Directly from the proof of Theorem 1 we colclude the following.

Theorem 2. If a rank-one vector of size 2d has rank-one Fourier image then all intermedi-
ate vectors of the Cooley-Tukey algorithm have QTT ranks one.

3. Rank-one vector with full-rank image

In the Example 2 we show that rank-one vector

x(k) =
1

2d/2
exp

(
2πi
2d

fk

)
, k = 0, . . . , 2d − 1,

has rank-one Fourier image for integer f = j∗. Now we consider f /∈ Z and prove that
Fourier image y = Fdx has full QTT ranks. Using the power series formula, we compute

y(j) =
1

2d

2d−1∑
k=0

exp
(
2πi
2d

fk

)
exp

(
−
2πi
2d

jk

)
=

1

2d
1− exp (2πi(f− j))

1− exp
(
2πi
2d
(f− j)

) .
Then, using 1− e2iφ = −2ieiφ sinφ, we come to

y(j) =
1

2d
exp (πif) sin (πf)

exp
(
πi
2d
(f− j)

)
sin

(
π
2d
(f− j)

) = α
exp

(
2πi
2d
j
)

sin
(

π
2d
(j− f)

) ,
where α = 1

2d
exp

(
πif

(
1− 1

2d

))
sinπf. Following (3), QTT ranks of Fourier image y are

equal to the ranks of unfoldings,

rp = rank Y{p}, Y{p} =
[
y{p}(a, b)

]
, a = j1 . . . jp, b = jp+1 . . . jd,

y{p}(a, b) = y(a+ 2pb) = α
exp

(
2πi
2d
a+ 2πi

2q
b
)

sin
(

π
2d
(a− f) + π

2q
b
) ,

where p + q = d. Also, f = 2pg + h + φ, where g ∈ Z, h = 0, . . . , 2p − 1 and 0 < φ < 1.

Finally, we represent φ = φ1 + 2pφ2 and write

sin
( π

2d
(a− f) +

π

2q
b
)
= sin π

2d
a ′ cos π

2q
b ′ + cos π

2d
a ′ sin π

2q
b ′,
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resulting in Y{p} = α ACB, with

A = diag
{

exp 2πi
2d
a

sin π
2d
a ′

}
, C =

[
1

cot π
2d
a ′ + cot π

2q
b ′

]
, B = diag

{
exp 2πi

2q
b

sin π
2q
b ′

}
, (8)

where a = 0, . . . , 2p − 1, b = 0, . . . , 2q − 1 and a ′ = a− h−φ1, b
′ = b− g−φ2. We can

always choose φ1 and φ2 such that the denominators in A,B,C are not zero,

sin π

2d
(a− h−φ1) ̸= 0;

cot π

2d
(a− h−φ1) + cot π

2q
(b− g−φ2) ̸= 0;

sin π

2q
(b− g−φ2) ̸= 0;

for
a = 0, . . . , 2p − 1;

b = 0, . . . , 2q − 1.

With these φ1 and φ2, the diagonal matrices A and B are non-singular since all diagonal
elements are non-zero. The rectangular 2p×2q matrixC contains a square submatrix

[
1

sa+tb

]
with a, b = 0, . . . 2min(p,q) − 1, that is also non-singular [14], since it is a Cauchy-Hilbert
matrix with distinct sa and tb. We conclude that Y{p} has full rank, rp = 2min(p,d−p) and
therefore vector y has full QTT ranks.

4. Numerical experiments

Numerical computations in scientific computing mostly deal not with exact decomposi-
tions, but with approximations and the coresponding ε–ranks, i.e.

rε(z) = min
z̃:∥z−z̃∥6ε∥z∥

r(z̃). (9)

Since the QTT format has d possibly different ranks, it is more convenient to introduce
one value r(z̃) to describe the number of parameters that is used to represent z̃ in QTT
format. The maximum QTT rank can be used, but sometimes it gives incorrect impression
of the “structure complexity”. To account the distribution of all TT ranks r1, . . . , rd−1, that
affect the storage for TT format, we define the effective TT rank.

Definition 2. 1 The effective QTT rank r of the TT format with TT ranks r1, . . . , rd−1

and mode sizes n1, . . . , nd, is as a positive solution of the quadratic equation

mem(r1, . . . , rd−1) = mem(r, . . . , r),

where mem(r1, . . . , rd−1) denotes the amount of memory to store the TT cores,

mem(r1, . . . , rd−1) = n1r1 + r1n2r2 + . . .+ rd−1nd.

For the QTT format, all mode sizes are equal 2 and effective QTT rank is defined as

r(A) = r, such that (d− 2)r2 + 2r−

d∑
p=1

rp−1rp = 0. (10)

1This definition was proposed by E. E. Tyrtyshnikov
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Figure 1. (left) Effective ε–rank of the Fourier image of x =
[
exp

(
2πi
2d
fk
)]2d−1

k=0
, 0 6 f 6 1;

(right) effective ε–rank of the Fourier image of random rank-one vector;
(top) vectors of size n = 230; (bottom) vectors of size n = 260.

The effective rank is generally a non-integer value. The effective rank of rank-one vector
is equal to one. The effective rank of full-rank vector of size 2d is r ≈

√
2d/d and grows

exponentially with d, as well as the storage of full array.
On Fig. 1(left) we show the effective ε–rank of the Fourier image of the discretized

exponential function x =
[
exp

(
2πi
2d
fk
)]2d−1

k=0
with frequency 0 6 f 6 1 for different accuracy

levels ε. We see that rε(f) tends to one in the small neighbourhoods of zero and one, and
almost does not depend on f at certain distance from the sides of the interval. Therefore,
we can say that for most of the discretized exponential functions with randomly chosen
frequency f the ε–ranks rε(f) depend on ε but not on f. Note also that ε–ranks remain
moderate even when the accuracy ε is close to the machine precision, although the exact
decomposition is full-rank. The effective ε–rank of the Fourier image even reduces slightly
for vectors of very large size n = 260. This shows that even for “bad examples” of data with
full-rank images, the approximate Fourier transform using the QTT-FFT algorithm may
sufficiently reduce the storage and complexity in comparison with usual FFT.

It is interesting to compare this result with the distribution of ε–ranks of Fourier images
of randomly chosen rank-one vectors, see Fig. 1(right). For the QTT vector (2) we set
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x
(p)
0 = 1 for p = 1, . . . , d and independently choose real and imaginary parts of x(p)1 from

uniform distribution in [0 : 1]. We use 5 · 108 samples of vectors of size n = 230 and 108

samples2 of vectors of size n = 260. It is natural to expect that Fourier images of random
vectors would not have a good structure. However, we can see that effective ε–ranks are
again quite moderate. Also, the histograms which estimate the probability distribution
function of rε(χ) for rank-one vector χ are very narrow. As in the previous example, we can
say that effective ε–ranks actually depend only on accuracy ε and are almost the same for
most of the random vectors from the selected set.

Finally, we should note that since the Fourier transform in many dimensions is a ten-
sor product of one-dimensional Fourier transforms, the described results can be directly
generalized to multi-dimensional case.
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