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JOHANNES RAUH, NIHAT AY 12

Asstract. We study notions of robustness of Markov kernels and priibabis-
tribution of a system that is described hyinput random variables and one output
random variable. Markov kernels can be expanded in a sefrjfestentials that allow
to describe the system’s behaviour after knockouts. Rabsstimposes structural
constraints on these potentials.

Robustness of probability distributions is defined via d¢badal independence
statements. These statements can be studied algebraithélycorresponding con-
ditional independence ideals are related to binary edgalddeThe set of robust
probability distributions lies on an algebraic variety. \dmpute a Grobner basis
of this ideal and study the irreducible decomposition of\hgety. These algebraic
results allow to parametrize the set of all robust probihidlistributions.

1. INTRODUCTION

In this article we study a notion of robustness with toolsrfralgebraic geometry.
This work has been initiated in [1]. Connections to algebggometry have already
been addressed in [6]. We consideinput nodes, denoted by, 4,...,n, and one
output node, denoted by 0. For eack 0,1,...,n the state of node is a discrete
random variableX; taking values in the finite seX; of cardinalityd;. The joint state
space is the sl = XgX X1 X+ X Xp. For any subseb C {0,. .., n} write Xg for the
random vector Xi)ics; thenXs is a random variable with values Xis = XijcsXj. For
anyx e X, therestriction of x to a subse C {0,...,n} is the vectorxs € Xs with
(Xs)i = x; foralli € S.

We study two possible models for the computation of the dufimm the input:
The first model is a stochastic map (Markov kerneffom X[ to Xo, that is,« is a
function

k: X xXo — [0,1], (xy) = «(xy),
satisfyingYyex, «(x;y) = 1 for all x. The second model is a joint probability distribu-

tion p of the random vectorXo, X5). These two models are related as follows: The
joint probability distributionp of (Xo, X5) can be factorized as

P(Y. X) = P(YIX) Pin (%), for all (y,X) € &,

wherepy, is the distribution of the input nodes apdy|X) is a conditional distribution,
which need not be unique. Each possible choice of this donaitdistribution defines
a Markov kernelk(x;y) = p(y|x). Conversely, when a Markov kernelis given,
then any input distributiorpir(X) defines a joint distributiorp(X,y) = pin(X)«(X;y).
The result of our analysis will not depend too much on the ipeeform of the input
distribution; it will turn out that only thesupportsuppin) := {x € X : pin(X) > 0}
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is important. Similarly, in the analysis of the kernels, rehavill also be a sefS of
“relevant inputs” that will play an important role.

We study robustness with respect to knockouts of some ofriigt inodestj] in
both models. When a subsgtof the input nodes is knocked out, and only the nodes
in R = [n] \ S remain, then the behaviour of the system changes. Withatlieiu
assumptions, the post-knockout function is not determinyedand has to be specified.
We therefore consider a further stochastic map Xgr x Xg — [0, 1] as model of
the post-knockout function. A complete specification of filmection is given by the
family (ka)acpn Of all possible post-knockout functions, which we referséumctional
modalities As a shorthand notation we denote functional modalitiegkgs The
Markov kernelk itself, which describes the normal behaviour of the systathout
knockouts, can be identified wikf;.

What does it mean for a stochastic map to be robust? Assurhéhthaput is in
statex, and that we knock out a s8tof inputs. Denoting the remaining set of inputs
by R, we say that«y) is robust inx = (X, Xs) against knockout o8, if

1) k(Xr, Xs; X0) = kr(Xr; X0)  forall Xo € Xo.

If R is a collection of subsets of] and if (xa) is robust inx against knockout of
[n] \ Rfor all R € R, then we say thaip) is R-robust in x In Section 2, we consider
Gibbs representations of functional modalities and desiugctural constraints on cor-
responding interaction potentials that are imposed by siless properties. These
constraints do not depend on the configuratian which the functional modalities are
assumed to be robust.

Similar to the case of Markov kernels, the joint probabitiigtribution p does not
allow to predict the behaviour of a perturbed system. Needess, we can ask whether
it is at all possible that the behaviour of the system is rbbgainst a given knockout
of S. Let pi, be an input distribution, and lek/) be the functional modalities of the
system. If a) is robust against knockout & in x for all x € suppi,), then Xg
is stochastically independent froKy given Xg (with respect to the joint probability
distribution p(Xo, Xin) = pPin(Xin)x(Xin; X0)), whereR = [n]\ S, a fact that will be denoted
by Xo 1L Xs|Xg . In order to see this, assume= (Xr, Xs) € supp@in). Then

P(Xo | Xr, Xs) K(XR, Xs; X0)
wROGX) ), POGIR)

X5 :(XR,X5)€supp@in)

P(Xs | Xr) k(XR, Xg; X0)
X5 (X, X5)esupp(in)

P(Xs | XR) P(Xo | XR, X5)
X5 (Xr. X5 )€SUPPEIn)
= p(Xo|XR)-

On the other hand, Xy 1L Xs|Xr holds for a joint distributionp, then any family
(xa) with the property thaka(Xa; Xo) = p(XolXa) Whenevem(xa) > 0 is robust against
knockout ofS for all x € suppin), wherep, is the marginal input distribution.

Therefore, we call the joint probability distributiom robust against knockout of
S, if Xg It Xs|Xg . This means that we do not lose information about the oufgut
if the subsetS of the inputs is unknown or hidden (or “knocked out”). Proitigb
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distributions that are robust in this sense are studied ai®@e3. Section 4 discusses
the case thaXg is a deterministic function of the input nodes. The symmaetaise that
p is robust against knockout of any setof cardinality less tham — k is studied in
Section 5.

The results about robustness are derived from an algeltradaryt of generalized
binomial edge ideals, which generalize the binomial edgal&lof [6] and [9]. This
theory is presented in Section 6. A Grobner basis is cottstry and it is shown that
these ideals are radical. Finally, a primary decomposigooomputed. Similar ClI
statements have recently been studied in [11]. That workudi&es what is called
(n— 1)-robustness in Section 5.

2. RoBUSTNESS OF MARKOV KERNELS

Let (ka)acrn be a collection offunctional modalities as defined in the introduc-
tion. Instead of providing a list of all functional modeg, one can describe them in
more mechanistic terms. In order to illustrate this, we fisisider an example which
comes from the field of neural networks. In that example, veeiiae that the output
node receives an input= (X, ..., Xn) € {—1, +1}" and generates the outpul with
probability

1
(2) K(Xl,...,Xn,+1) = m,
which implies that for an arbitrary outpetg
@3 iy Wi X X0

X1y« ey Xn; = .
Koa Xni Xo) g3 Sl Wix-(=1) 4 @5 Sy wix(+1)
This representation of the stochastic mapas a structure that allows inferring the
function after a knockout of a s& of input nodes, by simply removing the contribu-
tion of all the nodes irs. In our example (2), the post-knockout function is then give

as
1

1+ e ZierWi X’

whereR = [n] \ S. This inference of the post-knockout function is based an th
decomposition of the sum that appears in (2). Such a decatigoois referred to as
a Gibbs representation efand contains more information thanMore generally, we
consider the following model okg)

kr(Xg; +1) =

eXBcA $8(X8.%0)
ZXE) eXeca d8(Xe.Xp)

where thegg are functions onXg x Xp. Clearly, eachxa is strictly positive. Using
the Mobius inversion, it is easy to see that each strictlgitp@ family (ka) has the
representation (3). To this end, we simply set

(4) oA X0) = ) (-1 VN ke(xc; Xo)
CcA

®3) Ka(Xa; Xo) =

Note that this representation is not unique: If an arbitfanction of x is added to
the functionga, then (3) does not change.
A single robustness constraint has the following consecgefor thepa.
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Proposition 1. Let Sc [n] and R=[n] \ S, and lei(xa) be strictly positive functional
modalities with Gibbs potential@a). Then(ka) is robust in x against knockout of S
if and only if ¥ gy Ber $8(XlB, X0) does not depend orpx

Proof. Denoteg, the potentials defined via (4). Then (1) is equivalent to

Z $e(XlB, Xo) = Z de(Xlg, X0) Z $B(Xs, X0) = O
BN BCR BB(;z[Ez]

The statement follows from the fact thag(X|s; Xo) — ¢s(Xs; Xo) is independent ofg
(for fixed x). ]

DoesR-robustness ix imply any structural constraints ora)? In order to answer
this question, we restrict attention to the c&e Ry .= {RC[n] : |R > k}.

If (xa) is Rx-robust on a se$, then the corresponding conditions imposed by Propo-
sition 1 depend or®. In this section, we are interested in conditions that adepen-
dent ofS. Such conditions allow to define sets of functional modadithat contain all
Rg-robust functional modalities for all possible sétslf the setS (which will be the
support of the input distribution in Section 3) is unknowarfrthe beginning, then the
system can choose its policy within such a restricted sairudtfonal modalities.

DenoteKy the set of all functional modalitieg/) such that there exist potentialg
of the form

A X0) = | Pa.a(Xe; X0),

BCA
|Bl<k

whereWg 4 is an arbitrary functiolR*®*¥0 — R. The setKy is called thefamily
of k-interaction functional modalitieslt contains the subsd{, of those functional
modalities ka) where the function®¥g 4 additionally satisfy

(—1)AWg a(xg; Xo) = (-1)A1Wg o (XB; X0), wheneveB ¢ AN A’ and|B| < K,

and
|A'|-k ’ [A—-k
1)A = | 1)A- | ) ,
| - Izk Ye,a(Xs; X0) = |Z ( (|+)k) Yea(Xs %), if BCANA and|B|=
=0 =0 k

for all xg € Xg andxy € Xo. Both Ky and Ky only contain strictly positive kernels.
Therefore, we are also interested in the resepectaguresof these two families with
respect to the usual real topology on the space of matrices.

The following holds:

Proposition 2. LetS be a subset ok|; and let(«a) be functional modalities that are
Ri-robust in x for all xe S. Then there exist functional modalitié&) in the closure
of Ky such thatka(X|a) = ka(X|a) for all A and all xe S. In particular, ka belongs to
the closure of the family of k-interactions.
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Proof. Assume first thakp is strictly positive. Define Gibbs potentials using the
Maobius inversion (4). Note that

X, (DAl = 3L 1A <|q 5 2 i
GRe Gk Bk
= D (-Ae = 0 23 In k(e %)
CCA BCC
CeA |B]=k
= é{R§B( 1)A-R- k(|R|1+k)} In ka(Xs; X0)

[Bl=k
Together with (4) this gives

oaxa X0) = ) aac Inkc(xc; o),

CCA
ICl<k
where
(1Al if IC| < k
PAC = Trearc(-1)A-IRK GRS

depends only on the cardinalities AfandC. The statement follows with the choice
Yea(Xe: %) = aac Inke(Xe; Xo).

If (xa) is not strictly positive, then definga(Xa; Xo) = io for all A C [n]. Then the
functional modalities {») areRx-robust for allx € S, and so are the strictly positive
functional modalities K) defined viaxy, = (1 — €)xa + eda. The statement follows
from limo0«4 = ka. O

Example 3. Consider the case af = 2 binary inputs,X; = X» = {0,1}, and let
={(0,0), (1,1)}. ThenR;-robustness o means

K1y (X1; Xo0) = k(1,2 (X1, X2; X0) = k(23 (X2; X0)
for all xg wheneverx; = x,. By Proposition 1 this translates into the conditions

(5) B11.2)(X1, X2; X0) + P2y (X1; X0) = 0 = 1,2 (X1, X2; X0) + ¢y2)(X2; X0)

for all X, wheneverx; = xp for the potentialsa) defined via (4). This means: As-
suming that£a) is Ry-robust, it stffices to specify the four functions

Po(X0), P13 (X1; X0), #11,2(0, 1; Xo), ¢y1,2(1, 0; Xo).

The remaining potentials can be deduced from (5). If onlyilaes of ka) for xe S
are needed, then it iices to specifypy(Xo) andeg1y(X1; Xo).

Even though the familieK, and Ky do not depend on the s&t the choice of the
setS is essential: If the sef is too large, then the conditions (1) imply that the output
Xo is (unconditionally) independent of all inputs. The thedegyveloped in Sections 3
to 5 discusses the constraints on conditionals imposedebgttbice ofS. In particular,
Section 4 gives bounds on the strength of the interactiowdsst the input nodes and
the output node for giveRR andS.
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On the other hand, sindé andKy are independent a$, Proposition 2 shows that
these two families can be used to construct robust systehes) e input distribution
pin is Not known a priori (or may change over time) but must berledby the system.

3. ROBUSTNESS AND CONDITIONAL INDEPENDENCE

We now study robustness of the joint distributiprof (Xo, Xinj). As stated in the
introduction,pis calledrobust against knockout of iit satisfiesXp 1L Xs | Xg , Where
R =[n] \ S. By definition this means that

(6) P(Xo, Xs, XR) P(Xg, X5, XR) = P(X0, X5, XR) P(X5, XS5 XR),

for all xo, X; € Xo, Xs, X5 € Xs andxg € Xr. Here,p(Xo, Xs, Xr) is an abbreviation of
p(Xo = Xo, Xs = Xs, XR = XR). Itis not dificult to see that this definition is equivalent
to the usual definition of conditional independence [3]. sTalgebraic formulation
makes it possible to study conditional independence wghlakic tools.

In order to formulate the results in higher generality, w# also consider Cl state-
ments of the formXy 1L Xg|Xgr =y for someS C [n], R = [n] \ S andy € Xgr. By
definition, this is equivalent to equations (6) forall x; € Xo, Xs, X5 € Xs andxr =Y.
Such a statement models the case that, if the value of thé vapablesXg isy, then
the system does not need to know the remaining variakde order to compute
its output. Such CI statements naturally generalize cangli[8] or nested canaliz-
ing functions [7], which have been studied in the contextalfustness. The simpler
statementXy 1L Xs|Xg corresponds to the special case whel Xs|Xg =Yy for
ally e Xg.

Let R be a collection of pairsR, y), whereR C [n] andy € Xr. Such a collection
will be called arobustness specificatidn the following. A joint distribution is called
R-robustif it satisfies all conditional independence (ClI) stateraent

(7) Xo L X\ | Xr =y
for all (R,y) € R. We denotePy the set of allR-robust probability distributions.

Example 4. As before, letRg be the set of subsets af][of cardinalityk or greater. In
other words, a probability measupds Rg-robust, if we can knock out any— k input
variables without losing information on the output.

Equations (6) are polynomial equations in the elementaopatilities. They are
related to thébinomial edge idealintroduced in [6]. The generalized binomial edge
ideals will be studied in Section 6. Here, we interpret trgebtaic results from the
point of view of robustness.

Let X = X1 x--- x X,. A robustness specificatioR induces a grapleg on X,
wherex, X' € X are connected by an edge if and only if there exi®y € R such
that the restrictions of andx’ to Rsatisfyxjr = X|r = V.

Definition 5. Let Y C X, and denotésg y the subgraph o6x induced byY. The
setY is calledR-connectedf Gg y is connected. The set of connected components
of Gg v is called aR-robustness structureAn R-robustness structui® is maximalif

and only ifUB := Uz.g Z satisfies any of the following equivalent conditions:

(1) Foranyx € X\ UB there are edge(y), (X, 2) in Gg such thaty,z € UB are
not connected iGg ug.



ROBUSTNESS AND CONDITIONAL INDEPENDENCE IDEALS 7

(2) Foranyx € X\ UB the induced subgrapBg usu(x has less connected compo-
nents tharGg ug.

For any probability distributiorp on X, Xy € Xg andx € X denotepy the vector
with component9y(Xo) = p(Xo = Xo, Xinj = X). Denote supp *= {x € X : px # 0}.
For any familyB of subsets ofX let £g be the set of probability distributiong that
satisfy the following two conditions:

(1) suppp= UB,

(2) px andpy are proportional, whenever there exigs= B such thatx,y € Z.
It follows from (10) and Theorem 23 th@lz equals the disjoint uniowgPg, where
the union is over alR-robustness structures. Alternativeli equals the uniog®g,
where the union is over all maxim&-robustness structures.

For anyx € X the vectomy is proportional to the conditional probability distriborti
P(-[X[n = X) of X given thatX; = x. Hence:

Lemma 6. Let p be a probability distribution, and I& be the set of connected com-
ponents of @sypps- Then p isR-robust if and only if R|Xjyy = X) = P([Xy = Y)
whenever there exis8 € B such that xy € Z.

The following lemma sheds light on the structureref:

Lemma 7. Fix an R-robustness structurB. Then®g consists of all probability mea-
sures of the form

®) 0y = |HD1z(pz(x0) [ x e Z<B.
(¢ if X € X \ UB,

wherey is a probability distribution orB and 1 is a probability distribution onZ
for eachZ € B and(pz)zes is a family of probability distributions oK.

Proof. It is easy to see thap is indeed a probability distribution. By Lemma 6 it
belongs toPg. In the other direction, any probability measure can betanitas a
product

P(X0, X1, .., Xn) = P(Z)P (X1, - . .. Xl (X1, ..., Xn) € Z) P(XolXa, - . -, Xn),

if (X1,...,%n) € Z € B, and if pis anR-robust probability distribution, thepz(x) :=
p(XolXa, . . ., Xn) depends only on the blocK in which (xq, .. ., X) lies. o

4. ROBUST FUNCTIONS

The factorization in Lemma 7 admits the following interpitéin:

Proposition 8. Let B be anR-robustness structure. Then the 4 is the set of
probability distributions such that

P(Xp) € UB) =1

and
Xo 1L X[n] |X[n] el forall Z € B.
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In other words, the sefg € B determine a partition of the set suppwhich consists
of all outcomes ofX[; with non-zero probability undep. Within each blockZ the
value of Xp is independent of all inputs. L& C [n], and letx, X' € X[y satisfying
(R xr) € Rand R, X|r) € R. If xandx’ belong to diferent blocks irB, thenx|g # X|r.
Therefore, the knowledge of the input variableRiis suficient to determine in which
block Z € B we are.

Whenp or B is fixed we can introduce an additional random varidBlinat takes
values inB. The situation is illustrated by the following graph:

T

The arrows from the input variableg, . . ., X, to B are, in fact, deterministic:
B(x)=Z if xe Z e B.

Note, however, that the functioB is only defined uniquely owB, which is a set of
measure one with respect [ This means that in many cases it is enough to study
robustness of functions oX.

Definition 9. A function f defined on a subseét c X[ is R-robust if there exists an
R-robustness structui® such thatS = UB and f is constant on eacB € B.

There are two maotivations for looking at this kind of functgo First, they occur
in the special case &®-robust probability distributiong(Xg, X1, ..., X,) such that all
conditional probability distributiong(Xg|X1,. .., X,) are Dirac measure. Second, as
motivated above, we can associate to &gobust probability distributiorp a corre-
sponding functionf characterizing th&-robustness structure. In order to reconstruct
pitis enough to specify the input distributig (X1, . . ., X;) and a set of output distri-
butions{p(Xol(X, ..., Xn) € Z)}zp in addition to the functiorf : S — B. Note that
natural examples of robust functions arise from the studyaalizing functions [8, 7].

It is natural to ask the following question: Given a certaibustness structure, how
much freedom is left to choose a robust functidhMore precisely, how large can the
image off be? Equivalently, how many components carRarobustness structui@
have?

Lemma 10. Let f be anR-robust function. The cardinality of the image of f is
bounded from above by

min{n d:(Ry)eRforallye XR}.
ieR
Proof. Suppose without loss of generality thét,(..,r},y) € Rfor ally € X} and

thatd; ... d; equals the above minimum. The imagefafannot be larger thaah . . . dr,
since if we knock out alX; for i > r, then we can only determird . .. d; states. 0O
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Example 11. Suppose tha$ = X. This means that thg-robustness structure satisfies
UB = X. We first consider the case thak is connected. This is fulfilled, for example,
if for any k € [n] there existR C [n] such thakk ¢ S and R y) € Rfor ally € Xg. In
this case amR-robust functionf takes only one value.

Assume thatR y) € R implies R, y') € Rfor ally € Xgr. If Gg is not connected,
then some input variables may never be knocked out.TLie¢ the set of these input
variables. For every fixed value &f the functionf must be constant. This means
that f can have [icq 1 di different values.

Remark(Relation to coding theory)We can interpretX as a set of words over the
alphabet {l,] of length n, whered,, = maxXd;}. For simplicity assume that atl;

are equal. Consider the uniform caBe= Rx. Then the task is to find a collection

of subsets such that any twoffdirent subsets have Hamming distance at |lkas
related problem appears in coding theory: A code is a suMsEtX and corresponds

to the case that each element®is a singleton. If distinct elements of the code have
Hamming distance at least- k, then a message can be reliably decoded even if only
k letters are transmitted correctly.

5. Rk-ROBUSTNESS

In this section we consider the symmetric cd&se Rx. We fix n and replace any
prefix or subscripR by k.

Letk = 0. Any pair (x,y) is an edge irGp. This means thaB can contain only one
setB. There is only one maximal O-robustness structure, namety{X[}. The set
Ro is irreducible. This corresponds to the fact ti#gtis defined byXp 1L Xq) .

B is actually a maximak-robustness structure for any<Ok < n. This illustrates
the fact that the single CI statemeXg 1L X[ implies all other Cl statements of the
form (7). The corresponding s§% contains all probability distributions ? of full
support.

Now letk = 1. In the casa = 2, we obtain results by Alexander Fink, which can
be reformulated as follows [5]:.Let n= 2. A 1-robustness structurB is maximal if
and only if the following statements hold:

e Each Be Bis of the form B=S; x Sy, where § € X1, S, € X».
e For every % € Xq there exists B B and % € X, such that(x, x») € B, and
conversely.

In [5] a different description is given: The blo&; x S, can be identified with
the complete bipartite graph @&y andS,. In this way, every maximal 1-robustness
structure corresponds to a collection of complete bigagitbgraphs with vertices in
X1 U X> such that every vertex iX1 resp.X5 is part of one such subgraph.

This result generalizes in the following way:

Lemma 12. A 1-robustness structurB is maximal if and only if the following state-
ments hold:

e Each Be Bis of the form B= S; x --- x Sy, where S C X;.

e Fix j € [n] and x € Xj foralli € [n], i # j. Then there exist xe Xj
such that(xy,..., Xn) € UgegB. In other words, whenever A 1 compo-
nents of(xy,..., X,) are prescribed, there exist an n-th component such that
(Xl, e, Xn) € UpegB.
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Proof. We say that a subsgf of X is connected iGg v is connected. Suppose tiais
maximal. LetB € B and letS; be the projection oB C X[ t0 Xj. LetB’ = Syx---xSh,.
ThenB c B’. We claim that B \ {B}) U {B’} is another coarser 1-robustness structure.
By Definition 5 we need to show th& is connected and th&u B’ is not connected
for all A € B\ {B}. The first condition follows from the fact th&is connected. For
the second condition assume to the contrary that ther& arB’ andy € A such that
X=(Xy,..., %) andy = (y1, ..., Yn) disagree in at most— 1 components. Then there
exists a common componert= y;. By construction there exisiz= (z,...,2,) € B
such thatz = y; = x, henceA U B is connected, in contradiction to the assumptions.
This shows that eacB has a product structure.

Write B = SBx - - x SB for eachB e B. ObviouslySE N SF' = ¢ for all i  [n] and
all B,B’ € B if B+ B’. The second assertion claims th@‘eBSiB = Xjforalli € [n]:
Assume to the contrary th&te Xj is contained in ncSiB. Take anyB and define
B :=SBx...x(SBu{l})x---xSP. Then(B\B) U {B'} is a coarser 1-robustness
structure.

Now assume thaB is a 1-robustness structure satisfying the two assertibitseo
theorem. For anx € X \ UB there existy € UB such thatx; = y;, and hencexy) is
an edge irG;. This implies maximality. i

The last result can be reformulated in termsngbartite graphs generalizing [5]:
Namely, the 1-robustness structures are in one-to-ongomrlaith the n-partite sub-

.....

.....

which can be coloured by colours such that no two vertices with the same colour are
connected by an edge.

Unfortunately the nice product form of the maximal 1-rolmests structures does
not generalize t& > 1:

Example 13(Binary three inputs)If n = 3 andd; = d, = d3 = 2 andk = 2, then
the graphGg is the graph of the cube. For a maximal 1-robustness steuBttine set
X'\ UB can be any one of the following:

e The empty set

e A set of cardinality 4 corresponding to a plane leaving tworacted compo-
nents of size 2

e A set of cardinality 4 containing all vertices with the sanaity.

e A set of cardinality 3 cutting fb a vertex.

An example for the last case is
B:={(1,11}{(222),(221),(212),(1,22)}}.
Only the isolated vertex has a product structure.

Generically, the smallék, the easier it is to describe the structure okalbbustness
structures. We have seen above that the ckise andk = 1 are particularly nice.
One might expect that a-robustness structures are alka-(1)-robustness structures
for all k. Unfortunately, this is not true in general:

Example 14. Considem = 4 binary random variableXs, ..., X4. Then
B:={{(1,1,11),(2211),{(1,222),(2,1,2,2)}}
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is a maximal 2-robustness structure. Both elementB afe ~»-connected, but not
~3-connected.

The following two lemmas relatierobustness tbrobustness for > k:

Lemma 15. Let B be a k-robustness structure. For every-| k there exists an I-
robustness structur®’ such that the following holds: For any € B there exists
precisely oneY’ € B’ such thaty c V’.

Proof. The statements (7) farimply the same_statementslo‘soP_B is a closed subset
of . ThusPg lies in one irreducible subs@g' of ;. The statement now follows
from Lemma 22. O

Lemma 16. Assume thatd= --- = dy = 2, and letB be a maximal k-robustness
structure of binary random variables. Then eacle B is connected as a subset 0of G
for all s < n-2k.

Proof. We can identify elements ot with 01-strings of lengtm. Denotel, the string
1...10...0of r ones and —r zeroes in this order. Without loss of generality assume
thatlg, || are two elements d8 € B, wherek > n-1 < s. Letm = F'ﬂ and consider
Im. We want to prove that we can replaBdy B U {I,} and obtain another, coarder
robustness structure. By maximality this will imply tHatandl, are indeed connected
by a path inGs.

Otherwise there existd € B and x € A such thatx and I, agree in at leask
components. Led be the number of zeroes in the firstcomponents ok, letb be the
number of ones in the components from+ 1 tol and letc be the number of ones in
the lastn — | components. Theh, andx disagree ira+ b+ ¢ < n—k components. On
the other handxandl disagree inh—a) + b+ ¢ components, andandl; disagree in
a+((I-m)—b)+c < a+(m-b)+ccomponents. Assume that- b (otherwise exchange
lo andl;). Thenx andlo disagree in atmosh+c < [51+n-1=n-[5] <n-k
components, sé U B is connected, in contradiction to the assumptions. O

6. GENERALIZED BINOMIAL EDGE IDEALS

We refer to [2] for an introduction to the algebraic termogy that is used in this
section.

Let X be a finite setdy > 1 an integer, and denotE = Xo x X. Fix a fieldR.
Consider the polynomial ring = R[py : x € X] with |X| unknownspy indexed byX.
Foralli, j e Xpand allx,y € X let

fy = PixPiy = PyPix-
For any graplG on X the ideallg in Rgenerated by the binomiaféjy foralli, j € Xo
and all edgesx y) in G is called thedgth binomial edge ideabf G overR. This is a
direct generalization of [6] and [9], where the same idealgetbeen considered in the
special caseéy = 2.

Choose a total order on X (e.g. choose a bijectioX = [|X|]). This induces a
lexicographic monomial order, that will also be denoted-byia

either i>j,

Pix > Piy = {or i = jandx>y.
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A Grobner basis folg with respect to this order can be constructed using theviaig
definitions:

Definition 17. A pathz : X = Xo, X1, ..., % = yfrom xtoyin X is calledadmissiblef

(i) x« # X fork # ¢, andx <y;
(i) foreachk=1,...,r — 1 eitherxg < xXor X, >;
(i) for any proper subseflys, ..., ys} of {X1,..., %_1}, the sequencg,y,...,Vs, Y
is not a path.

A functionk : {0, ..., r} — [d] is calledr-antitoneif it satisfies
9) Xs < Xt = k(S) > «(t), foralll<st<r.
k is strictly m-antitoneif it is z-antitone and satisfieg0) > «(r).

The notion ofr-antitonicity also applies to paths which are not necelysadmissi-
ble. However, since admissible paths anjective(i.e. they only pass at most once at
each vertex), we may writg(¢) in the admissible case, instead«@$), if £ = 7(S).

For anyx <y, any admissible path : X = Xg, X1,..., % =y from xtoy and any
m-antitone functiorx associate the monomial

r-1
ut = | Peose
k=1

Theorem 18. The set of binomials

G = U {u;ff)(,y)"(x) . X <Y, mis an admissible path in G from xto y
i<j K is strictly n-antitone}

is a reduced Grobner basis aof with respect to the monomial order introduced above.
The proof makes use of the following lemma, which explairentitonicity:

Lemma 19. Letn : Xg,...,% be a path in G, and lek : {0,...,r} — [d] be an
arbitrary function. If« is not r-antitone, then there exists g G such thatini_(g)
divides the monomialiu= TT}_1 Peggx,-

Proof. Letr : yp,...,Ys be a minimal subpath af with respect to the property that the
restriction ofx to T is notr-antitone. This means thatis rp-antitone and-s-antitone,
wheretg = yi1,...,Ysandrs = yo,...,Ys-1. Assume without loss of generality that
Yo < Ys, Otherwise reverse. The minimality implies thak(yp) < «(ys). It follows that
7 is admissible: By minimality, ifjp < Yk < Vs, thenk(yk) > «(ys) > «(Yo) > «(Yk), a
contradiction. Define

k(s), ifk=0,

k(kK) ={k(0), ifk=s
k(k), if0O<k<s

Thenx is r-antitone, and ini(ut f;09°0*)) dividesut. o
Proof of Theorem 18The proof is organized in three steps.

Step 1:.G is a subset ofd. Letr : X = Xo, X1, ..., %-1, % =y be an admissible path in
G. We show that f)’{)(,')’((') belongs tdg using induction omr. Clearly the assertion is
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true ifr = 1, so assume > 1. LetA = {X : X < X} andB = {x¢ : X, > y}. Then either
A+0orB=0.

SupposeéA # 0 and setxx = maxA. The two pathsry : Xk, Xk_1, ..., X1, Xg = X and
2 L Xis Xkads - - -» Xr—1, X = Y in G are admissible. Lat; andk, be the restrictions of
top andno. Leta = «(r), b = «(0) andc = (k). The calculation

(PbyPax — PbxPay) Pex,
= (PexPbx — Pex Pbx) Pay — (PexPax, — Pex Pax) Poy = Pex(Pbx, Pay — PbyPax,)

implies thatut £3” lies in the ideal generated Wi £5¢, Ut 3¢ anduy? £25. By induc-
tionitliesinlg.
The caseB # () can be treated similarly.

Step 2:G is a Grobner basis ofd. Letr : Xg,..., X% ando : Yo, ...,Ys be admissible
paths inG with X < % andyy < Vs, and letk andu be n- and o-antitone. By
Buchberger’s criterion we need to show that Spairss := S(u¢ f;‘O(Q"(O), uﬁ,’f{,g(yss)"(o)
reduces to zero.

If S # 0, thenS is a binomial. WriteS = S; — Sy, whereS; = ini(S). Sis
homogeneous with respect to the multidegrees given by

1, ifz=b
de =0m=19_ ’
9Pzmb = 2 {0’ else.
and
1, ifm=n
de =06mn=14_ ’
9Pzmn = Omn {0, else.

If = ando- are disjoint, therS = 0, sinceut {2 andu: 449 contain diterent
variables. The same happens if the intersectionarido- does not involve the starting
or end points ofr ando, since in this cas§& is proportional to thes-pair of the two
monomialsu andu;;.

Assume thair ando meet and tha8 # 0. ThenS; andS, are monomials, and the
unknownspix occurring inS; andS; satisfyx € 7 U o~. Assume that there are< y
such thatDy := min{i € Xo : pix|S1} < maxXi € Xo : piy|S1} =: Dy. Sincer U o is
connected there is an injective pathz,...,zsfromx = zptoy = zsin rUo. Choose
amapa : {0,..., s} such that1(0) = Dy, A(s) = Dy andp,@)al Sy forall0 < a < s.
Thenu! dividesS;, and is notr-antitone. So we can apply Lemma 19 in order to
reduceS to a smaller binomial.

Let S’ be the reduction o8 moduloG. If S # 0, then IetS’1 = ini.(S"). The
above argument shows that rfiie Xo : pix|S]} > maxi € Xo : py|S7} forall x <.
This property characterize®, as the unique minimal monomial Rwith multidegree
deg@S}) = deg@). But since the reduction algorithm turns binomials intodsnials,
S’ - S} is also a monomial of multidegree d&j( and smaller than de§(). This
contradiction show§’ = 0.

Step 3:GisreducedLetrn: Xg,..., X ando : o, ...,Ys be admissible paths i@ with
Xo < X andyp < Vs, and letk andu be - ando-antitone. Letu = «(r),v = «(0),w =
u(9).t = u(0), and suppose thati p,y, pvx divides eitheru; puy, Prys OF Uy Pwys Pryo-
Then{xo, ..., %} is a subset ofyo, . .., Ys}, andx(b) = u(c(xp)) for0 < b <.
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If Xo = Yo andx, = ys, thenr is a sub-path of-. By Definition 17,7 equalso (up to
a possible change of direction). Hena’,“,e‘)fo()’(?"(o) anduﬁ‘,f{,g(yss)“(o) have the same (total)
degree, hence they agree.

If X0 = Yo andx # s, thenpyy dividesu, and sox = y; for somet < ssuch
thatv = u(t). Theny; = X > X = Yo, and hencev < u(0) = «(0) < «(r), in
contradiction toxg < X,. A similar argument applies ¥y # Yo andx = ys. Finally,
if Xo # Yo andx # ys, thenpuy, pvx dividesu,. This impliesu = x(0) = «(j) = v, a
contradiction. o

Corollary 20. Ig is a radical ideal.

Proof. The assertion follows from Theorem 18 the following genéaat: A graded
ideal that has a Grobner basis with square-free initimhseis radical. See the proof
of [6, Corollary 2.2] for the detalils. m|

Sincelg is radical, in order to compute the primary decompositionthef ideal it
is enough to compute the minimal primes. We are mainly isterkin the irreducible
decomposition of the varietyg of I in the case of characteristic zero. While the ba-
sic arguments remain true for finite base fields there is mtiogl between the primary
decomposition of an ideal and the irreducible decompasitibits variety, since the
irreducible decomposition consists of all closed pointthia case. The following defi-
nition is needed: Two vectorsw (living in the sameR-vector space) angroportional
whenevelv = Aw or w = Av for someAd € R. A set of vectors igproportional if each
pair is proportional. Sinca = 0 is allowed, proportionality is not transitive: ¥fand
w are proportional and ifi andv are proportional, then we can conclude thandw
must be proportional only ¥ # 0.

We now study the solution varieyg of Ig, which is a subset dR¥o*X, As usual,
elements ofRY*X will be denoted with the same symbpl = (pix)icxo.xex @s the
unknowns in the polynomial rinR = R[pix : (i,X) € Xo X X]. Such ap can be
written as adp x |X|]-matrix. Each binomial equation iz imposes conditions on
this matrix saying that certain submatrices have rank 1.aFixed edgeX.,y) in G
the equationsf,, = 0 for alli, j € Xo require that the submatriXpg,)kex, z(xy) has
rank one. More generally, K € X is a clique (i.e. a complete subgraph), then the
submatrix Pro)kex,zek has rank one. This means that all columns of this submatrix
are proportional. The columns pfwill be denoted bypy, X € X. A point p lies in Vg
if and only if fy and gy are proportional for all edges,(y) of G.

Even if the graphG is connected, not all columns, Must be proportional to each
other, since proportionality is not a transitive relatidnstead, there are “blocks” of
columns such that all columns within one block are propogio

For anyp € RYX |et G, be the subgraph @ induced by supp ™= {x€ X : Px #

0}. We have shown:

e A point p lies in Vg if and only if fx and gy are proportional whenevegy
suppglie in the same connected componenGof

For any subseV C X denoteGy the subgraph of induced byY. Let Vg y be the
set of allp € R¥*X for which py = 0 for all x e X \ Y and for whichpy and g, are
proportional whenevex, y € X lie in the same connected componengf. Then

(10) Ve = UycxVe,y-
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The setsV/g y are irreducible algebraic varieties:

Lemma 21. For anyY C X the set ¢ y is the variety of the ideald y generated by
the monomials

(11) Pix forallxe X\ Y andie X,

and the binomials ;f, foralli, j € Xp and all xy € Y that lie in the same connected
component of G. The ideal §_y is prime.

Proof. The first statement follows from the definition\d§ . Write Iéy for the ideal
generated by all monomials (11), and for @@yc Y write I% for the ideal generated
by the binomialsfy, with i, j € Xo andx,y € Z. Thenld , is obviously prime. Each

of the I% is a 2x 2 determinantal ideal. It is a classical (buffdiult) result that this
ideal is the defining ideal of a Segre embedding, and thatgtime (see [10] for a
rather modern proof). The ide&d y is the sum of the prime ideaéy and the prime

ideals|Z for all connected componeng of Gy, and since the defining equations of
all these ideals involve disjoint sets of unknowhsy itself is prime. m|

The decomposition (10) is not the irreducible decompasitié Vg, because the
union is redundant. Le¥, Z C X. Using Lemma 21 it is easy to remove the redundant
components:

Lemma 22. LetY, Z € X. Then \4 y contains \é z if and only if the following two
conditions are satisfied:

e ZCV.

e If X,y € Z are connected in &, then they are connected inf

Proof. Assume thaVg y C Vg z. Thenlgy 2 Igz. Foranyx € X\ Z and any
i € Xo this impliespix € I y. On the other hand, Lemma 21 shows that the point with

coordinates
1, ifyely,
piy =
0, else

lies inVg y, and hence iVg z. This impliesx € Y.
Let x € Z. Choose two linearly independent non-zero vectors € R%. By
Lemma 21 the matrix with columns

v, if yis connected tx in Gy,

By = 3w, if y € M is not connected tain Gy,
0, else

is contained Vg y and hence iV z. Therefore, ifzis connected taxin Gy, then it

is connected txin Gz.

Conversely, if the two conditions are satisfied, then allrdefj equations ofg ~
lieinlgy. o

Theorem 23. The primary decomposition of-Ms
IG = ﬁy|G’y,

where the intersection is over af € X such that the following holds: For any «
X \ Y there are edge$x,y), (x,2) in G such that yz € Y are not connected in &
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Equivalently, for any xe X \ Y the induced subgraph fzy has less connected
components than (&

Proof. First, assume that is algebraically closed. By (10) and Lemma 21 iffsies
to show that the condition o¥ stated in the theorem characterizes the maximal sets
Vi.y in the union (10) (with respect to inclusion). This followsiin Lemma 22.

If R is not algebraically closed, then one can argue as followg:[4B a bino-
mial ideal has a binomial primary decomposition over someresion fieldR =
R[as,...,ax]. The algebraic numbersg, ..., ak are codicients of the defining equa-
tions of the primary components. L&tbe the algebraic closure &:. Since the ideals
Iy are defined by pure flerence ideals and since the ide@l® I y are the primary
components o€ ® Ig y in C® Rit follows that the idealds y are already the primary
components ofg (in other words, the primary decomposition is independédrhe
base field). m|

RemarkComparison to [6]) Theorems 18 and 23 are generalizations of Theorems 2.1
and 3.2 from [6]. While Theorem 2.1 in [6] was proved with aecay case analysis,
the proof of Theorem 18 is much more conceptual. The prooftefofem 23 relied

on the irreducible decomposition of the correspondingeigariOn the other hand, the
proof of Theorem 3.2 in [6] directly proves the equality oé thvo ideals.
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