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Abstract: This note is about the prediction of the domain and wall configuration formed by the
magnetization m in a soft ferromagnetic film under an external field. We propose a modification
of the reduced model introduced by DeSimone et al. (2001), that is a variational model for a
2-d in-plane magnetization m on the cross section w. The modification consists of two parts:
1.) An unphysical but computationally convenient selection criterion in DeSimone et al. (2001)
is replaced by a selection criterion based on physical wall energy,
2.) The set of admissible configurations is restricted by imposing an additional boundary
condition at the boundary dw of the cross section.
The specific wall energy is computed off-line based on a 2-d reduction of the 3-d model from
Déring et al. (2012b), and then fed into a diffuse interface approximation for the selection
criterion 1.). This retains some of the low complexity of the original model DeSimone et al.
(2001). Modification 2.) allows to model hysteresis as observed in experiments by van den Berg

and Vatvani (1982); preliminary numerical simulations reveal good qualitative agreement.
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1. INTRODUCTION

Our work deals with the simulation of pattern formation
in soft (i.e. low-anisotropy) ferromagnetic films. Starting
point is the widely accepted continuum model due to
Landau and Lifschitz (1935): Consider a cylindrical ferro-
magnetic sample @ = w x (0, ¢) with diameter diam(Q2) ~ 1
and t < 1. Its magnetization is a vector field M: Q — R3
of constant length |M| = 1. We apply a constant external
field Hext. The micromagnetic free energy, in an appropri-
ately scaled form, then reads

E(M):d2/ |VM|2dac+/ | — VU|? dz
Q R3 (1)
—2 [ Hey - Mdz,
Q
cf. DeSimone et al. (2002). The stray field Hy, = —VU
is the gradient field of a potential U: R® — R and
determined through the magnetostatic Maxwell equation

V- (Hgr + M 1g) = 0 € D(R?). (2)

Local minimizers of the energy are (meta) stable states of
the physical system. Due to the presence of both short-
range (d < 1) and long-range interactions (i.e. the stray-
field energy), direct numerical simulation of the full model
is computationally very intense and only possible for small
samples.

* The first and second authors (LD, EE) acknowledge a grant from
the International Max Planck Research School Mathematics in the
Sciences. The research of the third author (SFL) is supported by the
DFG via the Priority Program SPP 1239.

Reduced Model

In this note, we propose a modification of the reduced 2-d
model by DeSimone et al. (2001) for soft ferromagnetic
films under external fields, which is a description on the
level of the mesoscopic in-plane magnetization m: w —
R2. Basis for the original and our modified reduced model
is the fact that in a suitable parameter regime (of thin but
not too small samples, see DeSimone et al. (2002)), the in-
plane divergence 0 = —V -m is determined by a balance of
magnetostatic energy and external field contribution: The
magnetization m is a minimizer of
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under the relazed constraint |m| < 1.

However, even together with the full constraint jm| = 1
and the boundary condition v-m = 0 at the boundary dw
of the cross section, the knowledge of o does not determine
m. This can easily be seen in case of ¢ = 0 (that is, for
vanishing external field) where any continuous, piecewise
smooth solution of the Eikonal equation |[Vi| = 1 in w
that vanishes on Ow yields a solution via m = —V<1¢
(i.e. ¥ acts as a stream function). The discontinuity lines
of Vi correspond to walls. One example for 1 is the
distance function to dw; it gives rise to the mesoscopic
magnetization configuration called the “Landau state”.

Original Selection Criterion

In its original version, the model by DeSimone et al. (2001)
proposed a mathematically convenient but physically un-
justified selection principle that consists of two steps:



1.) Determine the minimizer m* of the relaxed problem
with minimal L?-norm, which is expected to be con-
tinuous (and thus does not capture walls). The cross
section w splits into a region with active constraint,
that is {|m*| = 1}, where m = m* for any minimizer
m, and where the stray field no longer expels the
external field and thus is called the penetrated region,
and its complement {|m*| < 1} which is non-empty.

2.) Determine the wunique viscosity solution ¢ of the
Dirichlet problem for the modified Eikonal equation

(m")t 4+ Vy|=1 inw, =0 ondw. (3)
The viscosity solution is the pointwise supremum of
all continuous, piecewise smooth solutions of (3).

Then take m = m* — V4 as the model prediction. De-
spite its lack of physical motivation, this selection principle
works well in explaining some experimental observations,
see (DeSimone et al., 2001, Figure 2).

Selection Criterion by Wall Energy

We propose a selection mechanism that instead is based
on the physical wall energy. Note that on the mesoscopic
level of the 2-d model in DeSimone et al. (2001), walls
are discontinuity lines of m. Locally, a wall connects two
constant magnetizations m™ to m™ along a straight line
with normal v. By isotropy and because the control of
V - m ensures continuity of the normal component (i.e.
v-m*t = v-m™), the wall energy per length e only depends
on the angle between m* and m™~, a dependence we write

lmt—m~|? 2

i «), where 2« is the angle of

as e = ¢ ) = e(sin

the wall.

The function e(M) can be systematically derived
from the 3-d model by investigating optimal planar tran-
sition layers between m™ and m™. It is well-known that
these transition layers depend in a non-trivial way on the
parameter regime (Hubert and Schéfer, 1998, Section 3.6).
In Déring et al. (2012b), a reduced model was recently

+_ -2
introduced that allows to evaluate e(=—=m=1)

complexity numerical simulation, see Section 3.

by low-

We return to the wall-energy based selection mechanism
among solutions of (3): Since m* is continuous, the total
wall energy of a configuration m = m* — V14 is given by

/ o (%) dz, ()

where [V] denotes the jump of Vi and the integral is
along the one-dimensional jump set J(V4)). Hence among
all ¢ with (3), we select those that minimize (4).

Diffuse Interface Approzimation

The sharp-interface problem (4) is numerically not very
tractable, in particular since the set of all piecewise smooth
solutions of (3) is difficult to parametrize. We therefore
propose a diffuse interface approximation of (4) of the
type of a Ginzburg-Landau functional for gradients. For
a function g with g(t) > 0 for ¢t € R\ {0}, the functional

Getw) = [ S(A0P + gt~ ')t + VuP)ds (5)

incorporates the constraint |(m*)*+V|? = 1, see Section
2 and see Section 4.1 for its discretization. The functions

e and g can be systematically related by considering 1-d
transition layers, see Section 2. In particular, given a (nu-
merical approximation) to e, it is possible to (numerically)
determine g.

One might wonder what has been gained in terms of
complexity with respect to the original 3-d micromagnetic
model. Indeed, (5) contains a small length scale (i.e. €
that governs the size of the transition layers) like the
original 3-d model (i.e. the width of the wall core). First,
the dimension reduction significantly reduces the number
of degrees of freedom in a discretization. Second, ¢ is a
numerical parameter that has to be chosen much smaller
than the size of w but can be chosen much larger than
the transition layer width in the 3-d model—while still
capturing the correct wall energy.

2. DIFFUSE INTERFACE MODEL

In this section, we address how ¢ in the diffuse interface
approximation (5) has to be chosen to approximate the
wall energy (4). The heuristic argument goes as follows:
Suppose that 1y minimizes (4) and that the jump set
J (V1)) is a union of smooth curves. We consider the do-
main pattern locally, and hence even assume that J(Vi)
is actually a straight line, and that the continuous m*
is actually constant. Consider a wall corresponding to a
transition of the magnetization m = m* — V145 by angle
2. In this setting, « is characterized by % = sina.
A classical argument with a 1-d ansatz for 01 and
021 = const. yields

sin «
min Ge () = 2/ / \/ g(sin® a — t2)dt du,
J(Vpo) JO
s=sin? a—t> sin® . —
s=sin_a—t / / (sin? a — s)"V/2\/g(s) ds d,
J(Vipo) 40

where the min is taken over the class of 1-d transition
layers.

In view of (4), we therefore seek g = /g with

/ (sin® a — 5)"1/2G(s) ds = e(sin® o), (6)
0

which is Abel’s integral equation. This integral equation
is well studied and we refer the reader to Gorenflo and
Vessella (1991) for a detailed discussion. The solution to
(6) is given by the formula

~ 1

Y
=1 [ w-o @ @
0
Moreover, the stability estimate

18l < el + €12 el 22, (®)
see (Gorenflo and Vessella, 1991, Theorem 8.3.3.) ensures
that if we have a good approximation of e as input to the
solution formula, then the output is a good approximation
of g. The solution formula (7) reveals how to choose g such
that minimizers of (5) converge to minimizers of (4) in the

class (3).

For physically reasonable energy densities e, we have
g(—t) = g(t), g(0) = 0, and g(¢) > 0 for t € R\
{0}. It is, however, not clear that the functional (4) is
lower semi-continuous on the set (3), which would exclude
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Fig. 1. Stray-field free domain walls: Asymmetric Néel
(top) and asymmetric Bloch (bottom) wall.

the formation of microstructure and thus is necessary for
the solvability of the variational problem. In fact, the
experimental observation of a microstructure of walls (the
cross-tie wall, (Hubert and Schéfer, 1998, Section 3.6.4))
has famously been explained by a lack of lower semi-
continuity of (4) for a specific choice of e, see Alouges et al.
(2002). We conjecture that for a given wall-energy density
e, the failure of lower semi-continuity can be tested against
the one-parameter family of constructions from (Alouges
et al., 2002, Section 4.2.1).

But even if (4) is lower semi-continuous, e.g. in the simple
case of e(t) = Ct3/? in which g(t) = t*> and m* = 0, so
that (5) turns into the well-studied Aviles-Giga functional,
it has not been rigorously established that (5) I'-converges
to (4). This is an important open conjecture in the calculus
of variations—and there are reasonable heuristics and
numerics as well as lower bounds available to underline
the conjecture—, see Conti and De Lellis (2007) for a
discussion.

3. WALL ENERGY MODEL

In this section, we address the determination of the wall
energy density e in (4) for soft ferromagnetic films of a
given exchange length d, cf. (1), and thickness ¢ (see Doring
et al. (2012b) for a detailed discussion). In such samples,
complex multiscale transition layers between domains of
constant magnetization arise. They typically consist of a
narrow core part of quickly rotating magnetization (cf.
Figure 1), to which long, logarithmically decaying tails are
attached.

While the optimal transition layer at small wall angles or in
very thin films is the symmetric Néel wall, for sufficiently
thick films there exists a critical wall angle o* at which a
supercritical bifurcation occurs and an asymmetric, stray-
field free wall-core develops. As the angle further increases,
the relative amount of rotation in the tails decreases.

L

z1

Fig. 2. The cross section of a ferromagnetic sample
transversal to a domain wall. With indicated asym-
metric Bloch wall.

For a rigorous analysis of this behavior we consider the
Landau-Lifschitz energy (1) per length in z2 on a cross
section R x (—t,¢), transversal to the wall plane {x; =
const.}, of an infinitely extended sample R? x (—t,t) (cf.
Figure 2). To (1) we add a uniaxial anisotropy @ [ M7 +
M3dr, Q < 1, with easy axis o as mechanism that
confines the wall width, and apply the uniform external
field Hexy = Q(cos(a), 0,0). We introduce the parameters

n=Q(5)?%and X = (§)? lnfl(%) and non-dimensionalize
length with the film thickness ¢. Then, formally, up to an
additive constant, the suitably rescaled energy of contin-
uous transition layers M = M(x1,x3) that connect the

boundary values
M(£00, ) = (cos(a), £ sin(a),0),

is given by the expression

E, (M) :/ |VM|2d:c+/\1n(%)/ Hye,|? do
Rx(—1,1) R?

(9)

+ 77/ (M, — cos(a))2 + M3 dx,
Rx(—1,1)

where we use the notation = (z1,23). The stray field
H,;, is determined via

V: (Hyr + M 1gy(—11)) = 0 € D(R?),
where we denote M’ = (M7, M3).

Since the selection criterion (4) works independently of
any (non-dimensional) scaling factor of e, we define
min  E, (M),

10
M with (9) (10)

e(sin® a) =

where on the right hand side the angle a enters through
the boundary condition (9).

In the regime of small anisotropy and moderately thin

films, i.e. n» < 1 and A ~ 1, one can prove the I'-limit
result

in By (M) = min ( Eqeyn (6) + Ay (@ — 0) )

e i En(M) = 10in{ Eacym (0) + A Blsym (e = 6)

+o(l) asn—0,

(11)

where
Easym(0) = min{/ VM |*dx :
Rx(—1,1)

V-M' =0¢c D(R?, (9) for angle 9}
denotes the energy of an asymmetric domain wall of angle
0, and

Egym (o0 — 0) = 27 (cos(0) — cos(a))2
is the energy of the logarithmic tails of the Néel wall,

completing the rotation from angle 6 to a. With the inter-
pretation of Eugym and Egyn given above, the limit (11)



confirms that indeed domain walls consist of asymmetric
wall-cores, to which logarithmically decaying tails are at-
tached. Moreover, (11) shows that the actual size of core
and tail parts in terms of the wall angle can be obtained
from a 1-d minimization procedure that optimizes the
energy of core and tails separately, and one can even use
this reduced model to explain the supercritical bifurcation
from symmetric to asymmetric walls for increasing angle
« in sufficiently thick films.

Most important, however, for the purpose of this note is
the following: Due to the exponentially decaying tails of
asymmetric walls the numerical minimization of Fasym,
which cannot be avoided, can be performed on small com-
putational domains and is therefore much better tractable
than direct minimization of E,, see Section 4.2.

4. DISCRETIZATION AND ALGORITHMS

A discussion of the computation of the effective magnetiza-
tion m* is omitted and the reader is referred to Drwenski
(2008); Ferraz-Leite et al. (2011); Ferraz-Leite (2011). We
stress that our software is still in development. The inte-
gration of the wall-energy values into the Aviles-Giga func-
tional is not yet implemented and we use the simplification
g(t) = t2, which corresponds to e(sin? ) = C|sin? a|3/2,
for our preliminary simulations.

4.1 Discretization of the Awviles-Giga Energy

We are interested in stable states of (5). To compute crit-
ical points we therefore solve the Euler-Lagrange equation

€ / AYAp dr+

2/<|<m*>L L VYR - 1) ((m*)* + Vi) Vede =0

€
(12)
for all ¢ € D(w). In strong form it reads

A= 29 (([m)t + Ve~ 1)(me) + V) =0,
(13)

and we prescribe essential boundary conditions
Y|ow = 0,0,1 = £ on Ow, (14)

see Section 5.1 for a motivation of the second boundary
condition £. A conforming finite element discretization of
(12) must consist of continuously differentiable functions
across all element interfaces. These kind of discretizations
are hard to implement, and we prefer a non-conforming
interior penalty method. Let 7; denote some regular tri-
angulation of w with mesh size h. As ansatz and test space,
we use the second-order Lagrange finite-element space
with incorporated Dirichlet boundary condition S3(7) :=
{¥ € Cop(w) : ¥|r is a quadratic polynomial VI' € Tj}.
Let 75, := UTeTh T and 07; = UTeTh OT \ dw. To
discretize the bi-Laplace operator, we define the symmetric
and stabilized bilinear form

ot.o)= [ Avapds - /6 _(80) Vel do

- waaga g [ uwu ae

where (-) denotes the mean, and s > 0 is a sufficiently large
stabilization parameter. While the boundary condition
¥law = 0 is incorporated into the discrete space, the
boundary condition on the normal derivative, 9,9 = ¢
on Ow, is imposed weakly by Nitsche’s method. The
discretized version of (12), thus, reads

AU(VE - ) dx—/

E(a(\ll, D) — 5

(VU - 1)AD dz
Jw

S

+E/6w(v\1/-u)(vq>-u)dx)

+§/(|(m*)l LV - 1)((mh)E + V)V dr

5(/6w£A<I>d:c+%/6w€(V<I>~V)d:c)
(15)

for all ® € S2(7r). We solve equation (15) with a damped
Newton method. The problem becomes ill-conditioned for
€ < 1 and we use a nested iteration with respect to ¢
to improve the convergence. The linear system for the
Newton update is inverted with the direct sparse solver
PARDISO, see Schenk and Gértner (2004).

4.2 Computation of Wall Energies

As outlined in Section 3, we have to determine the en-
ergy Easym(0) of asymmetric domain walls of wall an-
gle 260 numerically. This amounts to minimization of the
exchange energy of M, subject to the linear constraint
V - M’ = 0, the non-convex constraint |M| = 1, and
suitable Dirichlet boundary conditions. In contrast to the
theoretical results, for practical reasons we will work on the
bounded domain [—L, L] x (—1, 1) with Dirichlet boundary
conditions M(+£L,-) = (cos(d), £sin(d),0). Since exactly
stray-field free domain walls have a wall width of order 1
with exponentially decaying tails, the error with respect
to the solution on the unbounded domain can be expected
to be small for reasonable values of L.

We introduce the Lagrange multipliers u,p: B — R corre-
sponding to the two constraints in F'. The computation of
critical points of the energy amounts to solving the related
Euler-Lagrange equation

F(M,,u,p):(),
03M; = 03sMy =M3 =0 on {|z3| =1},

cos(0)

(16)
M= (:I:sin(&)) in {|1‘1| > L},
0

with

3(IMJ?-1)
V.M

F(M,u,p)<

(—A+M)M—V:D>

We use finite differences on a staggered grid (see Figure 3)
and discretize the norm via [M|2 = M? . . +M2 . .+
h 1,(j1,43) 2,(j1,33)

M3 (jr.js) 1 each cell (j1,73). The discrete version of

(16) is then solved with a damped Newton method. Even
though the Jacobians of F and F} have saddle-point
structure, applying the efficient direct solver PARDISO to
the full problem in each step turned out to be faster and
more robust than using an Uzawa method—at least in
our implementation. The analysis of Doring et al. (2012a)
reveals value and minimizer (an asymmetric Néel wall) of
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Fig. 3. The staggered grid used to discretize E,sym-
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Fig. 4. The energy of asymmetric domain walls, L = 10,
500 x 50 cells in the grid.

E,sym for small wall angle to leading order explicitly. For
wall angle 7 a configuration of asymmetric Bloch wall type
can be constructed. Using these functions as initial data
leads to good convergence of the Newton method.

Figure 4 shows a plot of the energy of the wall configu-
rations obtained by our method as well as the asymptotic
expansion of E,gm. Note that the latter coincides well
with the numerically computed values for a remarkably
large range of wall angles. Qualitatively, our results agree
with the computations of Berkov et al. (1993), although
in our simulation the energy of the asymmetric Bloch wall
increases with decreasing wall angle. This we credit to
the fact that more modern hardware enabled us to better
resolve the asymmetric wall-structure, but will be object
of further investigation.

5. MODELING AND SIMULATION OF HYSTERESIS

There is another advantage of the selection mechanism via
wall energy (4) and its numerical realization via the diffuse
interface approximation (5) over the selection mechanism
via viscosity solution: It allows to account for some types
of hysteresis, as we explain here.

5.1 An Additional Boundary Condition

Note that because of v-m* = 0, (3) implies for the normal
derivative v - V.

v-Vy=s+7-m* withse{-1,1} ondw, (17)
where 7 denotes the counter-clockwise tangent to OJw.
We claim that for any prescribed sign function s(x) for
x € dwN{|m*| < 1} (that is, for any point on the boundary
outside the penetrated region) in (17), there are (non-
viscosity) solutions of (3). This amounts to prescribing
the sign in m = m* — V4 = F7 along ow N {|m*| < 1}.

Fig. 5. Domain walls as simulated by the viscosity solution
selection criterion for a penetrated sample. A €
O{|m*| = 1}Ndw indicates one of the transition points
at the boundary from the non-saturated (plain black)
to the penetrated region (striped pattern).

Fig. 6. Domain walls as simulated by the diffuse inter-
face model. A doublet is pinned via the boundary
conditions at the point Ay (and symmetric on the
other side). 4; € 9{|m*| = 1} N Ow indicates one of
the transition points at the boundary from the non-
saturated to the penetrated region.

The heuristic argument for this existence goes as follows:
Let 0%w denote the part of dw where we want to prescribe
the sign s = =41, respectively. Choose a partition of w
into two subsets w* such that dw* N Ow = 0Fw; let o+
denote the pointwise infimum /supremum of all continuous,
piecewise smooth solutions of (3) with w replaced by w®
(hence ¥~ is the viscosity solution, whereas ¢ is the
anti-viscosity solution). Then the concatenation 1 of ¢+
and 1~ solves both (3) and (17) with the prescribed sign
function s(x). Note that there is no discontinuity of Vi
across Ow™ N Ow™. Note also that this construction fails
along Ow N {|m*| = 1}, because the distance function in
the Hopf-Lax formula degenerates in the penetrated region
(whose boundary 9{|m*| = 1}Nw is characteristic), so that
=0 on {{m*| =1}.

Since the diffuse interface approximation (5) controls sec-
ond gradients, it is also natural on the level ¢ > 0 to
prescribe (inhomogeneous) Dirichlet boundary conditions
for the gradient, in form of £ = s + 7 - m*, cf. (14).

Hence this strategy allows to numerically construct ap-
proximate minimizers ¢ of (4) among all functions (3)
under the additional constraint that the sign in (17) is
prescribed. This is expected to yield the optimal meso-
scopic domain/wall configuration m under the additional
constraint of a prescribed sign function in the boundary
data m = F7 away from the penetrated region.

5.2 Ezperiments

In van den Berg and Vatvani (1982), the authors observed
the following: Consider w in form of a long rectangle, e.g.



of proportions w = (—0.5,0.5) x (—0.1,0.1), and apply an
external field along the positive long axis. While this field
is (adiabatically) increased, the original Landau pattern
deforms until the field penetrates and the central wall is
pushed towards the upper edge of w. Note that these events
are related since the penetrated set {|jm*| = 1} is wall-free
(because m* is expected to be continuous). This is well-
captured by the original selection criterion, cf. Figure 5.

In this process of increasing field, the penetrated part
expands and point A moves left. This point A can be
characterized in two ways:

1.) as the point A; where the boundary 0{|/m*| = 1} of
the penetrated region meets Ow,

2.) as the point As where the remainder of the central
wall meets Ow, cf. Figure 6, which is the point along
Ow where m switches from —7 to 7, a “doublet” in
the language of van den Berg and Vatvani (1982).

Now the external field is reduced: Both the original model
by DeSimone et al. (2001) and its modification (4) would
predict exact reversal. However, in the experiment the
position A, of the doublet is pinned on the way back, thus
leading to hysteresis. Note that pinning is not surprising
since a doublet is a point of exchange energy concentration
and thus prone to be stuck at material defects.

The modification (17) is capable of modeling this pinning
of the doublet, since any position of As to the left of
A; (the latter is determined solely by m* and thus not
affected by hysteresis) can be prescribed by describing
where the jump in the sign function s(z) in (17) occurs.
Hence our simple model of hysteresis is that Ay never
moves unless forced by the constraint that it has to be to
the left of A;. Figure 6 shows the wall configuration that
is generated by this approach on the basis of the diffuse
interface approximation. In particular, a new wall segment
emanates from point As, in qualitative agreement with the
experiments (van den Berg and Vatvani, 1982, Fig. 9).

6. CONCLUSIONS

In this note, we proposed a modification of the reduced
model introduced by DeSimone et al. (2001). The modifi-
cation refers to the selection criterion among the solutions
of the modified Eikonal equation (3). The modification
consists of two parts:

1.) The criterion via the notion of viscosity solution in
DeSimone et al. (2001) is replaced by a selection
criterion based on physical wall energy, cf. (4).

2.) The set of admissible configurations (3) is restricted
by imposing an additional boundary condition at the
boundary dw of the cross section, cf. (17).

To allow for a tractable numerical simulation, we fur-
thermore proposed to replace (4) by a diffuse-interface
approximation (5).

We pointed out that the main ingredient for (4), namely
the wall energy e as a function of the wall angle, has
to capture the cross-over between different wall types
depending on film thickness and wall angle. We reported
on a recent reduced model that captures this cross-over,
discussed its discretization and corresponding algorithms,
and showed first numerical results for e. We showed

how e translates into the appropriate non-linearity g
in the diffuse interface approximation (5). We discussed
the discretization of (5) and also presented preliminary
numerical results.

Finally, we discussed how imposing the additional bound-
ary condition, cf 2.) above, allows to capture the hysteresis
observed in experiments of van den Berg and Vatvani
(1982). Preliminary numerical simulation shows good qual-
itative agreement between our model and experiments.
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