
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

Improved bounds on negativity of superpositions

by

Zhi-Hao Ma, Zhi-Hua Chen, Shuai Han, Shao-Ming Fei, and

Simone Severini

Preprint no.: 53 2012





Improved bounds on negativity of superpositions

Zhi-Hao Ma∗ Zhi-Hua Chen† Shuai Han‡ Shao-Ming Fei§ Simone Severini¶

August 9, 2012

Abstract

We consider an alternative formula for the negativity based on a simple generalization of the concur-
rence. We use the formula to bound the amount of entanglement in a superposition of two bipartite pure
states of arbitrary dimension. Various examples indicate that our bounds are tighter than the previously
known results.
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1 Introduction

The study of entanglement in a superposition as a function of its terms was initiated by Linden, Popescu, and
Smolin [1]. With the use of entanglement of formation, it was observed that the superposition of two separable
states can give an entangled state, while the superposition of two entangled states can give a separable
one. The literature comprises now a number of papers devoted to bound the amount of entanglement in a
superposition [2, 3, 4, 5, 6, 7, 8, 9]. The present note is a contribution in this direction. Our main tool is
a generalization of the concurrence [10, 11, 12]. When restricted to a special case, this gives an alternative
formula for the negativity. We apply the formula to study entanglement in superpositions of two bipartite
pure states of arbitrary dimension. We derive simple but compact relationships between the negativity of
a superposition and that of its terms for biorthogonal and generic pure states. In analytical and numerical
examples based on randomly generated states, our bounds turn out to perform better than previous results
obtained in [3, 4, 9]. The expression for the negativity is presented in Section 2. The bounds are in Section
3. Examples are in Section 4.

2 Negativity

Let HA and HB be Hilbert spaces of dimension d1 and d2, respectively. The concurrence (see [12]) of a pure
bipartite state ρAB = |ψ⟩⟨ψ| in HA ⊗ HB is defined as C(|ψ⟩) :=

√
2 (1− Trρ2A). We denote by ρS , with

S = A,B, the reduced density operator. It is well-known that a pure state is separable if and only if its
concurrence is zero. The square of the concurrence can be written as

C2(|ψ⟩) = 2
(
1− Trρ2A

)
=

D1,D2∑
m,n=1

|Cmn|2, (1)
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where D1 = d1(d1 − 1)/2, D2 = d2(d2 − 1)/2, and Cmn = ⟨ψ|ψ̃mn⟩. Here, |ψ̃mn⟩ := (Lm ⊗ Ln)|ψ∗⟩, with
Lm,m = 1, ..., D1, Ln, n = 1, ..., D2 being the generators of the groups SO(d1) and SO(d2), respectively [13].

Since |ψ⟩ =
∑d1,d2

i,j=1 ψij |ij⟩ (ψij ∈ C), with respect to the computational bases of HA and HB , we have the
following equivalent form of the concurrence:

C(|ψ⟩) =

4

d1,d2∑
i<j,k<l

|ψikψjl − ψilψjk|2
1/2

.

By noticing that this is an ℓ2-norm, a straightforward generalization would be

Cp(|ψ⟩) :=

2p
d1,d2∑

i<j,k<l

|ψikψjl − ψilψjk|p
 1

p

. (2)

For our purposes, we shall only consider the case p = 1, which is arguably the simplest to analyze. Thus, let
the ℓ1-norm concurrence

C1(|ψ⟩) :=

2

d1,d2∑
i<j,k<l

|ψikψjl − ψilψjk|

 =

D1,D2∑
m,n=1

|Cmn|, (3)

where Cmn is as in Eq. (1). For a pure state ρ, if the eigenvalues of ρA are λ1, ..., λn (λ1 ≥ ... ≥ λn) then
C2(|ψ⟩) =

∑n
i,j=1 λiλj . It follows that

C1(|ψ⟩) =
n∑

i,j=1

√
λiλj . (4)

This expression is nothing but the negativity of the pure state [14]. Recall that the negativity of ρAB is

defined as N (|ψ⟩) = (∥ρTA∥1 − 1) = (Tr(ρTAρ
†
TA

)1/2 − 1). Here ρTA is the partial transpose of ρAB with
respect to the subsystem A. It is well-known that he negativity is an entanglement monotone. In what
follows, we shall use the standard notation N(|ψ⟩).

3 Bounds

Let HA and HB be Hilbert spaces of dimension N . We consider two states |ψ⟩, |ϕ⟩ ∈ H ∼= HA ⊗ HB .
Let {|1⟩, ..., |N⟩} be the computational basis of HA (resp. HB). We write |ψ⟩ =

∑
1≤i,j≤N ψij |ij⟩ and

|ϕ⟩ =
∑

1≤i,j≤N ϕij |ij⟩. A superposition of |ψ⟩ and |ϕ⟩ is simply

|γ⟩ := α|ψ⟩+ β|ϕ⟩ =
∑

1≤i,j≤N

(αψij + βϕij)|ij⟩, (5)

where |α|2 + |β|2 = 1. We say that |ψ⟩ and |ϕ⟩ are biorthogonal (see [1]), when

TrA[TrB(|ψ⟩⟨ψ|)TrB(|ϕ⟩⟨ϕ|)] = TrB [TrA(|ψ⟩⟨ψ|)TrA(|ϕ⟩⟨ϕ|)] = 0.

By applying local unitary transformations, |ψ⟩ =
∑N1

i=1 ψii|ii⟩ and |ϕ⟩ =
∑N

i=N1+1 ϕii|ii⟩.

Proposition 3.1 Let |ψ⟩ and |ϕ⟩ be biorthogonal states. Let |χ⟩ = α|ψ⟩+ β|ϕ⟩ with |α|2 + |β|2 = 1. Then

N(|χ⟩) = |α|2N(ψ) + |β|2N(ϕ) + 2|α||β|
√
N(ψ)N(ϕ).
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Proof. Since |ψ⟩ =
∑N1

i=1 ψii|ii⟩ and |ϕ⟩ =
∑N

i=N1+1 ϕii|ii⟩, then |χ⟩ =
∑N1

i=1 αψii|ii⟩+
∑N

i=N1+1 βϕii|ii⟩ :=∑N
i=1 γii|ii⟩. By Eq. (3),

N(χ) =
N∑

l,m,r,s=1

|γrmγsl − γrlγsm|.

By disregarding the zero terms and rearranging the sum of the product terms, we have

N(χ) =

N∑
l,m=1

|γmmγll − γmlγlm| =
N∑

l,m=1:l ̸=m

|γmmγll − γmlγlm|

=
N∑

l,m=1:l ̸=m

|γmmcll| =
N∑

m=1

|γmm|
∑
l ̸=m

|γll|

The following equation is straightforward algebra:

N(χ) =

(
N∑

m=1

|γmm|

)2

−
N∑

m=1

|γmm|2

=

(
N1∑
i=1

|αψii|ii⟩|+
N∑

i=N1+1

|βϕii|ii⟩|

)2

−
N1∑
i=1

|αψii|ii⟩|2 +
N∑

i=N1+1

|βϕii|ii⟩|2

= |α|2
( N1∑

i=1

|ψii|ii⟩|

)2

−
N1∑
i=1

|ψii|ii⟩|2
+ |β|2

( N∑
i=N1

|ϕii|ii⟩|

)2

−
N∑

i=N1

|ϕii|ii⟩|2


+ 2|α||β|
N1∑
i=1

|ψii|ii⟩|
N∑

i=N1+1

|ϕii|ii⟩|

= |α|2N(ψ) + |β|2N(ϕ) + 2|α||β|
√
N(ψ)N(ϕ).

Proposition 3.1 is about biorthogonal states. Let us now focus on generic pure states in H. Again, by
Eq. (3),for a generic pure state |χ⟩ =

∑
1≤i,j≤N γij |ij⟩, we have

N(χ) :=
N∑

l,m,r,s=1

|γrmγsl − γrlγsm| =
N∑

m,r,l,s=1

|⟨χ|Lrs ⊗ Lml|χ⟩|, (6)

where {Lij}1≤i,j≤N are the generators of the group SO(N).

Proposition 3.2 Let |ψ⟩ and |ϕ⟩ be generic pure states. Let |χ⟩ = α|ψ⟩+ β|ϕ⟩ with |α|2 + |β|2 = 1. Then,

||χ||2N(χ′) ≤ |α|2N(ψ) + |β|2N(ϕ) + 2|αβ|
N∑

m,r,l,s=1

|⟨ψ|Lrs

⊗
Lml|ϕ⟩| (7)

∥χ∥2N(χ′) ≥ max


|α|2N(ψ)− |β|2N(ϕ)− 2|αβ|

∑
|⟨ψ|Lrs

⊗
Lml|ϕ⟩|,

−|α|2N(ψ) + |β|2N(ϕ)− 2|αβ|
∑

|⟨ψ|Lrs

⊗
Lml|ϕ⟩|,

−|α|2N(ψ)− |β|2N(ϕ) + 2|αβ|
∑

|⟨ψ|Lrs

⊗
Lml|ϕ⟩|

(8)

where ||χ||2 := ⟨χ|χ⟩, and χ′ := 1
||χ|| ∗ χ is the normalized state.
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Proof. From triangular inequality, we have

∥χ∥2N(χ′) =
N∑

m,r,l,s=1

|α2(ψrmψsl − ψrlψsm) + β2(ϕrmϕsl − ϕrlϕsm) + αβ(ψrmϕsl + ϕrmψsl − ψrlϕsm − ϕrlψsm)|

≤ |α|2N(ψ) + |β|2N(ϕ) + |αβ|
N∑

m,r,l,s=1

|ψrmϕsl + ϕrmψsl − ψrlϕsm − ϕrlψsm|

= |α|2N(ψ) + |β|2N(ϕ) + 2|αβ|
N∑

m,r,l,s=1

|⟨ψ|Lrs

⊗
Lml|ϕ⟩|.

The lower bound can be proved similarly:

∥χ∥2N(χ′) ≥ |α|2N(ψ)− |β|2N(ϕ)− |αβ|
N∑

m,r,l,s=1

|ψrmϕsl + ϕrmψsl − ψrlϕsm − ϕrlψsm|

= |α|2N(ψ)− |β|2N(ϕ)− 2|αβ|
N∑

m,r,l,s=1

|⟨ψ|Lrs

⊗
Lml|ϕ⟩|.

The other two lower bounds can be easy proved in the same way.

4 Examples

We give here some examples to show that the bounds obtained in Eqs. (7) and (8) are close to the true
value of the negativity. A comparison of our bound with results of [3],[4] and [9] is done by making use
of random states, which have been generated with a computer algebra system [15]. Additionally, some
analytical examples are also useful to put in evidence the advantages of our method. In the following, we
consider the state |χ⟩ = a|ψ⟩+ b|ϕ⟩ for various choices of |ψ⟩ and |ϕ⟩.

1. Let |ψ⟩ = (0.2266, 0.2941, 0.8821, 0.2897)T and |ϕ⟩ = (0.2758, 0.4802, 0.5380, 0.6354)T .

2. Let |ψ⟩ = (0.3915, 0.1285, 0.0627, 0.4252, 0.2975, 0.3002, 0.1044, 0.2509, 0.2296, 0.1863, 0.3012,
0.0934, 0.2545, 0.2205, 0.1836, 0.2430)T and |ϕ⟩ = (0.3041, 0.2115, 0.1197, 0.2700, 0.3389, 0.3721,
0.0577, 0.3292, 0.3316, 0.0205, 0.2922, 0.0644, 0.0290, 0.1473, 0.2138, 0.3777)T .

3. Let |ψ⟩ = 1√
2
|00⟩+ 1

2 |11⟩+
1
2 |22⟩ and |ϕ⟩ = 1√

2
|00⟩ − 1

2 |11⟩+
1
2 |22⟩.

4. Let |ψ⟩ = 1√
2
(|00⟩ + |11⟩) and |ϕ⟩ = 1√

2
(|22⟩ − |33⟩), with |0⟩ = (1, 0, 0, 0)T ,...,|3⟩ = (0, 0, 0, 1)T ,

and a = b = 2−1/2. The lower and upper bound for the negativity of |χ⟩ given in [4] are 0 and 8,
respectively. The bounds obtained from our result are 1 and 3. The bounds for the usual concurrence
given in [9] and [3] are −2, 2 and −4, 4, respectively. In the case of generic a and b, [4] gives 0 and
4 + 8a

√
1− a2; our bounds are instead

max{−1 + 2a2 − 4a
√
1− a2, 1− 3a2 − 2a

√
1− a2,−1 + 4a

√
1− a2}

and (1 + 4a
√
1− a2). Thus, our upper bound is always smaller than the one in [4] for all 0 ≤ a ≤ 1;

our lower bound is larger than the one in [4] for 0 ≤ a ≤ 0.966 and 0.973 ≤ a ≤ 1.

5. Let |ψ+⟩ = 1√
2
(|0, 0⟩ + |1, 1⟩) and |ϕ+⟩ = 1√

2
(|0, 1⟩ + |1, 0⟩) be the usual Bell states. Our upper and

lower bounds are 1 and max{−1, 1−2a2, 2a2−1}; the upper and lower bounds in [4] are 4a
√
1− a2+1

and 0. Hence, our bounds are tighter.
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The bounds for the first three points are illustrated in the figure (left/center/right, respectively). The
coefficients a and b are free (here we choose b =

√
1− a2 for example 1,2,4,5; and b = −

√
1− a2 for point

3). Our bounds are represented by the dotted line (upper) and the ‘*’ line (lower); the bound in [9], by the
red solid line (upper) and the red ‘-.’ line (lower); the bound in [3], by the ‘O’ line (upper) and the ‘+’ line
(lower); the bound in [4], by the lines with pentagrams (upper) and hexagrams (lower). The true value of
the negativity is represented by △ and the concurrence by �.
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