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L2-FLOW OF ELASTIC CURVES WITH KNOT POINTS AND

CLAMPED ENDS

CHUN-CHI LIN AND HARTMUT R. SCHWETLICK

Abstract. In this paper we investigate the L2-flow of elastic non-closed curves

in n-dimensional Euclidean spaces with knot points and two clamped ends.

The L2-flow corresponds to a fourth-order parabolic equation on each piece
of curve between two successive knot points with certain dynamic (interior)

boundary conditions at these interior knot points. For solutions of the L2-

flow, we prove that they are not only piecewise C∞-smooth but also globally
C1-smooth at each fixed time t if the initial curves are both piecewise C∞-

smooth and globally C1-smooth. Moreover, the asymptotic limit curves are
piecewise C∞-smooth but globally C2-smooth. As an application, the L2-flow

of non-closed elastic curves in this article provides a new approach for the

curve fitting problem

1. Introduction

Although geometric flows of elastic curves have been investigated by many re-

searchers, most articles studying this subject in the literature only focus on the case

of closed curves (e.g., [5], [11], [24], [26]). In fact, the case of non-closed (or open)

elastic curves has been motivated by higher-order geometric variational problems

(e.g., [27]); by mechanical modeling of biological polymers (e.g., [23]); by motion-

planning problems in geometric control theory (see [9], [10], [22]); and nonlinear

(poly-)spline interpolations (see [6]), [7], [8], [12], [17], [25]). However, there are

relatively fewer articles investigating geometric flows of non-closed curves. Various

(interior) boundary conditions for the case of non-closed curves have been proposed

in the corresponding higher-order variational problems. These boundary conditions

naturally have their parabolic versions in the corresponding evolution equations.

One of the simplest boundary conditions for fourth-order parabolic equations is the

so-called clamped boundary condition. For this case, we proposed a parabolic PDE

approach in [18] to obtain the long-time existence of smooth solutions for the L2-

flow of non-closed elastic curves as long as the initial curves are smooth. Note that

the L2-flow of elastic curves in [18] is different from the so-called curve-straightening

flow in [14], [15] by Langer and Singer and [19], [20] by Linnér, where a variational
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approach using minimax method was applied. In this article, we continue the par-

abolic PDE approach in [18] to investigate the L2-flow of non-closed elastic curves

with prescribed “knot points” on the curves and with clamped boundary conditions

at two end points. One may associate certain (interior) boundary conditions at the

prescribed knot points for the L2-flow of elastic curves. We would like to show in

this paper that the result similar to the main theorem in [18] could be obtained

if we impose proper dynamic “boundary conditions” at these interior knot points.

As an application, the L2-flow of non-closed elastic curves in this article provides

a new approach for the curve fitting problem, which vaguely speaking is to find

equilibrium configurations of elastic energy among the class of curves with given

knot points and clamped ends.

Let −1 = x0 < x1 < · · · < xN = +1 be a partition of the closed in-

terval I = [−1,+1] ⊂ R, and Ii = [xi−1, xi] for all i ∈ {1, ..., N}. Let f ∈
N⋃
i=1

C∞ ((xi−1, xi),Rn)
⋂
C1 ([−1, 1],Rn) represent a piecewise smooth curve in Rn.

Denote by ds = |∂xf | dx the arclength element, and ∂s = |∂xf |−1
∂x the arclength

differentiation. Denote by T = ∂sf the unit tangent vector of f and κ = ∂2
sf

the curvature vector of f . For convenience, as we reparametrize a curve f by its

arclength parameter, i.e.,
∼
f (s) = (f ◦ x) (s), we still denote the curve by f = f(s).

So is the same for the geometric functions induced from f , e.g., unit tangent T and

curvature vector κ of f . For each piece of curve, we define the bending energy by

(1.1) E [f|Ii ] :=

∫
Ii

1

2
|κ|2 ds,

the (relaxed) stretching energy by

(1.2) L[f|Ii ] :=

∫
Ii

1

2
|κ|2 ds,

and the elastic energy by

(1.3) Eλ[f|Ii ] := E [f|Ii ] + λ · L[f|Ii ],

where the constant λ is also called tension modulus and is always chosen to be a

positive constant. The bending energy corresponds to the so-called Euler-Bernoulli

model of elastic rods in the literature. We define the total elastic energy of f by

(1.4) Eλ [f ] :=

N∑
i=1

Eλ[f|Ii ].

The stretching energy plays the role of penalty-term in (1.4) when the total length

of curves tends to infinity (e.g. see [5] or [24]). Note that since the definition of

bending energy in (1.1) contains the constant 1
2 , the stretching modulus λ used in

this article might be different from some other articles in the literature (e.g., [14],

[15]).



L2-FLOW OF ELASTIC CURVES WITH KNOT POINTS AND CLAMPED ENDS 3

Denote by ∇sη := (∂sη)
⊥

the normal component of ∂sη when η is a vector

field along f . By applying the first variational formula of E (the bending energy

functional of curves) and L (the length integral of curves) in Lemma 2 below, we

could set up a gradient flow equation of the elastic energy functional Eλ = E +λ · L

for f : [0, t1)×
N⋃
i=1

(xi−1, xi)→ Rn by letting

(1.5) ∂tf = −∇L2Eλ[f ] = −∇2
sκ−

|κ|2

2
κ+ λ · κ

with the (interior) boundary conditions

f(t, xi) = f (i), ∀ i ∈ {0, ..., N},(1.6)

T (t, xi) = T (i), ∀ i ∈ {0, N},(1.7)

∂tT (t, xi) = [4xiκ] (t), ∀ i ∈ {1, ..., N − 1},(1.8)

where
N⋃
i=0

{f (i)} ⊂ Rn is the set of prescribed fixed positions, {T (0), T (N)} is the set

of prescribed unit constant vectors, and

[4xiκ] (t) :=
[
κ(t, x+

i )− κ(t, x−i )
]

,

κ(t, x−0 ) := 0 =: κ(t, x+
N ).

The prescribed fixed points, f (0), ..., f (N), in condition (1.6) are called knot points

(this terminology has been used in the spline theory) for the flow (1.5) of curve f .

Moreover, from conditions (1.7) and (1.8), f (0) and f (N) are called the clamped ends

or clamped boundary condition for the flow (1.5) of curve f . Note that one could

write ∂tT (t, xi) = ∇tT (t, xi) in (1.8) because T (t, x−i ) = T (t, x+
i ) = T (t, xi) implies

that both κ(t, x+
i ) and κ(t, x−i ) are perpendicular to the unit tangent vector T (t, xi)

for all i ∈ {0, ..., N}. The above (interior) boundary conditions have also appeared

in [8], where a variational approach was applied to interpolating prescribed knot

points by nonlinear splines on R2.

Following the philosophy in [5], [18], [24], [26], we derive an argument for the

long-time existence of solutions with certain smoothness in the L2-flow (1.5) with

boundary conditions (1.6), (1.7), (1.8) in this paper. Namely, differentiating both

sides of (1.5) provides an “algebraic” structure in writing up differential inequalities

for higher-order Sobolev semi-norms of curvature. These differential inequalities

are the type of Gronwall’s differential inequalities, which would imply the global

bounds of higher-order Sobolev semi-norms of curvature. To derive these differential

inequalities, one needs to apply integration by parts to derive the right form of

integrals and to apply Gagliardo-Nirenberg type interpolation inequalities to take

care of the terms of lesser-order. However, as one works on the case of non-closed

elastic curves, the boundary terms generated from integration by parts create the

difficulty in deriving Gronwall’s differential inequalities. In [18], we found that the
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difficulty in estimating the boundary terms could be avoided by working with the

L2-norm of covariant derivatives of curvature with respective to time-variable, e.g.,

‖∇mt f‖L2 , instead of derivatives respective to arclength-variables, e.g., ‖∇ms κ‖L2 .

In other words, the boundary terms generated from integration by parts vanish in

the estimates of ‖∇mt f‖L2 in [18]. Thus, we derive the type of Gronwall’s differential

inequalities for ‖∇mt f‖L2 , ∀ m ∈ Z+. On the other hand, by Lemma 7 below

and the Gagliardo-Nirenberg type interpolation inequalities, e.g. see Lemma 5

below, one could show that ‖∇4m−2
s κ‖2L2 is bounded from above by the quantity

of the form, (1 + ε2) · ‖∇mt f‖2L2 + Cε
(
‖κ‖2L2

)
. Therefore, in [18], the main task

is to estimate the term ‖∇mt f‖2L2 . However, in this article, the interior (dynamic)

boundary condition (1.8) generates non-zero terms, which however could not be

treated as terms of lesser-order. Thus, one could not simply apply the estimates in

[18] to carry out the proof of long-time existence. To overcome this difficulty, we

observe that one could utilize the “algebraic” structure in the differential identity

of

(1.9) Ym(t) :=
N∑
i=1

∫
Ii

|∇mt f |2 ds+
N∑
i=0

|∇mt T (t, xi)|2

to derive the type of Gronwall’s differential inequalities for Ym(t), cf. the higher-

order energy identity in Lemma 9. The Gronwall’s differential inequality gives the

uniform bounds of Ym(t) for each m ∈ Z+. In fact, the “algebraic” structure also

depends on how interior (dynamic) boundary conditions are given. Note that the

(interior) boundary conditions (1.6), (1.7) and (1.8) often appear in the so-called

path-planning problem or motion-planning problem. Based on the uniform bounds

of Ym(t), ∀ m ∈ Z+, Theorem 1 gives the long-time existence and asymptotic

behavior for the piecewise smooth solutions of L2-flow (1.5). Notice that the knot

points {f (0), ..., f (N)} are not necessarily distinct in Theorem 1, i.e., the condition

(1.6) allows f (i1) = f (i2) for some i1 6= i2.

Theorem 1. Let λ ∈ (0,∞) be a positive constant and −1 = x0 < x1 < · · · < xN =

+1. Suppose f0 ∈
N⋃
i=1

C∞ ((xi−1, xi),Rn)
⋂
C1 ([−1, 1],Rn) is an initial curve with

non-zero finite length, i.e., 0 <
∫
Ii
|∂xf0|dx <∞, ∀ i ∈ {1, ..., N}, to the evolution

equation (1.5) with the (interior) boundary conditions (1.6), (1.7) and (1.8).

Then, there exists a global solution of the L2-flow of Eλ[f ] in (1.5) with the regu-

larity, f(t, ·) ∈
N⋃
i=1

C∞ ((xi−1, xi),Rn)
⋂
C1 ([−1, 1],Rn), ∀ t ∈ (0,∞). As t→∞,

the family of curves {ft} subconverges to f∞, an equilibrium of the energy functional

Eλ (up to reparametrization by arclength). Moreover, f∞ ∈
N⋃
i=1

C∞ ((xi−1, xi),Rn)⋂
C2 ((−1, 1),Rn).
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It is worth mentioning here that the so-called minimal-energy splines in [8], which

correspond to our asymptotic curves in Theorem 1, are also piecewise C∞-smooth

and globally C2-smooth. However, their formulation in [8] is a variational setting,

which induces a second-order elliptic equation for the angle of tangent indicatrix of

planar curves (thus the result is restricted to the case of planar curves).

For numerical implement of L2-gradient flow of open (i.e., non-closed) elastic

curves with various boundary conditions, the reader is referred to the recent articles

by Barrett, Garcke and Nürnberg in [3], [4].

The rest of this article is arranged as the following. In Section 2, we collect some

notation, terminologies, identities, estimates and previous results from [1], [5], [16]

and [18] to keep this paper short and self-contained. The proof of Theorem 1 is

contained in Section 3.

2. Preliminaries and Notation

Lemma 1 ([5, Lemma 2.1]). Suppose φ is any normal field along f and f : [0, ε)×
I → Rn is a time dependent curve satisfying ∂tf = V +ϕT , where V is the normal

velocity and ϕ = 〈T, ∂tf〉. Then the following formulae hold.

∇sφ = ∂sφ+ 〈φ, κ〉T,(2.1)

∂t (ds) = (∂sϕ− 〈κ, V 〉) ds,(2.2)

∂t∂s − ∂s∂t = (〈κ, V 〉 − ∂sϕ) ∂s,(2.3)

∂tT = ∇sV + ϕκ,(2.4)

∂tφ = ∇tφ− 〈∇sV + ϕ κ, φ〉T,(2.5)

∇tκ = ∇2
sV + 〈κ, V 〉κ+ ϕ∇sκ,(2.6)

(∇t∇s −∇s∇t)φ = (〈κ, V 〉 − ∂sϕ)∇sφ+ 〈κ, φ〉∇sV − 〈∇sV, φ〉κ.(2.7)

Notice that the formula of integration by parts for the covariant differentiation

∇s is still applicable. This is because that, as ψ1, ψ2 are normal vector fields along

a smooth curve, one has

(2.8) ∂s 〈ψ1, ψ2〉 = 〈∇sψ1, ψ2〉+ 〈ψ1,∇sψ2〉 .

Lemma 2. Suppose f : I = [a, b] → Rn is a smooth curve in Rn. Then for any

perturbation of f , fε (x) = f (x) + εW (x), where W ∈ C∞ (I,Rn), one has the

following formulae:

d
dεbε=0L [fε] = −

∫
I

〈κ,W 〉 ds+ [〈T,W 〉]ba ,

d
dεbε=0E [fε] =

∫
I

〈∇2
sκ+ |κ|2

2 κ,W 〉 ds

+
[
〈T,W 〉 · |κ|

2

2 + 〈κ,∇s (W − 〈W,T 〉T )〉 − 〈∇sκ,W 〉
]b
a
.
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Proof of Lemma 2. The proof is based on a direct computation by applying (2.2),

(2.6), (2.8) and integration by parts. The reader can also find the details of this

computation in the literature (e.g., [16]). �

For normal vector fields φ1, ..., φk along f , we denote by φ1 ∗ · · · ∗ φk a term of

the type

φ1 ∗ · · · ∗ φk =

{
〈φi1 , φi2〉 · · · 〈φik−1

, φik〉 , for k even,
〈φi1 , φi2〉 · · · 〈φik−2

, φik−1
〉 · φik , for k odd,

where i1, ..., ik is any permutation of 1, ..., k. Slightly more generally, we allow some

of the φi to be functions, in which case the ∗-product reduces to multiplication.

For a normal vector field φ along f , we denote by Pµν (φ) any linear combination of

terms of the type ∇i1s φ∗···∗∇iνs φ with coefficients bounded by a universal constant,

where µ = i1 + · · ·+ iν is the total number of derivatives. Notice that the following

formulae hold:
∇s (P ab (φ) ∗ P cd (φ)) = ∇sP ab (φ) ∗ P cd (φ) + P ab (φ) ∗ ∇sP cd (φ) ,

P ab (φ) ∗ P cd (φ) = P a+c
b+d (φ) , ∇sP cd (φ) = P c+1

d (φ) .

The following lemma from [1] is a one-dimensional version of standard interpo-

lations on order of smoothness.

Lemma 3 ([1, Theorem 5.2]). Let Ω be an interval in R and u ∈ Wm,p(Ω) for

some p ∈ [1,∞), m ∈ Z+. Then for each ε0 > 0 there exists finite constants K and

K ′, each depending on m, p, ε0, such that

‖u‖W j,p ≤ K
(
ε ‖Dmu‖Lp + ε−j/(m−j) ‖u‖Lp

)
,(2.9)

‖u‖W j,p ≤ K ′
(
ε ‖u‖Wm,p + ε−j/(m−j) ‖u‖Lp

)
,(2.10)

‖u‖W j,p ≤ 2K ′ ‖u‖j/mWm,p ‖u‖(m−j)/mLp ,(2.11)

for any j ∈ {0, 1, ...,m − 1} and ε ∈ (0, ε0). Here, ‖u‖Lp :=
(∫

Ω
|u|p

)1/p
is the

Lp-norm, and ‖u‖Wm,p :=
(∑

0≤|α|≤m ‖Dαu‖pLp
)1/p

is the standard Sobolev norm.

Below are interpolation inequalities for non-closed curves, which are modified

from [5]. Note that in this article we still follow the notation in [5] to use the scale

invariant Sobolev norms:

‖κ‖k,p :=

k∑
i=0

∥∥∇isκ∥∥p ,
∥∥∇isκ∥∥p := L [f ]

i+1−1/p
(

∫
I

∣∣∇isκ∣∣p ds)1/p.

Note that using scale invariant Sobolev norms is convenient as working with in-

equalities in geometric flows since domain of functions also depends on time.
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Lemma 4 (modified from [5, Lemma 2.4]). Let I ⊂ R be an open interval and

f : I → Rn be a smooth curve. Then for any k ∈ Z+ ∪ {0}, p ≥ 2 and 0 ≤ i < k,

we have

(2.12)
∥∥∇isκ∥∥p ≤ c ‖κ‖1−α2 ‖κ‖αk,2 ,

where α = (i+ 1
2 −

1
p )/k and c = c(n, k, p).

Proof of Lemma 4. The proof is standard. Assume L[f ] = 1 and use the inequality

|∂s|φ|| ≤ |∇sφ| as φ is a normal vector field along f . The inequality can be easily

derived by applying (2.8). Then the standard proof for the case of scalar functions

as in Chapter 5 of [1] applies. �

Lemma 5 (modified from [5, Proposition 2.5]). For any term Pµν (κ) with ν ≥ 2

which contains only derivatives of κ of order at most k − 1, we have

(2.13)

∫
I

|Pµν (κ)| ds ≤ c · L[f ]1−µ−ν ‖κ‖ν−γ2 ‖κ‖γk,2 ,

where γ =
(
µ+ 1

2ν − 1
)
/k, c = c (n, k, ν). Moreover, if µ + 1

2ν < 2k + 1, then

γ < 2 and we have for any ε > 0

(2.14)

∫
I

|Pµν (κ)| ds ≤ ε ·
∫
I

|∇ksκ|2ds+ c1 ·

∫
I

|κ|2 ds


ν−γ
2−γ

+ c2 ·

∫
I

|κ|2 ds

ν/2

,

where c1 = c1(n, k, µ, ν) · ε
−γ
2−γ and c2 = c2(n, k, µ, ν) · L[f ]1−µ−ν/2.

Proof of Lemma 5. By Hölder’s inequality and Lemma 4 with p = ν, we obtain∫
I

∣∣∇i1s κ ∗ · · · ∗ ∇iνs κ∣∣ ds ≤ L[f ]1−µ−ν
ν∏
j=1

∥∥∇ijs κ∥∥ν ≤ c·L[f ]1−µ−ν
ν∏
j=1

‖κ‖1−αj2 ‖κ‖αjk,2 ,

where i1 + · · ·+ iν = µ, αj = (ij + 1
2 −

1
ν )/k, c = c(n, k, ν). Thus, α1 + · · ·+αν = γ,

and (2.13) is proved. Now a standard interpolation inequality in Lemma 3 implies

the interpolation inequality of scale invariant version

‖κ‖2k,2 ≤ c(k)
(∥∥∇ksκ∥∥2

2
+ ‖κ‖22

)
.

Therefore, as γ < 2, we obtain

R.H.S. of (2.13) ≤ c(n, k, µ, ν) L[f ]1−µ−ν
(∥∥∇ksκ∥∥γ2 ‖κ‖ν−γ2 + ‖κ‖ν2

)
≤ c(n, k, µ, ν)

(∥∥∇ksκ∥∥γL2 ‖κ‖
ν−γ
L2 + L[f ]1−µ−ν/2 ‖κ‖νL2

)
≤ ε

∥∥∇ksκ∥∥2

L2 + c(n, k, µ, ν) ε
−γ
2−γ ‖κ‖2

ν−γ
2−γ

L2 + c(n, k, µ, ν) L[f ]1−µ−ν/2 ‖κ‖νL2 .

�
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Lemma 6 ([5, Lemma 2.6]). We have the identities

∇sκ− ∂sκ = |κ|2 T ,

∇ms κ− ∂ms κ =

[m2 ]∑
i=1

Qm−2i
2i+1 (κ) +

[m+1
2 ]∑
i=1

Qm+1−2i
2i (κ)T .

This is similar to the previous notation using Pµν (κ) as Qµν (κ) denotes the linear

combination of terms ∂i1s κ ∗ · · · ∗ ∂iνs κ with i1 + · · ·+ iν = µ.

In order to simplify the terminology of summation in the lemma below, we

introduce the notation,

(2.15)
∑

[[a,b]]≤[[A,B]]

P ab (κ) :=

A∑
a=0

2A+B−2a∑
b=1

P ab (κ),

where [[µ, ν]] := 2µ + ν. For our convenience, let’s call [[µ, ν]] the order of Pµν (κ).

Thus, (2.15) stands for the sum of P ab (κ) with order no greater than that of PAB (κ).

Lemma 7 ([18, Lemma 8]). Suppose f : [0, t1) × I → Rn is a smooth solution of

(1.5), and denote by φ` := ∇`sκ. Then, for any ` ∈ Z+ ∪ {0} and k,m ∈ Z+, we

have the following formulae.

(2.16)

∇mt f − (−1)m∇4m−2
s κ = P 4m−4

3 (κ) + · · ·+ P 0
1 (κ) =

∑
[[a,b]]≤[[4m−4,3]]

P ab (κ)

(2.17)

∇mt T − (−1)m∇4m−1
s κ = P 4m−3

3 (κ) + · · ·+ P 0
1 (κ) =

∑
[[a,b]]≤[[4m−3,3]]

P ab (κ)

(2.18) ∇mt κ− (−1)m∇4m
s κ = P 4m−2

3 (κ) + · · ·+ P 0
1 (κ) =

∑
[[a,b]]≤[[4m−2,3]]

P ab (κ)

(2.19) ∇mt Pµν (κ) = P 4m+µ
ν (κ) + · · ·+ P 0

1 (κ) =
∑

[[a,b]]≤[[4m+µ,ν]]

P ab (κ)

(2.20) ∇mt ∂sf −∇s∇mt f = P 4m−3
3 (κ) + · · ·+ P 0

1 (κ) =
∑

[[a,b]]≤[[4m−3,3]]

P ab (κ)

(2.21)

∇mt ∇ksφ` −∇ks∇mt φ` = P 4m+k+`−2
3 (κ) + · · ·+ P 0

1 (κ) =
∑

[[a,b]]≤[[4m+k+`−2,3]]

P ab (κ)

(2.22) ∂mt (ds) =
(
P 4m−2

2 (κ) + · · ·+ P 0
1 (κ)

)
ds =

( ∑
[[a,b]]≤[[4m−2,2]]

P ab (κ)

)
ds

Proof. The proof from (2.16) to (2.21) has been shown in [18]. Thus, we only prove

(2.22) here, which is an induction argument.
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As m = 1, one proves (2.22) by applying (2.2) and (1.5). Suppose (2.22) holds

for m = k, where k is any positive integer. Then,

∂k+1
t (ds) = ∂t

(
∂kt (ds)

)
= ∂t

((
P 4k−2

2 (κ) + · · ·+ P 0
1 (κ)

)
ds
)

= ∂t
(
P 4k−2

2 (κ) + · · ·+ P 0
1 (κ)

)
ds+

(
P 4k−2

2 (κ) + · · ·+ P 0
1 (κ)

)
∂t (ds)

=
(
P 4k+2

2 (κ) + · · ·+ P 0
1 (κ)

)
ds,

where the last equality comes from applying (2.19) and (2.2).

�

3. Proof of the Main Result

3.1. The short-time existence. In this section we treat the short-time existence

of piecewise smooth solutions of the L2-flow (1.5), i.e.,

(3.1) f(t, ·) ∈
N⋃
i=1

C∞ ((xi−1, xi),Rn)
⋂
C1 ((−1, 1),Rn) ,

with the interior boundary conditions (1.6), (1.7), (1.8). Short time solutions exist

due to standard theory for evolution equations once we can reformulate the flow as

a fourth-order parabolic equation.

There are two basic ingredients in the short-time existence argument:

(1) one uses tangential diffeomorphisms to replace the covariant derivative∇2
sκ,

which is orthogonal to the tangential of the curve, by the standard 4th-order

spatial derivative γ−4∂4
xf of the position vector. Note, that as γ = |∂xf |

the highest order term is quasilinear. If we assume that the flow is started

with an arclength parametrized initial curve it is possible to conclude the

prefactor γ−1 will not get singular for a short time.

(2) the linear version of the 4th order parabolic equation has a unique, global

solution with estimates.

(1): We observe that it is enough to solve the flow equation up to tangential

directions as a solution f(t, x) of ∂tf = V +ϕ · ∂xf on each subinterval (x−, x+) ⊂
I, where V is the normal velocity, i.e. 〈V, ∂xf〉 = 0. As we let ϕ solve the x-

parametrized o.d.e.’s ∂tξ = ϕ(t, ξ), ξ(0, x) = x, we find that f̃(t, x) = f(t, ξ(t, x))

solves the normal flow problem ∂tf̃ = V as long as we can ensure that boundary

points x± are stationary for the o.d.e., i.e. ϕ(t, x±) = 0.

Recalling ∂s = 1
γ ∂x, Lemma 1 implies

∇2
sκ = γ−4∂4

xf −
〈
γ−4∂4

xf, T
〉
T −R,

where R is lower order compared with the 4th-order term. Therefore, it is sufficient

to solve problem

(3.2) ∂tf = W = −γ−4∂4
xf −

|κ|2

2
κ+λ ·κ+R = −γ−4∂4

xf + terms of lesser-order
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with boundary conditions (1.6), (1.7), (1.8) at the knot points.

Observe that if a smooth solution f is found, then the definition of W in (3.2)

and the Dirichlet boundary condition of f implies that W vanishes at the knot

points, i.e., W (t, x±) = 0. Thus the afore-mentioned tangential diffeomorphisms ξ

leave x± invariant as needed.

(2): The quasilinear boundary value problem for each subinterval can be solved

(x−, x+) ⊂ I by applying standard higher-order parabolic theory, namely, one solves

the linear problem and obtains a short-time solution to the nonlinear problem via

successive approximations as the quasilinear structure allows to render the non-

linearity as a compact perturbation for small times. The reader is referred to the

excellent exposition [2], which treats the higher order quasi-linear case in Section 7.

Special care has to be taken to set up the approximation procedure as the problem

to be solved has a prescribed time derivative with boundary data from neighboring

intervals.

What we have to further generalize in this approach is to allow the boundary

conditions to interact between the neighboring intervals. This can be done by a

further application of successive approximations, which treats the curvature data

from the curve outside each individual interval as they are temporarily frozen.

Namely, we fix a time ε > 0, define f0 := f(0, ·) and solve for n > 0 on each

subinterval (x−, x+) ⊂ I the quasilinear problem

∂tfn = −γ−4
n ∂4

xfn + terms involving fn of lesser-order

on the time interval (0, ε). The boundary conditions formed from the previous

frozen fn−1 read

fn(0, x) = f0(x),

fn(t, x±) = f±(x±),

∂tTn(t, x±) = (Id− TnT tn) ·
[
κn−1(t, x+

±)− κn−1(t, x−±)
]

,

where Tn(t, x±) = ∂xfn(t,x±)
γn(t,x±) , t ∈ (0, ε) and f± is a given vector for any ± ∈

{+,−}. Here, the index n refers to geometric terms coming from the curve fn, and

accordingly the terms indexed by n − 1. In particular, we let κn−1(t, y±) denote

the left/right-sided limits of the curvature vectors at the knot point y according

to the curve fn−1. Observe that only the curvature terms of the boundary data

is entirely prescribed by the previous step. We used the projection (Id − TnT tn)

in the equation of ∂tTn because the previous step curvature does not need to be

orthogonal to Tn. However, as n increases, convergence of Tn and κn would render

these modification obsolete in the limit n→ +∞.

As the two ordinary differential equations for Tn(t, x±), resp., can be solved

separately from the PDE we can use their solution on some positive time interval
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t ∈ (0, ε) to set up a boundary condition for the PDE via prescribing

∂xfn
|∂xfn|

(t, x±) = Tn(t, x±) for all t ∈ (0, ε).

Thus, the boundary value problem to be solved for fn can be written in such a form

that boundary values for ∂xfn but not their time derivatives are prescribed. This

reformulation makes the initial value problem accessible to the methods in Amann

[2]. Note that while the PDE is fourth-order elliptic, the nonlinear operator to

define the boundary data for Tn is acting only on spatial derivatives of fn−1 up to

order k < 3.

Letting n → +∞ and allowing ε to be chosen arbitrarily small, we establish

convergence to the unique short-time solution satisfying the full set of boundary

conditions (1.6), (1.7), (1.8) using the quantitative estimates provided in [2].

3.2. The long-time existence. To prove the long-time existence, we need to

estimate the higher-order Sobolev semi-norms of curvature. We use an argument

similar to the one used in [18]. Namely, we consider the evolution equation for ∇mt f
and derive the equation

∇t∇mt f = −∇4
s∇mt f + tensors of lesser-order

for all m ∈ Z+. The difference here is that we need to manage a way to split the

boundary terms, coming from applying integration by parts in the L2 estimates of

∇mt f (these boundary terms vanish in the case of clamped boundary conditions),

so that we derive the following differential equality,

(3.3) d
dt

{
N∑
i=1

∫
Ii

|∇mt f |2 ds+
N∑
i=0

|∇mt T (·, xi)|2
}

+ 2 ·
N∑
i=1

∫
Ii

|∇2
s∇mt κ|2 ds

= terms of lesser-order,

where T (·, xi) = ∂sf(·, xi) is the unit tangent vector of f at xi. It is sufficient to

keep track only of the scaling of the terms of lesser-order, instead of computing

these terms explicitly, in (3.3). In other words, we only have to know the order

of the derivatives involved such that the Gagliardo-Nirenberg type interpolation

inequalities still apply to (3.3) to derive a differential inequality.

The energy identity in the following lemma is derived by a straightforward com-

putation.

Lemma 8 (Energy Identity). Suppose f : (0, t1) × [−1, 1] → Rn is the solution

of the L2-flow (1.5) with the (interior) boundary conditions (1.6), (1.7), (1.8) and
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with the regularity f(t, ·) ∈
N⋃
i=1

C∞ ((xi−1, xi),Rn)
⋂
C1 ((−1, 1),Rn). Then,

(3.4) d
dt |t=0

Eλ [f ] = −
N∑
i=1

∫
Ii

|∂tf |2 ds−
N∑
i=0

|∂tT |2(t, xi)

= −
N∑
i=1

∫
Ii

|∇tf |2 ds−
N∑
i=0

|∇tT |2(t, xi).

Proof. From Lemma 2 and the evolution equation of f in (1.5), one derives on each

interval Ii the equality,

(3.5)
d
dt |t=0

∫
Ii

(
1
2 |κ|

2 + λ
)
ds

=
∫
Ii

〈∇2
sκ+ |κ|2

2 κ− λ · κ, ∂tf〉 ds+
[
〈κ,∇s∇tf〉+ 〈(λ+ 1

2 |κ|
2)T −∇sκ, ∂tf〉

]
|∂Ii

= −
∫
Ii

|∂tf |2 ds+ 〈κ,∇tT 〉|∂Ii = −
∫
Ii

|∂tf |2 ds+ 〈κ, ∂tT 〉|∂Ii ,

where the second equality comes from applying the boundary condition (1.6), the

property ∂tf = ∇tf , (2.3) and the last equality comes from using the property

∇tT = ∂tT (since 〈∂tT, T 〉 = 1
2∂|T |

2 = 0). Therefore, from (3.5) and the (interior)

boundary conditions in (1.6), (1.7), (1.8), one derives the energy identity,

(3.6) d
dt |t=0

Eλ [f ] = d
dt |t=0

N∑
i=1

{∫
Ii

(
1
2 |κ|

2 + λ
)
ds

}

= −
N∑
i=1

∫
Ii

|∂tf |2 ds−
N∑
i=0

|∂tT |2(t, xi).

�

A classical theorem by John Milnor states that the total curvature of a closed

curve f in Rn can be approximated by the limit of the total curvatures of inscribed

polygons inscribed of f . Thus, the total curvature of a smooth closed curve in Rn

is at least 2π (cf. [21] or the proof in [13, Theorem 2.34]). We adapt part of the

proof of Milnor’s theorem into the situation in Proposition 1 below.

Proposition 1. Let f : I = [a, b] → Rn be a continuous curve with the regularity

f ∈ C2((a, b),Rn). Denote by ds = ∂xf dx the arclength element of f . Assume

f(a) = f(b), then the total curvature of f is at least π, i.e.,

(3.7)

∫ b

x=a

|κ| ds > π.

Proof. Since we assume f(a) = f(b), we have
∫
I
T (s) ds = f(b) − f(a) = 0. This

implies that the tangent indicatrix T can’t be contained in any hemisphere, Sn−1
+ .
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Therefore, the spherical diameter of the spherical curve T is greater than one-half

of the length of a great circle on the unit sphere Sn−1(1), i.e.,

(3.8) distSn−1(1) (T (x1), T (x2)) > π,

for some x1, x2 ∈ I. From (3.8), we obtain (3.7).

�

The formula in the following lemma could be thought as a “higher-order energy

identity”.

Lemma 9. Suppose f : (0, t1) × [−1, 1] → Rn is the solution of the L2-flow (1.5)

with the regularity f(t, ·) ∈
N⋃
i=1

C∞ ((xi−1, xi),Rn)
⋂
C1 ((−1, 1),Rn) and with the

(interior) boundary conditions in (1.6), (1.7), (1.8). Then, the quantity Ym(t)

defined in (1.9) satisfies the identity,

(3.9)

d
dtYm(t) +

N∑
i=1

∫
Ii

|∇mt κ|2 ds+
N∑
i=1

∫
Ii

|∇4m
s κ|2 ds =

N∑
i=1

∑
[[a,b]]≤[[8m−2,4]]

∫
Ii

P ab (κ) ds.

Proof. From (2.8), (2.2), (1.5), we have

(3.10) d
dt

1
2

∫
Ii

|∇mt f |2 ds =
∫
Ii

〈∇mt f,∇m+1
t f〉 ds−

∫
Ii

1
2 |∇

m
t f |2 · 〈κ, ∂tf〉 ds

=
∫
Ii

〈∇mt f,∇mt (−∇2
sκ−

|κ|2
2 κ+ λ · κ)〉 ds−

∫
Ii

1
2 |∇

m
t f |2 · 〈κ, ∂tf〉 ds

= −
∫
Ii

〈∇mt f,∇mt ∇2
sκ〉 ds

−
∫
Ii

(
〈∇mt f,∇mt ( |κ|

2

2 κ− λ · κ)〉+ 1
2 |∇

m
t f |2 · 〈κ, ∂tf〉

)
ds.

By applying (2.16) and (2.18), we have

(3.11)
∫
Ii

(
〈∇mt f,∇mt ( |κ|

2

2 κ− λ · κ)〉+ 1
2 |∇

m
t f |2 · 〈κ, ∂tf〉

)
ds

=
∑

[[a,b]]≤[[8m−2,4]]

∫
Ii

P ab (κ) ds.

By applying (2.21) and integration by parts, we have

(3.12)∫
Ii

〈∇mt f,∇mt ∇2
sκ〉 ds

= −
∫
Ii

〈∇s∇mt f,∇mt ∇sκ〉 ds+ 〈∇mt f,∇mt ∇sκ〉|∂Ii +
∑

[[a,b]]≤[[8m−2,4]]

∫
Ii

P ab (κ) ds

= −
∫
Ii

〈∇mt T,∇mt ∇sκ〉 ds+ 〈∇mt f,∇mt ∇sκ〉|∂Ii +
∑

[[a,b]]≤[[8m−2,4]]

∫
Ii

P ab (κ) ds,
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where the last equality comes from applying (2.20) and (2.21). Again, by applying

(2.21) and integration by parts, we have

(3.13)∫
Ii

〈∇mt T,∇mt ∇sκ〉 ds

= −
∫
Ii

〈∇s∇mt T,∇mt κ〉 ds+ 〈∇mt T,∇mt κ〉|∂Ii +
∑

[[a,b]]≤[[8m−2,4]]

∫
Ii

P ab (κ) ds

= −
∫
Ii

〈∇mt κ,∇mt κ〉 ds+ 〈∇mt T,∇mt κ〉|∂Ii +
∑

[[a,b]]≤[[8m−2,4]]

∫
Ii

P ab (κ) ds,

where the last equality comes from applying (2.17) and (2.18), i.e.,

(3.14) ∇mt κ = ∇s∇mt ∂sf +
∑

[[a,b]]≤[[4m−2,3]]

P ab (κ).

Thus, from (3.10), (3.11), (3.12) and (3.13), we have

(3.15) 1
2
d
dt

∫
Ii

|∇mt f |2 ds+
∫
Ii

|∇mt κ|2 ds

= −〈∇mt f,∇mt ∇sκ〉|∂Ii + 〈∇mt T,∇mt κ〉|∂Ii +
∑

[[a,b]]≤[[8m−2,4]]

∫
Ii

P ab (κ) ds.

From applying (2.18) to (3.15), we have

(3.16)
d
dt

∫
Ii

|∇mt f |2 ds+ 2 ·
∫
Ii

|∇4m
s κ|2 ds

= −2 · 〈∇mt f,∇mt ∇sκ〉|∂Ii + 2 · 〈∇mt T,∇mt κ〉|∂Ii +
∑

[[a,b]]≤[[8m−2,4]]

∫
Ii

P ab (κ) ds.

By taking the sum
N∑
i=1

in (3.16) and applying the (interior) boundary conditions in

(1.6), (1.7), (1.8), we obtain

(3.17) d
dt

N∑
i=1

∫
Ii

|∇mt f |2 ds+ 2 ·
N∑
i=1

∫
Ii

|∇4m
s κ|2 ds

= −2 ·
N∑
i=0

〈∇mt T (·, xi),∇mt [4xiκ]〉+
N∑
i=1

∑
[[a,b]]≤[[8m−2,4]]

∫
Ii

P ab (κ) ds.

Note that, from (1.8), we have

∇m+1
t T (·, xi) = ∇mt [4xiκ] .

Therefore, from (3.17), we obtain

d
dt

{
N∑
i=1

∫
Ii

|∇mt f |2 ds+
N∑
i=0

|∇mt T (·, xi)|2
}

+ 2 ·
N∑
i=1

∫
Ii

|∇4m
s κ|2 ds

=
N∑
i=1

∑
[[a,b]]≤[[8m−2,4]]

∫
Ii

P ab (κ) ds.
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�

Proof of the long-time existence and asymptotics in Theorem 1. The short-time ex-

istence of piecewise smooth solutions of (1.5) with the (interior) boundary condi-

tions (1.6), (1.7), (1.8) allows us to assume that f with the regularity in (3.1) is a

solution of (1.5) up to t1 ∈ (0,+∞). Below, we show that the long-time existence

could be derived by an argument of contradiction.

Let δ ∈ (0, 1/2) and re-write (3.9) as

(3.18)

d
dtYm(t) + δ · Ym(t) + 2 ·

N∑
i=1

∫
Ii

|∇4m
s κ|2 ds

= δ ·
N∑
i=1

∫
Ii

|∇mt f |2 ds+ δ ·
N∑
i=0

|∇mt T (·, xi)|2 +
N∑
i=1

∑
[[a,b]]≤[[8m−2,4]]

∫
Ii

P ab (κ) ds.

From this equation, we would like to derive a differential inequality for Ym by

estimating the terms of lesser-order.

Step 1◦ From the energy identity in (3.4), Eλ [f ] is non-increasing as t increases

and

E [f ] + λ · L [f ] =: Eλ [f ] ≤ Eλ [f0] .

Thus, as t ∈ [0, t1),

(3.19)

N∑
i=1

∫
Ii

|κ|2 ds ≤ 2 · Eλ [f0]

and

(3.20) L [f ] ≤ Eλ [f ]

λ
≤ Eλ [f0]

λ
:= L+.

Note that Eλ [f0] < +∞ from the assumption of the initial curve f0.

Below, we claim that there is a positive constant L− = L−
(
Eλ[f0], f (0), ..., f (N)

)
such that the total length satisfies

(3.21) L[f ](t) ≥ L− 	 0,

for all t ∈ [0, t1). Note that, from the assumption on the regularity of f , the tangent

indicatrix satisfies T ∈
N⋃
i=1

C∞((xi−1, xi),Sn−1) ∩ C0((−1, 1),Sn−1).

Let i ∈ {1, ..., N}. Assume f (i) 6= f (i−1), then it is obvious that

(3.22) L[f|Ii ](t) ≥ |f
(i) − f (i−1)| 	 0.

On the other hand, if we assume f (i) = f (i−1), then we apply Proposition 1 to

obtain

(3.23)

∫
Ii

|κ| ds > π.
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From (3.19), (3.23) and by applying Hölder’s inequality, we obtain

(3.24) L[f|Ii ] =
∫
Ii
ds ≥

(∫
Ii

|κ| ds
)2

∫
Ii

|κ|2 ds > π2

2·Eλ[f0] 	 0.

From (3.22) and (3.24), there is a constant L(i)
− = L(i)

− (Eλ[f0], f (i−1), f (i)) such that

(3.25) L[f|Ii ] ≥ L
(i)
− 	 0.

Thus, we conclude from (3.25) that

(3.26) L[f ] =

N∑
i=1

L[f|Ii ] ≥
N∑
i=1

L(i)
− =: L− 	 0,

where L− = L−
(
Eλ[f0], f (0), ..., f (N)

)
.

Step 2◦ Since T (t, x−i ) = T (t, x+
i ) for all i ∈ {1, ..., N − 1}, we may write

T (t, xi)− T (0) =
i∑

j=1

(T (t, xj)− T (t, xj−1)) =
i∑

j=1

∫
Ij
κ ds

for any x ∈ (−1, 1). Then, by taking the differentiation ∇mt on both side, we have

∇mt T (t, xi) =
i−1∑
j=1

∫
Ij
∇mt (κ ds) =

i−1∑
j=1

∫
Ij

∑
m1+m2=m

Cmm1
· ∇m1

t κ · ∂m2
t (ds),

where Cmm1
= m!

m1!·m2! . From (2.18) and (2.22), we have

∇m1
t κ · ∂m−m1

t (ds) =



(
(−1)m∇4m

s κ+
∑

[[a,b]]≤[[4m−2,3]]

P ab (κ)

)
ds, as m1 = m,

( ∑
[[a,b]]≤[[4m−2,3]]

P ab (κ)

)
ds, as m1 ∈ {m− 1, ..., 0}.

Thus, ∑
m1+m2=m

Cmm1
· ∇m1

t κ · ∂m2
t (ds) = (−1)m∇4m

s κ ds+
∑

[[a,b]]≤[[4m−2,3]]

P ab (κ) ds,

where each constant Cmm1
has been absorbed by the notation P ab (κ) as m1 < m.

Therefore,

|∇mt T (t, xi)|2

≤ C(N,m) ·
N∑
j=1

((∫
Ij

∣∣∇4m
s κ

∣∣ ds)2

+
∑

[[a,b]]≤[[4m−2,3]]

(∫
Ij
|P ab (κ)| ds

)2
)

≤ C(N,m) · L[f ] ·
N∑
j=1

∫
Ij

∣∣∇4m
s κ

∣∣2 ds

+C(N,m) · L[f ] ·
N∑
j=1

∑
[[a,b]]≤[[8m−4,6]]

∫
Ij
|P ab (κ)| ds,
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where C(N,m) is a constant depending only onN andm. Now, the term
N∑
i=0

|∇mt T (t, xi)|2

on the R.H.S. of (3.18) can be estimated by

(3.27)

N∑
i=0

|∇mt T (t, xi)|2 ≤ C0(N,m) · L[f ] ·
N∑
i=1

∫
Ii

∣∣∇4m
s κ

∣∣2 ds

+C0(N,m) · L[f ] ·
N∑
i=1

∑
[[a,b]]≤[[8m−4,6]]

∫
Ii
|P ab (κ)| ds.

Note, from (2.16), we have

(3.28)
N∑
i=1

∫
Ii

|∇mt f |2 ds =
N∑
i=1

∑
[[a,b]]≤[[8m−4,2]]

∫
Ii

P ab (κ) ds.

Therefore, from (3.18), (3.27), (3.28), we obtain

(3.29) d
dtYm(t) + δ · Ym(t) + (2− δ · C0(N,m) · L[f ]) ·

N∑
i=1

∫
Ii

|∇4m
s κ|2 ds

≤ δ · C0(N,m) · L[f ] ·
N∑
i=1

∑
[[a,b]]≤[[8m−4,6]]

∫
Ii
|P ab (κ)| ds

+δ ·
N∑
i=1

∑
[[a,b]]≤[[8m−4,2]]

∫
Ii

P ab (κ) ds+
N∑
i=1

∑
[[a,b]]≤[[8m−2,4]]

∫
Ii

P ab (κ) ds.

Step 3◦ From the upper bound of the total length L+ in (3.20), we may choose

a sufficiently small δ > 0 so that

(3.30) δ · C0(N,m) · L+ ≤ 1

and then (3.29) gives

(3.31)

d
dtYm(t) + δ · Ym(t) +

N∑
i=1

∫
Ii

|∇4m
s κ|2 ds

≤ (C0(N,m) · L+)
−1

N∑
i=1

∑
[[a,b]]≤[[8m−4,2]]

∫
Ii

P ab (κ) ds+
N∑
i=1

∑
[[a,b]]≤[[8m−2,4]]

∫
Ii

P ab (κ) ds.

From the interpolation inequality (2.14), the lower bound of total length in (3.21)

and the upper bound of bending energy in (3.19), we have

R.H.S. of (3.31)

≤ c0 · ε ·
N∑
i=1

∫
Ii

|∇4m
s κ|2 ds+ c0 · C

(
Eλ[f0], λ, f (0), ..., f (N), T (0), T (N), N,m, n, ε

)
,

where c0 := max{1, (C0(N,m) · L+)
−1} is a constant depending only on N , m,

Eλ[f0], λ. Thus, by choosing a sufficiently small ε > 0 so that c0 · ε < 1, we obtain

from (3.31) that

d
dtYm(t) + δ · Ym(t) ≤ C

(
Eλ[f0], λ, f (0), ..., f (N), T (0), T (N), N,m, n

)
,
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where δ = δ(N,m, λ, Eλ[f0]) > 0 is due to the choice of δ in (3.30) and the upper

bound of the total length L+ in (3.20). From this Gronwall’s type differential

inequality, we derive the uniform upper bound of Ym(t),

(3.32) Ym(t) ≤ Ym(0) + C
(
Eλ[f0], λ, f (0), ..., f (N), T (0), T (N), N,m, n

)
,

for all t ∈ [0, t1). Therefore,

(3.33)
N∑
i=1

‖∇mt f‖
2
L2(Ii)

(t) ≤ C
(
Ym(0), Eλ[f0], λ, f (0), ..., f (N), T (0), T (N), N,m, n

)
,

for all t ∈ [0, t1).

Step 4◦ Observe that, by using the evolution equation (1.5) on the calculation

of ∇mt T (·, xi), the assumption on C∞-smoothness of initial curve f0 in Theorem 1

implies that {Ym(0)}m∈Z+
is a sequence of finite non-negative numbers. For each

fixed i ∈ {1, ..., N}, we could estimate ‖∇4m−2
s κ‖2L2(Ii)

by applying the formula

of ∇mt f in (2.16), the interpolation inequality in (2.14), the upper bound of total

bending energy
N∑
i=1

‖κ‖2L2(Ii)
in (3.19) and the upper bound of ‖∇mt f‖

2
L2(Ii)

in

(3.33) to obtain

(3.34)

‖∇4m−2
s κ‖2L2(Ii)

(t)

≤ C
(
Ym(0), Eλ[f0], λ, f (0), ..., f (N), T (0), T (N), N,m, n

)
,

for any t ∈ [0, t1) and m ∈ Z+. Note that, for any ` ∈ Z+, we may choose

m = m` := [[ `+2
4 ]]+1, where the notation [[A]] represents the greatest integer part of

real number A, so that ` < 4m`−2. Thus, by applying Lemma 6, the interpolation

inequality (2.14), the upper bound of total bending energy
N∑
i=1

‖κ‖2L2(Ii)
in (3.19)

and (3.34), we obtain

(3.35)

∥∥∇`sκ∥∥2

L2(Ii)
(t) +

∥∥∂`sκ∥∥2

L2(Ii)
(t)

≤ C
(
Ym`(0), Eλ[f0], λ, f (0), ..., f (N), T (0), T (N), N,m`, n

)
,

for any t ∈ [0, t1), i ∈ {1, ..., N} and ` ∈ Z+.

For any differentiable function g : Ii = (xi−1, xi) ⊂ R → Rn, it is easy to see

that

(3.36)
∼
g(s) := g(s)−

( ∫
σ∈Ii

dσ

)−1( ∫
σ∈Ii

g(σ) dσ

)

satisfies
∫
Ii

∼
g(s) ds = 0 and

(3.37) ‖∼g‖L∞(Ii) ≤ c(n) · ‖∂s
∼
g‖L1(Ii).
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By letting g = κ`−1 := ∂`−1
s κ in (3.37) and (3.36), where ` ∈ Z+, we derive

(3.38) ‖κ`−1‖L∞(Ii)
≤ c(n) · ‖∂sκ`−1‖L1(Ii)

+

(∫
Ii

ds

)−1

· ‖κ`−1‖L1(Ii)
.

By applying Hölder’s inequality to the R.H.S. of (3.38), we obtain

(3.39)∥∥∂`−1
s κ

∥∥
L∞(Ii)

≤ c(n) ·
(∫

Ii

ds

)1/2 ∥∥∂`sκ∥∥L2(Ii)
+

(∫
Ii

ds

)−1/2 ∥∥∂`−1
s κ

∥∥
L2(Ii)

.

From applying the uniform upper bound of total length in (3.20), the uniform lower

bound of the length of each component in (3.25) and the estimates in (3.35), we

obtain from (3.39),

(3.40)
∥∥∂`−1

s κ
∥∥
L∞(Ii)

≤ C
(
Ym`(0), Eλ[f0], λ, f (0), ..., f (N), T (0), T (N), N,m`, n

)
,

which gives a uniform upper bound of
∥∥∂`−1

s κ
∥∥
L∞(Ii)

for each ` ∈ Z+. However,

this is a contradiction if we assume that the solution of (1.5) remains smooth on

each f|Ii only up to a finite time t1. Therefore, f ∈
N⋃
i=1

C∞((xi−1, xi),Rn).

Step 5◦ For the asymptotic behavior of the flow, we choose a subsequence of

curves f (t, ·), which converges smoothly to a curve f∞ on each open interval after

reparametrization of arclength. Let

u (t) :=

N∑
i=1

∫
Ii

|∂tf |2 ds,

and

v (t) :=

N∑
i=0

|∇tT |2(t, xi).

By applying (3.33), we derive the inequality,

(3.41)
∣∣ d
dtu (t)

∣∣ ≤ C (Y1(0),Y2(0), Eλ[f0], λ, f (0), ..., f (N), T (0), T (N), N, n
)

,

for all t ∈ [0,∞). Moreover, by applying the interpolation inequality in (2.14) and

the upper bound of the total length in (3.20) to (3.27), we derive the inequality,

(3.42)
∣∣ d
dtv (t)

∣∣ ≤ C (Y2(0),Y3(0), Eλ[f0], λ, f (0), ..., f (N), T (0), T (N), N, n
)

,

for all t ∈ [0,∞). Thus, w(t) := u(t) + v(t) satisfies

(3.43)∣∣ d
dtw (t)

∣∣ ≤ C (Y1(0),Y2(0),Y3(0), Eλ[f0], λ, f (0), ..., f (N), T (0), T (N), N, n
)

,

for all t ∈ [0,∞).

On the other hand, the energy identity in (3.4) implies that w (t) ∈ L1 ([0,∞)).

Therefore, w (t) → 0 as t → ∞. Since both u(t) and v(t) are non-negative, from

the definition of w(t), u (t) → 0 as t → ∞, which implies that f∞ is independent

of t. Thus, from the equation of L2-flow (1.5), f∞ is an equilibrium of Eλ on each

Ii with the uniform bound of any higher-order derivatives in (3.40), i.e., f∞ ∈
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N⋃
i=1

C∞((xi−1, xi),Rn). Besides, from the interior boundary condition in (1.8),

∂2
sf∞(x−i ) = ∂2

sf∞(x+
i ) for all i ∈ {1, ..., N − 1}. Therefore, f∞ ∈ C2 ((−1, 1),Rn).
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