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I. INTRODUCTION

Quantum entanglement [1] is considered to be the most
nonclassical manifestation of quantum mechanics and
plays an important role not only in quantum informa-
tion sciences [2–5] but also in condensed-matter physics
[6]. The operational measure of entanglement for arbi-
trary mixed states is not known yet, but the concurrence
[7–10] is one of the well accepted entanglement measures
[11–16]. Nevertheless, calculation of the concurrence is a
formidable task for higher dimensional case.
To estimate the concurrence for general mixed states,

efforts have been made toward the analytical lower
bounds of concurrence. Therefore some nice algorithms
and progresses have been concentrated on possible lower
bounds of the concurrence for three quantum systems
[17–19]. For arbitrary bipartite quantum states, Ref.
[20] and Ref. [21] provide a detailed proof of an analyti-
cal lower bound of concurrence by decomposing the joint
Hilbert space into many 2⊗ 2 and s⊗ t-dimensional sub-
spaces, which may be used to improve all the known lower
bounds of concurrence. A natural problem is whether
the arbitrary dimensional tripartite quantum states can
be dealed with this.
In this paper we provide a detailed proof of an analyt-

ical lower bound of concurrence for tripartite quantum
states by decomposing the joint Hilbert space into any

lower dimensional subspaces. Moreover, the generalized
lower bound of concurrence can be generalized to the
multipartite case.

II. LOWER BOUND OF CONCURRENCE FOR
TRIPARTITE QUANTUM SYSTEMS

Let HA1 , HA2 , HA3 be three N -dimensional Hilbert
spaces associated with the systems A1, A2 and A3. A
pure state |ψ⟩ ∈ HA1 ⊗HA2 ⊗HA3 has the form

|ψ⟩ =
N∑
i=1

N∑
j=1

N∑
k=1

aijk|ijk⟩, (1)

where aijk ∈ C,
∑
ijk |aijk|2 = 1, {|ijk⟩} is the basis of

HA1 ⊗HA2 ⊗HA3 .
The concurrence of state |ψ⟩ is defined by, up to an N

dependent factor
√
N/6(N − 1),

C(|ψ⟩) =
√
6− 2Tr(ρ2A1

+ ρ2A2
+ ρ2A3

), (2)

where the reduced density matrix ρA1
(resp. ρA2

, ρA3
) is

obtained by tracing over the subsystems A2 and A3 (resp.
A1 and A3, A1 and A2). C(|ψ⟩) can be equivalently
written as [10]

C(|ψ⟩) =
√∑

(|aijkapqm − aijmapqk|2 + |aijkapqm − aiqkapjm|2 + |aijkapqm − apjkaiqm|2). (3)

The concurrence for a tripartite mixed state ρ is defined
by the convex roof,

C(ρ) ≡ min
{pi,|ψi⟩}

∑
i

piC(|ψi⟩), (4)

for all possible pure state decompositions ρ =∑
i pi|ψi⟩⟨ψi|, where |ψi⟩ ∈ HA1 ⊗HA2 ⊗HA3 , 0 ≤ pi ≤ 1

and
∑
i pi = 1.

To evaluate C(ρ), we project high dimensional states
to “lower dimensional” sub-states. For a given N⊗N⊗N
pure state, we define its “m⊗m⊗m”, m ≤ N , pure state

|ψ⟩m⊗m⊗m =
∑im
i=i1

∑jm
j=j1

∑km
k=k1

aijk|ijk⟩ = B1 ⊗B2 ⊗
B3|ψ⟩, where B1 =

∑im
i=i1

|i⟩⟨i|, B2 =
∑jm
j=j1

|j⟩⟨j|, B3 =∑km
k=k1

|k⟩⟨k|. Its concurrence C(|ψ⟩m⊗m⊗m) is similarly
given by Eq.(3), with the subindices of a, i (resp. j, k)
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associated with the system A1 (resp. A2, A3) running
from i1 (resp. j1, k1) to im (resp. jm, km). In fact, for

anyN⊗N⊗N pure state |ψ⟩, there are
(
N
m

)3
differentm⊗

m ⊗m sub-states with respect to |ψ⟩. Without causing
confusion, in the following we simply use |ψ⟩m⊗m⊗m to
denote one of such states, as these substates will always
be considered together.
Correspondingly for a mixed state ρ, we define its “m⊗

m ⊗ m” mixed (unnormalized) sub-states ρm⊗m⊗m =

B1⊗B2⊗B3ρB
†
1⊗B

†
2⊗B

†
3. The concurrence of ρm⊗m⊗m

is defined by C(ρm⊗m⊗m) ≡ min
∑
i piC(|ϕi⟩), mini-

mized over all possible m ⊗ m ⊗ m pure state decom-
positions of ρm⊗m⊗m =

∑
i pi|ϕi⟩⟨ϕi|, with

∑
i pi =

tr(ρm⊗m⊗m). The m ⊗ m ⊗ m submatrices ρm⊗m⊗m
have the following form,

ρm⊗m⊗m =



ρi1j1k1,i1j1k1 ... ρi1j1k1,i1j1km ρi1j1k1,i1j2k1 ... ρi1j1k1,imjmkm
...

...
...

...
...

...
ρi1j1km,i1j1k1 ... ρi1j1km,i1j1km ρi1j1km,i1j2k1 ... ρi1j1km,imjmkm
ρi1j2k1,i1j1k1 ... ρi1j2k1,i1j1km ρi1j2k1,i1j2k1 ... ρi1j2k1,imjmkm

...
...

...
...

...
...

ρimjmk1,i1j1k1 ... ρimjmk1,i1j1km ρimjmk1,i1j2k1 ... ρimjmk1,imjmkm
...

...
...

...
...

...
ρimjmkm,i1j1k1 ... ρimjmkm,i1j1km ρimjmkm,i1j2k1 ... ρimjmkm,imjmkm


, (5)

where i1 < ... < im, j1 < ... < jm and k1 < ... < km
with subindices i1, ..., im associated with the space HA1 ,
j1, ..., jm with the spaceHA2 and k1, ..., km with the space
HA3 .

Theorem 1 For any N⊗N⊗N (N ≥ 2) tripartite mixed
quantum state ρ, the concurrence C(ρ) satisfies

C2(ρ) ≥ cm⊗m⊗m
∑

Pm⊗m⊗m

C2(ρm⊗m⊗m), (6)

where m ≥ 2, cm⊗m⊗m =
[(
N−1
m−1

)]−1 [(
N−2
m−2

)]−2

, and∑
Pm⊗m⊗m

stands for summing over all possible m⊗m⊗
m mixed sub-states.

[Proof]. For any N⊗N⊗N tripartite pure state |ψ⟩ =∑N
i=1

∑N
j=1

∑N
k=1 aijk|ijk⟩, and any given term

|ai0j0k0ap0q0m0 − ai0j0m0ap0q0k0 |2, k0 ̸= m0, (7)

in Eq. (3), if i0 ̸= p0 and j0 ̸= q0, then there are
[(
N−2
m−2

)]3
different m ⊗ m ⊗ m sub-states |ψ⟩m⊗m⊗m = B1 ⊗
B2 ⊗ B3|ψ⟩, with B1 = |i0⟩⟨i0| + |p0⟩⟨p0| +

∑im
i=i3

|i⟩⟨i|,
B2 = |j0⟩⟨j0| + |q0⟩⟨q0| +

∑jm
j=j3

|j⟩⟨j|, B3 = |k0⟩⟨k0| +
|m0⟩⟨m0| +

∑km
k=k3

|k⟩⟨k|, where {|i⟩}imi=i3 ⊆ {|i⟩}Ni=1,

{|j⟩}jmj=j3 ⊆ {|j⟩}Nj=1, {|k⟩}kmk=k3 ⊆ {|k⟩}Nk=1, such that

the term (7) appears in the concurrence of |ψ⟩m⊗m⊗m =
B1 ⊗ B2 ⊗ B3|ψ⟩. If i0 = p0 and j0 ̸= q0, then

there are
(
N−1
m−1

) [(
N−2
m−2

)]2
different m ⊗ m ⊗ m sub-

states |ψ⟩m⊗m⊗m = D1 ⊗ B2 ⊗ B3|ψ⟩, with D1 =

|i0⟩⟨i0| +
∑im
i=i2

|i⟩⟨i|, {|i⟩}imi=i2 ⊆ {|i⟩}Ni=1, such that the

term (7) appears in the concurrence of |ψ⟩m⊗m⊗m =
D1 ⊗ B2 ⊗ B3|ψ⟩. Otherwise, if i0 ̸= p0 and j0 = q0,

then there are
(
N−1
m−1

) [(
N−2
m−2

)]2
different m⊗m⊗m sub-

states |ψ⟩m⊗m⊗m = B1 ⊗ D2 ⊗ B3 ⊗ |ψ⟩ with D2 =

|j0⟩⟨j0| +
∑jm
j=j2

|j⟩⟨j|, {|j⟩}jmj=j2 ⊆ {|j⟩}Nj=1, such that

the term (7) appears in the concurrence of |ψ⟩m⊗m⊗m =

B1 ⊗D2 ⊗B3 ⊗ |ψ⟩. Since
(
N−2
m−2

)
≥
(
N−1
m−1

)
generally, the

concurrences of the pure state |ψ⟩ and the sum of the
concurrence of all the sub-states |ψ⟩m⊗m⊗m with respect
to |ψ⟩ have the following relation,

C2(|ψ⟩) ≥ cm⊗m⊗m
∑

Pm⊗m⊗m

C2(|ψ⟩m⊗m⊗m). (8)

Therefore for mixed state ρ =
∑
pi|ψi⟩⟨ψi|, we have

C(ρ)

= min
∑
i

piC(|ψi⟩)

≥ √
cm⊗m⊗mmin

∑
i

pi

 ∑
Pm⊗m⊗m

C2(|ψi⟩m⊗m⊗m)

 1
2

≥ √
cm⊗m⊗mmin

 ∑
Pm⊗m⊗m

(∑
i

piC(|ψi⟩m⊗m⊗m)

)2
 1

2

≥ √
cm⊗m⊗m

 ∑
Pm⊗m⊗m

(
min

∑
i

piC(|ψi⟩m⊗m⊗m)

)2
 1

2

=
√
cm⊗m⊗m

 ∑
Pm⊗m⊗m

C2(ρm⊗m⊗m)

 1
2

,
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where the relation (
∑
j(
∑
i xij)

2)
1
2 ≤

∑
i(
∑
j x

2
ij)

1
2 has

been used in the second inequality, the first three min-
imizations run over all possible pure state decomposi-
tions of the mixed state ρ, while the last minimization
runs over all m ⊗ m ⊗ m pure state decompositions of
ρm⊗m⊗m =

∑
i pi|ϕi⟩⟨ϕi| associated with ρ.

(6) gives a lower bound of C(ρ). One can estimate
C(ρ) by calculating the concurrence of the sub-states
ρm⊗m⊗m, 2 ≤ m ≤ N − 1. Different choices of m may
give rise to different lower bounds. A convex combina-
tion of these lower bounds is still a lower bound. Hence
generally we have

Corollary 1 For any N ⊗N ⊗N tripartite mixed quan-
tum state ρ, the concurrence C(ρ) satisfies

C2(ρ) ≥
N∑
m=2

pm cm⊗m⊗m
∑

Pm⊗m⊗m

C2(ρm⊗m⊗m), (9)

where 0 ≤ pm ≤ 1 and
∑N
m=2 pm = 1.

The lower bound (6) is in general not operationally
computable, as we still have no analytical results for
concurrence of lower dimensional states. Nevertheless,
we have already some analytical lower bounds for three-
qubit mixed quantum states [17]. If we replace the com-
putation of concurrence of lower dimensional sub-states
“ρm⊗m⊗m” by that of the lower bounds of these sub-
states, (6) gives an operational lower bound based on
known lower bounds. The lower bound obtained in this
way should be the same or better than the previous
known lower bounds. Hence (6) may be used to im-
prove the existing lower bounds in this sense. We first
present an operational analytical lower bound for three-
qubit mixed quantum states.

Theorem 2 The concurrence C(ρ) of three-qubit mixed
quantum state ρ satisfies

C2(ρ) ≥
3∑
j=1

max[(||ρTj || − 1)2, (||Rj,j̄(ρ)|| − 1)2],(10)

where ρTj stands for the partial transposition of ρ with
respect to the j-th subsystem Aj, Rj,j̄(ρ) is the realign-
ment of ρ with respect to the bipartite partition between

j-th and the rest systems, ||A|| = Tr
√
AA† is the trace

norm of a matrix.

[Proof]. For three-qubit state |ψ⟩, one has,

1− Trρ2Aj

=
1

2
(∥(|ψ⟩⟨ψ|)Tj∥ − 1)2

=
1

2
(∥Rj,j̄(|ψ⟩⟨ψ|)∥ − 1)2.

According to (2) we obtain

C2(|ψ⟩)

=
3∑
j=1

(∥(|ψ⟩⟨ψ|)Tj∥ − 1)2

=
3∑
j=1

(∥Rj,j̄(|ψ⟩⟨ψ|)∥ − 1)2.

Assume that
∑
i pi|ψi⟩⟨ψi| is the optimal decomposi-

tion of ρ achieving the infimum of C(ρ). Then

C2(ρ) =

(∑
i

piC(|ψi⟩)

)2

=
(∑

i pi
√∑

j(∥(|ψi⟩⟨ψi|)Tj∥ − 1)2
)2

≥
3∑
j=1

(∑
i

(pi∥(|ψi⟩⟨ψi|)Tj∥ − 1)

)2

≥
∑3
j=1

(
∥ρTj∥ − 1

)2
.

(11)

Similarly one can prove that C2(ρ) ≥
∑3
j=1(||Rj,j̄(ρ)|| −

1)2.

To see the tightness of the inequality (10), we consider
the following example.

Example 1. Let us consider the Dür-Cirac-Trarrach
state [22],

ρDCT =
∑
σ=± λ

σ
0 |ψσ0 ⟩⟨ψσ0 |+

∑3
j=1 λj(|ψ

+
j ⟩⟨ψ

+
j |

+|ψ−
j ⟩⟨ψ

−
j |),

(12)
where |ψ±

0 ⟩ = 1√
2
(|000⟩ ± |111⟩),

|ψ±
j ⟩ =

1√
2
(|j⟩AB |0⟩C ± |(3− j)⟩AB |1⟩C),

|j⟩AB = |j1⟩A|j2⟩B with j = j1j2 in binary notation.
From our lower bound (10), we obtain C(ρDCT ) ≥√

4
27 ≈ 0.385 for λ+0 = 1

6 , λ
−
0 = 1

2 and λ1 = λ2 = λ3 =
1
18 .
Another lower bound of concurrence for three-qubit

mixed quantum states had been given in Ref. [17]. Form
Ref. [17] the lower bound of concurrence for ρDCT is
C(ρDCT ) ≥ 0.314, where the difference of a constant fac-

tor
√
2 in defining the concurrence for pure states has

been already taken into account. Therefore the lower
bound (10) is better than the lower bound in Ref. [17]
in detecting entanglement of the three-qubit mixed state
ρDCT .

By using the analytical lower bounds (10) for three-
qubit quantum states, from (6) we have

Corollary 2 For any N ⊗N ⊗N tripartite mixed quan-
tum state ρ, the concurrence C(ρ) satisfies
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C2(ρ) ≥ 1

N − 1

∑
P2⊗2⊗2

max

 3∑
j=1

(||ρTj

2⊗2⊗2|| − 1)2,
3∑
j=1

(||Rj,j̄(ρ2⊗2⊗2)|| − 1)2

 . (13)

(6) presents a lower bound of concurrence for N ⊗N ⊗
N tripartite mixed quantum states. Generally it is not
operational, while (10) gives an operational lower bound
of concurrence. The combination of these two results
gives rise to operational lower bounds for general N ⊗
N ⊗N states.
Example 2. We consider the 3 ⊗ 3 ⊗ 3 state ρ =

1−x
27 I27 + x|ψ+⟩⟨ψ+|, where 0 ≤ x ≤ 1 represents the

degree of the depolarization, |ψ+⟩ = 1√
2
(|000⟩ + |222⟩).

As ρTYi = (ρTYi )†, the square root of the eigenvalues
of ρTYi (ρTYi )† is the absolute value of the eigenvalues of
ρTYi . According to the above Corollary, our result can
detect the entanglement of ρ when 2

29 ≤ x ≤ 1, see Fig.1.

0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C2

Fig. 1. The lower bound concurrence of ρ for 2
29

≤ x ≤ 1.

Now we generalize our results to arbitrary dimen-
sional n-partite systems. Let HA1 , HA2 , ..., HAn be
N dimensional vector spaces respectively. A pure state
|ψ⟩ ∈ HA1 ⊗HA2 ⊗ · · · ⊗HAn has the form,

|ψ⟩ =
N∑
i1=1

N∑
i2=1

...

N∑
in=1

ai1i2...in |i1i2...in⟩, (14)

where ai1i2...in ∈ C,
∑
i1i2...in

|ai1i2...in |2 = 1, {|i1i2...in⟩}
is the basis of HA1 ⊗HA2 ⊗ ...⊗HAn . The concurrence
of |ψ⟩ has the form [10],

C(|ψ⟩) =
√∑

p

∑
α,ά,β,β́

|aαβaάβ́ − aαβ́aάβ |, (15)

where
∑
p stands for the summation over all possible

combinations of the indices of α, β. α (or ά) and β (or

β́) span the whole space of a given subindex of a. The
concurrence is extended to mixed state ρ by the convex
roof C(ρ) = min

∑
i piC(|ψi⟩) for all possible ensemble

realizations ρ =
∑
pi|ψi⟩⟨ψi|.

For a given N ⊗N ⊗ · · · ⊗N pure state, we define its
“m⊗m⊗ · · · ⊗m” pure states

|ψ⟩m⊗m⊗···⊗m=

jm∑
i1=j1

km∑
i2=k1

· · ·
lm∑

in=l1

ai1i2···in |i1i2 · · · in⟩

= B1 ⊗B2 ⊗ · · · ⊗Bn|ψ⟩,

where B1 =
∑jm
i1=j1

|i1⟩⟨i1|, B2 =
∑km
i2=k1

|i2⟩⟨i2|,
..., Bn =

∑lm
in=l1

|in⟩⟨in|, {j1, · · · , jm} ⊆ {1, · · · , N},
{k1, · · · , km} ⊆ {1, · · · , N}, · · · , and {l1, · · · , lm} ⊆
{1, · · · , N},. For a mixed state ρ, correspondingly we
define its “m⊗m⊗ · · · ⊗m” sub-states

ρm⊗m⊗···⊗m = B1 ⊗B2 ⊗ · · · ⊗Bn ρB
†
1 ⊗B†

2 ⊗ · · · ⊗B†
n.

The concurrence of ρm⊗m⊗···⊗m is defined by
C(ρm⊗m⊗···⊗m) ≡ min

∑
i pi C(|ϕi⟩, minimized over

all possible m ⊗ m ⊗ · · · ⊗ m pure state decom-
positions of ρm⊗m⊗···⊗m =

∑
i pi |ϕi⟩⟨ϕi|, with∑

i pi = tr(ρm⊗m⊗···⊗m). Similar to the tripartite
case, we can prove the following theorem:

Theorem 3 For any n-partite N dimensional mixed
state ρ ∈ HA1 ⊗HA2 ⊗ · · · ⊗HAn ,

C2(ρ) ≥ cm⊗m⊗···⊗m
∑

Pm⊗m⊗···⊗m

C2(ρm⊗m⊗···⊗m), (16)

where cm⊗m⊗···⊗m is a fixed number depending on m,∑
Pm⊗m⊗···⊗m

stands for summing over all possible m ⊗
m⊗ · · · ⊗m mixed states.

III. CONCLUSIONS

In summary, we have proposed a method in construct-
ing hierarchy lower bounds of concurrence for tripartite
mixed states, in terms of the concurrences of all the lower
dimensional mixed sub-states. The lower bounds may be
used to improve all the existing lower bounds of con-
currence. The approach can be readily generalized to
arbitrary dimensional multipartite systems.
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