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Abstract. The linear boundary and the projective boundary have recently
been introduced by Krön, Lehnert, Seifter and Teufl [6] as a quasi-isometry

invariant boundary of Cayley graphs of finitely generated groups, but also as

a more general concept in metric spaces.
An element of the linear boundary of a Cayley graph is an equivalence class

of forward orbits g∞ = {gi : i ∈ N} of non-torsion elements g of the group G.

Two orbits are equivalent when they stay sublinearly close to each other. For
a formal definition see below. The elements of the projective boundary are

obtained by taking cyclic subgroups g±∞ = {gi : i ∈ Z} instead of forward

orbits. The boundaries are then obtained by equipping these points at infinity
with an angle metric. A typical example is the (n − 1)-dimensional sphere

as linear boundary of Zn. Its projective boundary is the (n − 1)-dimensional

projective space.
The diameter of these boundaries is always at most 1. We show that

for all finitely generated groups, the distance between the antipodal points

g∞ and g−∞ in the linear boundary is bounded from below by
√

1/2. But
these distances can actually be smaller than 1: we give an example of a one-

relator group—a derivation of the Baumslag-Gersten group—which has an

infinitely iterated HNN-extension as an isometrically embedded subgroup. In
this example, there is an element g for which the distance between g∞ and

g−∞ is less or equal
√

12/17.

We also give an example of a group with elements g and h such that g∞ =
h∞, but g−∞ 6= h−∞. Furthermore, we introduce a notion of average-case-

distortion – called growth of elements – and compute an explicit positive lower

bound for the distances between points g∞ and h∞ which are limits of group
elements g and h with different growth.

1. Introduction

One of the most important classes of groups studied in Geometric Group The-
ory is the class of word-hyperbolic groups (also referred to as Gromov-hyperbolic
groups). Word-hyperbolic groups admit several geometric tools which can be used
to derive algebraic properties. Since in Geometric Group Theory the focus lies on
the large-scale geometry of the group, these tools are only defined up to quasi-
isometries. An important large-scale invariant of a hyperbolic group is its Gromov-
boundary. The present work is part of a program to understand up to which extent
one can generalize this concept to arbitrary finitely generated groups.

A new concept of quasi-isometry invariant boundaries of metric spaces has re-
cently been introduced by Krön, Lehnert, Seifter and Teufl [6]. It is related to a
concept due to Bonnington, Richter and Watkins [1]. This concept is rather general
and for instance, Tits’ boundary of a CAT(0) space (see [2, Section 9]) fits into it,
after a small modification. See [6] for a more detailed discussion of this relationship.

2010 Mathematics Subject Classification. 20F65 (20E06,05C63).
Key words and phrases. HNN-extension, boundaries of groups, Baumslag-Gersten group,

group distortion, growth.
MS was supported by grants Fapesp PQ-EX 2008/50338-0, Fondecyt 11090141.

1



2 BERNHARD KRÖN, JÖRG LEHNERT, AND MAYA STEIN

We will not recall the full concept for metric spaces, because here, we are only
interested in two applications to Cayley graphs of finitely generated groups, namely
the linear and the projective boundary, which we shall introduce next.

Let G be a group generated by a set X. The Cayley graph Γ = (V,E) =
Cay(G,X) is the graph with vertex set V = G and edge set E = {{g, h} : g−1h ∈
X}. Let d be the graph metric of Γ. That is, d(g, h) is the length of the shortest
path in Γ from g to h.

For g ∈ G of infinite order let g∞ := {gn : n ∈ N} denote the cyclic subsemigroup
generated by g. We also call g∞ the forward orbit of g. Let g±∞ := {gk : k ∈ Z}
denote the cyclic subgroup generated by g, and we call g±∞ the orbit of g. The
backward orbit g−∞ is defined analogously.

Let CG and C+G denote the family of infinite orbits or infinite forward orbits,
respectively. That is, we set

CG := {g±∞ : g ∈ G, |g| =∞}
and

C+G := {g∞ : g ∈ G, |g| =∞}.
We want to measure the distance between two orbits as if it were an angle. For
this, fix α > 0 and c ∈ N, and call the set

α · g∞ + c := {v ∈ G : ∃n ∈ N such that d(v, gn) ≤ α · d(1, gn) + c}
the (α, c)–cone around g∞. In other words, the (α, c)–cone around g∞ is the union
of all balls with center gn and radius α · d(1, gn) + c. Analogously we define the
(α, c)-cone around g±∞ as

α · g±∞ + c := {v ∈ G : ∃k ∈ Z so that d(v, gk) ≤ α · d(1, gk) + c}.
We write h∞ ∈ α·g∞+c if hn ∈ α·g∞+c for all n ∈ N and define h±∞ ∈ α·g±∞+c
analogously. For x, y ∈ CG or x, y ∈ C+G set

s(x, y) := inf{α ∈ R : ∃c ∈ N such that x ∈ α · y + c and y ∈ α · x+ c}.
If s(x, y) = 0 then we call x and y linearly equivalent, this is an equivalence rela-
tion. We call two elements g and h forward equivalent if g∞ ∼ h∞ and backward
equivalent if g−∞ ∼ h−∞.

It is easy to check that the function s is well defined on the set of equivalence
classes and that the square root t =

√
s is a metric on the quotient C+G/∼ and on

CG/∼, respectively. The completion of the metric space (C+G/∼, t) is called the
linear boundary LG of G, the completion of the metric space (CG/∼, t) is called the
projective boundary PG of G, or strictly speaking of G with respect to the generator
X. Although the elements of the linear/projective boundary are equivalence classes
of (forward) orbits g(±)∞, and not the (forward) orbits themselves, we shall slightly
abuse notation and write g(±)∞ instead of [g(±)∞]∼ also for an element of the linear
or projective boundary.

If G is finitely generated and we change the finite set of generators then the
resulting quotient spaces are bi-Lipschitz equivalent and hence the boundaries are
homeomorphic. But the values of s and t depend on the choice of generators.
Moreover, by definition it is clear that the diameter of LG and of PG is at most 1.
For more details we refer to [6].

The linear boundary of finitely generated nilpotent groups is (homeomorphic
to) the disjoint union of spheres with dimensions di, which correspond to the free
abelian quotients of rank di+1 in the central series, and the projective boundary is
(homeomorphic to) the disjoint union of projective spaces of the same dimension;
see [6]. The latter fact relies on the observation that in the case of a nilpotent group
the distance t(g∞, h∞) equals the distance of the inverse elements t(g−∞, h−∞) for
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all g∞, h∞ ∈ LG. Thus the space PG can be obtained identifying each element with
its inverse without changing distances (that is, tPG(g±∞, h±∞) = tLG(g∞, h∞)
holds for all g, h ∈ G).

One might guess that this yields a general method to construct the projective
boundary but the results in Section 3 show that this is not the case. In general it
is not even true that g∞ = h∞ implies g−∞ = h−∞ hence the projective boundary
is not necessarily a quotient of the linear boundary.

Theorem 1.1. There is a group H with elements g1 and g2 which are forward-
equivalent but not backward-equivalent.

The proof of Theorem 1.1 is given in Section 3.

Knowing of these counterintuitive phenomena regarding the distances of forward
orbits compared to the distances of backward orbits, it is natural to ask whether
the ‘algebraic antipodal’ g−∞ of g∞ ∈ C+G is also the metric antipodal. In other
words, one would like to know whether t(g∞, g−∞) is always 1 or if at least this
distance is universally bounded away from 0. We show that the answer to the first
question is negative, but that there is a positive lower bound for t(g∞, g−∞).

Theorem 1.2.

(a) For any finitely generated group G and any g ∈ G of infinite order we have

t(g∞, g−∞) ≥
√

1/2.
(b) There exists a finitely generated group G which has an element g such that

t(g∞, g−∞) ≤
√

12/17.

The proof of this result will span from Section 4 to Section 6. While the proof
of the first part of Theorem 1.2 is not overly complicated, the proof of the second
part is quite lengthy and takes up most of these three sections. There, we give
an example of a family of groups as in Theorem 1.2(b). The groups in question
are derivations of the so called Baumslag-Gersten group and in order to prove our
theorem we have to understand some of the intrinsic geometry of these groups.

As we will see, the geometry of a cyclic subgroup can be very different from the
usual geometry of the group of integers. This phenomenon is known as distortion
and leads to one of the asymptotic invariants studied by Gromov in his seminal
book [5]. For an element h of a group G generated by the finite set X let |h|X
denote the length of the shortest word representing h in letters of X±, where
X± = {x ∈ G : x ∈ X or x ∈ X−1}. Gromov defines the distortion function for a
subgroup H generated by the finite set Y as:

∆H
G (r) :=

1

r
max{|h|Y : h ∈ H, |h|X ≤ r}.

This function measures something like a worst-case distortion and can easily be
superexponential, for instance in the group Gp of Theorem 4.2. Such examples
suggest that the factor 1/r is a bit artificial and in fact nowadays most authors
follow the definition of Farb [3] who defined the distortion function just as ∆H

G (r) :=
max{|h|Y : h ∈ H, |h|X ≤ r}.

In the context of this work we are interested in the distortion of cyclic subgroups
(or even cyclic subsemigroups). But as we would like to view these subgroups
just as a set rather than as a sequence, worst-case considerations do not seem
appropriate. A better fitting concept will be a kind of average-case distortion for
cyclic subgroups—called growth of elements—which we define as follows:

Definition 1.3. Let G be a group generated by the finite set X and let g ∈ G. The
growth of g is the function wg(n) : N→ N which counts the number of elements of
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the type gi in the ball B1(n) of radius n around 1:

wg(n) := |{i ∈ Z : |gi|X ≤ n}|.

Note that for the group H = 〈g〉 our growth function wg(n) measures the number
of elements of H in the ball of radius r around 1, while Gromow’s distortion ∆H

G (r)
determines the absolute value of the maximum of all i such that gi still lies in
this ball. There are some easy bounds on the growth. First of all, balls in Cayley
graphs grow at most exponentially fast. Namely, it is easy to see that the upper
bound wg(n) ≤ |B1(n)| ≤ (2|X|−1)(2|X|)n−1 holds. Less obvious but still straight-
forward is the fact, that for all k ∈ N we have

wg(kn) ≥ k · wg(n).

For instance the groups which will be defined in Theorem 4.2 contain elements with
exponential growth function, and in free nilpotent groups of class c the growth
function of a central element is equivalent to nc. The results of Olshanskii and
Sapir [8] on length functions of subgroups, which are a very precise measure for
distortion phenomena, suggest that there exist a broad variety of growth functions
for elements. It seems natural to ask the following question:

Problem 1.4. Can two elements g and h of a group, whose forward orbits are
linearly equivalent, have growths of different order?

In Section 2 we will give a partial solution to this problem. If g is an element
of exponential growth, then there is even a minimal distance between g±∞, and
any other orbit of PG of an element h of the group which has a different growth.
This minimal distance depends on the number of generators of G and the growth
functions of g and h. Our lower bound also holds for the minimal distance in LG.

Theorem 1.5. For every d ∈ N, δ > 1 and γ > δ there is a tmin = tmin(d, γ, δ)
such that for each group G that is generated by d elements, and any g, h ∈ G with
wg(n) ∈ ω(γn) and wh(n) ∈ o(δn) we have that

t(g±∞, h±∞) ≥ tmin and t(g∞, h∞) ≥ tmin.

In order to be able to speak of the growth of an element of a group without
fixing a generating set, we consider equivalence classes of growth functions rather
than explicit functions. Functions f, g : N→ N are called weakly equivalent if there
exist constants c1, c2 such that

g(n) ≤ c1f(c1n+ c2) + c2 and

f(n) ≤ c1g(c1n+ c2) + c2

hold. If X and Y are finite generating sets for G, then Cay(G,X) and Cay(G, Y )
are bi-Lipschitz equivalent and therefore the growth function of g with respect to
X and the growth function of g with respect to Y are weakly equivalent. Note that
this equivalence separates exponential functions from sub-exponential functions and
hence having an exponential growth function is a property of the group element
which is independent of the chosen generating set.

We say that an element of a finitely generated group has exponential growth if
there is a generating set S of G such that the growth function of g with respect to S
is exponential (by the preceding paragraph, this holdss then so for any generating
set S). Now, Theorem 1.5 immediately gives the following corollary.

Corollary 1.6. If g is an element of a finitely generated group that has exponential
growth, then every element h with g∞ = h∞ (or with with g±∞ = h±∞) also has
exponential growth.
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Before we start let us fix some further notation. Throughout the paper G will be
a group generated by a (usually finite) set X. The free monoid over the alphabet
X± will be denoted X∗ and ` is the length function on X∗. The assumption that X
is a generating set of G implies the existence of a surjective monoid homomorphism
π : X∗ → G and it is straightforward that for g, h ∈ G we have

d(g, h) = min{`(w) : w ∈ X∗, π(x) = g−1h}.

Using this fact, we mostly work with representing words for group elements. We
will use the shorthand notation w1 =G w2 for π(w1) = π(w2) whereas w1 = w2

means that the two words as elements of X∗ are equal.
We assume that the reader is familiar with the concept of HNN-extensions and

in particular with Britton’s Lemma which most of our considerations concerning
Part (b) of Theorem 1.2 rely on. Britton’s Lemma can be used to derive a normal
form for elements in HNN-extensions and gives a necessary condition for a word to
represent the identity. The standard references for these results (and many other
facts on HNN-extensions) are [7] and [10].

2. Distortion phenomena

The present section is dedicated to the aforementioned distortion phenomena.
We prove Theorem 1.5.

Proof of Theorem 1.5. We will only show the result for the elements of the projec-
tive boundary, that is, we show the existence of a number tmin such that for each
group G that is generated by d elements, and any g, h ∈ G with wg(n) ∈ ω(γn)
and wh(n) ∈ o(δn), the inequality t(g±∞, h±∞) ≥ tmin holds. The other part can
be shown analogously.

We assume that t(g±∞, h±∞) < 1, since otherwise 1 is the desired bound.
Since wg(n) ∈ ω(γn) and wh(n) ∈ o(δn) there exist constants N0, c1, c2, such

that for all n > N0 it holds:

(1) wg(n) ≥ c1 · γn and wh(n) ≤ c2 · δn

Let n > N0, let α ∈ R s.t. 1 > α > t(g±∞, h±∞)2 = s(g∞, h∞).
By definition there exists a constant c such that for all i ≥ 0 there exists a

j = j(i) such that

gi ∈ Bαd(1,hj)+c(hj).

If d(1, gi) ≤ n then by the triangle-inequality,

d(1, hj) ≤ d(1, gi) + d(gihj) ≤ n+ αd(1, hj) + c

and thus d(1, hj) ≤ n+c
1−α .

Set I := {i ∈ Z : d(1, gi) < n}, and set J := {j ∈ Z : d(1, hj) ≤ n+c
1−α}. Then for

each i ∈ I we have i(j) ∈ J . By (1), |I| ≥ c1γ
n and |J | ≤ c2δ

n+c
1−α , and the latter

is smaller than c3δ
n

1−α for some constant c3. Hence, by the pigeon-hole principle,
there exists a j, such that

|Bαd(1,hj)+c(hj)| ≥
c1 · γn

c3 · δ
n

1−α
=
c1
c3

(
γ

δ
1

1−α

)n
.

On the other hand |Bαd(1,hj)+c(hj)| is bounded above by a power of the number of
generators d, namely by

|Bαd(1,hj)+c(hj)| ≤ 2d · (2d− 1)αd(1,h
j)+c−1.
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We obtain the inequality

c1
c3

(
γ

δ
n

1−α

)n
≤ 2d · (2d− 1)αd(1,h

j)+c−1

≤ 2d · (2d− 1)α
n+c
1−α+c−1

= c4 · (2d− 1)
αn
1−α

= c4 ·
(
(2d− 1)

α
1−α
)n
,

for c4 = 2d · (2d − 1)
αc

1−α+c−1. This has to be true for arbitrary large values of n,
which is possible only if

γ

δ
1

1−α
≤ (2d− 1)

α
1−α

⇔ γ1−α ≤ (2d− 1)α · δ

⇔ ln γ − α · ln γ ≤ α · ln (2d− 1) + ln δ

⇔ ln γ−ln δ
ln (2d−1)+ln γ ≤ α

⇔ log(2d−1)γ
γ
δ ≤ α.

Note that γ
δ < (2d− 1)γ and therefore this lower bound is less than 1. We obtain

the lower bound t(g±∞, h±∞) ≥
√

log(2d−1)γ
γ
δ . �

The complete answer to Problem 1.4 remains open. In addition it might be
an interesting project to completely understand the relationship between the usual
distortion of cyclic subgroups and the growth of the generating element. It obviously
happens that cyclic subgroups of different distortion yield elements of the same
growth type but whether it can also be the other way around is an open question.

3. Forward- vs. backward-equivalence

In this section we will construct a group H that contains elements g1 and g2 for
which g∞1 ∼ g∞2 but g−∞1 6∼ g−∞2 . The group H is an iterated HNN-extension of
a cyclic group (generated by the element a) with stable letters s, t, x given by the
presentation

H =
〈
a, s, t, x

∣∣t−1at = a2, s−1as = a2, x−1sx = s2
〉
.(2)

Thus H is isomorphic to a free product with amalgamation H = H1 ∗〈a〉 H2

where H1 is the Baumslag-Solitar group BS(1, 2) = 〈a, t|t−1at = a2〉 and H2 =
〈a, s, x|s−1as = a2, x−1sx = s2〉 is an HNN-extension of BS(1, 2) = 〈a, s|s−1as =
a2〉 with associated subgroups 〈s〉 and 〈s2〉.

We use the group H to prove Theorem 1.1.

Proof of Theorem 1.1. We have to show that H contains elements g1 and g2 which
are forward-equivalent but not backward-equivalent. We do this for g1 := t and
g2 := at.

First of all, we estimate the distance dH(1, gki ) for k ∈ Z. In all defining relations
of presentation (2) the exponent sum of t is zero, hence any word representing tk

needs at least |k| times the letter t (or t−1 if k < 0). So the word tk is geodesic and

(3) d(1, gk1 ) = |k|.
The same argument yields that

(4) |k| ≤ d(1, gk2 ) ≤ 2|k|,
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which will be a sufficient approximation for our purpose.
Let k > 0. We can use the relation t−1at = a2, which is the same as at = ta2,

to see that

(5) gk2 = tka2
k+1−2.

By definition, the distance dH(gk1 , g
k
2 ) is the same as

(6) dH(1, g−k1 gk2 ) = dH(1, t−ktka2
k+1−2) = dH(1, a2

k+1−2).

One easily checks that

(7) a2
k+1−2 = s−(k+1)ask+1a−2.

Hence to obtain an upper bound for dH(1, g−k1 gk2 ) we need to find a good upper
bound for dH(1, sk). Let kmkm−1 . . . k0 be the binary code for k (that is, ki ∈
{0, 1} and km = 1). Then, because of the relation x−1sx = s2, it holds that

(
∏m−1
i=0 skix−1)sxm = sk. The fact that m = blog2 kc gives us the upper bound

dH(1, sk) ≤ 3 · blog2 kc+ 1. Thus by (6) and (7),

(8) dH(1, g−k1 gk2 ) ≤ 6 · blog2(k + 1)c+ 5.

In order to show that dXLH(g∞1 , g
∞
2 ) = 0, we now fix an α > 0 and show that

dLH(g∞1 , g
∞
2 ) ≤ α. To do so, by (4), it suffices to show that there exists a constant

c = c(α) such that for each k there exist k1 and k2 such that dH(gk1 , g
k1
2 ) < α ·k1 +c

and dH(gk2 , g
k2
1 ) < α ·k2 + c. Choosing k1 = k2 = k and using (8), this breaks down

to the statement that there exists a constant c = c(α) such that

6 · blog2(k + 1)c+ 5 ≤ α · k + c,

which is obviously true. This shows that g1 and g2 are forward-equivalent.
We shall now show that g1 and g2 are not backward-equivalent. In fact, we claim

that dLH(g−∞1 , g−∞2 ) = 1. For this, by (3), it suffices to show that for each c ∈ N
there exists an l′ ∈ N such that for all l ∈ N the inequality

dH(g−l
′

2 , g−l1 ) > 1 · d(1, gl1) + c = `+ c

holds. Set l′ := c+ 2. By definition, and because of the relation t−1a−1t = a−2, we
have

dH(g−l
′

2 , g−l1 ) = dH(1, gl1g
−l′
2 ) = dH(1, tla−(2

l′+1−2)t−l
′
),

where for the last inequality we used (5).

Now, h = tla−(2
l′+1−2)t−l

′
is an element of the subgroup H1 and we can try to

simplify it within the presentation of this group. Using 2l
′ − 1 times the relation

t−1a−1t = a−2 we obtain that h = tl−1a−2
l′+1t−l

′+1. In this word the number of
a−1’s is odd and therefore the t’s and t−1’s cannot cancel out (moving a t from left
to right through a power of a’s halves this power). For this reason any word in H1

representing h has to contain at least (l − 1) + (l′ − 1) times the letters t or t−1.
The group H is a free product with amalgamation of H1 and H2 and because

no power of t is contained in the cyclic subgroup generated by a. Also, any word
in H representing h has to contain at least (l − 1) + (l′ − 1) times the letters t or
t−1. So,

dH(g−l1 , g−l
′

2 ) ≥ (l − 1) + (l′ − 1) > 1 · l + c,

as desired. �
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4. The distance between g∞ and g−∞

The remainder of this paper is devoted to the proof of Theorem 1.2. We split it
into two parts. First we show in Theorem 4.1 the easier lower bound, the distance
between two elements g∞ and g−∞ = (g−1)∞ of the linear boundary of a finitely
generated group G. The more difficult part of Theorem 1.2 is obtained from Theo-
rem 4.2, which shows that there are examples of groups with elements g where the
distance between g∞ and g−∞ is strictly smaller than 1. The proof of Theorem 4.2
will continue in Sections 5 and 6.

But let us first show the easier bound:

Theorem 4.1. Let g be an element of a finitely generated group of infinite order.
Then t(g∞, g−∞) ≥ 1/

√
2.

Proof. Any ball in a group with respect to a finite generating set is finite. Hence

(9) lim
i→∞

d(1, gi) =∞.

Suppose α ∈ R is such that s(g∞, g−∞) < α. Then there is a c ∈ N such that for
each i there exists an m(i) ∈ N with

d(g−i, gm(i)) ≤ α · d(1, gm(i)) + c

≤ α ·
(
d(1, g−i) + d(g−i, gm(i))

)
+ c,

using the triangle-inequality. By (9), there is an increasing sequence (in)n≥1 such
that

(10) d(1, gk) > d(1, gin)

for all k > in. Thus

α ≥ d(g−in , gm(in))− c
d(1, g−in) + d(g−in , gm(in))

=
d(1, gin+m(in))− c

d(1, gin) + d(1, gin+m(in))

(10)

≥ d(1, gin+m(in))− c
2 · d(1, gin+m(in))

=
1

2
(1− c

d(1, gi+m(in))
).

Since this inequality is valid for all in, n ∈ N, and because of (9), we obtain that
α ≥ 1/2. As α may be chosen arbitrarily close to s(g∞, g−∞), this implies that

s(g∞, g−∞) ≥ 1/2, and thus, t(g∞, g−∞) ≥ 1/
√

2. �

We now turn to the proof of the second part of Theorem 1.2. This proof is
rather tedious and will span over the remainder of this section and the following
two sections.

Theorem 4.2. Let p ≥ 20. In the group Gp = 〈a, t|t−1a−1tat−1at = ap〉 it holds

that t(a∞, a−∞) ≤
√

12/17.

Remark 4.3. The group Gp from Theorem 4.2 has a perhaps more natural de-
scription: Consider the Baumslag-Solitar group BS(1, p) = 〈a, x|x−1ax = ap〉 and
build the HNN-extension with associated subgroups 〈a〉 and 〈x〉. The resulting
group is isomorphic to Gp. Furthermore, if we replace the p in the presentation
by the number 2 we obtain what is called the Baumslag-Gersten group G2. This
group was constructed by Gersten [4] (see also [9]) as an example of a group with
Dehn function ∼ n2.
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Remark 4.4. From now on we consider p ≥ 20 to be a fixed number. We chose
a lower bound of 20 for the sake of brevity of the arguments. However, this is not
the best possible bound for p. As a matter of fact we believe the theorem to hold
for all p ≥ 2.

We already remarked that the remainder of this section and the following two
sections are devoted to the somewhat lengthy proof of Theorem 4.2. The main aim
of rest of the present section is to introduce certain short geodesic words wk of Gp,
which represent large powers of a. The words wk will later be used to show that
t(a∞, a−∞) is bounded from above by

√
12/17.

For the sake of simplicity, let us shift our attention for a moment from Gp to the
infinitely generated group G′ which shall be defined next. First, set

Gki := 〈ai, . . . , ak | a−1j aj−1aj = apj−1, j = i+ 1, i+ 2, . . . , k〉
G∞i := 〈ai, ai+1 . . . | a−1j aj−1aj = apj−1, j = i+ 1, i+ 2, . . .〉,

and set G′ := G∞0 . Then Gki = 〈Aki 〉G′ and G∞i = 〈Ai〉G′ where

Aki := {ai, . . . , ak} and A∞i :=
⋃
k>i

Aki .

Using the isomorphism ϕ(aj) = aj+i we see that

(11) G∞i
∼= G′ and Gkj

∼= Gk+ij+i for all i, j, k ∈ N.

We shall now embed G′ in Gp. By (11), the subgroup generated by the elements
{ai, ai+1, ai+2 . . .} is isomorphic to G′. Therefore we can construct the ascending
HNN-extension G associated to ϕ. Then

G = 〈t, ai(i = 0, 1, 2 . . .) | a−1i+1aiai+1 = api , t
−1ait = ai+1〉.

Substituting a0 by a and applying Tietze-transformations we obtain the presenta-
tion from Theorem 4.2:

G = Gp = 〈a, t | t−1a−1tat−1at = ap〉.

So G is in fact a one-relator group on two generators. Even if the elements ai do
no longer belong to our set of generators, we will still use the notation ai for the
element t−iati. In order to prove Theorem 4.2 we are only interested in distances
between powers of a, hence elements of the subgroup G′. Such words have to contain
the same number of letters t and t−1. Moreover, they can be written entirely in
letters ai using the following rewriting process:

Let v be a word in {a±, t±}∗ as above. We replace every a by the letter ai
and every a−1 by a−1i , where i is the difference of the number of t−1’s and the
number of t’s ahead of this a or a−1, respectively. Afterwards we delete all letters
t± to obtain the word v′ ∈ {a±i }∗i∈N. For example v = t−2at4a2t−3a−5ta becomes
v′ = a2(a−2)2(a1)5a0.

If the word v is (freely) reduced, we can recover it out of v′ just by replacing
ai by t−iati and a−1i by t−ia−1ti, respectively, and freely reducing the result then.
This defines a bijection ψ between the reduced words in {a±i }i∈N and the reduced
words in {a±, t±}∗ that have the same number of letters t and t−1.

We proceed to defining the words wk which shall be used as ‘shortcuts’ to go
from large negative powers to large postive powers of a in the proof of Theorem 4.2.
Our definition of the wk will rely on the words w′k in G′ representing large powers
of a0 which we define first.
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For this, first note that

a−ki+1 ai a
k
i+1 =G′ a

−(k−1)
i+1 api a

k−1
i+1

=G′ (a
−(k−1)
i+1 ai a

k−1
i+1 )p

=G′ ((a
−(k−2)
i+1 ai a

k−2
i+1 )p)p

=G′ (a
−(k−2)
i+1 ai a

k−2
i+1 )p

2

=G′ . . .

=G′ ap
k

i .

Now set w′0 = a0 and obtain the word w′i by conjugating all letters ai−1 in the
word w′i−1 with ai. Let np denote the tower of length n of pth powers (often called

tetration of p by n), e.g. 3p = pp
p

. (Note that by convention ab
c

= a(b
c), not (ab)c.)

Set

w′0 := a0

w′1 := a−11 a0a1

=G′ ap0

w′2 := (a−12 a−11 a2) a0 (a−12 a1a2)

=G′ a−p1 a0a
p
1

=G′ a
2p
0

w′3 := (a−13 a−12 a3) a−11 (a−13 a2a3) a0 (a−13 a−12 a3) a1 (a−13 a2a3)

=G′ (a−p2 a−11 ap2) a0 (a−p2 a1a
p
2)

=G′ a−
2p

1 a0 a
2p
1

=G′ a
3p
0

...

w′n := . . . =G′ a
np
0 .

Notice that the word w′k only consists of 2k+1 − 1 letters.
Finally, let wi := ψ(w′i). Then:

w0 = a

w1 = t−1a−1tat−1at

w2 =

ψ(a−1
2 )︷ ︸︸ ︷

t−2a−1t�t

ψ(a−1
1 )︷ ︸︸ ︷

��t
−1 a−1�t

ψ(a2)︷ ︸︸ ︷
��t
−1t−1at2

ψ(a0 a
−1
2 a1 a2)︷ ︸︸ ︷

at−2a−1tat−1at2

= t−1w−11 t a t−1w1t

...
...

There is a nice recursion formula for wi:

wi+1 = t−1w−1i t a t−1wit.
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This implies that the length of wk is given by the recursion formula l(wi+1) =
2 · l(wi) + 5 and therefore

l(wk) = 3 · 2k+1 − 5.(12)

Our proof of Theorem 4.2 will follow from the next two lemmas.

Lemma 4.5. The words wk are geodesic.

Lemma 4.5 will be proved in Section 5.
The second key ingredient in the proof of Theorem 4.2 is Lemma 4.6, to be

stated next, and to be proved in Section 6. We employ the well-known Kronecker
delta δm,n, which, here for numbers n,m ∈ Z[ 12 ], takes the value 1 if m = n, and 0
otherwise.

Lemma 4.6. Let k ∈ N, n ∈ Z such that d(1, an) =: dn < 3 · 2k+1 − 5. Then

d(1, a
kp−n) ≥ 3 · 2k+1 − 5 + min{dn, 3 · 2k − 5} − (1− δk,1) min{dn, 2k−1}.

Furthermore, if k ≥ 2 and no geodesic word representing an contains a letter t
(which is easily seen to be equivalent to |n| < p+7

2 ), then

d(1, a
kp−n) ≥ 3 · 2k+1 − 5 + dn − δ|n|, p+6

2
.

Postponing the proofs of Lemma 4.5 and Lemma 4.6 to the next two sections we
first show how they imply Theorem 4.2:

Proof of Theorem 4.2. Observe that it suffices to show that for all α > 12/17 there
is a c such that the elements a−n are contained in the (α, c)-cones of a∞. Then by
symmetry, the reciprocal is true as well, showing that the distance between a∞ and
a−∞ is at most

√
12/17. Let α > 12/17 and set c := 5.

Let n > 0. Now, let k = k(n) be the unique positive integer such that

3 · 2k+1 − 5 > d(1, an) ≥ 3 · 2k − 5.

We define h = h(n) := kp− n. Hence, by Lemma 4.5 and by (12),

(13) d(a−n, ah) = d(1, a
kp) = 3 · 2k+1 − 5.

Using Lemma 4.6 we obtain

d(1, ah) > 3 · (2k+1 + 2k)− 2k−1.

By (13) this shows that

d(a−n, ah) = 3 · 2k+1 − 5

= 12/17 · (3 · (2k+1 + 2k)− 2k−1)− 60/17

< α · (3 · (2k+1 + 2k)− 2k−1) + c

≤ αd(1, ah) + c,

and thus a−n lies in the (α, c)–cone around a. �

5. The words w′k and wk are geodesic

The main aim of this section is to prove Lemma 4.5, namely that the words wk
are geodesic in G. This will be obtained by a series of results on the groups Gki and
G∞i . A bit outside our way towards Lemma 4.5, we will also sketch a proof for the
fact that the words w′k are geodesic in G′ (Lemma 5.5).

The other important results of this section will be Lemmas 5.6 and 5.7 which
are used in the proof of our main theorem, Theorem 4.2.

We start by showing a number of rather easy lemmas.
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Lemma 5.1. Let k > i and let w be a reduced word in Gki with w =Gki
ani . Then

there are words vα, α = 1, . . . n, in Gki such that

(a) w = a`0i v1a
`1
i v2a

`2
i . . . vn,

(b) vα =Gki
aβαi+1 for some βα ∈ Z, and

(c)
∏n
α=1 vα =Gki

1.

Proof. For fixed i, we use induction on k. For k = i + 1 the group Gki is the
Baumslag-Solitar group BS(1, p) for which the above statement is well-known.

So suppose k > i+ 1, and assume the statement true for k− 1. The group Gki is

an HNN-extension of Gk−1i with associated subgroups 〈ak−1〉 and 〈apk−1〉 and stable

letter ak. As wa−ni =Gki
1, Britton’s lemma implies that w contains a−1k a`k−1ak or

aka
p`
k−1a

−1
k as a subword. Replacing such a subword by ap`k−1 or a`k−1, respectively,

we obtain a word with less occurrences of ak which represents ani . Repeating

this procedure several times, if necessary, we arrive at a word w′ ∈ (Ak−1i )∗ still

representing ani . By the induction hypothesis, w′ has the form a`0i v1a
`1
i v2a

`2
i . . . vn

with vα =Gk−1
i

aβαi . Since all replacements have been made inside the words vα, w

also has the desired form. The statement follows. �

Lemma 5.2. Let i ∈ N. Any geodesic word in G′ representing an element of Gii is
an element of (A∞i )∗.

Proof. By (11), it is sufficient to show that for fixed i ∈ N, the letter a0 and its
inverse a−10 are not contained in any geodesic word representing an element of 〈ai〉.
Let v =G′ a

l
i be a geodesic word in G′ containing a0 or a−10 and set Ĝ := G′/〈〈a0〉〉.

The word v′ which is obtained from v by deleting all occurrences of a0 and of a−10 in

v and the word ali represent the same element in Ĝ. Therefore w := v′◦a−li ∈ 〈〈a0〉〉.
Now, w does not contain the letter a±0 (as v′ and a−`i do not) and due to the

fact that the only relation involving the letter a±0 is a−11 a0a1 = ap0, this implies that
w = 1 and v′ =G′ a

l
i. This contradicts our assumption that v is geodesic. �

Corollary 5.3. The subgroups G∞i are undistorted in G′. That is, for the gener-
ators considered above, the distances of elements of G∞i is the same in G∞i as in
G′.

Proof. Since subwords of geodesic are geodesic, any geodesic word in (A0)∗ repre-
senting an element of G∞i can be divided in geodesic subwords each representing

elements of Gjj for some j ≥ i. Because of Lemma 5.2, none of these subwords can

contain a letter of Ai−10 . Therefore w ∈ (A∞i )∗. �

Lemma 5.4. Let k ≥ i ≥ 0. Any geodesic word in G′ containing the letter a±k and
representing an element of 〈ak−i〉 has at least length 2i+1 − 1.

Proof. Let v be a geodesic word representing an element of 〈ak−i〉 and we may
assume k = max{j : aj ± is contained in v}. We prove the statement by induction
on i. Let i = 0. A word containing a±k has at least length 1 = 20+1 − 1. Now
assume the statement to be true for i = n− 1.

Let v be a geodesic word representing a`k−n and containing the letter ak±. Ac-

cording to Lemma 5.1, v = v1a
`1
k−nv2 . . . a

`m
k−nvm+1 where each vα =G′ a

βα
k−n+1 for

some βα and the product v1v2 . . . vm+1 = 1. Since v contains a letter a±k , there

exists an α, such that vα contains a±k . Since vα is geodesic, it has by induction

hypothesis length at least 2n − 1. Since v′ = (
∏m
γ=α+1 vγ)(

∏α−1
γ=1 vγ) is a word

representing v−1α this word cannot be shorter than the geodesic word vα and also
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contains at least 2n− 1 letters. All in all, since v contains at least 1 letter ak−n we
obtain that the length of v is at least 2 · (2n − 1) + 1 = 2n+1 − 1. �

In particular the last lemma shows that there exist no geodesic word containing
a±k and representing an element of 〈a0〉, which is shorter than w′k. And in fact the
following lemma, which will not be needed in the course of this paper, holds:

Lemma 5.5. The word w′k is a geodesic word in G′.

Proof. The word w′k represents the element a
kp
0 and has length 2k+1 − 1. So, by

Lemma 5.4 for i = k we only have to show that every geodesic word representing

a
kp
0 has to contain the letter ak. This can again be done by induction on k. The

statement is obviously true for k = 0. Because we won’t need this statement later
on, we leave the proof of the induction step, which can be done following the lines
of the proof to Lemma 5.7, to the reader. �

In contrast to the situation in G′ the product wiwj for i 6= j won’t be freely
reduced. Nevertheless in the group G the analogue of Lemma 5.4 also holds.

Lemma 5.6. Let k ≥ 0. Let w be a geodesic word representing a non-trivial
element of 〈a0〉 such that w′ = ψ−1(w) contains the letter a±k . The length of w is

at least 3 · 2k+1 − 5.
If in addition `(w) = 3 · 2k+1 − 5, then w =G a±(

kp).

Proof. Without loss of generality we may assume that k = max{j : a±j is contained in w′}.
We prove the statement by induction on k. For k = 0 the statement is trivial.

For k > 0, Lemma 5.1 yields that w′ = v′0a
`1
1 v
′
1 . . . a

`m
0 v′ma

`m
0 where each v′α =G′

aβα1 for some βα and the product v′0v
′
1 . . . v

′
m = 1. It is easy to check that since w

is reduced, the v′α do not contain any letters a0. Then

w = a`0t−1v1ta
`1t−1v2ta

`2 . . . a`m−1t−1vmta
`m

where each vα =Gp a
−βα
0 and the product v0v1 . . . vm = 1 (note that this is the

same as saying that
∑
βα = 0).

Since w′ contains a letter ak±, there exists an α∗, such that v′α∗ contains a±k−1.
As a subword of w, the word vα∗ is geodesic, it has by induction hypothesis length
at least 3 · 2k − 5. Because v1v2 . . . vm = 1 the product of the other vα also has
length at least 3 · 2k − 5, and furthermore, we have at least four t’s and an a`α , the
bound follows.

For the second assertion of the lemma, we again apply induction. The base
case is trivial. If `(w) = 3 · 2k+1 − 5 then vα∗ has length 3 · 2k − 5 and so has

Πα6=α∗vα = v2. Thus v1 =G v2 =G a±
k−1p. So w contains exactly 4 letters t. Hence

w = t−1v1ta
±t−1v−11 t, which implies w =G a±

kp. �

Furthermore we can bound the power of a which is represented by a word of
given length avoiding high powers of t.

Lemma 5.7. Let k ≥ 1. Let v be a word of length less than L · 2k−1 in G repre-
senting an element an for some n ∈ Z such that ψ−1(v) does not contain the letter
a±k . Then

|n| < pp
··
·p
L

where the number of p’s is k − 1.

Proof. Without loss of generality we assume v to be reduced. Set j := max{l : al ∈
ψ−1(v)}. This implies ψ−1(v) ∈ Gj0. Applying successively Britton’s Lemma to
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the word ψ−1(v) ◦ a−n0 we conclude that ψ−1(v) contains for each ` ∈ {0, 1, . . . j} a
letter a`. Therefore j < k and ψ−1(v) does not contain any a` with ` ≥ k.

We proceed by induction on k. Let k = 1. The word ψ−1(v) does not contain a
letter a±1 . Therefore v = aα for some |α| < L. Obviously n = α and we are done.

Let k ≥ 2 and assume the statement to be true for k − 1. We only consider the
case that n is positive, as the other case is symmetric. We may assume that v is
such that n is maximal among all possible values for n over all choices of v as in the
lemma. Note that then l(v) = L · 2k−1 − 1, and furthermore, v is shortest possible
among all v satisfying the assumptions of the lemma.

Now, as in the proof of Lemma 5.6 we obtain

v = al0t−1v1ta
l1t−1v2t . . . t

−1vmta
lm ,

with vi =G a−βi for some βi such that
∑
βi = 0. But now we can calculate n in

terms of li and βi, namely

n = l0 +

m∑
i=1

lip
∑i
j=1 βj ≤ (

m∑
i=0

li) · pmaxi
∑i
j=1 βj =: y.

Let c be such that maxi
∑i
j=1 βj =

∑c
j=1 βj . By deleting all but four letters t and

rearranging the letters a we obtain the word

v′ = t−1v1v2 . . . vcta
∑m
i=0 lit−1vc+1 . . . vmt.

Then l(v′) ≤ l(v) and v′ =G ay. Since v was chosen such that n is maximal, we
obtain that y = n. Then `(v) = `(v′). So, we actually did not delete any t when
creating v′, and thus v = v′. Hence

v = t−1v1ta
lt−1v2t,

with v−11 =G v2 =G aα for some α ∈ Z and n = l · pα.
Assume that l ≥ 3. Then we can build the word v′′ = t−1v1a

−1tal−2t−1av2t
which is of the same length as v and represents a((l−2)p)p

α

in contradiction to the
maximality of n. Therefore l ≤ 2. Since v is shortest possible under the assumptions
of the lemma so are v1 and v2, and hence `(v1) = `(v2). Since `(v) is odd, it follows
that l = 1 and

`(v1) =
L · 2k−1 − 1− 5

2
< L · 2k−2.

By induction hypothesis

|α| < pp
··
·p
L

where the number of p’s is k − 2. and since n = 1 · pα we obtain the desired
inequality. �

The two preceding lemmas imply Lemma 4.5, that is, that the wk are geodesic:

Proof of Lemma 4.5. Lemma 5.7 implies that every word that represents wk and
has only letters aj or a−1j with j < k is at least as long as wk. On the other hand,

by Lemma 5.6 we know that any word containing ak or a−1k is as least as long as
wk (and, if a word contains letters aj for j > k it is still longer). So the statement
follows. �

6. The proof of Lemma 4.6

This final section is devoted to the proof of Lemma 4.6, which is the only ingre-
dient missing for our proof of Theorem 4.2. We build on results from Section 5.
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Proof of Lemma 4.6. First of all, observe that then by Lemma 5.6, every geodesic
word representing an is ak-less. So by Lemma 5.7, we know that

(14) n < pp
··
·p

12

where the number of p’ s is k − 1.
In order to prove the lemma, we use induction on k. For k = 1, we only have to

check that d(1, ap−n) ≥ 8 ≥ 12− 5 + min{n, 1} − 0 for all n with n < 12, by (14).
This is true as by the choice of p, we have p− n > 8, and testing all words with at
most 7 letters we see that none of them represents an ax with x ≥ 8.

So assume the lemma valid for k − 1, our aim is to show it for k. Suppose

otherwise, that is, assume there is a word v with v =G a
kp−n and

`(v) < 3 · 2k+1 − 5 + min{dn, 3 · 2k − 5} −min{dn, 2k−1}(15)

≤ 3 · (2k+1 + 2k)− 10

≤ 18 · 2k−1 − 10.

We claim that

(16) ψ−1(v) contains the letter ak.

In fact, otherwise we may apply Lemma 5.7 to v, with L = 18, to obtain that

kp− pp
··
·p

12

< kp− n < pp
··
·p

18

where on either side the number of p’ s equals k−1, and the first inequality follows
from (14). This, however, is impossible, as p ≥ 20. We have thus proved (16).

Now, by Lemma 5.1, we can write ψ−1(v) as a`00 v1a
`1
0 v2a

`2
0 . . . vma

`m
0 , and thus,

(17) v = a`0t−1u1ta
`1t−1u2ta

`2 . . . t−1umta
`m

where ui =G a−αi , for i = 1, . . .m. Clearly,

(18) kp− n = `0 +

m∑
i=1

`ip
∑i
j=1 αj ,

and the sum over all αi equals 0. Note that since v is geodesic, we may assume
that `i < p for i = 1, . . .m.

Suppose c ∈ {1, . . . ,m} is such that ψ−1(uc) contains the letter a±k−1. Then by
Lemma 5.6,

(19) `(uc) ≥ 3 · 2k − 5.

So, as 3 · (3 · 2k − 5) > `(v) − 5, and moreover, since each uc as above gives rise
to two letters t, we conclude that there are less than 3 indices c such that ψ−1(uc)
contains the letter a±k−1. On the other hand, by (16), there is at least one such
index, say c1.

Moreover, since the expression in (17) contains m times a subword of the form
t−1uit, and also at least m− 1 letters a, we can use (19) to get that

(20) m <
`(v)− `(uc1) + 2

4
< 3 · 2k−1.

Together, (18) and (20) imply that there is an index b such that

`b · p
∑b
i=1 αj >

pp
··
·p
p−1

3 · 2k−1
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where the number of p’s equals k − 1. Hence, since p > 6, and since `b < p, we
know that

p
∑b
i=1 αj >

pp
··
·p
p−1

pk

where again, the number of p’s is k − 1. Taking the logarithm, we obtain that

(21)

b∑
i=1

αj > y := pp
··
·p
p−1

− k

where the number of p’s is k−2. Because
∑b
j=1 αj = −

∑m
j=b+1 αj , this yields that

u1u2 . . . ub =G ub+1ub+2 . . . um =G ax,

where x > y. So, by Lemma 5.7, there is a second index c2 such that ψ−1(uc2)
contains the letter a±k−1.

Consider the subword

z := t−1uc1ta
`c1 t−1uc1+1 . . . t

−1uc2t

of v. By the choice of the ci,

(22) `(z) ≥ 2 · 3 · (2k − 5) + 5.

So,

(23) `(v)− `(z) ≤ 3 · 2k − 5.

Set

u := u−1c1−1u
−1
c1−2 . . . u

−1
1 u−1m u−1m−1 . . . u

−1
c2

and consider the word

v′ := a`0t−1u1ta
`1 . . . a`c1−1t−1uta`c2 t−1uuc2 ta

`c2+1 . . . t−1umta
`m .

Then v′ =G aq where

q = `0 +

c1−1∑
i=0

`ip
∑i
j=1 αi +

m∑
i=c2+1

`ip
∑i
j=1 αi .

Here we used the fact that
∑i
j=1 αj = −

∑m
j=i+1 αj .

By (23) and by the definition of v′, we know that `(v′) ≤ 2 · (3 · 2k − 5), and
moreover, ψ−1(v′) does not contain any letter a±k , we obtain that

|q| < pp
··
·p

12

where the number of p’s is k − 1. Set

s :=

c2−1∑
γ=c1

`γp
∑γ
j=1 αj = kp− n− q.

Then

(24) kp− 2pp
··
·p

12

< s < kp+ 2pp
··
·p

12

,

where the number of p’s on each side is again k − 1.
On the other hand, by (19) and since `(v) ≥ 3 · (2k+1 + 2k)− 10, we have that

(25)

c2−1∑
i=c1+1

`(ui) < 3 · 2k − 5,
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and, for each of these indices i, we know that ui is ak−1-free. Therefore each of the

differences of the exponents of p in s is less than pp
··
·p

12

where the number of p’s is
k − 2. So by (21), we can write

s = δ · pp
··
·p
p−2

where the number of p’s is k − 1, and δ is some integer. As the term after δ is
greater than the interval from (24), we know that the only possible value for s is
kp. This yields that

(26) s = kp.

Thus kp =
∑c2−1
i=c1

`ip
αi . For elementary arithmetic reasons, and because all the

αi are different (since v is geodesic) and the `i are in (0, p), this is only possible if
`c1 = 1 and c2 = c1 + 1. Hence z can be written as

z = t−1uc1tat
−1uc2t.

Taking the logarithm in (26), this implies that
∑c1
i=1 αi = k−1p. Hence,

uc1 =G a−
k−1p+

∑c1−1
i=1 αi

and

uc2 =G a
k−1p+

∑m
i=c2+1 αi .

Now we are able to prove the second part of the statement. So assume n < p+7
2 .

Then since by (22), by (18) and using the fact, that kp− n ≡ −n mod p we know
that `0 + `m = −n or `0 + `m = p − n. In the first case the length of v is at least
3 · 2k+1 − 5 + n and dn = n, and so, we are done.

In the second case
∑m−1
i=1 `ip

αi = kp − p, which implies m ≥ 3 and since by
assumption, p−n > n− 7, we get that m = 3. One of the uci now has to represent

an element different from a
k−1p and therefore, by Lemma 5.6,

3∑
i=1

`(ui) ≥ 3 · 2k − 5 + 3 · 2k − 4 + 1 = 3 · 2k+1 − 8.

In total, counting the a’s and t’s involved, we obtain that

`(v) ≥ 3 · 2k+1 + p− n > 3 · 2k+1 − 5 + n− 2.

This finishes the proof of the second assertion of Lemma 4.6.
We now apply the induction hypothesis with n1 :=

∑c1−1
i=1 αi in the role of n,

which satisfies the assumptions as a
∑c1−1
i=1 αi =G u1u2 . . . uc1−1. We then apply the

induction hypothesis again with n2 :=
∑m
i=c2

αi in the role of n, which satisfies the

assumptions as a
∑m
i=c2

αi =G uc2uc2+1 . . . um. This gives for j = 1, 2

`(ucj ) ≥ 3 · 2k − 5 + min{dnj , 3 · 2k−1 − 5} −min{dnj , 2k−2}.

So, as v contains 3m− 1 letters a and t outside the ui, we obtain

`(v) ≥ `(uc1) + `(uc2) + `(u1u2 . . . uc1−1) + `(uc2uc2+1 . . . um) + 3m− 1

≥ `(uc1) + `(uc2) + dn1
+ dn2

+ 3m− 1

≥ 3 · 2k+1 + 3m− 11

+
∑
j=1,2

(min{dnj , 3 · 2k−1 − 5} −min{dnj , 2k−2}+ dnj ).(27)
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Observe that by (15), and since the term in the sum above is always non-negative,
we get that

(28) dn ≥ 2k−1.

We claim that for j = 1, 2

(29) dnj ≤ 3 · 2k−1 − 5 or dn3−j = 0.

Indeed, suppose dn1 > 3 · 2k−1 − 5. Then by comparing (15) with (27), we obtain
that

3 · 2k − 5− 2k−1 ≥ min{dn, 3 · 2k − 5} − 2k−1

≥ 3m− 6 + min{dn1 , 3 · 2k−1 − 5} − 2k−2 + dn1

+ min{dn2
, 3 · 2k−1 − 5} − dn2

+ dn2

≥ 3m− 6 + 3 · 2k−1 − 5− 2k−2 + 3 · 2k−1 − 5 + 1

+ min{dn2
, 3 · 2k−1 − 5}

≥ 3m− 5 + 3 · 2k − 10− 2k−2 + min{dn2 , 3 · 2k−1 − 5}.
Therefore, since m ≥ 3,

−2k−1 ≥ −1− 2k−2 + min{dn2
, 3 · 2k−1 − 5},

implying that

1 ≥ 2k−2 + min{dn2
, 3 · 2k−1 − 5}.

Hence dn2 = 0. In the same way we get that the assumption dn2 > 3 · 2k−1 − 5
implies that dn1

= 0. This proves (29).

Let us define a new word ṽ which is obtained from v by replacing z with
t−1ṽ−11 ṽ2t, where the ṽi are geodesic words for ani . That is,

ṽ := a`0t−1u1t . . . a
ellc1−1t−1ṽ−11 ṽ2ta

`c2 t−1uc2 . . . t
−1umta

`m .

Clearly, ṽ represents an.
First, suppose that both ṽi contain a letter t. Note that then we may assume

that each of the ṽi starts with a t−1. Hence, dn ≤ `(ṽ) − 2. Observe that also,
dnj > 0. Hence, by (29), dnj ≤ 3 · 2k−1 − 5.

By (15) and by (28),

`(v) < 3 · 2k+1 − 5 + dn − 2k−1.

Moreover, since

`(z) = `(uc1) + `(uc2) + 5,

and by (29), we obtain

dn ≤ `(ṽ)− 2

≤ `(v) + dn1
+ dn2

+ 2︸ ︷︷ ︸
≤`(t−1ṽ1−1ṽ2t)

−`(z)− 2

< 3 · 2k+1 − 5 + dn − 2k−1 + dn1 + dn2

−
∑
j=1,2

(
3 · 2k − 5 + dnj −min{dnj , 2k−2}

)
− 5

≤ dn − 2k−1 +
∑
j=1,2

2k−2

≤ dn,

a contradiction.
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So we may assume that one of ṽ1, ṽ2 does not contain a letter t, say ṽ1. Then
we need not have that dn ≤ `(ṽ) − 2. On the other hand we can use the second
hypothesis of the induction. Hence the last calculation becomes

dn ≤ `(ṽ)

≤ `(v) + dn1
+ dn2

+ 2− `(z)

< 3 · 2k+1 − 5 + dn − 2k−1 + dn1
+ dn2

−
∑
j=1,2

(
3 · 2k − 5 + dnj

)
−min{dn2

, 2k−2}+ δ|n|, p+6
2
− 5 + 2

≤ dn − 2k−1 + 2k−2 + δ|n|, p+6
2

+ 2

≤ dn − 2k−2 + δ|n1|, p+6
2

+ 2,

which yields a contradiction for k > 3. For k = 3 we deduce n1 = p+6
2 > 7 =

3 · 22 − 5. So by (29), dn2 = 0. So we can substitute the last two lines of the
calculation above with

dn < dn − 22 + 1 + 2

≤ dn − 1,

which is also a contradiction.
So let k = 2. Then `(v) < 3 · 23 − 5 + 7− 2 = 3 · 23, by (28). Therefore m ≤ 3.

If m = 3 we have
∑3
i=1 αi = 0 and hence αc1 6= αc2 . So αci = ±2p and αc3−i 6= 2p.

By Lemma 5.6 we get
∑
i=1,2 `(uci) ≥ 3 · 23 − 9 and

`(v) ≥
3∑
i=1

`(ui) + 3m− 1 ≥ 3 · 23 > `(v).

So we have k = m = 2. This implies v = a`0t−1uc1tat
−1uc2a

−n+`0 and `(v) =
3 · 23 − 5 + n > 3 · 23 − 5 + dn − 1, which is impossible by (15). �
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