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ABSTRACT. We establish Schauder a priori estimates and regularity for solutions to a class of
degenerate-elliptic linear second-order partial differential equations. Furthermore, given a C'*°-
smooth source function, we prove C'*°-regularity of solutions up to the portion of the boundary
where the operator is degenerate. Degenerate-elliptic operators of the kind described in our article
appear in a diverse range of applications, including as generators of affine diffusion processes
employed in stochastic volatility models in mathematical finance [9] [27], generators of diffusion
processes arising in mathematical biology [3] [I1], and the study of porous media [0 [7].
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1. INTRODUCTION

This article continues our development of regularity theory for solutions to the Dirichlet bound-
ary value problem defined by a degenerate-elliptic operator. Degenerate-elliptic operators of the
kind explored in our article can arise as generators of affine diffusion processes employed in sto-
chastic volatility models in mathematical finance [9] 27], generators of diffusion processes arising
in mathematical biology [3, I1], and the analysis of porous media [6 7], to name just a few
applications.

In [5], in addition to other results, Daskalopoulos and Feehan obtained existence of H' solutions
to a variational equation defined by the Heston operator [27]. We recall that the Heston operator
serves as a useful paradigm for degenerate-elliptic operators arising in mathematical finance. In
[17], the authors proved global C%-regularity of H' solutions to the variational equation defined
by the Heston operator, while in [19], the authors established 7 as well as C’f “ and Cf 2ta
regularity for those solutions, for all integers & > 0. However, our CF and CF2te regularity
results in [19], although they provide an important stepping stone, are not optimal due to our
reliance on variational methods. The purpose of the present article is prove analogues — for
a broader class of degenerate-elliptic operators — of Schauder a priori estimates and regularity
results for strictly elliptic operators in [26, Chapter 6]. When coupled with results of [5] [17, [19],
we immediately obtain existence and Cf 2ta regularity for solutions to the Dirichlet boundary
value problem, defined by a degenerate-elliptic operator, analogous to those expected from the
Schauder approach for strictly elliptic operators in [26, Chapter 6]; uniqueness for broad class
of linear second-order degenerate-elliptic operators, with the second-order (or Ventcel) boundary
conditions of the kind implied by our choice of Daskalopoulos-Hamilton CF* Holder spaces [6],
is a consequence of the weak maximum principle discussed by the first author in [16].

To describe our results in more detail, suppose ¢ € H is a domain (possibly unbounded) in
the open upper half-space H := R?~! x R, where d > 2 and Ry := (0,00), and 0,0 := 00 N H
is the portion of the boundary 00 of & which lies in H, and 0y is the interior of JH N 00,
where OH = R4~! x {0} is the boundary of H := R¥~! x R, and R, := [0,00). We assume 9p&
is non-empty and consider a linear second-order elliptic differential operator, L, on & which is
degenerate along Jy@. In this article, when the operator L is given by , we prove an a priori
interior Schauder estimate and higher-order Holder regularity up to the boundary portion, dy&
— as measured by certain weighted Holder spaces, C§’2+a(ﬁ_ ) (Definition — for solutions to
the elliptic boundary value problem,

Lu=f on 0, (1.1)
u=g on 0,0, (1.2)
where f : ¢ — R is a source function and the function g : 9160 — R prescribes a Dirichlet

boundary condition. We denote & := ¢ UJy@ throughout our article, while & = ¢ UJ& denotes
the usual topological closure of & in R?. Furthermore, when f € C°°(&), we will also show that
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u € C®(0) (see Corollary . Since L becomes degenerate along 0y&, such regularity results
do not follow from the standard theory for strictly elliptic differential operators [26], 30].

Because the coefficient, b?, will be assumed to obey a positive lower bound along 9@, no
boundary condition is prescribed for the equation along 9. Indeed, one expects from [6]
that the problem (LI, should be well-posed, given f € C¢(0) and g € C(010) obeying
mild pointwise growth conditions, when we seek solutions in C2+% (&) N Cioc(€). The degenerate-
elliptic operator considered in this article has the formE|

Lv := —zgtr(aD*v) —b-Dv+cv on O, v C®(0), (1.3)
where & = (x1,...,14) are the standard coordinates on RY. Occasionally we shall also need
Lov == (L — ¢)v = —zqtr(aD?*v) —b-Dv on O, v C®(0). (1.4)

Throughout this article, we assume that the coefficient functions a, b, c of L (and Lg) are defined
on O, the matrix (a") is symmetricﬂ, and there is a positive constant by such that

bd > b() on aoﬁ

We shall call L in an operator with constant coefficients if the coefficients a, b, ¢ are constant.

In [19], we proved existence and uniqueness of a solution, u € C2+* (&) N C(0) for some
ag = ag € (0,1), to , when 010 obeys a uniform exterior cone condition with cone
K, and L is the elliptic Heston operator, and f € C®(&) N Cy(0) and g € C*(0,0). (The
Holder exponent, g, depends on the coefficients of L and the cone K.) In §l.1| we state the
main results of our article and set them in context in where we provide a survey of previous
related research by other authors. In {1.3] we indicate some extensions of methods and results
in our article which we plan to develop in subsequent articles. We provide a guide in to the
remainder of this article and point out some of the mathematical difficulties and issues of broader

interest. We refer the reader to for our notational conventions.

1.1. Summary of main results. We summarize our main results. Here, our use of the term
“interior” is in the sense intended by [6], for example, U C & is an interior subdomain of a
domain ¢ C Hif U C € and by “interior regularity” of a function u on ¢, we mean regularity
of u up to 9y — see Figure

Our first main result is the following analogue of [0, Theorem 1.1.3] (for a related degenerate-
parabolic operator and d = 2), [7, Theorem 3.1] (for a related degenerate-parabolic operator
with d > 2), and [26, Corollary 6.3 and Problem 6.1] (strictly elliptic operator). We refer
the reader to Definitions and [2.3] for descriptions of the Daskalopoulos-Hamilton family
of CF® and C¥?T® Holder norms and Banach spaces. For any U € H, we denote

d d
Haucfva((]) = 'Zl HGUHCQQ(U) and ”bncfva([j) = 2; ||bZHC§va(U)- (1.5)
1,j= =

Theorem 1.1 (A priori interior Schauder estimate). For any « € (0,1), integer k > 0, and
positive constants by, Ao, do, A, v, there is a positive constant, C = C(by,d, do, k,, \g, A, V),

IThe operator —L is the generator of a degenerate-diffusion process with killing.
2The assumption of symmetry is just for convenience when applying changes of variables and is easily obtained
by replacing a* with a* := (a” + a’")/2.
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FIGURE 1.1. Boundaries and regions in Theorem and Remark

such that the following holds. Suppose E| height(0) < v and the coefficients a,b,c of L in (1.3
belong to C¥*(0) and obey

Jall gty + 1Bl + ellono g < A (16)
(a€,&) > Mlé]> on &, VEERY, (1.7)
bE>by  on 9O, (1.8)

Ifu € CE*T(6) and €' C 0 is a subdomain such that dist(0,0",810) > dy, then
lullgrzsa sy < € (I Lullgrags +lullees) ) - (1.9)

Remark 1.2 (A priori interior Schauder estimate). The case where £k = 0 and the domain is a
half-ball, & = B;B (20), the coefficients, a,b, of L are constant, ¢ = 0, and u € COO(B,‘% (29)) is
given by Corollary Theorem relaxes those conditions to allow u € C2T*(B} (2°)) and
arbitrary ¢ € R; Theorem [8.I] further relaxes the conditions on L to allow for variable coefficients,
a,b,c, in C(B; (2°)); Theorem relaxes the constraint £ = 0 to allow for arbitrary integers
k > 0; finally, Theorem is proved in where we relax the constraint that & = B;g (2°) and
allow for arbitrary domains ¢ € R4~ x (0,v).

It is considerably more difficult to prove a global a priori estimate for a solution, u € cF ’2+a(ﬁ ),
when the intersection 9y&'Nd; € is non-empty and we do not consider that problem in this article,
but refer the reader to [19, §1.3] for a discussion of this issue. However, the global estimate in
Corollary has useful applications when 910 does not meet 0y&. For a constant v > 0, we
define the strip,

S :=R¥ % (0,v), (1.10)

3If we had allowed height (&) = oo, we would need to modify our definition of Hélder norms to provide a weight
for additional control when x4 — oo because the coefficient matrix, xqa, for D?u would be unbounded due to
. Weighted Holder norms of this type were used by the authors in [I8], for this reason, for the corresponding
parabolic operator, —9; + L, on (0,7 x H.
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and note that 9pS = R x {0} and &, 5 = R~ x {v}.

Corollary 1.3 (A priori global Schauder estimate on a strip). For any o € (0,1), positive
constants N, b, A, v, and integer k > 0, there is a positive constant, C = C(k,a,v,d, \g, bo, A),
such that the following holds. Suppose the coefficients of L in belong to C§=O‘(§)7 where
S =R¥1 % (0,v) as in (.10), and obey

lall e sy + il s + lelles) < A (1.11)
(ag, &) > Ml¢|* on S, VEeR, (112)
b4 >by  on 9pS. (1.13)
Ifu € CE27(8) and u =0 on 0,5, then
Jullgve sy < © (I Eull sy + o)) (1.14)
and, when ¢ >0 on S,
fullos2vos) < ClEulcpe s (1.15)

Remark 1.4 (A priori global Schauder estimate on a strip). For an operator, L, with constant
coefficients, a, b, ¢, an a priori global Schauder estimate on a strip is proved as Corollary

The Green’s function for a operator L in with constant coefficients can be extracted from
Appendix [B], where we construct explicit C'°° solutions to Lu = f on H and prove the following
elliptic analogue of the existence result [6, Theorem 1.1.2] for the initial value problem for a
degenerate-parabolic model on a half-space for the linearization of the porous medium

equation ([1.24]).

Theorem 1.5 (Existence and uniqueness of a C°°(H) solution on the half-space when L has
constant coefficients). Let L be an operator of the form 1) and require that the coefficients,

a,b,c, are constant with b > 0andc > 0. If f € C3°(H), then there is a unique solution,
u € C®(H), to Lu= f on H.

Again, it is considerably more difficult to prove existence of a solution, w, in C§’2+a(ﬁ_) or
CE2T (o) N C(0), to (L.1), when the intersection dg& N 9,0 is non-empty. We do not
consider that problem in this article either and again refer the reader to [19) §1.3] for a discussion
of this issue. However, in the case of a strip, 010 does not meet 0y& and we have an existence
result, Theorem for an operator with variable coefficients. In §1.3] we discuss additional
existence results which should also follow from Theorems and when 0y0 is curved and
010 is empty.

Theorem 1.6 (Existence and uniqueness of a CH*™*(S) solution on a strip S). Let a € (0,1),
let v >0 and S = R¥1 x (0,v) be as in (1.10)), and let k > 0 be an integer. Let L be an operator

as in (1.3). If f and the coefficients of L in (1.3|) belong to C’f’a(S’) and obey (1.12) and (1.13))

for some positive constants by, Ao, then there is a unique solution, u € C§’2+O‘(5’), to the boundary
value problem,

Lu=f onsS, (1.16)

u=0 on0.S. (1.17)

Remark 1.7 (Existence and uniqueness of a solution on a strip). For an operator, L, with constant
coefficients, a, b, ¢, existence and uniqueness of a solution on a strip is proved as Corollary [B.4]
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The preceding existence and uniqueness result on a strip leads to the following analogue of [20,
Theorem 6.17] and is proved in

Theorem 1.8 (Interior C§’2+a—regularity). For any a € (0,1) and integer k > 0, the following

holds. Assume that the coefficients of L in (1.3)) belong to Cf’a(ﬁ) and obey (1.7)) and (L.8)) for
some positive constants by, \o. If u € C%(0) obeysﬁ

uwe CHO), z4D*ueC(O), and Lue C*(0), (1.18)
zqD*u=0 on 00, (1.19)
then u € CF*T(0).

Given Theorem one immediately obtains the following degenerate-elliptic analogue of
the C'*°-regularity result for the degenerate-parabolic model for the linearization of the porous
medium equation [6, Theorem I.1.1].

Corollary 1.9 (Interior C*°-regularity). Assume that the coefficients of L in (1.3) belong to
C>(0) and obey (1.7) and (1.8) for some positive constants by, No. If u € C*(0) obeys (1.18)
for every integer k > 0, so Lu € C*(0), together with (1.19), then u € C*(0).

Remark 1.10 (Regularity up to the “non-degenerate boundary”). Regarding the conclusion of
Theorem [I.8] standard elliptic regularity results for linear, second-order, strictly elliptic operators
[26, Theorems 6.19] also imply, when k& > 0, that u € C*+2%(¢ U 0,0) if u solves ,
with f € CH*(0U0,0) and g € Ck22(0 U5, 0), and 9,0 is CF+>*, Because our focus in this
article is on regularity of w up to the “degenerate boundary”, dy&, we shall omit further mention
of such straightforward generalizations.

Finally, we refine our existence results in [I9] when d = 2 for the Heston operator,
Z2
Av = 5 (Vara1 + 200052, + azvmmz) —(co — q — x2/2)vy, — K(0 — x2)Ug, + cov,  (1.20)
where ¢ > 0,¢0 > 0,k > 0,0 > 0,0 > 0, and p € (—1,1) are constants (their financial interpreta-
tion is provided in [27]), and v € C*°(H). In particular, we give analogues of the existence results
[26,, Theorems 6.13 & 6.19] for the case of the Dirichlet boundary value problem for a strictly
elliptic operator.

Theorem 1.11 (Existence and uniqueness of a CH2T golution to a Dirichlet boundary value

problem for the Heston operator). Let a € (0,1) and let k > 0 be an integer, let K be a finite
right-circular cone, and require that 010 obeys a uniform exterior cone condition with cone K.
If f € CEYO)NCy(O) and

co >0 if height(0) = oo,

/ bel (1.21)
co >0 if height(0) < oo,
then there is a unique solution,
ue CP2r YN C(0Ub,0)NCy0),
to the boundary value problem for the Heston operator,
Au=f on O, (1.22)
u=0 on00. (1.23)

4We write Du, z4D*u € C(0) as an abbreviation for Uz, Tdllaz; € C(0), for 1 < i,j < d and write z4D*u =0
on 9o ¥ as an abbreviation for limys,_, .0 zaD*u(z) = 0 for all z° € H0.
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Remark 1.12 (Schauder a priori estimates and approach to existence of solutions). As we explain

in [19, §1.3], the proof of existence of solutions, u € C¥*T¥(£) N C(6), to the boundary value
problem, , , given f € cr “Y(0) and g € C(0), is considerably more difficult when
0o0 N 010 is non-empty because, unlike in [6], one must consider a priori Schauder estimates
and regularity near the “corner” points of the subdomain, & C H, where the “non-degenerate
boundary”, 90, meets the “degenerate boundary”, 0y

Given an additional geometric hypothesis on & near points in dp&' N 910, the property that
ue C(0U0,0)NCy(0) in the conclusion of Theorem simplifies to u € C(0).

Corollary 1.13 (Existence and uniqueness of a globally continuous CH* golution to a Dirichlet
boundary value problem for the Heston operator). If in addition to the hypotheses of Theorem
the domain, O, satisfies a uniform exterior and interior cone condition on 9y0 N O with
cone K in the sense of [19], then u € CE2T*(0) N C(0).

Remark 1.14 (Existence of solutions to a Dirichlet boundary value problem). Theorem and
Corollary should generalize to from the Heston operator A in ([1.20)) to an operator L in ([1.3)

with CF219 coefficients and d > 2.

1.2. Survey of previous related research. We provide a brief survey of some related research
by other authors on Schauder a priori estimates and regularity theory for solutions to degenerate-
elliptic and degenerate-parabolic partial differential equations most closely related to the results
described in our article.

The principal feature which distinguishes the equation , when the operator L is given by
, from the linear, second-order, strictly elliptic operators in [26] and their boundary value
problems, is the degeneracy of L due to the factor, x4, in the coefficient matrix for D?u and,
because by > 0 in , the fact that boundary conditions may be omitted along x4 = 0 when
we seek solutions, u, with sufficient regularity up to x4 = 0.

The literature on degenerate elliptic and parabolic equations is vast, with the well-known
articles of Fabes, Kenig, and Serapioni [12] [I3], Fichera [21] 22], Kohn and Nirenberg [29], Murthy
and Stampacchia [33], 34] and the monographs of Levendorskii [31] and Oleinik and Radkevi¢
[35, [36], [37], being merely the tip of the iceberg.

As far as the authors can tell, however, there has been relatively little prior work on a priori
Schauder estimates and higher-order Holder regularity of solutions up to the portion of the domain
boundary where the operator becomes degenerate. In this context, the work of Daskalopoulos,
Hamilton, and Rhee [6, [, [38] and of Koch stands out in recent years because of their introduction
of the cycloidal metric on the upper-half space, weighted Holder norms, and weighted Sobolev
norms which provide the key ingredients required to unlock the existence, uniqueness, and higher-
order regularity theory for solutions to the porous medium equation and the degenerate-
parabolic model equation on the upper half-space given by the linearization of the porous
medium equation in suitable coordinates.

Daskalopoulos and Hamilton [6] proved existence and uniqueness of C'*° solutions, u, to the
Cauchy problem for the porous medium equation [0, p. 899] (when d = 2),

d
—u+ Y (W)ze, =0 on (0,7) xR%, u(-,0)=g onR? (1.24)
=1

with constant m > 1 and initial data, ¢ > 0, compactly supported in RY, together with C-
regularity of its free boundary, d{u > 0}, provided the initial pressure function is non-degenerate
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(that is, Du™~! > a > 0) on boundary of its support at t = 0. Their analysis is based on their
development of existence, uniqueness, and regularity results for the linearization of the porous
medium equation near the free boundary and, in particular, their model linear degenerate operator
[6, p. 901] (generalized from d = 2 in their article),

d
Lu = —deumi — Bug,, ue C™(H), (1.25)
i=1

where (3 is a positive constant, analogous to the combination of parameters, 216 /0?2, in ,
following a suitable change of coordinates [6, p. 941].

The same model linear degenerate operator (for d > 2), was studied independently by Koch
[28, Equation (4.43)] and, in a Habilitation thesis, he obtained existence, uniqueness, and regu-
larity results for solutions to which complement those of Daskalopoulos and Hamilton [6].
Koch employs weighted Sobolev space methods, Moser iteration, and pointwise estimates for the
fundamental solution. However, by adapting the approach of Daskalopoulos and Hamilton [6],
we avoid having to rely on difficult pointwise estimates for the Green’s function for the operator
L in . Although tantalizingly explicit — see [9] 14 [I5] 20, 27] for the Green’s function and
fundamental solution of the elliptic and parabolic Heston operator and Appendix (B| —
these kernel functions appear quite intractable for the analysis required to emulate the role of
potential theory for the Laplace operator in the traditional development of Schauder theory in
[26].

While the Daskalopoulos-Hamilton Schauder theory for degenerate-parabolic operators has
been adopted so far by relatively few other researchers, it has also been employed by De Simone,
Giacomelli, Kniipfer, and Otto in [8] 25, 24] and by Epstein and Mazzeo in [10].

1.3. Extensions and future work. We defer to a subsequent article the development of a
priori global Schauder cr ’2“‘(6" ) estimates, existence, and regularity theory for solutions u to

the elliptic boundary value problem , when f and the coefficients, a, b, ¢, of L in ([1.3)
belong to Cf’a(ﬁ_), the boundary data function g belongs to C§’2+a(ﬁ_), and ¢ has boundary
portion 91 0 of class C*+%* and C*2+-transverse to dy@. For reasons we summarize in [19, §1.3],
the development of global Schauder a priori estimates, regularity, and existence theory appears
very difficult when the intersection dy& N 010 is non-empty.

However, if ¢ C R? is a bounded domain and L is an elliptic linear second-order partial
differential operator which is equivalent to an operator L*® of the form in local coordinates

near every point 20 € 9¢, then Theorem will quickly lead to a global C§’2+a(ﬁ ) a priori

estimate for u if 0 is of class CF*™®. Moreover, for g € C¥?1%(&), the method of proof of
[30, Theorem 6.5.3] (or indeed [6, Theorem II.1.1]) should adapt to give existence of a solution

u € CE*E) to (L), (@.2).

As we noted in Rema we expect our existence results (Theorem [1.11] and Corollary
for solutions to the Dirichlet boundary value problem (1.22)), (1.23)) to generalize from the
case of the Heston operator, A, in on subdomains of the half-plane to operators of the form
Lin on subdomains of the half-space with ok (O) coefficients, a, b, c. These generalizations
may be developed in two ways. First, the proof of Theorem relies on existence and regularity
theory for solutions to a variational equation defined by (|1.22)) and a choice of suitable weighted
Sobolev spaces in [l 17, [19]; we expect that analysis to extend without difficulty to operators of
the form L in . Second, we expect the a priori interior Schauder estimates that we develop
in this article, which are in the style of [26, Corollary 6.3], to extend to more refined and sharper
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a priori “global” interior Schauder estimates, in the style of [26, Theorem 6.2, Lemmas 6.20
and 6.21]. Aside from facilitating “rearrangement arguments”, we expect such “global” a priori
interior Schauder estimates — relying on a choice of suitable weighted Hélder spaces similar to
those employed in [26, Chapter 6] — to permit the use of the continuity method to prove existence
of solutions within a self-contained Schauder framework and this theme will be developed by the
authors in a subsequent article.

While our a priori Schauder estimates rely on the specific form of the degeneracy factor, x4, of
the operator L in on a subdomain of the half-space, we obtained weak and strong maximum
principles for a much broader class of degenerate operators in [16]. Therefore, we plan to extend
the a priori Schauder estimates and regularity theory for degenerate-elliptic operators such as

Lv = —9tr(aD*v) —b-Dv+cv on O, v C®(0),

where ¥ € C’l‘f‘m(ﬁ) and ¥ > 0 on a subdomain ¢ C R? with non-empty boundary portion
00O =int({x € 00 : 9(x) = 0}).

1.4. Outline and mathematical highlights of the article. For the convenience of the reader,
we provide a brief outline of the article. In §2|, we review the construction of the Daskalopoulos-
Hamilton-Hoélder families of norms and Banach spaces [6].

In we derive a priori local CY estimates for derivatives of solutions, u, to Lu = 0 on half-
balls BTJB (z9) C H centered at points 2° € H, when L has constant coefficients. However, our
method of proof differs significantly from that of Daskalopoulos and Hamilton [6], who apply
a comparison principle for a certain non-linear parabolic operator and which directly uses the
fact that this operator is parabolic. We were not able to replace their “parabolic” comparison
argument by one which is suitable for the elliptic operators we consider in this article. Instead,
we employ a simpler approach using a version of Brandt’s finite-difference method [4] to estimate
derivatives in directions parallel to OH and methods of ordinary differential equations to estimate
derivatives in directions normal to OH.

In we adapt and slightly streamline the arguments of Daskalopoulos and Hamilton in [6] for
their model degenerate-parabolic operator to the case of our degenerate-elliptic operator
and derive a C? a priori estimate of the remainder of the first-order Taylor polynomial of a
function u on a half-ball, Bt (o).

In §5, we obtain a priori local interior Schauder estimates for a function u on a ball B, (z") € H,
where we keep track of the distance between the ball center, z° € H, and 0H, again when L has
constant coefficients.

In we apply the results of the previous sections to prove our main C2T< a priori interior
local Schauder estimate (Theorem for an operator L with constant coefficients on a half-ball,
B;B ((L‘()) .

In we prove Cf 2y priori interior local Schauder estimate (Theorem and a global a
priori global Schauder estimate on a strip (Corollary , both when L has constant coefficients.

In we relax the assumption in the preceding sections that the coefficients of the operator L
in are constant and prove a C2T% a priori interior local Schauder estimate (Theorem for
a function, u, on a half-ball, B;E (2%) when L has variable coefficients. We then prove a Cj 2Ty
priori local interior Schauder estimate for arbitrary k& € N (Theorem and complete the proofs

of Theorem and Corollary Next, we prove our global C§’2+a(5 ) existence result on strips,
Theorem and complete the proofs of our main Cch2te regularity result, Theorem and
the CE2T(&) existence results, Theorem and Corollary ‘1.13L for solutions to a Dirichlet

boundary value problem for the Heston operator.
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We collect some additional useful results and their proofs in several appendices to this article.
In Appendix [A] we prove a comparison principle for operators which include those of the form
L in with ¢ > 0 (rather than ¢ > ¢ for a positive constant ¢yp) when the domain, €, is
unbounded but has finite height, extending one of the comparison principles in [16]. In Appendix
B} we prove Theorem In Appendix [C| we summarize the interpolation inequalities and
boundary properties of functions in weighted Holder spaces proved in [6] and [18].

1.5. Notation and conventions. In the definition and naming of function spaces, including
spaces of continuous functions and Holder spaces, we follow Adams [2] and alert the reader to
occasional differences in definitions between [2] and standard references such as Gilbarg and
Trudinger [26] or Krylov [30].

We let N :={0,1,2,3,...} denote the set of non-negative integers. If S C R?, we let S denote
its closure with respect to the Euclidean topology and denote 35S := S\ S. For r > 0 and z° € R?,
we let B,.(2°) := {x € R?: |z — 2°| < r} denote the open ball with center 2° and radius r. We
denote B (2°) := B,(2°) NH when 2° € 9H. When z° is the origin, O € R?, we denote B, (z°)
and B} (z°) by B, and B; for brevity.

If VC U C R? are open subsets, we write V' € U when U is bounded with closure U C V. By
supp ¢, for any ¢ € C(R?), we mean the closure in R? of the set of points where ¢ # 0.

We use C' = C(x,...,x*) to denote a constant which depends at most on the quantities appearing
on the parentheses. In a given context, a constant denoted by C may have different values
depending on the same set of arguments and may increase from one inequality to the next.

2. PRELIMINARIES

In this section, we review the construction of the Daskalopoulos-Hamilton-Holder families of
norms and Banach spaces [6]. B
We first recall the definition of the cycloidal distance function, s(-,-), on H by
1_,.2 ~
s(zt, z?) = [z — =) , Vol 2? € H, (2.1)
\/J:}i—kx?l—k |zt — 22|

where z¢ = (xi,... ,a:ﬁl), for i = 1,2, and |2! — 22| denotes the usual Euclidean distance be-
tween points z', 22 € R Analogues of the cycloidal distance function between points
(t',z1), (#?,2%) € [0,00) x H, in the context of parabolic differential equations, were introduced
by Daskalopoulos and Hamilton in [6] p. 901] and Koch in [28], p. 11] for the study of the porous
medium equation.

Observe that, by (2.1)),
s(z,2°) < |z — 22, Va,2° € H. (2.2)

The reverse inequality take its simplest form when 2z € OH, so xg = 0, in which case the

inequalities 74 < |r — 2°| and

|z — 20| = s(z,2%)\/xg + |z — 20] < s(x,2°)\/2]x — 9],
give
N2 vreH, 2° € oH. (2.3)
Following [2, §1.26], for a domain U C H, we let C(U) denote the vector space of continuous

functions on U and let C(U) denote the Banach space of functions in C(U) which are bounded

|z — 2% < 2s(z, x
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and uniformly continuous on U, and thus have unique bounded, continuous extensions to U, with
norm

ull oy = sup |ul.
U
Noting that U may be unbounded, we let Cloc(U) denote the linear subspace of functions u € C(U)
such that u € C(V) for every precompact open subset V€ U. We let C,(U) := C(U) N L*>(U).

Daskalopoulos and Hamilton provide the

Definition 2.1 (C¢ norm and Banach space). [6, p. 901] Given « € (0, 1) and a domain U C H,

we say that u € C¥(U) if u € C(U) and

lullge(@y < oo,

where
lull ce @) = lulce@) + llullo@y, (2.4)
and
Ju(a!) — u(z?)]
R 2.
[U]CS U) mls,};?]iU S(xl,I‘Q)a ( 5)
xl#z?

We say that u € C¢(U) if u € C¢(V) for all precompact open subsets V' € U, recalling that
U:=UUdU. We let C%_.(U) denote the linear subspace of functions u € C%(U) such that

s,loc

u € C2(V) for every precompact open subset V € U.

It is known that C¢(U) is a Banach space [6, §I.1] with respect to the norm (2.4)).

We shall need the following higher-order weighted Holder CP and C¥?T norms and Banach
spaces pioneered by Daskalopoulos and Hamilton [6]. We record their definition here for later
reference.

Definition 2.2 (C¥* norms and Banach spaces). [6, p. 902] Given an integer k > 0, « € (0, 1),
and a domain U C H, we say that u € C¥*(U) if u € C*(U) and

||uHC§’°‘(U) < 00,

where

lull gt = 3 1D%ulloa o). (2.6)
|BI<k

where 3 := (B1,...,8q4) € N¢ and
HuHCg(U) = HUHC(U) + [U]Cg(U)-
When k = 0, we denote CY*(U) = C*(U).

Definition 2.3 (Cf’2+a norms and Banach spaces). [0, pp. 901-902] Given an integer k& > 0,
a constant a € (0,1), and a domain U C H, we say that v € C¥*T(0) if u € CFY(D),
the derivatives, DAu, 8 € N? with |3| = k + 2, of order k 4 2 are continuous on U, and the
functions, z4D%u, B € N with |3| = k 4 2, extend continuously up to the boundary, U, and

those extensions belong to C$(U). We define

lullgpasag = lullgriragy + 3 lzaDullos). (2.7)
|8|=k+2
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We say tha u € CE¥U) if u € CF*T(V) for all precompact open subsets V' € U. When
k =0, we denote CO*T*(U) = C2+(U).

For any non-negative integer k, we let CE(U) denote the linear subspace of functions u € C*(U)
such that u € C*(V) for every precompact open subset V' € U and define C3°(U) := Ng>oCE(U).
Note that we also have C5°(U) = Ng»oCr(U) = Me=oCE*T(U).

3. INTERIOR LOCAL ESTIMATES OF DERIVATIVES

As in [6], we begin with the derivation of local estimates of derivatives of solutions on half-
balls B (zo) centered at points #° € OH, but the method of proof differs significantly from
the method of proof in [6, §I.4 & 1.5]. In [6], Daskalopoulos and Hamilton apply a comparison
principle to a suitably chosen function, defined in terms of the derivatives (see the definitions of
Y at the beginning of [0, §I.5] and of X in the proof of |6, Corollary 1.5.3]). Their comparison
principle directly uses the fact that the operator is parabolic, and we were not able to replace the
“parabolic” comparison argument by one which is suitable for the elliptic operators we consider in
this article. (The Daskalopoulos-Hamilton approach can be viewed as a variant of the Bernstein
method — see the proof [30, Theorem 8.4.4] in the case of the heat operator and [30, Theorem
2.5.2] in the case of the Laplace operator.)

Instead, we apply a combination of finite-difference arguments, methods of ordinary differential
equations, and, in this section, restrict to the homogeneous of version of the equation with
f =0. We adapt Brandt’s finite-difference method [4] (see also [26, §3.4]) to obtain a priori local
estimates for DPu, where 8 € N? is any multi-index with non-negative integer entries of the form
B =(B%,...,B%1,0). The method of Brandt also uses a comparison principle, but it is applied
to finite differences, instead of functions of derivatives of u, such as X and Y in [0, §I.5]. Brandt’s
approach is also mentioned by Gilbarg and Trudinger in [20, p. 47] as an alternative to the usual
methods for proving a priori interior Schauder estimates such as [26, Corollary 6.3]. We are able
to apply the finite-difference estimates method not only on balls B,.(z") € H as in [4], but also on
half-balls B (z¢) C H centered at points 2° € OH because the degeneracy of the elliptic operator
L in along 0yB;" (z0) and the fact that b¢ > 0 along 9B, (z¢) (see (3.2)) implies that no
boundary condition need be imposed along 9B, ().

In §3.7] we summarize the 1nter10r local Schauder estimate and regularity results we will prove
in sections|3 I, l I, and @ In § we develop C? interior local estimates for derivatives D’u when
Ba =0 and in §3.3] we extend those estimates to case g > 0.

3.1. A priori interior local Schauder estimate and regularity statements in the case
of constant coefficients. Throughout sections|[3, [{ [3, and[8, we further assume the

Hypothesis 3.1 (Constant coefficients and positivity). The coefficients, a,b, ¢, of the operator
L in (1.3]) are constant; there is a positive constant, \g, such that H

(ag, &) > Ml¢?, V. & eR% (3.1)

and [1
b4 =by > 0. (3.2)

5In [6, pp. 901-902], when defining the spaces C¥* (&) and CF?T% (o), it is assumed that </ is a compact
subset of the closed upper half-space, H.

6Condition (3.1)) is first used in the proof of Lemma

"Condition (3.2) is requlred by our maximum principle (Lemma and Corollary- Our maximum principle
is in turn requlred in §3} sections [4] and |5 I depend on ‘ and sectlons @ 7} and [8| each depend on sections [5| and @
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The condition (3.2) is first required in the proof of Lemma When the coefficients of L are
constant, we denote

d
A= g ¢ . .
> a |+ max [b] + |cf (3.3)
ij=1
Our main goal in sections [3] [ 5, and [6]is to prove the following versions of Theorems 1.1 and
when k = 0 and L has constant coefficients and the domain is a half-ball, B/} (2Y) with 2° € OH.

Theorem 3.2 (A priori interior local Schauder estimate when L has constant coefficients). For
any o € (0,1) and constants r and ro with 0 < r < rg, there is a positive constant, C =
C(a,r,70,d, Mo, bo, A), such that the following holds. If x° € OH and u € C?*a(ﬁ;‘; (29)), then

[ullgztaipry < C <HLUHCg(BT+O(x0)) + Hu”C(BﬁB(xO))> - (3.4)

Our goal in the remainder of this section is to derive a priori estimates for Du and x4D%*u on
half-balls, B;" (29), centered at points #° € OH. Because our operator, L, is invariant with respect
to translations in the variables (x1,...,24_1) when the coefficients, a,b, ¢, are constant, we can
assume without loss of generality that z¥ is the origin, O € R%, and write B;g (20) = B;g and
B} (2°) = B} in our proof of Theorem

3.2. Interior local estimates for derivatives parallel to the degenerate boundary. To
derive a priori local estimates for D?u, for 8 € N% with 8; = 0, it will be useful to consider the
following transformation,

u(z) =1v(y), =€, (3.5)
where y = ¢(x) := x + xg and € = (€1, ...,&4-1,&q) € RE We choose ¢ such that
‘Si = _bi/bda Vi # d> {d = 07 (36)

where we have used assumption ([3.2)) that 6% > 0. Note that ¢ is a diffeomorphism on H which
restricts to the identity map on OH. We now consider the operator Ly defined by

Lou(z) =: Lov(y), =z € H,
and by direct calculations we obtain
Lov = —yd&ijvyiyj — bivy, on H, (3.7)
where
a’ = a" + % (fjaid + fiajd) +&G&a, Vi #d,
@'l =a" = a4 ga", Vi d,
Gdd .— qdd (3.8)
b= b+ b, Vi £ d,
bt = b,
The purpose of the transformation is to ensure that the ~coef'ﬁciem‘cs b' of the partial deriva-
tives with respect to y; in the definition of the operator Lg are zero when ¢ # d. The matrix

a is symmetric and positive definite, but now the constant of strict ellipticity depends on b?/b%,
that is, on b% and A, and on the constant of strict ellipticity, A9, of the matrix a.
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Lemma 3.3 (Local estimates for first-order derivatives of v parallel to OH). Let 0 < r < ro, and
let ve C*(B)NC(B) obey
Eov =0 on B’

70’

and assume that v satisfies
Dv, ygD?*v € C(B,‘fo) and ysD*v=0 on 80B,fg. (3.9)
Then there is a positive constant, C = C(r,rg,d, Ao, by, A), such that
oo < Clvlloss ) Ve #d

Proof. We adapt the finite-difference argument employed by Brandt (1969) in [4] to prove the local
estimates for derivatives, vy, , when k # d. We let r := (r+179)/2 and r3 := min{(ro—7)/2, 1/2},
and consider the (d + 1)-dimensional cylinder,

C:={(y,yst1) EH xRy :y€BL, 0<ygp1 <r3}.
We consider the auxiliary function,

1

(Y, Yar1) == 5 (v(y + Ya+1ex) — v(y — Yariex)) s, VY, ya+1) €C,

where C is defined above, and e, € R is the vector whose coordinates are all zero except for the
k-th coordinate, which is 1. We choose a constant ¢y > 0 small enough, say ¢y = A\g/2, such that
the differential operator,

Lé i= Lo — coyaOy,y;, + c0YdOyq1yas>
is elliptic on H x R,. By the definition of the function ¢, we notice that
E}@ =0 onC,

because Lov = 0 on B;B. For 4° € B;f, we consider the auxiliary function defined on C,

d-1
b= Cilvllegy ) (Yar1(1 = yar1) + C2 (Z(yz —)? + yalya —ya) + y?m)] ;
=1

where the positive constants C, Co will be suitably chosen below. We want to choose Cs suffi-
ciently small that

Ly >0 onC.
By direct calculation, we obtain
vy, = 201Gl sy (i — ), i=1,2,...,d— 1,
T/inyi :201C2||UHC(B;"‘0)7 @ = 1727"'ad717
zp?J(i-~-1i'J¢i-~-1 = 201 (CQ - 1) ”UHC(B;LOy

3
@Z}yd = Ql'dClCQH’U”C(B;&-O) <2yd - yg) s

d’ydyd = 20102””“()(3;5) (3yd - yS) )
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and so,

- . -
Low = _ydawvyiyj - blvyi — CoYd (wyd+1yd+1 - wykyk)

d—1
~ i ~ a3
Co ((Za ) + a%(3yy — ) — co + 0% <2yd - yg)> + co(Cy — 1)]
=1
d_l .. ~
Cy ( (Z a) + 3ra®d + 2rbd) — ¢

i=1

= —2yaC1|vll o5z )

> —2yd01||v”c(éio) "

using the facts that the a”, fori =1,...,d, and be are positive constants, while b* = 0, i #£d, by
the transformation (3.5)), and y; < r. We choose the constant Cs such that

d—1 -1
Ca < ¢ <Z a' + 3radd + 27’5d> ,
i=1

so that we have
Ly >0 onC.
Because E})(p = 0 on C, the preceding inequality yields
Ly (£¢—1) <0 onC.

By the definition of the auxiliary function, ¥, and using the fact that y° € Bf and 0 < yg,1 < 1/2,
we may choose a positive constant, C1 = C1(r, 19, C2), large enough that

+¢—1 <0 onC. (3.10)
The portion 91C of the boundary of C consists of the sets

{Yar1=0, y€ B}, {yar1 =73, ye B}, and {yg1 € (0,r3), y € OB}

To establish inequality (3.10)) along the portion {y4+1 = 0} of the boundary, 0;C, note that ¢ = 0,
and so ([3.10]) holds on this portion of the boundary since 1) > 0. For the second portion of the
boundary, 0;C, using the fact that r3 < 1/2, we notice that

d—1

yar1(1 = yap1) + Co (Z(yz — )’ +yi(va —v9) + y§+1> >r3/2 on {ya1 =rs, y € B}
i=1
For the third portion of the boundary, using the fact that y° € B} and y € B}, and r < r3, we
see that on {yq+1 € (0,73), y € 91 B;L} we have
d—1

Yar1 (1 = yar1) + Co (Z(yz —u)? + yi(ya — yg) + y§+1> > Co(d — 1)(rp — 1)
=1

Therefore, we can find a constant Cs = C3(r, rg,d) such that
Y > C1Csvllopry onA{ygr1 =73, y € B Y U{yar1 € (0,73), y € 01 B,

We may choose the constant Cy = Ci(r,r9,d) large enough so that C1C3 > 1, and using the
definition of ¢, we have

P > |¢| on {yd+1 =73 Y& BT—"’;} U {yd+1 € (0,’!”3), IS 8137:2 .

Now, inequality (3.10]) follows. By (3.9) we have ¢ € C(C:), and Do, ydDQ@ € C(CUC), and
yaD?¢ = 0 on 9oC, where JoC is the interior of {yg = 0} NC. Since ¢» € C°°(C), we may apply the
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comparison principle [16, Theorem 5.1] to ¢ and ¥ on the domain C. We find that ¢ — ¢ <0
on C, and so by the definition of the function ¢, we have, for all 4° € B} and yqy1 € (0,73),

5 [v(y° + yariex) — v(Yo — Yariex)| < Crlvlleg y (T = Yar1 + Cayasr) -
Yd+1 0

The preceding inequality yields
oy (9°)] < Cl”UHC(B;B)’ vy’ € B},
for a constant C = Cy(r,ro,d, Ao, bp, A), and this concludes the proof. O

Lemma 3.4 (Local estimates for higher-order derivatives of v parallel to OH). Let k € N and
0 < r < rg. Then there is a constant C' = C(k,r,ro,d, Ao, by, A), such that for any v € COO(B;B)
obeying

Eov =0 on B;;,

we have
1Dl egsty < Cllvllogss (3.11)

for all multi-indices B = (B, ..., Bd-1,0) € N¢ such that |3| < k.

Proof. Lemma establishes the result when |3| = 1. We prove the higher-order derivative
estimates parallel to H by induction. We assume the induction hypothesis: For any 0 < r < rg,
there is a constant Cy = C1(k — 1,7, 7r9,d, Ao, bp, A), such that

HDﬁ UHC(B:F) < ClHUHC(BFLO)’

for all multi-indices 5’ = (81,...,8,_1,0) € N such that |8'| < k — 1. Since Lov =0 on B, we
also have that EoDﬁ v=0on Bﬂg, for all multi-indices 8 with 83 = 0. We fix such a multi-index

S. Let k € N be such that S # 0, and set 5/ := 3 —ex. We set g := (r+1()/2 and apply Lemma
to D% v with 0 < r < 7 to obtain

1D vl ey < Coll D wlley )

for some positive constant Co = Co(r,72,d, A9, b, A). The conclusion now follows from the
preceding estimate and the induction hypothesis applied to DFy with 0 < 79 < ro, since || <
k—1. O

From ({3.5)), we have
Dﬂu(ac) = D’BU(y), y=x+E&xy, x€H,

for all # € N¢ such that 85 = 0. Therefore, Lemmas and give us the following estimates
for DPu.

Lemma 3.5 (Local estimates of higher-order derivatives of u parallel to 0H). Let k € N and
ro > 0. Then there are positive constants, r1 = r1(rg,bo, A) < ro and C = C(ro,d, k, \o, bo, A),

such that for any function u € C’OO(BTJS) solving
Lou=0 on B, (3.12)
we have, for all B € N® with B3 =0 and |3| < k,

||DBU||C(B;“1) < C”“HC(B;B)'
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Proof. Let ¢ : H — H be the affine transformation y = ¢(z) = = + £x4, x € H, where ¢ € R?
is defined by (3.6). Let so = so(ro,bo, A) > 0 be small enough such that Bf C ¢(B;}). Then,

v e C®(B}) and Lov = 0 on By, since u € C>(B}t), and Lou = 0 on B;f. Let s; = so/2 and

apply Lemma to v with r relglaced by s1 and rg replaced by sg. For any k € N, there is a
positive constant C' = C(k, 7, d, X, by, A), such that for all 3 € N? with 8; = 0, we have
107l < Cllvllogss . (3.13)
We now choose r1 = ri(s1,bp, A) small enough such that ¢(B;) C B . Using the fact that
DBu(x) = DPu(p(z)), we obtain
|]D’3u\|C(BT+1) < |’D5UHC(B;) (by the facts that ¢(B;!) C B, and u(z) = v(¢(x)))
< Clollogs, (by @I
< C”””C(B,‘%) (by the facts that B C ¢(B;t) and u(z) = v(¢(x))).
This concludes the proof. ]

3.3. Interior local estimates for derivatives normal to the degenerate boundary. We
again shall use the affine transformation (3.5 of coordinates, but now with a different choice of
the vector £, that is

&i=—a/a¥ Vitd, & =0, (3.14)
and, given a function u on H, we define the function w by
u(x) = w(y), y=z+&xq, z€H. (3.15)

Then, by analogy with (3.7)), we obtain
Eow = ydﬁij’wyiyj + l_)iwyi on H,

where we notice that a® = 0 by and the choice of the vector £. Also, we have that
Dfu(z) = DPw(y), for all 3 € N with 85 = 0. Thus, Lemma applies to w, and we obtain a
priori local estimates for all derivatives of w parallel to OH.

Next, we derive an a priori local estimate for w,.

Lemma 3.6 (Local estimate for wy,). Let 0 < r < ro. Then there is a positive constant,
C = C(r,10,d, Ao, bo, A), such that for any function w € C*°(B,}) obeying

Low=0 on B’

o> (3.16)
we have

loalleqssy < Cllwlegs:
Proof. Because @' = 0, for all i # d, we can rewrite the equation Low = 0 on B;g as

_ +
YdWy,y, + 0wy, = [ on Broa

where, for simplicity, we denote 6 := b%/a% > 0, and define f by

d—1 5
f= —— Wy, + ——w,, on BT
= Yd gdd Wi gdd Vi 0"
i =1 i=1
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We can estimate || f HC( ) in terms of HwHC( B) by applying Lemmato control the supremum

norms of wy, and wy,,; on B, for all i,j # d. The preceding ordinary differential equation can
be rewritten as

(ygwyd)y :yg_lf on B;B
d

and, integrating with respect to y4, we obtain

Yd
Yqwy,(y) = f(/, s)s"tds, ye B/,
0

where denote y = (¥, yq4), and use the fact that > 0, and w,, € C(Bjo). Thus, we have

va 1
[y, ()] < Hf(y'v')cho,yd])/o s"Vds = 2yl F W leqopa: ¥ € B
from where it follows, by the definition of f, that

’wyd(y” <C Z HDﬁw(yla ')||C’([O,yd])> Yy e B;t))

BENT
Ba=0; |8|<2

for some constant C' = C'(Ag, by, A). Now applying Lemma to estimate DPw on B, for all
0 <7 <, and for all 8 € N¢ with 34 = 0 and |3| < 2, we obtain the supremum estimate for

wy, on B;f in terms of the supremum estimate of w on B} . O

Lemma 3.7 (Local estimates for D?D,,w with 84 = 0). Let k € N, and let 0 < r < rg. Then
there is a constant, C = C(k,r,79,d, Ao, bo, A), such that for any function w € C“(Bﬂg) obeying
(3.16) we have

||D’8Dydw||c(]§;r) < CHch(B;%)y
for all B € N® with B3 =0 and |3| < k.

Proof. Since Low = 0 on B}, we also have LoD’w = 0 on B}, for all 8 € N¢ with 8, = 0.

o)

Lemma then applies with r replaced by ro = (r + 7¢)/2, and gives us
HD'BDydeC(Bj) < COHDﬁch(B;E)a
where Cy = Cy(r,ro,d, Ao, by, A) is a positive constant. Next, we apply Lemma to estimate
DBw and give a constant C; = Cy(k, r2, 70, d, Ao, bo, A) such that
Bunll . < )
1D w||c(B;r2) = ClHWHC(BjO)-

Now combining the preceding two inequalities, we obtain the a priori local estimate for D? D, w.
O

Lemma 3.8 (Local estimate for wy,,,). Let k € N and 0 < r < ro. Then there is a positive
constant, C = C(r,r0,d, Ao, bo, A), such that for any function w € C>®(B}) obeying (3.16) we

have
||wydyd||C(B,‘f) < CHwHC(B{%)‘

Proof. By taking another derivative with respect to g4 in the equation Low = 0 on Bt

s We see
that w,, is a solution to

d—1

d d—1
Yd Z a’ (wyd)yiyj + Z (bz + 2ald> (wyd)yi + (bd + add> (wyd)yd == Z a’mwyiyj'

i,j=1 i=1 ij—=1
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Applying the method of proof of Lemma with 6 := (I_)d + Ezdd) /a% and

d—1 d—1 d—1
— Z —ij _ Z —ij _ Z i oid
f= A~ Wy,y; — Yd A~ Wy qy;y; (b +2a >wydyi7
ij=1 ij=1 i=1

we obtain

Hwyddec(B;r) <C Z HDﬁwHC(Bj)v
BeNd
Ba=0,1; |B|<3

where C' = C(d, \g, by, A) is a positive constant. We can estimate the supremum norms of D%w
on B, , for all B € N? with 84 = 0,1, in terms of the supremum norm of w on B,‘,'B with the aid
of Lemmas |3.5 and Now, the supremum estimate for wy,,, on B, follows immediately. [

From the definition (3.15]) of w, using the fact that £; = 0, we have

d—1
Uy () = Z Erwy, (y) + wy, (y),
k=1

Ug; (1:) = Uy, (y)7 Vi 7é d,

d—1 d—1
Uz yzy (T) = Z Er€iWy,y, (y) +2 Zékwykyd (v) + wydyd(y>7 (3.17)
k=1 k=1

d—1
Ugizy (T) = Z EkWyiy, () + Wy, (y), Vi #d,
k=1

uzﬂ:j (:E) = wyiyj (y)v VZ,] 7& da
for z € H. Using the preceding identities together with the estimates of Lemmas and

we obtain

Lemma 3.9 (Local estimates for second-order derivatives of w). Let g > 0. Then there are
positive constants, r1 = r1(ro, Ao, bo, A) < 1o and C = C(ro,d, Ao, bo, A), such that for all u €
C>(B) obeying (3.12), we have

IID%IIC(g;) < Cllulleay s
for all B € N% with |B] < 2.

Proof. Let ¢ : H — H be the affine transformation y = ¢(z) = x + x4, € H, where ¢ € R?
is defined by . Let so = so(r0, Ao, A) > 0 be small enough such that B} C ¢(B,!). Let
s1 = $1(80, b0, A) < so denote the constant r; given by Lemma applied with r¢ replaced by
so. Then, the function w defined by has the property that w € C"X’(ng) and zow =0 on
B}, since u € C*(B;}) and Lou = 0 on B;t. We apply Lemma if 3 = eg4, Lemma if
B =e;+eqand i # d, and Lemma if 8 = 2eq4, to the function w with r replaced by s1 and rg
replaced by sg. We apply Lemma if 3=-¢; or B =e; +¢j, for all 7,5 # d, to the function w
with ry replaced by s; and rg replaced by sg. Then, for any k& € N, there is a positive constant,
C = C(k,ro,d, N, by, A), such that for all 3 € N? with |3| < 2, we have

||Dﬁw||C(le) < Cllwlle sy ) (3.18)
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We now choose 11 = r1(ro, Ao, by, A) small enough such that ¢(B,) C Bj . Using (3.17), we
obtain

||D6u||C(B;r1) < ||D6w||C(B;1) (by the facts that ¢(B,!) C By, and u(z) = w(¢(x)))

< Clwlegss, (by @IF)
< CHuHC(B%) (by the facts that B C ¢(Bt) and u(z) = w(¢(x))).

This concludes the proof. ]

4. POLYNOMIAL APPROXIMATION AND TAYLOR REMAINDER ESTIMATES

We adapt and slightly streamline the arguments of Daskalopoulos and Hamilton in [6, §1.6 &
1.7] for their model degenerate-parabolic operators acting on functions u(t,z), (t,7) € Ry x R?
to the case of our degenerate-elliptic operators acting on functions u(z), z € R%. The goal of this
section is to derive an estimate of the remainder of the first-order Taylor polynomial of a function
u on half-balls centered at points in OH (Corollary . This result, when combined with the
interior Schauder estimates of section §5], will lead to the full Schauder estimate for a solution on a
half-ball centered at point in OH (Theorem . Throughout this section, we continue to assume
Hypothesis and so the coefficients, a,b,c, of the operator L in and the coefficients, a, b,
of the operator Lg in are constant.

We let T,f v denote the Taylor polynomial of degree k of a smooth function v, centered at a
point P € R?, and let RkP =v =T, ,f denote the remainder. We then have the following analogue
of [6, Theorem 1.6.1].

Proposition 4.1 (Polynomial approximation). There is a positive constant C = C(d, Ao, bo, A),
such that for any ro > 0, and any function u € COO(B;B), there is a polynomial p of degree 1,
such that for any r € (0,rg) we have

T’2
e~ Pllgpe, < C <Tguu||c(3;0 ol ) (4.1)

Proof. We first consider the case when rg = 1 and then when ry > 0 is arbitrary.

Step 1 (rg = 1). We let f := Lou and we choose a smooth, non-negative, cutoff function, v,
such that

P rB;,./QE 1 and 4 [H\B{”E 0.
We fix some v > 1, and let S = R x (0,v) as in (1.10). By Theorem [B.3] there is a unique

solution, u; € C*°(S5), to

{Loul =9f on S,

ui(,v)=0 on R4-1,

Then, by setting ug := u — u1, we see that uy € C*°(B;}) and satisfies Loug = (1 — ) f on Bt .
Notice that the definition of the functions u; and us differs from that of their analogues, h and
f — h, in the proof of [6, Theorem I1.6.1]. The reason for this change is that the zeroth-order
coefficient in the definition of Lg is zero, and so uniqueness of C°°(H) solutions to the equation
Lou = f on H does not hold since we may add any constant to a solution, u. Since u = uy + uo,
we have

lu — T10u2||c(3;r) < luz — TPUZHC(B,T) + ||U1||C(B;r)- (4.2)
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By the Mean Value Theorem, we know that

[uz — Tusll o gy < O ([ D%usll g5
where C' = C(d). Because Louz = 0 on B;“/Q, we may apply Lemma to ug with 7 = 1/2. Then
there are constants, r; = r1(d) and C = C(d, o, bo, A), such that for any r € (0,71) we have

2
1D U2HC(BT+) < C||U2HC(BI+/2)7
from where it follows that
luz — TPzl o gty < O7?[luzlloogyy-
Corollary gives the estimate
lurlle@a-1x0p)) < ClYfllo®i-1x0m) < 1flciry (4.3)
where the second inequality follows because the support of v is contained in Bf . Since u = u1+usg,
we have
luzlleqasy < Il + lullogsy:
and so, combining the preceding two inequalities,
lualloary < lulleay + 1 lleah-
Thus, we have proved that
[lug — T{)UZHC(B;r) < CTQHUHC(Bj) + CHfH(}(Bf)a vr € (0,71).
When r € [rq,1), we have, for all z € B},
[uz () — Tz ()| < d|Dus(0)|r + [uz ()] + [uz(0))]
< CT2Hu||C(Bl+) (by Lemma [3.9] and the fact that r; < r),
where C' = C(d) is a positive constant. Combining the cases 0 < r < r; and 1 < r < 1, we
obtain
s — TPuslleasy < Crllul ey + Clflory: ¥ € (0,1),

for a constant C' = C(d, A, bg, A). The preceding estimate together with the identity u = uy 4 uso
and (4.3) show that

lu = TPusll gy < € (P llulloas) + Ioullegss))
and so, the conclusion (4.1]) follows with p = T{us, in the special case when 79 = 1.

Step 2 (Arbitrary ro > 0). When ¢ > 0 is arbitrary, we use rescaling. We let a(z) := u(rox),
for all z € B, and we see that (Lo@)(z) = ro(Lou)(rox). Notice that the rescaling property
(Lot)(z) = ro(Lou)(rox) does not hold in this form if the zeroth-order coefficient of Ly is non-zero.

We apply the preceding step to @ with r replaced by r/rg. Then, there is a polynomial p such
that

o ¥ _
i~ Bllogas, ) <€ <Tg||u||c(31+) + Lol )

which is equivalent to

7,2
lu—=pllogH <C <7%\\“‘|C(Brt)) - 7”0||L0“HC<B%)> ’

where we set p(z) := p(x/r¢). We notice that the polynomial p depends on ry, but not on r.
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The proof of Proposition is now complete. O
Proposition is used to obtain the following analogue of [6, Theorem 1.7.1].

Proposition 4.2. For any a € (0,1), there is a positive constant S = S(d, Ao, bo, A), such that
for any u € C*®(B;") with TPu = 0, we have

||UHC(B+ [ Loull oz
OB + sup ——= | . 4.4
0<rI§)1 rlta lulows) rI<)1 re (44)

Proof. Because T{u = 0 and u € C*(B]), it follows that the quantity on the left-hand side of
the inequality (4.4]) is finite. In addition, TPu = 0 implies that Lou(0) = 0, and so we also have

HLOuuo(Bj)
— <X

0221 re
Let . € (0, 1] be such that
gy _ Tl
ooy rite | gte

and we define for simplicity

[Loullcpt
= llullezt) + s % (4.5)
We let S (depending on u) be such that
||UHC(B+)
e SQ. (4.6)

It is sufficient to find an upper bound on S, independent of u, to give the conclusion .

Let ¢ and s be positive constants such that 0 < ¢ < r. < s < 1. We apply Proposition to
u with r replaced by ¢ and r, and r¢ replaced by s. Then, we can find a degree-one polynomial,
p, such that

2
q
lu=plleis <€ (SQHUHC(Bj) + SHLUU|’C(BS+)> , (4.7)

I = pllogasy <€ | lullogss + shEauloqas, | (45)

But
HPHC Bt) < C HPHC (BF)

for some positive constant C', depending only on d. We can then estimate
r
Ipllozy < €% (= pllog) + lullogay) -

and using (4.7)) and the fact that ¢ < r,, we obtain

Ploqay < O [T lulloqas, + llEouloqas, + lullogsy | - (49)

From
||u||c < flu — p”c(3+ +||pHc(B+
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and (4.8) and (4.9)), we see that

7“2 3

T TxS
lullosy < € | S luloqas) + slEoulloqss + lulogas) +

T
. [ Loull ety +qHUH(J(BJ)]

72

* T T«S
< |Gl + Sl + = Movloss|

where we have used the fact that ¢ < r, < s to obtain the last inequality. We divide by r1*® and
find that

|l ~ A+ A1-a llullop o |ul| ~ p+ o || Lou|| ~ 5
CBL) _ ¢ <L) lull oz N (q) oy | s <s) Lo ”C(Bj).

,r.iJra s glta Ty q1+a q \ s P

From the preceding inequality and definitions (4.5) of @ and (4.6|) of S, we deduce that

l—a @ @
SQSC[(T*) + <q> ]SQJrCS (5) Q,
s T q \ 7
By choosing 7./s and ¢/r, small enough, we obtain a bound on S depending only on C' =
C(d, Mo, bo, A). Hence, the estimate (4.4)) now follows. O

We apply Proposition 4.2|to Ru := u — T{u. Note that LoTu = (Lou)(0) and so
Lo (u—T{u) = Lou — (Lou)(0) = R Lou,
because z4D?*u = 0 on OH and the zeroth-order coefficient of L is zero. Thus, Proposition
yields the following analogue of [6, Corollary 1.7.2].

Corollary 4.3. For any a € (0,1), there is a positive constant S = S(d, Ao, by, A), such that for
any u € C*(B{") we have

||R(1)UHC(B,T)

IRS Loull o g+
0 (B)
<5 1l o, L)

0<r<1 re

Using the inequality (2.3]),
lz| < 2s(x,0)2, V€ H,
where we recall that the cycloidal distance function, s(z!, 22) for all 2!, 22 € H, is given by (2.1)),
we see that there is a positive constant, C' = C(a, d), such that

I1RY Loull o+
sup # S C sup
0<r<1 r 0<r<1

Lou(x) — Lou(0)
s2(x,0)

< Clloulezeay) -

C(B)

Therefore, Corollary gives us the following partial analogue of [6, Corollary 1.7.5].

Corollary 4.4. For any o € (0,1), there is a positive constant C' = C(a,d, X, bo, A), such that
for any uw € C®(B{") and 0 < r < 1, we have

HR?UHC(BT*) < Orite/2 <”R?u||c(3;r) + [LOU]C;I(BTO .

Next, we improve the estimate in Corollary with the following analogue of [6, Theorem
1.7.3 & 1.7.6].
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Proposition 4.5. For any o € (0,1), there is a positive constant C' = C(a,d, X, bo, A), such
that for any u € C=(B]") we have

ITPulloay) < € (lullogsg) + Louloa ) ) -
Proof. Because T is a degree-one polynomial, there is a positive constant C' = C(d) such that
C
1T ull gy < ;\|T1()UIIC(B¢)7 vr e (0,1].
By Corollary we have for all r € (0, 1],
IR ullegssy < O+ (Jullegss + 1 TRulloggs) + Loulegas)) -

By combining the preceding two inequalities, we find that

C
ITullogss) < = (lelloga + 1R uloms) )

c o . o
< (r +Cr /2> lulloqay) + Cro T ull oy + Or*'? [Loulce a7 -

By choosing 7 small enough so that Cr®/2 <1 /2, we obtain the conclusion. ([l
Proposition implies the following special case (r = 1) of [6, Corollary 1.7.8].

Corollary 4.6. For any o € (0,1), there is a positive constant C' = C(«,d, Ao, bo, A), such that
for any u € C®(B;") we have

IRulloss < C (Iulleesy) + Loloe ) -
Corollaries and yield the following analogue of [6, Corollary 1.7.8].

Corollary 4.7. For any o € (0,1), there is a positive constant C' = C(«,d, Ao, bo, A), such that
for any u € C®(B{") and 0 < r < 1, we have

| Rull g gy < Cri+e? <||u|yc(gl+) + [Lou}cg(];»;r)) .

5. SCHAUDER ESTIMATES AWAY FROM THE DEGENERATE BOUNDARY

In this section, we use a scaling argument to obtain elliptic Schauder estimates away from
the degenerate boundary analogous to the parabolic versions of those estimates in [0, §I.8]. Our
argument is shorter because we only aim to obtain the estimates in Lemma and Corollary
Even though these estimates are weaker than their analogues [0, Corollary 1.8.7] and [0,
Corollary 1.8.8], respectively, they are sufficient to obtain the full Schauder estimate in
Theorem The estimate is proved using a combination of the Schauder estimate on balls
B,(x9) € H which we prove in this section, and the results of The proof of Proposition
uses Corollary which is derived from Lemma We have encountered a similar situation
in the proof of Hélder continuity along OH of a weak solution to the Heston elliptic equation in
[17, Theorem 1.11]. Throughout this section, we continue to assume Hypothesis and so the
coefficients, a,b, c, of the operator L in and the coefficients, a,b, of the operator Ly in (|1.4)
are constant.

For any r > 0, we let @), denote the point rey; € H. We have the following analogue of [6),
Corollary 1.8.7].
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Lemma 5.1. For any « € (0,1) and positive constants p and X such that 0 < p < X\ < 1, there
is a positive constant C' = C(a, 1, A, d, Ao, A), such that the following holds. For any function
u € C®(Bx-(Qr)), we have

1
2
[Dulee (B, + [#aD*u] o 5,0, < C | a1l @) -

1
+alilotllo,, @) + Lodlces,, @) | -

Remark 5.2. The estimate in [6, Corollary 1.8.7] does not contain the term ||Loullc(s,,(0,))

appearing on the right-hand side of our interior estimate (5.1). However, our estimate is sufficient
to give the Schauder estimate (3.4)) in our Theorem

Proof. The result follows by rescaling. We denote z = (ry’, 7+ ryy) € H, where we recall that we
denote y = (y/,y4) € H = R4 x Ry, and define

v(y) = u(x), Vy € By.

By the hypothesis u € C*®(By.(Q,)), it follows that v € C>(B)) and v is a solution to the
strictly elliptic equation

14+ yq i i .
—5 @y (y) + 0y (y) = rf(y), Yy = (Y ya) € B,

where f(y) = f(ry',r +ryq), for all y € By, and f := Lou. By the interior Schauder estimates
[30, Theorem 7.1.1], there is a constant C' = C'(av, u, A, d, Mg, A), such that

1D,y < € (Iolleqsy) + 7l lcaa,)) - (5.2)
By direct calculation, we obtain
HUHC(BA) = HUHC(BM(QT))v
1 Flceayy = IfloeBy @) (5.3)
[flowBy) < O flee By
where C' = C(a). To see the last inequality, recall that = = (ry’,r + rya), for all (y',y4) € Ba.
For any 4* € By, for ¢ = 1,2, we have

N =T | = f@?)] szt 2)

[yt — g2 s(xt,z?)e |yt —y?le

By ([2.1]), we notice that

s(z!,a?) rly! — y?| L \/7
1_ 2] 12 =\
S Y e e | L
and so, by letting C' = 272, we obtain

ey < O [fleaza@n) -
We also have

[z4D%u] < or~(+a/2) HDszca(Bu), (5.4)

Ce(Bur(Qr))
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for a constant C' = C'(a, d). To establish ((5.4]), we only need to consider quotients of the form

|ziD?u(zt) — 22 D%u(2?)|

s(zl, 22)® ’
where z!, 2% € B, and all their coordinates coincide, except for the i-th one, where 7 =1,...,d.
We only consider the case when ¢ = d, as all the other cases, i =1,...,d — 1, follow in the same
way. Recall that we denote z = (ry/,r + rya), for all y € B,,. We obtain
e} D?u(a!) — d3D%u(a?)| _ |z} — a3 ,|D?u(a!) — D?u(a?)|

D2 1
s(xl, x2) - s(xl,xQ)O“ (@) + g s(xl, z2)

Using the definition of the cycloidal metric (2.1)), and the fact that D?*u(z) = 1/r2D?v(y), for all
x € By, we see that
lzLD2u(zt) — 22 D%u(2?)]

S(SEl, 562)0‘

1
< (2w + 203) " foy — 30 5| D*0(y)|
L2l |D*v(y') — D*u(y?)] ly' — y*|*

e P PR

< 2047,—(14-04/2) HDszC(BH)

oy =
(Bu) s(aL, 22)o

where we used the fact that 2, <r, for all 2!, 2% € B,,. We also have by (2.1),

+rt [szu] Ca

e A e R \/ 1 2 1 2 -1/2
= + _ < Oor VY
s(xt, z?) |ac(11 — 1:3 g+ T+ |rg — 2l < Or ’

which implies that
|zLD?u(zt) — 22 D%u(2?)|
s(zl, 22)
for a constant C' = C'(«). Now, the inequality follows immediately.
Using the preceding estimates and , it follows by that

[.’EdD2u] CSO‘(BMT(QT)) S C (T_(1+a/2)||u||C(BAT-(Qr)) + T_Q/ZHLOUHC(B)\»,«(QT)) + [LOU]C?(BM(Qr))) 5

where we substituted Lou for f.
To obtain the estimate for the Holder seminorm of Du, we proceed by analogy with the
argument for zqD?u. O

< Or~ || D) g 5,

We have the following analogue of [6, Corollary 1.8.8].

Corollary 5.3. For any a € (0,1) and positive constants p and X such that 0 < p < X\ < 1, there
is a constant C' = C(a, p, A\, d, Ao, A), such that for any function u € C*°(B,(Q,)) we have

I1RS ull o5, (@) < C (HUHC(BAT(QT» + 12 [Loul oo 5, () + ""”LOUHC(BM(QTD) :
Proof. As in case of the inequality preceding [0, Corollary 1.8.8], we have
Qr _ 14a/2 2
1B ullecs, @ < O [2aD™] oy 5,0,

for a constant C = C(d). Thus, the conclusion follows from Lemma and the preceding
inequality. (|
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6. SCHAUDER ESTIMATES NEAR THE DEGENERATE BOUNDARY

In this section, we use the results of the previous sections to prove our main a priori interior
local Schauder estimate (Theorem for the operator L on half-balls centered at points in the
“degenerate boundary”, OH. Throughout this section, we continue to assume Hypothesis[3.1], and
so the coefficients, a,b,c, of the operator L in and the coefficients, a,b, of the operator Lg

in (1.4) are constant.
We begin with an analogue of [6, Theorem 1.9.1].

Proposition 6.1. For any a € (0,1), there is a constant C = C(a, d, X, bo, A), such that the
following holds. For any function u € C°°(B;") and any 0 < r < 1/2, we have

ID2u(Q,)| < Cr/21 (HUHC(B;) + [LOU]C;*(BD) '

Proof. We choose 1 = 1/4 and A = 1/2 in Corollary We consider the points @, := req and
P:=0 € R% Letp:= T2Q’“u — Tfu, where we recall that T2Qru is the second-degree Taylor
polynomial of u at Q,, and T{ u is the first-degree Taylor polynomial of u at P. Then, we also
have that p := R{D U — Rgg"u, where we recall that RQQ"U is the remainder of the second-degree
Taylor polynomial of u at Q,, and R} is the remainder of the first-degree Taylor polynomial of
u at P. There is a positive constant, C' = C(d, p1), such that

C
|D?*p| < ﬁ”pHC(Bw(QT))a
which implies, from the definition of p, that
C
| D*u(Qy)| < ﬁHRfU - REQTUHC(BW(QT))' (6.1)
Corollary applied to R u gives
”RfUHC(Bj) < Crttes? <||U”c(1§1+) + [LOU]cSa(B;L)) ) (6.2)
and the interior Schauder estimate in Corollary applied to R u yields
IR R ulleg,. 00 < C (1R vl 0.
+ rlLoR ullos,, @)+ [LoRY ] o 5, 01) -

for a constant C' = C(a, i1, A, d, Ao, A). We notice that LoR{u = Lou — (Lou)(P), from where it
follows that
ILoR ullc(s,, @) < Cr? Loulga(py) - (6.3)

using the fact ([2.2) that s(z!,2?) < |a' — 22|Y/2, for all 2!, 22 € H, and also that
P — _
LoRru] o5, () = [Fotlee By (@) (6:4)
The preceding three inequalities, together with (6.2)), give us
1B R ullcs,, @) < Cr 7 (Iulloy) + Lovleg sy )

where we used the fact that B, (Q,) C Bi, when 0 < r < 1, for all 0 < p < 1. Notice that
RQQ’"u = R?’“Rf u, and so the preceding estimate becomes

1B ullo,, 00 < O+ (Il oz + Lotloa sy ) -
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The conclusion now follows from the preceding estimate, and inequalities (6.2) and (6.1). O
Note that the definition ([2.1)) of the cycloidal metric gives

s((2',1q), (2/,0)) = Vxg/2, V(2 z4) € H,
and hence, via Proposition we obtain the following analogues of [6, Theorems 1.9.3 & 1.9.4].

Corollary 6.2. For any o € (0,1), there is a constant C = C(«a,d, Ao, bo, A), such that for all
0<xg<1/2 and 2’ € R, and any function u € C°(B; (2',0)), we have

fraD?u(a’, 2a)] < Cs (&', a), (0',0)) (Il o + Eolog i oy -

Corollary 6.3. For any o € (0,1), there is a constant C = C(«a,d, Ao, bo, A), such that for all
0<xq<1/2 and 2’ € R, and any function u € C°(B; (2',0)), we have

‘Du(xljxd) — l)u(x’7 0)’ < Cs ((.T}/,xd)a (x” 0))‘3‘ (”uHC(Bf(a:’,O)) + [Lou]Cg(Bf(x’70))> .

Proof. Following the proof of |6l Theorem 1.9.4], using Proposition and translation-invariance
with respect to 2/ € R%! to obtain the second inequality, we have

4
|Du(2’, zq4) — Du(z2',0)] < / | Dug, (2, t)|dt
0

Tq
< € (llleqst o) + Eotlep st o) / o/l

0
— /2
= O (Iullosy oy + Eotlog s op) i
Using the fact that s((2/, x4), (2/,0)) = \/x4/2, we obtain the conclusion. O

Next, we use Lemma (for estimates away from OH) and the Taylor remainder estimates in
Corollary (for estimates near 0H) to prove the following analogue of [0, Theorems 1.9.5].

Proposition 6.4. Let o € (0,1), and 0 < r < 1/4, and 0 < p < 1. Then there is a constant,
C = C(a, pt,d, N, N), such that for any function u € C*(B]"), we have

2
(Dl Byt + 24D s, < € (Illogss) + Eovlogest)
Proof. For simplicity, we denote v := R{u = u — T u. We notice that

[Dulce(s,, @) = [PVlceB@y and  [2aD*ulcg (s, = [£aD*Vce(8,.(@)):

and hence we only need to estimate [Dv]ga(s,,(g,)) and [£4D?v)] €2 (Bpr(Q,))- The proof is similar
to the proof of Proposition [6.1}] The interior Schauder estimates in Lemma [5.1] applied to v with
A= (1+p)/2 yield

1
2
[DU]Cg(BW(QT)) + [z4D%v] Co(Byur(Qr)) <C Fta/2 lvlleBa, @)

1
toanlilovlies,, @) + Lovlog B0 |

for some constant C' = C(«, u,d, Ao, A). The conclusion now follows from the preceding estimate
and inequalities (6.2)) applied on Bj.(Q,) instead of B;' (notice that By.(Q,) C B;r/z, since
0 < r <1/4), together with (6.3) and (6.4]). O

Next, we have the following analogue of [6, Theorems 1.9.7 & 1.9.8].
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Proposition 6.5. Fora € (0,1), there are constants v = ~v(d) € (0,1), and C = C(a, d, Mo, bo, A),
such that for any function u € C>(B]"), we have
[Dulcg gty + [2aD?u] g 1) < C (HuHC 5 [Lou}cg(];;r)) . (6.5)

Proof. We combine the arguments of the proofs of [6, Theorems 1.9.7 & 1.9.8]. Let 2* € Bj , for
1 = 1,2, where v will be fixed below. We may assume without loss of generality that :L‘}l > xfl.
We consider two cases.

Case 1 (2! and 22 close together relative to dist(-, OH)). If |x1 —z1| < x}/4, then 2% € Bmé/4(a;1),

and the estimate (6.5)) follows if we assume 0 < v < 1/2 and apply Proposition with p =1/4

_ 1
and r = x.

Case 2 (z! and 22 farther apart relative to dist(-, 0H)). We next consider the case when
2! — 22| > 2} /4. (6.6)
Writing « = (Z,24) € R x Ry, we define the points,
23 :=(z',0) and 2*:=(z7%0),
2® = (z',r) and 2°:= (7% 1),

where the positive constant r will be chosen below. Notice that when holds, we have

1
s(zt, z?) > g\/x}l,

by the definition (2.1)) of the cycloidal distance function. By the definition of the points z¢, for
i = 3,4, and the fact that s((z/,zq4), (2/,0)) = \/z4/2, we see that

s(a:l 932) > 85(1:1 $3),

4 (6.7)
s(xt, 2?) > 8s(x?,2*)  (since z} > x2).
Let v denote Du or z4D?u, and consider the difference
v(zt) —v(?) = (v(@') —v(@?) + (v(@®) — v(z®)) + (v(2®) — v(2f)) (6.8)
+ (v(2%) —v(@?)) + (v(z?) —v(2?)).
Using the distance inequalities (6.7]), we find that
’v(azl)—v(a:?’)’ <8a‘ v(:vg)‘,
S(CEl, xQ)a ( 3)04
v(2?) — v(:v4)‘ <o [v(2?) — v(z?)]
5(1:1712)0: (I’2 x4)a ’
By Corollary if v = x4D?u, and Corollary if v = Du, we obtain
’v(azl) - v(xg)‘ ’v(mg) - v(a:4)’
s(zt, 22) s(z1, 22) <C (HUHC(B+ + [Lou]Cg(Bf)) ) (6.9)

for a constant C' = C(a, d, Ao, by, A).
We now let r := Bs?(z!, 22), where the constant B will be chosen below. Using the fact that
s(z3,2%) = \/r/2 and definition of x?, for i = 3,5, we obtain
|v(z®) — v(a?)]
s(xl, x2)o¢

v(xf’)‘

(e (xg &)
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Because ! € B,JYr , for i = 1,2, and due the inequality (2.2)), we can choose the constant B :=
1/(4~) such that
r = Bs*(z,2%) < Blz' — 2% < By < 1/4.
We apply Corollary when v = z4D%u, and Corollary when v = Du, to obtain
|v(z?) = v(z”)| 2
s(zl, z2)e < C(B/2)" (HUHC(B;) + [LOU]CSC(BT)) , (6.10)

The inequality,

v(z*) — v(ab
W < C(B/2™ (Jull oz + Lot ouiar)) (6.11)

follows by the same argument used to obtain the estimate (6.10)).
Using and the assumption x}l > xfl, we see that
3 ‘ 1’1 o x2|2

3
=1 =2 1 2 20,1 .2
|z5 —z°| <|z" —=x <295¢11 21 2‘—23 (", z%).

Recalling that B = 1/(4v) and r = Bs?(z!, 2?), we have
3
|zt — 7% < ﬁBSQ(xl,J/j) < 6yr.
Next, we choose v = 1/24, and so
1z — 72 < r/4.

for all 2 = (2%,--- ,2%) € B;“, for i = 1,2. Because |z' — 2| < r/4, we may apply Proposition
with p = 1/4, to obtain

|v(z®) — (2]

S < (el oz + Lovles 52)) -

Again using the definition 7 := Bs?(x!, 2?), we notice that

V3
4’

S({E5,$6) < ‘i' — X | < ( 2)7

r

and so the preceding two inequalities yield

v 135 — v $6
W <C <HUHC(1§1+) + [LOU](]g(B;r)) : (6.12)

Combining the estimates , (6.10), (6.11]) and (|6.12)) gives us the estimate (6.5]), when condition
holds.

The conclusion now follows from the two cases we considered. O
By analogy with [0, Corollary 1.9.9], we have

Proposition 6.6. For any a € (0,1), there are positive constants v = ~(d) € (0,1), and C =
C(a,d, No, by, A), such that the following holds. If u € C*®(By"), then

H“”oﬁ*“(éj) <C (HUHc(Bj) + [LOU]Cg(Bj)> : (6.13)
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Proof. Let v = ~(d) € (0,1) be as in Proposition The bound on z4D?u follows from
Corollary Proposition gives us the estimate (6.13)) for the C§(B) Holder seminorms

of Du and zgD?u. We only need to show the bound on of Du, namely that there is a constant
C = C(a,d, Mo, bp, A), such that

IDuloss) < € (lullos + Lotloass)) - (6.14)
We follow the argument of [6, p. 932]. Let 2° € B be such that [Du(z")| = HDUHC(B;r)- Then
by Proposition we have, for all z € B;’ ,
Du(z) - Du(a®)| < Co (Julloss) + Lotlea s ) -

for a constant Cy = Cy(av, d, \g, by, A).
Let N > 2 be a positive integer such that

1Dullc(zs) = NCo (llw\c(ér) + [Lﬂu]cg(éf)) ‘

Estimate (6.14]) will follow if we can find an upper bound on N, independent of u. The preceding
two inequalities give

Du()| = (N = 1)Co (Ilull gz + [Eotleazs ) s Yo € B,
and the Mean Value Theorem yields
lu(z) — u(z®)| > | — 2°|(N - 1)Co (HUHC(BD + [LOU]CS(BD) . Va0 € B

Choosing = € B such that |z — 2% > ~/2, we obtain a contradiction with (6.5)) if NV is too large.
Thus, (6.14) follows. O
We have the following corollary of Proposition

Corollary 6.7. For any o € (0,1), there are positive constants, v = v(d) € (0,1) and C =
C(a,d, Mo, by, N), such that for any r > 0 the following holds. If u € C*°(B;), then

lull gzvo gty < Cr=t+erd (HUHC(Bm + [Lou]cg(ém) . (6.15)

Proof. Let v = ~(d) € (0,1) be as in Proposition We set v(x) := u(rz), for all z € Bf". The
estimates of Proposition applied to v give us
lullgzromy < € (lullos) + oo st

where C'= C(a, 7, d, Ao, by, A). The dependency of the constant C' on r follows as in the proof of

Lemma and so we obtain (6.15]). O

We now generalize Corollary to allow for any v € (0,1) and make explicit the dependency
of the constant C' appearing in (6.15)) on r and ~.

Corollary 6.8. Ifa € (0,1), then there are positive constants, p = p(a) and C' = C(a, d, Ao, bo, A),
such that, for any r > 0 and v € (0,1), the following holds. If u € C*®(B;}), then

lullezrozny < CU =27 (lllogs) + Loulagas)) (6.16)
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Proof. Let 74 € (0,1) be the constant appearing in the hypotheses of Corollary We consider
two cases, 0 < v < 4 and v > 74, and clearly we only need to consider the second case. Our
proof of (6.16) now follows standard covering argument. Let t := (1 — 7)r/2 and divide the
half-ball, BY,, into the two regions,

Uy = B+ N <Rd_1 x (O,'ydt/2)> and Uy = B, \ UL
We cover U; by a finite number of half-balls, B;rd .(z™), centered at points 2" € 9y B;F (z°) and we
apply the estimate (6.15]) to obtain

< C((1 = A)r)~(He/2) (HUHC(B;") n [Lou]cg(g;o-)) (using t = (1 — )r/2).
In the region Us, the operator Ly is strictly elliptic (because x4 > ~4t/2 > 0), and so we may
apply [26, Corollary 6.3]. Using the elliptic analogue of the parabolic estimate [I8, Proposition
3.13], there is a positive constant p = p(«) such that

lullgzseqzyy < O =) (lullogss + Loulas st ) -
Estimate (6.16)) follows by combining the preceding two inequalities. ([l

Proof of Theorem[3.3. We combine the localization procedure in the proof of [30, Theorem 8.11.1]
with Corollary We divide the proof in two steps. Set R := (r +19)/2.

Step 1 (A priori estimate for u € C*°(B;)). Consider the sequence of radii, {ry}n>1 C [r, R),
defined by 71 := r and

n—1
1
Tn ::r—&—(R—r);zn, Vn > 2. (6.17)
Denote By, := B;f (2%), for all n > 1. Let {¢n}n>1 be a sequence of C5°(H) cutoff functions such
that, for all n > 1, we have 0 < ¢, < 1 with ¢, =1 on B,, and ¢,, = 0 outside By +1. Let

Q1= ||u<pn||C§+a(Bn), Vn > 1. (6.18)
By applying the estimate (6.16)) to up,, with r = r,11 and v = r,/r,11, we obtain

oan < C(rpg1 — 1) ? (HWPnHC(BnH) + [LOu]Cg(BnH))

< C(R —r)P2(r=bp (HU‘PHHC(Bn_H) + [ Lullce (B, ) + ||U‘Pn+1HCg(Bn+1)) ;

where the last inequality follows from the fact that L = Lo+ ¢ by (1.3 and (1.4)) and employing
(6.17). The interpolation inequalities (Lemma |C.2)) give, for any € > 0,

lupntillce(B,.,) < €an + Ce ™ upntilles,,,)  (by (6.18)),

where C = C(d,a, R) and m = m(d,«) are positive constants independent of . Choosing
€= 5C‘12_(”_1)p(R — )P, we obtain, for all § > 0,

an < Sant1 +C ((R _ T)—pz(n—l)p +6 ™R - r)—p(m+1)2(n—1)(m+1)p)

x (120l gg g0y + lluensllog g eo)
and now the estimate (3.4) follows as in the proofs of [30, Theorem 8.11.1] or [I8, Theorem 3.8].
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Step 2 (A priori estimate for u € C2+%(B;} (2°))). Choose a sequence {up}nen C C (B (2))
such that u, — u in C2t*(B}(2")) as n — co. Applying the estimate (3.4) to each u, and then
taking the limit as n — oo, yields the a priori estimate (3.4) for u € C27*(B;" (2°)).

This concludes the proof of Theorem [3.2] O

7. HIGHER-ORDER A PRIORI SCHAUDER ESTIMATES FOR OPERATORS WITH CONSTANT
COEFFICIENTS

In this section, we prove a higher-order version of Theorem our basic a priori local interior
Schauder estimate, and a global a priori global Schauder estimate on a strip (Corollary , both
when L has constant coefficients. Throughout this section, we continue to assume Hypothesis
and so the coefficients, a,b, c, of the operator L in and the coefficients, a,b, of the operator

Lg in (1.4) are constant.

Theorem 7.1 (Higher-order a priori local interior Schauder estimate when L has constant coef-
ficients). Assume the hypotheses of Theorem and let k e N. Ifu e C§’2+a(§f{) (22)), then

lullgasaggey < C (IZullgragss oy + lullogag woy) s (7.1)
where C' now also depends on k.

Proof. Choose 71 := (r+10)/2 € (r,70). For any multi-index 8 € N¢ with |3| := B1+---+ 84 < k,
direct calculation yields

DPLv = L DPv—Bg Y a?DfotBaleay, . e C(H), (7.2)
ij#d
where we write By := 8 — 4eq and, for [ € N,

Lgv:= —xdaijvxixj — Z (bi + 2laid> Vg, + (bd + ladd> Vg, + CU.
i#d
Note that L) = L. To prove (7.1)), we see by Definition that it suffices to establish
ID%ullgzso ) < € (Iullgre s oy, + oz oy ) (73)

for any multi-index 8 € N with |3| < k, where C has the dependencies given in our hypotheses.
Theorem yields (7.1) when k& = 0. Therefore, as an induction hypothesis for k, we assume
that . ) holds with k replaced by any [ € N in the range 0 < [ < k — 1 and we seek to prove

and hence (7.1)) by induction on [ when |8| = k.
We first consider the case 84 = 0, so LD?v = DPLv. Then

1D%ull gz gy < € (IED ullga 5t oy + 1D Ul o)) (by B
<C ( |D° LUHca(B+ y T ||DBUHC B (= ))) (by (7.2))
<C (\|Lu||cka(3+ + ||u||c§,a(B¢ (xo))) (by Definition [2.9)
C’(HLu||Cka(B+ poy + il grrzsa 5t o ))) (by Definition [2:3)
<o

| Lll o, oy + 1Ll ot 0y + o o)
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where the final inequality follows by induction on [ and the a priori Schauder estimate ([7.1)) with
k replaced by | = k — 1 (and r replaced by r1). Since r; < 19, we can combine terms and obtain

(7.3) in the case B4 = 0.

Now we consider the case 0 < ;5 < k and argue by induction on 54. As an induction hypothesis
for B4, we assume that ([7.3]) holds when 0 < 83 < k — 1. For 34 in the range 1 < 85 < k (and
thus |8 < k — 1), we have

ID%ulgzra )

=C (HL(ﬁd)Dﬁu”cg(Bil(xO)) + HDﬂUHC(BjI(xO))) (by (3-4))

<C HDBL“”Cg(Bﬁl(xO)) + Z ”Dﬁ0+(5d*1)€duxixj||Cg(B:rl(xo)) + HDﬂ“”C(BTﬁ )
ij2d

~ Bo+ei+(Ba—1)eq _ o
=¢ <”L””C§’Q<Brﬁ oy Tl D Uleze sy, oy + el ope sy, (ocO))) ’

where the penultimate inequality follows from ((7.2)) and the final inequality by Definition of

our Holder norms. Because C27* (B} (2°)) < C5** (Bt (2)) by Definitions [2.2 and E we see
that

HDBUHCEM(B;F) <C <||LUHC§7Q(B¢; @) T max HDﬁOJreiHﬁd*l)edU”cgﬂ(B,Tl @) T ”UHCQW(le (x()))>
< O (12l et oy + 1200t oy + Nellogs aoy + Iellosnas oy
(by induction on 34 and since By — 1 <k —1)
< C (IZull g gt @oy + Null oz oy + illozs oy ) (sinee 1 < 7o)
< € (Ll gt oy + llon-rzva i oy + Nt ooy
< C (IZull gt g oy + 10l ciro g oy + lilloqa woy )

where the penultimate inequality follows from the embedding C¥ _1’2+0‘(B;L1 (20)) — CFe (B (=)
implied by Definitions 2.2 and [2.3] and the final inequality follows by induction on ! and the a
priori Schauder estimate with k replaced by [ = k — 1 (and r replaced by r1). Again, since
r1 < 19, we can combine terms and obtain in this case too. ]

Let v > 0 and let S = R x (0,v), as in (1.10). Theorem together with a priori estimates
for strictly elliptic operators in [26, §6] now imply the following global Schauder estimate on
strips.

Corollary 7.2 (A priori global Schauder estimate on a strip when L has constant coefficients).
Foranya € (0,1), constant v > 0, and k € N, there is a positive constant, C = C(k, o, v, d, Ao, by, A),
such that the following holds. If u € C§’2+a(§) and uw =0 on 015, then

lullgasn sy < € (1Ll + lullos) ) - (7.4)
and, when ¢ > 0,

[ull grzragg) < CllLullgrags): (7.5)
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Proof. Let r := /2, and let {z"},eny C OH be a sequence of points such that

R (0,r/4) € | B, (a").
neN

Using the a priori interior local Schauder estimate (3.4]) on each half-ball B;f (™), we obtain

lellgarezs oy < C (Iullgsa s oy + lellogss ) -

By applying a standard covering argument to the strip Sy := R?~! x (0,7), we find that

lullgrasn sy < € (1t + lulos) ) -

By [26, Lemma 6.5 & Problem 6.2] and a similar covering argument, there is a constant 6 > 0
such that, if S; := R¥™! x (v — §,v), we have

lullgratags,) < C (ILullgragg, + lule))

Setting Sz := R4~! x (r/4,v — §/2) and now applying [26, Corollary 6.3 & Problem 6.1] and a
covering argument, we obtain

lullgratags, < C (IZullgrags + o)) -

By combining the preceding three estimates, we obtain ([7.4)) and by appealing to Corollary
we obtain ([7.5]). O

8. A PRIORI SCHAUDER ESTIMATES, GLOBAL EXISTENCE, AND REGULARITY FOR OPERATORS
WITH VARIABLE COEFFICIENTS

In we relax the condition in Hypothesis[3.1]that the coefficients, a, b, ¢, of the operator L in
(1.3) are constant, which we assumed in sections and@ to prove a generalization (Theorem
8.1)) of our C2** a priori Schauder estimate (Theorem from the case of constant coefficients,
a, b, ¢, to the case of variable coefficients. We then prove Theorem [8.3] extending the preceding
C2+2 g priori Schauder estimate to a C’f 2Ty priori Schauder estimate for arbitrary £ € N. This
allows us to complete the proofs of Theorem and Corollary In § refsubsec:Regularity, we
prove our global C#?%%(§) existence result on strips, S, and hence a C§’2+a(ﬁ,‘% (29))-regularity
result, Theorem on half-balls, B/t (2%). We conclude the section with the proofs of Theorems
and and Corollary

8.1. A priori Schauder estimates for operators with variable coefficients. We begin
with a generalization of Theorem to the case of variable coefficients.

Theorem 8.1 (A priori interior local Schauder estimate when L has variable coefficients). Let

a € (0,1) and let ro, Ao, bo, A be positive constants. Suppose that the coefficients a, b, and c
of L in ([1.3) belong to C¢(B; (x")), where 2° € OH, and obey

lall g 3y @oy) + 10l oo (55 @oyy + lellog By oy) < A (8.1)

bt > by on doB; (z9), (8.2)

(ag,&) > Xolé]”  on B (), VEeERY, (8.3)

=10
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Then, for all r € (0,1¢), there is a positive constant C = C(«,r,ro,d, N, by, A) such that, for any
functiorﬁ u € C2 (B} (1)), we have

lullezre g any < € (ILullag s oy + Illogss woy ) - (8.4)

Proof. We use the a priori interior local Schauder estimate for the operator with constant
coefficients (given by Theorem and the interpolation inequalities for the Holder norms defined
by the cycloidal metric (Lemma @I}, the method of freezing coeflicients as in the proofs ofﬂ
[30, Theorem 7.1.1] (elliptic case), [30, Theorem 8.11.1] (parabolic case), and, in particular, [I8,
Theorem 3.8] for the parabolic version of our elliptic operator to obtain . ]

We now generalize Corollary [7.2]to the case of variable coefficients when u has compact support
in a strip.

Proposition 8.2 (Higher-order a priori global Schauder estimate for compactly supported func-
tions on a strip when L has variable coefficients). Let « € (0,1) and v, A, by, A be positive
constants and k € N. Suppose S = R x (0,v) as in (1.10) and the coefficients a,b,c of L in

([L.3) belong to C¥*(S) and obey (L.11), ([.12), and ([1.13). Then there are positive constants,
C = C(k,a,v,d, Ao, by, ) and 6 = §(k,c,v,d, Ao, by, A) < v/2, such that the following holds. If

u € C’f’2+a(5’) has compact support in S with diam(suppu) < § and u =0 on 1.5, then

lullgrzve gy < C (ILullgro ) + Ml ) (8.5)

and, when ¢ >0 on S,

[ullgpzsag) < CllLullgra ) (8.6)

Proof. Fix 2° € SNsuppu and let L 0 denote the operator with constant coefficients a(z"), b(z?),
c(zY). By applying (7.4)) for the operator L,, with constant coefficients, we obtain

lullgrzsa sy < Co (ILastllgro sy + lulleqs))
and hence
lullgasa sy < Co (ILullgraggy + I1(E = Loyl gros) + Il ) - (87)

where Cj has the dependencies stated for the constant C' in the estimate .

For any z',2? € suppu, the cycloidal distance-function bound and our hypothesis on
supp u imply that s(z!,22) < |#' — z2|1/2 < §1/2, for some 6 € (0,/2) to be selected later. We
first consider the case suppu C By5(y°) for some y° € §yS. We further restrict to the case k =0
initially. Observe that

(L — Lyy)u = —zgtr((a — a(z®))D*u) — (b — b(z°)) - Du + (¢ — ¢(2°))u.

We consider in turn each of the three terms appearing in our expression for (L — Ly, )u. From
Definition [2.2]

1(b = b(2%)) - Dullgg(s) = (b = b(x")) - Dullgyg) + [(b = b(a?)) - Dulcg(s).

8 . . 24 + 0 . . .. .
It is enough to require u € C57* (B} (2")) since the estimate trivially holds if ”Lu”cg(éio (20 and ”“HC(B,TO(ZO))
are not finite.

9This method is also employed in the proof of [26] Theorem 6.2], but Gilbarg and Trudinger employ a family of
“global” interior Holder norms (which we do not develop in this article) which allows a rearrangement argument.
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The coefficient bounds (8.14]) ensure that

1= b)) - Dulles) < (Iblleqs) + 1)) [ Dullos) < 241 Dullegs),

while the interpolation inequality (C.3) yields, for some m = m(d,a) and C; = Ci(d,a,0)
(because diam(suppu) = ¢) and any ¢ € (0,1),

[Dullcs) < ellull gz+a(gy + Cre™ " [ullo(s), (8.8)
and thus, combining with the preceding inequality, yields
(b= b(2°)) - Dullos) < 2eAullprags) + Crde ™ fulles) (8.9)
Writing, for 2!, 22 € S Nsuppu,

(b(z!) = b(2?)) - Du(z') — (b(z?) — b(a?)) - Du(a?)

S($1, 1‘2)04

Du(z') — Du(z?))
3(3317332)04 ’

— (b(xl) — b(l’2)) Du(azl) + (b(ﬂ?l) _ b(xO)) . (

8(561, xZ)a

we obtain
(6= b(")) - Duley(s) < Plegs) (IDullogs) + s(@',2") [Dulcg(s) ) -
1

Since diam(suppu) = ¢ and 2°, ' € suppu, by combining the preceding inequality with the
coefficient bounds (8.14) and the interpolation inequality ({8.8]), we see that

[(b—b(z)) - Du]cg(g) <A <5||“||c§+“(§) + C1e_m||u||c(g) + 5‘“/2Hu||C§+a(§)) . (8.10)
Therefore, by combining (8.9) and ( m, we obtain
(b = b(z°)) - Dullcacs) < A(3e + 5a/2)||u||02+a &) + 2018 Jull ¢ 3).- (8.11)
An identical analysis, just replacing the coefficient vector b by the matrix a, and Du by x4D?u,
and the interpolation inequality m by m yields
ltr(za(a — a(2°) D?u)|lcas) < ABe + 6°7)[|ull gzva(g) + 2C1 A Jull ¢ s). (8.12)

Similarly, replacing the coefﬁment vector b by the function ¢, and Du by u, and the interpolation
inequality (C.4)) by (C.2)), yields

|(c —c(x ))u||ca <A(35+6a/2)”’u||02+a(s + 201 A" [ull s (8.13)

We combine (8.11]), -, and ) to give
(L = Ly )ullge(s) < 3/\(36 + 0 ull g2y + 6C1AE T full o3y

We now choose ¢ > 0 such that 9CpAe = 1/4 and choose § € (0,v/2) (which we fix for the
remainder of the proof) such that 3CHA6Y/2 < 1 /4 and combine the preceding inequality with

(8.7) to give
lullgzo(s) < Coll ullos s) + 3 lullzsas) + Collulleqs)

for some constant Cs with at most the dependencies stated for C stated in our hypotheses.
Rearrangement and the maximum principle estimate (Corollary |A.2) for [lul/¢(g) now give the
conclusions (8.5 and when ¢ > 0 on S in the case k = 0.
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Next, suppose k& > 1 and let 8 € N be a multi-index with |3| < k. Because

DP(vw) = Z D% vD w.
pl+p"=p
8 5eNd
for any v,w € ck “(8), we may apply the preceding analysis virtually unchanged with v =
a—a(z?), b —b(x°), or ¢ — ¢(2°) and w = x4D?u, Du, or u, respectively, for each 3, 8', 3" € N¢
with || < k and '+ " = 3. This completes the proof when suppu C By (y°) for some y° € 9yS.
Because suppu C Bj/p(x*), for some x* € S, the case dist(z*,0pS5) < ¢ is covered by our
analysis for half-balls, Bys(y"), with y® € 9pS. If dist(z*,0pS) > §/2, then the operator L is
strictly elliptic since x4 > 0/2 and [26, Theorem 6.6 and Problem 6.2] imply that

lullgraen sy < Co (ILullgraggy, + lullos) )

which is just (8.5). Combining the preceding inequality with the maximum principle estimate
(Corollary & for [lul|¢(5) again gives the conclusion when ¢ >0 on S. O

Finally, we use Proposition [8.2] to generalize Theorem [7.1] to the case of variable coefficients to
obtain the following analogue of [6, Theorem 1.1.3] (for a related degenerate-parabolic operator
with constant coefficients) and [26], Corollary 6.3 & Problem 6.1].

Theorem 8.3 (Higher-order a priori interior local Schauder estimate when L has variable co-
efficients). Let a € (0,1) and let ro, Ao, by, A be positive constants and let k € N. Suppose the

coefficients a,b,c of L in (1.3) belong to C’f’a(ﬁjo (29)), where 2 € OH, and obey (8.2), (8.3),

and

Ha”cg’a(gjo(xo» + ”bncfva(gjo(xo» + ”CHCg@)a(é%(xO)) <A. (8'14)

Then, for any r € (0,19), there is a positive constant, C = C(k,c,r,ro,d, N, by, A) such that the
following holds. If u € C§’2+a(§fo (29)) then

ull g 2o g (20)) < € (”L“||c§va<é;;<x0>> + ”“”aéwon) : (8.15)

Proof. We apply an induction argument. When k& = 0, the estimate (8.15)) follows from Theorem
and so we may assume without loss of generality that £ > 1. By induction, we may assume
that the estimate (8.15]) holds with constant C' = C(l, x) when k is replaced by [ € N in the range
0<I<k-1 _ _

Let 71 := (r 4+ 79)/2 and choose a cutoff function ¢ € C§°(H) such that 0 < ¢ < 1 on H
and ¢ = 1 on B, (2”) while supp ¢ C B! (2°) and note that, for u € C§’2+a(§j0 (z%)) and thus
ug := pu € CE*T*(8), we have

HuHcf»?Jra(gj(zO)) < ||U0”C§,2+a(§),
where S = R x (0,70) is the strip as in (I.10]), and up = 0 on 9;.S. By Proposition we
obtain
ol o gy < Co (It g s) + luolles) )

where we use Cy to denote the constant C' in (8.5), and hence, combining the preceding two
inequalities,

el gt aoyy < Co (I g ooy + lulleas oy ) - (8.16)
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Notice that L(pu) = pLu + [L, p]u and that [L, ¢] is a first-order partial differential operator,
[L, plu = L(pu) — ¢Lu
= —tr(zqaD?(pu)) — b- D(pu) + ptr(zqaD*u) + b - Du,
and so
(L, olu = —tr(zqa((D*¢)u + Dy x Du)) — (b- Dp)u, (8.17)
where Dy x Du denotes the d x d matrix with entries P Ugs; - Observe that
HL(‘)OU)Hcfva(le (29)) < H [La @]UHnga(B;l (29)) + H‘pLuHcvaa(B:rl (z0))"

Because of the structure (8.17) of [L,¢]| (with factor z4 in the coefficients of the first-order
derivatives) and the fact that Cf’a(B,Tl (2%)) C C’f_l’%o‘(ﬂfg (2%)) (by Definitions and ,
we obtain

||[L7 Qo]unofva(gjl (z9)) < CH“HQQC—IJ'*'Q(le (z0))
where C has at most the dependencies stated for the constant in the estimate (8.15). By our
induction hypothesis, we can apply the local Schauder estimate with k replaced by | = k—1
to give
HUHCi?7172+a(B;f'1(mO)) <C (HLUHCQ?*I»Q(B%@O)) + HUHC(B,TO(IO))> :
Combining the preceding three bounds with yields the inequality,

lull g2 g oy < C (L0l gt 5 oy + lillogag woy ) (8.18)
and this is (8.15)). O

We can now prove the generalization of Corollary to the case of variable coefficients.

Proof of Corollary[1.3 The proof is virtually identical to that of Corollary except that we
replace appeals to Theorems and (for the case of constant coefficients) by appeals to
Theorems and (for the case of variable coefficients). O

We can now give the

Proof of Theorem[1.1]. Since we can apply Theorem to half-balls, B, (%) = B, (z°)NH C O
when xg € 90, and the standard a priori interior Schauder estimate for strictly elliptic operators
[26, Corollary 6.3 & Problem 6.1] to balls, B,,(z") € ¢ when xg € €, the remainder of the
argument is very similar to the proof of Corollary[7.2] when the domain, @, is an infinite strip. O

8.2. Regularity. We begin with the proof of our global existence result on strips.
Proof of Theorem[I.6. The proof follows by the method of continuity. We denote

d
g() = —Iq E 83[;13;1 - 8%.
=1

Then Corollary implies that, for any f € cr "“(8), there is a unique solution u € ck ’2+a(§ ).
We consider Ly := (1 —t).% + tL, for all t € [0,1]. Given Corollary and the existence and

uniqueness of solutions in Cf ’2+0‘(5' ) for the operator %, the method of continuity [26, Theorem
5.2] applies and gives the result. ]

We have the following analogue of |26, Theorem 6.17], albeit with a quite different proof.
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Theorem 8.4 (Higher-order interior local regularity of solutions when L has variable coefficients).
Assume the hypotheses of Theoremfor the operator L in (L3). If u € C*(B}t (")) obeys

u, Du, z4D*u € C(B;f (z°)) and Luce€ Cf’a(ﬁf%(xo)), (8.19)

z¢D*u =0 on 9B, (27), (8.20)
then u € C’f’2+a(§f{) (z9)).
Proof. Let r € (0,79), and 71 := (r +19)/2, and ro := (r1 +7)/2, sor < r1 < rg < 7o.
Let ¢ € C§°(H) be a cutoff function such that 0 < ¢ < 1 on H with ¢ = 1 on B} (2°) and
suppyp C Bt (2°). Denoting S = R%! x (0,79) as in (I.1I0) and up := up on S, we see that
ug € C%(S) is a solution to (1.16]), (T.17) with f replaced by

for=¢Lu+[L,plu on S.

By hypothesis, pLu € CF *(B;f (2°)), while Lemma and and ensure that
[L, plu € C¢(S), so
fo € Csa (S' )7
while the conditions (8.19) and (8.20) on w imply that ug obeys
ug, Dug, xqD?*ug € C(S) and zgD?*ug =0 on 8,S.

Corollarynlmphes that there is a unique solution v € C2+(S) to 1.17) with f replaced
by fo and the maximum principle, Lemma implies that uo = . Thus u € C 2+ (B (20)).

When k > 1, we argue by induction and suppose that u € C& 2+O‘(BJ“( 9)) as our induction
hypothesis. But then [L, ]lu € CF*(B;(2°)) by the proof of Theorem [8.3/ and so fy € C2*(5).
Now Corollary [B.4| implies that v € ck 2+a(5’) by the preceding argument for £ = 0, and thus
ue CE (B (z )) since ug = v on S. O

We can now complete the

Proof of Theorem[1.8 This is an immediate consequence of Theorem and [26, Theorem 6.17]
since we can apply those regularity results to any half-ball, B;f (2°) = B,,(2°) NH € & when
7Y € OH, or ball, B, (z°) € € when 2° € H, respectively. O

Finally, we complete the proofs of Theorem [I.11] and Corollary [T.13]

Proof of Theorem[I.11] The argument is very similar to the proof of Corollary [B.4] so we just
highlight the differences. Because f € ok (O)NCy(O), we can apply the regularizing procedure
described in [0, §1.11] and 6, Theorem 1.11.3] to construct a sequence of functions {f,}nen C

Cg°(H) such that f,, — f in CE*(U) N Cy(0) as n — oo, for all U € &, and
fullgkogn < Clflragy: Yo €N,
where U/ €@ U and U € € and C’ may depend on U and U’, and
Ifalle@ < Clfle@), YneN,

for some positive constant, C' = C(d).
Let {up}tneny C C®(0) N C(O U 010) N Cy(0) be the corresponding (unique) sequence of
solutions to ((1.22)), (1.23), with f replaced by f,, provided by [19, Theorem 1.11]. The maximum
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principle estimate (Corollary for the case ¢y = 0 and [I6, Proposition 2.19 & Theorem 5.3]
for the case ¢y > 0) implies that
lunlle@y < Collfallos), Vn €N,

for a constant Cjy depending on the coefficients of A and v when height(¢) = v and ¢y = 0 or
Co = 1/cp when ¢y > 0 and height(€) = oco. The remainder of the argument is now the same as

the proof of Corollary [B.4l O
Proof of Corollary[1.13 The conclusion follows immediately from Theorem and [19, Corol-
lary 1.13], since the latter result ensures that v € C(0). O

APPENDIX A. MAXIMUM PRINCIPLE FOR DEGENERATE-ELLIPTIC OPERATORS ON DOMAINS OF
FINITE HEIGHT

In this appendix, we prove a comparison principle for operators which include those of the
form L in with ¢ > 0 when the domain, &, is unbounded. Notice that when ¢ does not
have a uniform positive lower bound, the weak maximum principle [16, Theorem 5.3] does not
immediately apply when & is unbounded.

Lemma A.1 (Comparison principle on a strip). Let ¢ € H be a domain of finite height. Leﬂ
Lv:= —tr(aD*v) —b-Dv+cv on O, veC®0),
require that its coefficients, a : 0 — R¥™ andb: 0 — R%, and c¢: € — R obey
a(z) =0 on 0O,
(a&, &) >0 on O, VYEeRY
i%f ¥ >0 on0,
tr(a(z)) + (z,b(z)) < K(1+ |z|?), V€ 0O,

supa® < 0o on O,
o

c>0 on0,

for some positive constant K. Suppose that u € C%(0) N Cle(0), and supyu < oo, and
Du, tr(aD%*u) € C(0), and
tr(aD*u) =0 on dy0.
If Lu<0on 0 and u <0 on 010, then u <0 on 0.
Proof. Define constants by > 0 and A > 0 by

A:=supa? and by := infb?. (A1)
Vi o

Let o be a positive constant, to be fixed shortly, and define v € C?(&)NCloe () with sup, v < 0o
by the transformation

u(z', xg) = e (2 xq), V(2',14) € O, (A.2)
noting that sup,v < oo since supyv < oo and height(€0) < oo by hypothesis. By direct
calculation, we find that

Ly = ¢ %% (—aijvxixj — (bi — 2craid) Vg, + (c +ob? — UQadd> v) .

10Note the more general definition of the coefficient a(z) in Lemma and Corollary



42 P. FEEHAN AND C. POP

We now define coefficients , b, ¢ of an operator L by

Lv = =" vz,0;, — b'vg, + v
= —a vy, — (bl — 20ald) Vg, + <c + ob? — 02add> v,

and we notice, by our hypotheses on u and definition of v, that Lv<0on & and v <0 on 9,0.
Since a = 0 on JyO, we have

b' =0 >by >0 ondho.
We now choose o := by/(2A), so that, using ¢ > 0 and a% < A,
¢=c+ob?— 0% > oby — 0*A =aby/2 >0 on 0.
Then, [16, Theorem 5.3] applies to v, and now the conclusion follows immediately for u also. O

Corollary A.2 (Maximum principle estimate). Let v > 0 and let ¢ € R4~1 x (0,v) be a domain,
let L be as in Lemma andlet f € Cy(0), and g € Cp(010). If u obeys the reqularity properties
on O in the hypotheses of Lemma[A.1] and
Lu=f on0O,
u=g9 ono0O,

then there is a positive constant, C = C(v, by, A) with by, A as in (A.1), such that

lllo@) < € (Iflo@) + lolloga)) -
Proof. We define v = e?®duy as in (A.2)), where o is chosen as in the proof of Lemma Then,
Lv = f ono,
v=g on o0,

where f := e’ f on ¢ and § := e“*1g on ;0. Because ¢ > b2/(4A) > 0 on @ from the proof of
Lemma we can apply [16, Proposition 2.19] to give

1 = ~
lollewy < 5 (1le@ + 13lo@a))

The conclusion follows since x4 € [0, 7] for all z € & and we can take C 1= e7” /& = 4Ae”V /b2, O

APPENDIX B. EXISTENCE OF SOLUTIONS FOR DEGENERATE-ELLIPTIC OPERATORS WITH
CONSTANT COEFFICIENTS ON HALF-SPACES AND STRIPS

In this section, we prove existence of smooth solutions to Lu = f on the half-space H or on
strips S = R%1 x (0,v) as in , for some v > 0, when the source function f is assumed to be
smooth with compact support in H or in R4 x [0, v), respectively, and under the assumption of
Hypothesis that the coefficients, a, b, c, of the operator L in and so the coefficients, a, b,
of the operator Ly in are constant. The method of proof is similar to that of [6, Theorem
[.1.2] and it is based on taking the Fourier transform in the first (d — 1)-variables. The problem
is then reduced to the study of the Kummer ordinary differential equations whose solutions can
be expressed in terms of the confluent hypergeometric functions, M and U [I}, §13].

We begin by reviewing the properties of the confluent hypergeometric functions which will be
used in the proofs of Theorems and
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Lemma B.1 (Properties of the confluent hypergeometric functions). [I] Let a € C be such that
its real part is positive, R(a) > 0, and let b be a positive constant. Then the following holds, for
all y > 0.

(1) Asymptotic behavior as y — +oo:

M(a,b,y) = ggy“—bey (1+0@™") I §13.1.4], (B.1)
Ula,by) =y *(1+0@™ ") [I §13.1.8]. (B.2)
(2) Asymptotic behavior as y — 0:
M(a,b,0) =1 [I §13.1.2] and M(a,b,y) =1+ O(y) [I §13.5.5], (B.3)
and
Ula,b,y) = F(lf(;)l)yl—b +0@W*?) ifb>2, [I §13.5.6],
Ulaby) = -y Olllogyl) ifb=2, L5135
Uaby) = "= D0 o0y if1<b<2, [1§1358),
I(a) (B.4)
U(a,b,y) = T (logy + ¥(a) +2v) + O(y|logyl) ifb=1, [I, §13.5.9],
I'(1-0b
U(a,b, y) = F(l(—i—a—)b) + O(yl_b) ZfO <b<1, [1, §13510],
. T1-b)

where (a) =T"(a)/T(a) and v € R is Euler’s constant I}, §6.1.3].
(3) Differential properties:

M(a,b,y) = %M(a +1,b+1,y) [ §13.4.8], (B.5)
U'(a,b,y) = —aU(a+1,b+ 1,y) [I §13.4.21]. (B.6)

(4) Recurrence relations:
(b—1)M(a—1,b—1,y)=(b—1—y)M(a,b,y) +yM'(a,b,y) [I, §13.4.14], (B.7)
Ula—-1,b—1,y)=(1—-b+y)U(a,b,y) —yU'(a,b,y) [I §13.4.27]. (B.8)

We can now give the

Proof of Theorem [1.5 Uniqueness of the solution, u € C*°(H), follows from the maximum prin-
ciple [16, Theorem 5.3]. By simple changes of variables described in the proof of [I8, Proposition
A.1], which leave invariant any strip of the form R4~! x (0, v), for v > 0, we may assume without
loss of generality that a” = 6% in and so the differential operator L has the form

Lo = —ZqUp.z, — b'vg, +cv, Vv € C?(H),

where b and ¢ are again positive constants.
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We adapt the method of proof of [6, Theorem 1.1.2]. We fix f € C°(H). If u € C*(H) is a
solution to Lu = f on H, then we expect that its Fourier transform in the 2/ = (x1,...,24-1)-

Variables,
(& xq) = 1 w(a' zq)e e da!, Ve e RITY
3 : (2 )d/2 Ri—1 s Ld ) ;

is a solution, for each ¢ € R%"!, to the ordinary differential equation,

d—1
— Tl oy (& 0) — b1y (& 7a) + (cﬂ'Zbkfk + |§!2xd> W& wa) = F(&a), (B.9)
k=1
for all z4 € (0,00), where f(£;x4) is the Fourier transform of f(a/,z4) with respect to z’ € R%.
We show that the ordinary differential equation has a smooth enough solution, #, in a sense

to be specified, such that its inverse Fourier transform,

1 -
(27r)d/2/Rd1 W(&; zq)e™ © de, (B.10)

is a C°°(H) solution to the equation Lu = f on H.
Defining the function v(&;y), for y = 2|¢|z4 and each € € R¥~1\ {0}, by

w(z! xy) =

(&5 wa) = e a0(g 20¢lwa), VEERTI\{O}, Vg € Ry, (B.11)
we see that v is a solution to the Kummer ordinary differential equation,
—yvyy (&) — (b= y)vy(&y) +al§v(&y) = 9(&y), Yy € Ry, (B.12)
where we denote
bd
b:=—,
2
bE| i >0 b
a() = CTUIEIH 12 Gk (B.13)
2[¢|
ey/2 y

Because b? > 0 and ¢ > 0 by hypothesis, we see that b > 0 and R(a(£)) > 0 when & # 0. Since f
has compact support in H, the function g(¢;-) also has compact support in R,

It suffices to study the solutions, v(¢;-), to the Kummer equations for & € R4~1\ {0}, and so
without loss of generality, we will assume in the sequel that £ # 0. The remainder of the proof
of Theorem is completed in two steps.

Step 1 (Solution to the Kummer ordinary differential equation). The general solution to the
Kummer ordinary differential equation (B.12]) can be written in the form v = v® 4 P, where

V(& y) = erM(a(€), by y) + U (a(€), by y),
(€)= ~Mal©)biy) [ ol a S dx - Ula(e) i) [ a6
with ¢1,c0 € R, and
~bey
W(a(€),bin) =~

is the Wronskian of the Kummer function, M (a(),b,y), and the Tricomi function, U(a(¢),b,y),
[T, §13.1.22]. We want to find a solution, v € C*°(R,.), to (B.12).

Ve e R\ {0}, Vy € Ry, (B.14)
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From , we see that the function M (a(§),b;y) is unbounded as y tends to +o00, and so we
choose the constant ¢; = 0, because we only consider bounded solutions. At y = 0, we obtain
from and that U’(a(§), b, y) is unbounded, since b > 0, and so we choose the constant
ca = 0, because we only consider solutions to the Kummer equation which are smooth on R.
Thus, we obtain

v(&y) = —M(a(§),b;y) /Oo (& 2) U(a(), b; 2) i

y W (a(e).b:2)
y a ;R
—U(a(€),b; y>/0 9(& Z>W‘”'

Given v defined as above, and @ defined as in (B.11)), we will prove the following properties of the
solution, @, to verify that u defined by (B.10) is a C°°(H) solution to Lu = f on H, as asserted

by Theorem
Lemma B.2 (Properties of @). If f € C§°(H), then the function @ defined by (B.11) has the

following properties.

(1) For all £ € R¥1\ {0}, we have

(B.15)

li}n (& zq) = 0. (B.16)
(2) The function u(&;-) belongs to C¥(Ry), for all € € R\ {0}.
(3) The function u(§;-) obeys

igia)l < gouplF€ )l e € BRI\ (0}, au € Ry, (B.17)
y=

where c is the zeroth-order coefficient of L in ((1.3)). B
(4) The function u(-;xq) decays faster than any polynomial in &, for all x4 € R..
(5) The functions D’;dﬂ decay faster than any polynomial in &, for all k € N.

Step 2 (Existence of a solution, u € C*°(H), to Lu = f on H). From Lemma Items (2)) and
(4), we see that the function u defined by has an arbitrary number of derivatives in the
first (d — 1)-variables which are continuous on H. From Lemma Item (2)), we see that u also
admits an arbitrary number of derivatives in the z4-variable, and they are continuous on H. Now
we consider DPd¢dy, for B; € N, which satisfies

b
(Qﬂ)d/Q

By Lemma Item , the function DP4q decays faster than any polynomial in &, and so
DA DBd€aq, exists and is continuous on H, for all A € N with Ay = 0. Thus, u belongs to C*°(H).
Since  solves , we find that u solves Lu = f on H by taking the inverse Fourier transform
of u(&;xq) in & € R¥™L. From [16, Theorem 5.3], it follows that  is the unique C°°(H) solution
to Lu = f on H.

DPicau(a!,xg) := / ) lDﬁdedﬁ(ﬁ;xd)emlf d¢, Vg e Ry,
i

Aside from the proof of Lemma given below, this completes the proof of Theorem O
It remains to prove Lemma [B.2]

Proof of Lemma[B.2 We organize the proof into several steps.
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Step 1 (Proof of Item (I))). First, we verify that the function v defined in Equation (B.15) is
well-defined. We write v = v! + v2, where we set

v (& y) = —M(a(€),b;y) /OO 9(&; 2) I(/[J/((Z((?)’ Z ZZ)) *
() = UG 5 [ ol e g 4=

Recall that g(&;-) has compact support in R, and so for the function v*(&;y), we only need to

verify that it is continuous up to y = 0. From the property (B.3)) in Lemma we know that
M (a(€),b;y) is continuous in y up to y = 0 with M (a(£),b;0) = 1. Identities (B.4) and definition
(B.14) of the Wronskian imply that

max{y, 22}, if b> 2,

Ula(§),biy) ) ylogy, if b =2,
W(a(§),b;y) Y, if1<b<?2,
Y, ifo<b<l,

and so this function is integrable near y = 0. Since g(;-) has compact support in R, we see
that v!(¢,) € C(R4) and

lim v'(&y) =0, Ve R\ {0}
y,/100
Next, we consider the behavior of the function v?(¢;-). Near y = 0, the property (B.3)) and
definition (B.14)) of the Wronskian yield
M(a(§),bsy) y
W (a(§), b;y)
Combining this result the asymptotic behavior (B.4) of U as y — 0, we find that the limit of
v2(&;9), as y tends to 0, exists. The limit of the integral,

Y M (a(§), b; z)
12) = dz,
o e o
as y — 0o obviously exists because the function g(¢&;-) has compact support in R,. Moreover,

using the asymptotic behavior (B.2)) of U(a(§),b;y) as y — 400, we obtain
lifm v2(&y) =0, VE€RITI\ {0}
y /oo

Since v = v! 4+ v?, we obtain the limit property (B.16)) for @ as y — +oo using (B.11)).
Step 2 (Proof of Item (2)). The argument employed in Step |1|shows that @(¢;-) € C(Ry.), for all
¢ € R¥1\ {0}. Next, we want to show that D @(¢;-) € C(Ry), for all k € N and £ € R4\ {0},

but for this it is suffices to show that DEv(&;-) € C(Ry), for all k € N, by (B.11).
We first consider the case £ = 1. A direct calculation shows that

vy(§y) = =My (a(€), b;y) /mg(ﬁ;z)m

— Uy(a(§)7 b; y) /Oy 9(&; Z)W o

dz
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Using identities and ( -, we obtain

vy(§§ y) = _a(bf)M(a(f) +1,b+ l;y) /oo g(§7z)mdz
Yy Ma(e) bj- z,) (B.18)
+a@ﬂﬂﬂg+1ﬁ+1w%/ @,%—@Giégda

and the same argument as in the beginning of the proof of Lemma gives us immediately that
vy(&;-) € C(Ry). Hence, v(&;-) € CH(Ry), for all £ € R*1\ {0}
We next show that vy, (¢;-) in (B.18) is the unique C!(R) solution to the Kummer equation,

—ywyy(§y) — (b+ 1 = y)wy(&y) + (a(§) + Dw(Sy) = g9y(&y), Yy € Ry
Our goal is to show that v, = w, where we define
Ua(§) +1,b+1;2)
W(a(€§)+1,b4+1;2)

_U(a(§)+1,b+1;y)/0 9-(&; )%E (5311:112

dz

w(ésy) = —M(a(€) + 1,b+ Ly) / T g(6)

dz,

for y € Ry, &€ € R\ {0}. Integrating by parts in the expression of w, we obtain

> z B Wz
wlesy) = M(a(©) + 10+ 1) [ 969 T () + 10+ 1:2) d
Yy

+U(a(§) + 1,0+ 1;y) /Oyg(&Z)J\LWWQMM(a(g) +1,b+1;2)d=.

The expression of v, in (B.18) coincides with that of w if
U.W - UW, a@) U

W2 (a(§)+1’b+1az) = TW(a(g)J)a Z)’
MW — MW, M
_T(a(g) + 17 b+ 1; Z) = _a(f)W(a(g)v b; Z)

But the preceding two identities follow from the definition of the Wronskian, W, in (B.14)), from
(B.5) and , and from the recursion relations (B.7)) and (B.8). Hence, the function v, is the

unique C_l(R+) solution to the corresponding Kummer equation, which obviously implies that
’Uyy € C(R+) B

Inductively, it follows that, for any k € N, the derivative D’;v exists and is the unique C*(R,)
solution to the Kummer equation,

—y(Dyv)yy (&) — (b+k — y)(Dpv)y (&) + (al§) + k) Djv(&y) = Dig(&y), Yy € Ry
Thus, v(&;+) € C*°(R4), and so 4(¢;+) € C®(R4) by (B-11)), and D*a(¢;-) satisfies the ordinary
differential equation, for all 24 € (0,00) and k € N,

— 2a(D5,Way0,(§ wa) — (b+ k = 2[&|2a) (DF,@)ay (€ 2a) + (a(€) + k) Dy, al€; 7a)
= (2" Dyg (& 2/€]za).

Notice that the right-hand side in the preceding equation is a function with compact support in
R.

(B.19)
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Step 3 (Proof of Items (3) and (4))). We adapt the argument of [6, Theorem 1.1.2]. We fix & # 0.

We write @(&; 74) = p(& va) +iq(&; 24) and f(§24) = §(&;2a) + ih(&; 24). Then, equation
becomes

g
gy (6 2a) — Ve, (& xa) + (¢ + zal€]?)q(&; 2a) + bEP(E; 2a) = M(E; Ta),

where b¢ denotes the inner product of (b',...,b% 1) with & Defining F(&;zq) := |a(&; 2q)]? =
p?(&;:2q) + ¢%(&; 24), we obtain (where now we omit the (&; z4)-variables)

{xdpxdxd(€§ Tq) = by (& 24) + (¢ + 24l€)?)p(& za) — bEq(&; a) = G(&; 2q),

Fry = 2pps, + 204z,
Fyyzg = 202, + 2PPayey + 245, + 24020,
which gives us
2aFy e, + b F,, — 2cF
= 20(TaPayay + b Pay — D) + 24(TdGu gz + b2z, — cq) + 22a(ps, + 2,
> 2p (=7 + zalé|*p — b€q) + 2q (—ﬁ + zalé|Pq + bﬁp)
> —2pg — 2qh

1 -
(),
C

v

where we recall that ¢ > 0 by hypothesis, and so it follows that

1 N
TaFy e, (6 24) + 00 F,, (6 24) — cF(&2q) > —= sup |f(&xa)?, Vag € Ry

IdER+
Now let )
G(&2q) = F(&za) — = sup [f(&za)]
¢ rg€RL
Then,

xdG:cd:cd <£7 wd) + bded(g; wd) - CG({; xd) >0,
hmxd/‘oo G(Ev .Z'd) <0,

where we used (B.16) to determine the behavior of G(§; x4) as x4 approaches oo. Therefore, the
function G(;74) is bounded, and the maximum principle [16, Theorem 5.3] then implies that
G(&,xq) <0, for all z4 € Ry, and so

- 1 ; =
a(&za)* < = sup [f(& )P, Vaq € Ry,
€ yery
which is equivalent to (B.17]). )
Since f belongs to C§°(H), the function sup,cg, |f(§;y)| decays faster than any polynomial in
¢ by [23, Theorem 8.22 (e)]. Therefore, from (B.17) we see that the function 4 also decays faster
than any polynomial in &.

Step 4 (Proof of Item )_. By (B.19) and the fact that the right-hand side in (B.19)) is a function
with compact support in Ry, we see that the preceding steps can be applied to D7 u instead of

@i, for all k € N. Therefore, we obtain that the functions D¥ ,U decay faster than any polynomial
in &, for all £ € N.
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This completes the proof of Lemma O

We now prove the existence and uniqueness of smooth solutions on strips in the half-space.
We fix v > 0 and recall from that S = RY1 x (0,v), so that dpS = RY! x {0} and
018 = R x {v}. We have the following elliptic analogue of [6, Theorem I1.1.2] in the parabolic
case, but for finite-height strips rather than the half-space.

Theorem B.3 (Existence and uniqueness of a C°°(.S) solution on a strip when L has constant
coefficients). Let L be an operator of the form (1.3|) and require that the coefficients, a,b,c, are
constant with b > 0 and ¢ > 0. Then, for any function, f € Ce(S), there is a unique solution,

u e C®(9), to

(B.20)
u=~0 on 01S.

Proof. The method of proof is the same as that of Theorem so we only highlight the main

differences. Uniqueness of the solution, u € C*°(S), follows from the maximum principle, Lemma
for L. By analogy with (B.9), for each £ € R?~!\ {0}, we construct the function @(¢;-) to

be the unique solution in C*([0,zY)) to

{Lu:f on S,

d—1
— gl gy (€5 0a) — b0, (€ 4) + (C i) b+ |§|2$d> u(&wq) = f(&2a),  VYaa € (0,v),
k=1
u(&;v) =0,
by defining the new function, v(&;-), by (B.11)) and proving that v(¢;-) is the unique solution in
C*>([0,2Y]) to the Kummer equation,

—yoyy (& y) — (b= y)vy(§y) +al§)v(&y) = 9(&y), Yy € (0,2[¢),
v(&;2[¢v) =0,
for each ¢ € R4~1\ {0}, where the coefficients b and a(¢), and the function g are defined in the
same way as in (B.13). The arguments employed in the proof of Theorem show now that the
unique solution in C*°(.S) to the preceding ordinary differential equation is given by

v(&;y) = CM(a(§),b,y) — M(a(§), biy) /Oo 9(&; Z)VW o

- Uta(©) i) [ o) e

where the constant C' is chosen such that the boundary condition, v(¢,2|{|v) = 0, is satisfied.
The only remaining modification that we need lies in Step [3] of the proof of Lemma The
reason why this part of the proof does not adapt immediately is because we used the fact that
the zeroth-order coefficient, ¢, of L in is strictly positive to derive , while now we
assume ¢ > 0. To circumvent this issue, we apply the method of proof of Step [3] of Lemma [B:2]
not to F, but to e7?%¢F', where we choose the positive constant, o, small enough. Notice that
this is the same as the approach we employed in the proof of Lemma [A.T] to overcome the fact
that ¢ = 0. g

dz,

Corollary B.4 (Existence and uniqueness of a Cf 21 golution on a strip when L has constant
coefficients). Let o € (0,1) and k € N. Let L be an operator as in (1.3) and require that the

coefficients, a,b,c, are constant with b* > 0 and ¢ > 0. If f € Cf’a(g), then there is a unique
solution u € CE*T(8) to the boundary problem (B.20)).
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Proof. Uniqueness of the solution, u € C§’2+a(5 ), follows from the maximum principle, Lemma
for L since any u € ck ’2+a(5’ ) has the property that Du and x4D?u are continuous on S by
Definition and that z4D?u = 0 on 9pS by Lemma Let {fn}nen C C§°(S) be a sequence
such that f, — f in CP?T*(5) as n — oo and

an”cfv&(s*) < C'Hf”(}f’“(g)‘

Such a sequence can be constructed using [6, Theorem I1.11.3]. Let u, € C°°(S) be the unique
solution to (B.20)), with f replaced by f,, given by Theorem In particular, each solution
satisfies the global Schauder estimate ((1.15)) which, when combined with the preceding inequality,
gives
HUHHC;%”&(S') < C”f“cfva(g)a Vn € N.

By applying the Arzela-Ascoli Theorem, we can extract a subsequence, which we continue to
denote by {uy,}nen, which converges in C¥2T%(8) to a limit function v € CF?T*(5) as n —
o0. Since {fn}neN, {tn}tnen, {DUn}tnen and {24D%uy }nen also converge uniformly on compact
subsets of S to f, u, Du and zqD?u, respectively, as n — 0o, we see that u solves (B.20]. U

APPENDIX C. INTERPOLATION INEQUALITIES AND BOUNDARY PROPERTIES OF FUNCTIONS IN
WEIGHTED HOLDER SPACES

A parabolic version of following result is included in [6, Proposition 1.12.1] when d = 2 and
proved in [I8] when d > 2 for parabolic weighted Holder spaces. For completeness, we restate the
result here for the elliptic weighted Holder spaces used in this article.

Lemma C.1 (Boundary properties of functions in weighted Holder spaces). [I8, Lemma 3.1] If
u € C2T(H) then, for all 2° € OH,

lim x4D*u(z) = 0. (C.1)

Hoz—20

In [I8], we also proved the following interpolation inequalities parabolic weighted Holder spaces
analogous to those for standard parabolic Holder spaces [30, 32]. For completeness, we restate
these interpolation inequalities below for elliptic weighted Holder spaces, analogous to those for
standard elliptic Holder spaces in [26, Lemmas 6.32 & 6.35], [30, Theorem 3.2.1].

Lemma C.2 (Interpolation inequalities for weighted Hélder spaces). [18, Lemma 3.2] Let o €
(0,1) and ro > 0. Then there are positive constants, m = m(d,«) and C = C(d, ro, ), such that
the following holds. If u € C2t*(B;f (a°)), where 2° € OH, and ¢ € (0,1), then

ltlleg (B, @0y < ellllczra sy, @oy) + €& lullosy @0y (C2)
||D“HC(BT+O(3;0)) < 5”“”03“(3%(950)) + Cg_mHUHC(BjO(xO))a (C.3)
HfEdDuHcg(Bjo(xO)) < 5||U||c§+a(1§;r0(x0)) + CgimHUHC(BjO(xO))a (C.4)
||33dD2UHC(BiO(a:0)) < ellullgztapy 20y T Ce™ " Ul oy (20))- (C.5)
We add here the following

Lemma C.3 (Holder continuity for zqDu). Let r > 0, and assume that w € C*(B,) is such that
Du and x4D*u belong to C(B;}Y). Then, xgDu € C¥(B;}).
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Proof. For this we only need to show that for any z!', 22 € B;f such that all their coordinates
coincide, except for the i-th one, we have

|zl Du(z!) — 22 Du(z?)|

<C,
8($1,$2)a -
for some positive constant, C. We show this for the case i = d, and all the other cases, i =
1,...,d —1, follow by a similar argument. We have
1 1 2 2 1 2 1 2
z;Du(x) — x5 Du(x T, — X Du(x') — Du(x
eiDuta’) = e3Due)| _ leh =il oy el DU) — Dute?)
s(zl, x?)e s(xl, x2)e s(xt, x2)e
L 2|
<(Du = $2D2U$3)u
< (IDull o + =Du)) S
where 3 € B,, is a point on the line connecting ! and 22, and we apply the Mean Value

Theorem. We may assume without loss of generality that a:fl < a:b, and because xg > :EZ, we have
that 22| D?u(z3)| < HmdD2u||C(B:r2). Using the definition (2.1]) of the cycloidal metric, we obtain

el Du(a") — a3Du(a?)]

~ 2 ~ 1—a/2
sl 2?) < (IDulloqs) +lwaD*ullogs, ) 2"
Therefore, z4Du belongs to C$(B;), for all a € (0,1). This completes the proof of Lemma
[C.3] O
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