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Abstract. We establish Schauder a priori estimates and regularity for solutions to a class of
degenerate-elliptic linear second-order partial differential equations. Furthermore, given a C∞-
smooth source function, we prove C∞-regularity of solutions up to the portion of the boundary
where the operator is degenerate. Degenerate-elliptic operators of the kind described in our article
appear in a diverse range of applications, including as generators of affine diffusion processes
employed in stochastic volatility models in mathematical finance [9, 27], generators of diffusion
processes arising in mathematical biology [3, 11], and the study of porous media [6, 7].

Contents

1. Introduction 2
1.1. Summary of main results 3
1.2. Survey of previous related research 7
1.3. Extensions and future work 8
1.4. Outline and mathematical highlights of the article 9
1.5. Notation and conventions 10
2. Preliminaries 10
3. Interior local estimates of derivatives 12
3.1. A priori interior local Schauder estimate and regularity statements in the case of

constant coefficients 12
3.2. Interior local estimates for derivatives parallel to the degenerate boundary 13
3.3. Interior local estimates for derivatives normal to the degenerate boundary 17
4. Polynomial approximation and Taylor remainder estimates 20
5. Schauder estimates away from the degenerate boundary 24
6. Schauder estimates near the degenerate boundary 27
7. Higher-order a priori Schauder estimates for operators with constant coefficients 33
8. A priori Schauder estimates, global existence, and regularity for operators with

variable coefficients 35
8.1. A priori Schauder estimates for operators with variable coefficients 35
8.2. Regularity 39
Appendix A. Maximum principle for degenerate-elliptic operators on domains of finite

height 41

Date: October 25, 2012.
2000 Mathematics Subject Classification. Primary 35J70; secondary 60J60.
Key words and phrases. Degenerate-elliptic partial differential operator, degenerate diffusion process, Hölder
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1. Introduction

This article continues our development of regularity theory for solutions to the Dirichlet bound-
ary value problem defined by a degenerate-elliptic operator. Degenerate-elliptic operators of the
kind explored in our article can arise as generators of affine diffusion processes employed in sto-
chastic volatility models in mathematical finance [9, 27], generators of diffusion processes arising
in mathematical biology [3, 11], and the analysis of porous media [6, 7], to name just a few
applications.

In [5], in addition to other results, Daskalopoulos and Feehan obtained existence of H1 solutions
to a variational equation defined by the Heston operator [27]. We recall that the Heston operator
serves as a useful paradigm for degenerate-elliptic operators arising in mathematical finance. In
[17], the authors proved global Cαs -regularity of H1 solutions to the variational equation defined

by the Heston operator, while in [19], the authors established H k as well as Ck,αs and Ck,2+α
s

regularity for those solutions, for all integers k ≥ 0. However, our Ck,αs and Ck,2+α
s regularity

results in [19], although they provide an important stepping stone, are not optimal due to our
reliance on variational methods. The purpose of the present article is prove analogues — for
a broader class of degenerate-elliptic operators — of Schauder a priori estimates and regularity
results for strictly elliptic operators in [26, Chapter 6]. When coupled with results of [5, 17, 19],

we immediately obtain existence and Ck,2+α
s regularity for solutions to the Dirichlet boundary

value problem, defined by a degenerate-elliptic operator, analogous to those expected from the
Schauder approach for strictly elliptic operators in [26, Chapter 6]; uniqueness for broad class
of linear second-order degenerate-elliptic operators, with the second-order (or Ventcel) boundary

conditions of the kind implied by our choice of Daskalopoulos-Hamilton Ck,2+α
s Hölder spaces [6],

is a consequence of the weak maximum principle discussed by the first author in [16].
To describe our results in more detail, suppose O j H is a domain (possibly unbounded) in

the open upper half-space H := Rd−1 × R+, where d ≥ 2 and R+ := (0,∞), and ∂1O := ∂O ∩H
is the portion of the boundary ∂O of O which lies in H, and ∂0O is the interior of ∂H ∩ ∂O,
where ∂H = Rd−1 × {0} is the boundary of H̄ := Rd−1 × R̄+ and R̄+ := [0,∞). We assume ∂0O
is non-empty and consider a linear second-order elliptic differential operator, L, on O which is
degenerate along ∂0O. In this article, when the operator L is given by (1.3), we prove an a priori
interior Schauder estimate and higher-order Hölder regularity up to the boundary portion, ∂0O
— as measured by certain weighted Hölder spaces, Ck,2+α

s (Ō) (Definition 2.3) — for solutions to
the elliptic boundary value problem,

Lu = f on O, (1.1)

u = g on ∂1O, (1.2)

where f : O → R is a source function and the function g : ∂1O → R prescribes a Dirichlet
boundary condition. We denote O := O ∪∂0O throughout our article, while Ō = O ∪∂O denotes
the usual topological closure of O in Rd. Furthermore, when f ∈ C∞(O), we will also show that
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u ∈ C∞(O) (see Corollary 1.9). Since L becomes degenerate along ∂0O, such regularity results
do not follow from the standard theory for strictly elliptic differential operators [26, 30].

Because the coefficient, bd, will be assumed to obey a positive lower bound along ∂0O, no
boundary condition is prescribed for the equation (1.1) along ∂0O. Indeed, one expects from [6]
that the problem (1.1), (1.2) should be well-posed, given f ∈ Cαs (O) and g ∈ C(∂1O) obeying
mild pointwise growth conditions, when we seek solutions in C2+α

s (O)∩Cloc(Ō). The degenerate-
elliptic operator considered in this article has the form1

Lv := −xd tr(aD2v)− b ·Dv + cv on O, v ∈ C∞(O), (1.3)

where x = (x1, . . . , xd) are the standard coordinates on Rd. Occasionally we shall also need

L0v := (L− c)v = −xd tr(aD2v)− b ·Dv on O, v ∈ C∞(O). (1.4)

Throughout this article, we assume that the coefficient functions a, b, c of L (and L0) are defined
on Ō, the matrix (aij) is symmetric2, and there is a positive constant b0 such that

bd ≥ b0 on ∂0O.

We shall call L in (1.3) an operator with constant coefficients if the coefficients a, b, c are constant.
In [19], we proved existence and uniqueness of a solution, u ∈ C2+α0

s (O) ∩ C(Ō) for some
α0 = α0 ∈ (0, 1), to (1.1), (1.2) when ∂1O obeys a uniform exterior cone condition with cone
K, and L is the elliptic Heston operator, and f ∈ C∞(O) ∩ Cb(O) and g ∈ C∞(∂1O). (The
Hölder exponent, α0, depends on the coefficients of L and the cone K.) In §1.1, we state the
main results of our article and set them in context in §1.2, where we provide a survey of previous
related research by other authors. In §1.3, we indicate some extensions of methods and results
in our article which we plan to develop in subsequent articles. We provide a guide in §1.4 to the
remainder of this article and point out some of the mathematical difficulties and issues of broader
interest. We refer the reader to §1.5 for our notational conventions.

1.1. Summary of main results. We summarize our main results. Here, our use of the term
“interior” is in the sense intended by [6], for example, U ⊂ O is an interior subdomain of a
domain O j H if Ū ⊂ O and by “interior regularity” of a function u on O, we mean regularity
of u up to ∂0O — see Figure 1.1.

Our first main result is the following analogue of [6, Theorem I.1.3] (for a related degenerate-
parabolic operator (1.25) and d = 2), [7, Theorem 3.1] (for a related degenerate-parabolic operator
(1.25) with d ≥ 2), and [26, Corollary 6.3 and Problem 6.1] (strictly elliptic operator). We refer
the reader to Definitions 2.1, 2.2, and 2.3 for descriptions of the Daskalopoulos-Hamilton family

of Ck,αs and Ck,2+α
s Hölder norms and Banach spaces. For any U j H, we denote

‖a‖
Ck,αs (Ū)

:=

d∑
i,j=1

‖aij‖
Ck,αs (Ū)

and ‖b‖
Ck,αs (Ū)

:=

d∑
i=1

‖bi‖
Ck,αs (Ū)

. (1.5)

Theorem 1.1 (A priori interior Schauder estimate). For any α ∈ (0, 1), integer k ≥ 0, and
positive constants b0, λ0, d0, Λ, ν, there is a positive constant, C = C(b0, d, d0, k, α, λ0,Λ, ν),

1The operator −L is the generator of a degenerate-diffusion process with killing.
2The assumption of symmetry is just for convenience when applying changes of variables and is easily obtained

by replacing aij with ãij := (aij + aji)/2.
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Figure 1.1. Boundaries and regions in Theorem 1.1 and Remark 1.2.

such that the following holds. Suppose 3 height(O) ≤ ν and the coefficients a, b, c of L in (1.3)

belong to Ck,αs (O) and obey

‖a‖
Ck,αs (Ō)

+ ‖b‖
Ck,αs (Ō)

+ ‖c‖
Ck,αs (Ō)

≤ Λ, (1.6)

〈aξ, ξ〉 ≥ λ0|ξ|2 on Ō, ∀ ξ ∈ Rd, (1.7)

bd ≥ b0 on ∂0O, (1.8)

If u ∈ Ck,2+α
s (O) and O ′ ⊂ O is a subdomain such that dist(∂1O ′, ∂1O) ≥ d0, then

‖u‖
Ck,2+α
s (Ō′)

≤ C
(
‖Lu‖

Ck,αs (Ō)
+ ‖u‖C(Ō)

)
. (1.9)

Remark 1.2 (A priori interior Schauder estimate). The case where k = 0 and the domain is a
half-ball, O = B+

r0(x0), the coefficients, a, b, of L are constant, c = 0, and u ∈ C∞(B̄+
r0(x0)) is

given by Corollary 6.8 Theorem 3.2 relaxes those conditions to allow u ∈ C2+α
s (B+

r0(x0)) and
arbitrary c ∈ R; Theorem 8.1 further relaxes the conditions on L to allow for variable coefficients,
a, b, c, in Cαs (B+

r0(x0)); Theorem 8.3 relaxes the constraint k = 0 to allow for arbitrary integers

k ≥ 0; finally, Theorem 1.1 is proved in §8.1, where we relax the constraint that O = B+
r0(x0) and

allow for arbitrary domains O j Rd−1 × (0, ν).

It is considerably more difficult to prove a global a priori estimate for a solution, u ∈ Ck,2+α
s (Ō),

when the intersection ∂0O∩∂1O is non-empty and we do not consider that problem in this article,
but refer the reader to [19, §1.3] for a discussion of this issue. However, the global estimate in
Corollary 1.3 has useful applications when ∂1O does not meet ∂0O. For a constant ν > 0, we
define the strip,

S := Rd−1 × (0, ν), (1.10)

3If we had allowed height(O) =∞, we would need to modify our definition of Hölder norms to provide a weight
for additional control when xd → ∞ because the coefficient matrix, xda, for D2u would be unbounded due to
(1.7). Weighted Hölder norms of this type were used by the authors in [18], for this reason, for the corresponding
parabolic operator, −∂t + L, on (0, T )×H.
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and note that ∂0S = Rd−1 × {0} and ∂1S = Rd−1 × {ν}.

Corollary 1.3 (A priori global Schauder estimate on a strip). For any α ∈ (0, 1), positive
constants λ0, b0, Λ, ν, and integer k ≥ 0, there is a positive constant, C = C(k, α, ν, d, λ0, b0,Λ),

such that the following holds. Suppose the coefficients of L in (1.3) belong to Ck,αs (S̄), where
S = Rd−1 × (0, ν) as in (1.10), and obey

‖a‖
Ck,αs (S̄)

+ ‖b‖
Ck,αs (S̄)

+ ‖c‖Cαs (S̄) ≤ Λ, (1.11)

〈aξ, ξ〉 ≥ λ0|ξ|2 on S̄, ∀ ξ ∈ Rd, (1.12)

bd ≥ b0 on ∂0S. (1.13)

If u ∈ Ck,2+α
s (S̄) and u = 0 on ∂1S, then

‖u‖
Ck,2+α
s (S̄)

≤ C
(
‖Lu‖

Ck,αs (S̄)
+ ‖u‖C(S̄)

)
, (1.14)

and, when c ≥ 0 on S,
‖u‖

Ck,2+α
s (S̄)

≤ C‖Lu‖
Ck,αs (S̄)

, (1.15)

Remark 1.4 (A priori global Schauder estimate on a strip). For an operator, L, with constant
coefficients, a, b, c, an a priori global Schauder estimate on a strip is proved as Corollary 7.2.

The Green’s function for a operator L in (1.3) with constant coefficients can be extracted from
Appendix B, where we construct explicit C∞ solutions to Lu = f on H and prove the following
elliptic analogue of the existence result [6, Theorem I.1.2] for the initial value problem for a
degenerate-parabolic model (1.25) on a half-space for the linearization of the porous medium
equation (1.24).

Theorem 1.5 (Existence and uniqueness of a C∞(H̄) solution on the half-space when L has
constant coefficients). Let L be an operator of the form (1.3) and require that the coefficients,
a, b, c, are constant with bd > 0 and c > 0. If f ∈ C∞0 (H̄), then there is a unique solution,
u ∈ C∞(H̄), to Lu = f on H.

Again, it is considerably more difficult to prove existence of a solution, u, in Ck,2+α
s (Ō) or

Ck,2+α
s (O) ∩ C(Ō), to (1.1), (1.2) when the intersection ∂0O ∩ ∂1O is non-empty. We do not

consider that problem in this article either and again refer the reader to [19, §1.3] for a discussion
of this issue. However, in the case of a strip, ∂1O does not meet ∂0O and we have an existence
result, Theorem 1.6, for an operator with variable coefficients. In §1.3, we discuss additional
existence results which should also follow from Theorems 1.1 and 1.5 when ∂0O is curved and
∂1O is empty.

Theorem 1.6 (Existence and uniqueness of a Ck,2+α
s (S̄) solution on a strip S). Let α ∈ (0, 1),

let ν > 0 and S = Rd−1× (0, ν) be as in (1.10), and let k ≥ 0 be an integer. Let L be an operator

as in (1.3). If f and the coefficients of L in (1.3) belong to Ck,αs (S̄) and obey (1.12) and (1.13)

for some positive constants b0, λ0, then there is a unique solution, u ∈ Ck,2+α
s (S̄), to the boundary

value problem,

Lu = f on S, (1.16)

u = 0 on ∂1S. (1.17)

Remark 1.7 (Existence and uniqueness of a solution on a strip). For an operator, L, with constant
coefficients, a, b, c, existence and uniqueness of a solution on a strip is proved as Corollary B.4.
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The preceding existence and uniqueness result on a strip leads to the following analogue of [26,
Theorem 6.17] and is proved in §8.2.

Theorem 1.8 (Interior Ck,2+α
s -regularity). For any α ∈ (0, 1) and integer k ≥ 0, the following

holds. Assume that the coefficients of L in (1.3) belong to Ck,αs (O) and obey (1.7) and (1.8) for
some positive constants b0, λ0. If u ∈ C2(O) obeys 4

u ∈ C1(O), xdD
2u ∈ C(O), and Lu ∈ Ck,αs (O), (1.18)

xdD
2u = 0 on ∂0O, (1.19)

then u ∈ Ck,2+α
s (O).

Given Theorem 1.8, one immediately obtains the following degenerate-elliptic analogue of
the C∞-regularity result for the degenerate-parabolic model for the linearization of the porous
medium equation [6, Theorem I.1.1].

Corollary 1.9 (Interior C∞-regularity). Assume that the coefficients of L in (1.3) belong to
C∞(O) and obey (1.7) and (1.8) for some positive constants b0, λ0. If u ∈ C2(O) obeys (1.18)
for every integer k ≥ 0, so Lu ∈ C∞(O), together with (1.19), then u ∈ C∞(O).

Remark 1.10 (Regularity up to the “non-degenerate boundary”). Regarding the conclusion of
Theorem 1.8, standard elliptic regularity results for linear, second-order, strictly elliptic operators
[26, Theorems 6.19] also imply, when k ≥ 0, that u ∈ Ck+2,α(O ∪ ∂1O) if u solves (1.1), (1.2)
with f ∈ Ck,α(O ∪ ∂1O) and g ∈ Ck+2,α(O ∪ ∂1O), and ∂1O is Ck+2,α. Because our focus in this
article is on regularity of u up to the “degenerate boundary”, ∂0O, we shall omit further mention
of such straightforward generalizations.

Finally, we refine our existence results in [19] when d = 2 for the Heston operator,

Av := −x2

2

(
vx1x1 + 2%σvx1x2 + σ2vx2x2

)
− (c0 − q − x2/2)vx1 − κ(θ − x2)vx2 + c0v, (1.20)

where q ≥ 0, c0 ≥ 0, κ > 0, θ > 0, σ > 0, and % ∈ (−1, 1) are constants (their financial interpreta-
tion is provided in [27]), and v ∈ C∞(H). In particular, we give analogues of the existence results
[26, Theorems 6.13 & 6.19] for the case of the Dirichlet boundary value problem for a strictly
elliptic operator.

Theorem 1.11 (Existence and uniqueness of a Ck,2+α
s solution to a Dirichlet boundary value

problem for the Heston operator). Let α ∈ (0, 1) and let k ≥ 0 be an integer, let K be a finite
right-circular cone, and require that ∂1O obeys a uniform exterior cone condition with cone K.

If f ∈ Ck,αs (O) ∩ Cb(O) and {
c0 > 0 if height(O) =∞,
c0 ≥ 0 if height(O) <∞,

(1.21)

then there is a unique solution,

u ∈ Ck,2+α
s (O) ∩ C(O ∪ ∂1O) ∩ Cb(O),

to the boundary value problem for the Heston operator,

Au = f on O, (1.22)

u = 0 on ∂1O. (1.23)

4We write Du, xdD
2u ∈ C(O) as an abbreviation for uxi , xduxixj ∈ C(O), for 1 ≤ i, j ≤ d and write xdD

2u = 0

on ∂0O as an abbreviation for limH3x→x0 xdD
2u(x) = 0 for all x0 ∈ ∂0O.
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Remark 1.12 (Schauder a priori estimates and approach to existence of solutions). As we explain

in [19, §1.3], the proof of existence of solutions, u ∈ Ck,2+α
s (O) ∩ C(Ō), to the boundary value

problem, (1.1), (1.2), given f ∈ Ck,αs (O) and g ∈ C(Ō), is considerably more difficult when
∂0O ∩ ∂1O is non-empty because, unlike in [6], one must consider a priori Schauder estimates
and regularity near the “corner” points of the subdomain, O ⊂ H, where the “non-degenerate
boundary”, ∂1O, meets the “degenerate boundary”, ∂0O.

Given an additional geometric hypothesis on O near points in ∂0O ∩ ∂1O, the property that
u ∈ C(O ∪ ∂1O) ∩ Cb(O) in the conclusion of Theorem 1.11 simplifies to u ∈ C(Ō).

Corollary 1.13 (Existence and uniqueness of a globally continuous Ck,2+α
s solution to a Dirichlet

boundary value problem for the Heston operator). If in addition to the hypotheses of Theorem
1.11 the domain, O, satisfies a uniform exterior and interior cone condition on ∂0O ∩ ∂1O with

cone K in the sense of [19], then u ∈ Ck,2+α
s (O) ∩ C(Ō).

Remark 1.14 (Existence of solutions to a Dirichlet boundary value problem). Theorem 1.11 and
Corollary 1.13 should generalize to from the Heston operator A in (1.20) to an operator L in (1.3)

with Ck,2+α
s coefficients and d ≥ 2.

1.2. Survey of previous related research. We provide a brief survey of some related research
by other authors on Schauder a priori estimates and regularity theory for solutions to degenerate-
elliptic and degenerate-parabolic partial differential equations most closely related to the results
described in our article.

The principal feature which distinguishes the equation (1.1), when the operator L is given by
(1.3), from the linear, second-order, strictly elliptic operators in [26] and their boundary value
problems, is the degeneracy of L due to the factor, xd, in the coefficient matrix for D2u and,
because b0 > 0 in (1.3), the fact that boundary conditions may be omitted along xd = 0 when
we seek solutions, u, with sufficient regularity up to xd = 0.

The literature on degenerate elliptic and parabolic equations is vast, with the well-known
articles of Fabes, Kenig, and Serapioni [12, 13], Fichera [21, 22], Kohn and Nirenberg [29], Murthy
and Stampacchia [33, 34] and the monographs of Levendorskĭı [31] and Olĕınik and Radkevič
[35, 36, 37], being merely the tip of the iceberg.

As far as the authors can tell, however, there has been relatively little prior work on a priori
Schauder estimates and higher-order Hölder regularity of solutions up to the portion of the domain
boundary where the operator becomes degenerate. In this context, the work of Daskalopoulos,
Hamilton, and Rhee [6, 7, 38] and of Koch stands out in recent years because of their introduction
of the cycloidal metric on the upper-half space, weighted Hölder norms, and weighted Sobolev
norms which provide the key ingredients required to unlock the existence, uniqueness, and higher-
order regularity theory for solutions to the porous medium equation (1.24) and the degenerate-
parabolic model equation (1.25) on the upper half-space given by the linearization of the porous
medium equation in suitable coordinates.

Daskalopoulos and Hamilton [6] proved existence and uniqueness of C∞ solutions, u, to the
Cauchy problem for the porous medium equation [6, p. 899] (when d = 2),

− ut +
d∑
i=1

(um)xixi = 0 on (0, T )× Rd, u(·, 0) = g on Rd, (1.24)

with constant m > 1 and initial data, g ≥ 0, compactly supported in Rd, together with C∞-
regularity of its free boundary, ∂{u > 0}, provided the initial pressure function is non-degenerate
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(that is, Dum−1 ≥ a > 0) on boundary of its support at t = 0. Their analysis is based on their
development of existence, uniqueness, and regularity results for the linearization of the porous
medium equation near the free boundary and, in particular, their model linear degenerate operator
[6, p. 901] (generalized from d = 2 in their article),

Lu = −xd
d∑
i=1

uxixi − βuxd , u ∈ C∞(H), (1.25)

where β is a positive constant, analogous to the combination of parameters, 2κθ/σ2, in (1.20),
following a suitable change of coordinates [6, p. 941].

The same model linear degenerate operator (for d ≥ 2), was studied independently by Koch
[28, Equation (4.43)] and, in a Habilitation thesis, he obtained existence, uniqueness, and regu-
larity results for solutions to (1.24) which complement those of Daskalopoulos and Hamilton [6].
Koch employs weighted Sobolev space methods, Moser iteration, and pointwise estimates for the
fundamental solution. However, by adapting the approach of Daskalopoulos and Hamilton [6],
we avoid having to rely on difficult pointwise estimates for the Green’s function for the operator
L in (1.3). Although tantalizingly explicit — see [9, 14, 15, 20, 27] for the Green’s function and
fundamental solution of the elliptic and parabolic Heston operator (1.20) and Appendix B —
these kernel functions appear quite intractable for the analysis required to emulate the role of
potential theory for the Laplace operator in the traditional development of Schauder theory in
[26].

While the Daskalopoulos-Hamilton Schauder theory for degenerate-parabolic operators has
been adopted so far by relatively few other researchers, it has also been employed by De Simone,
Giacomelli, Knüpfer, and Otto in [8, 25, 24] and by Epstein and Mazzeo in [10].

1.3. Extensions and future work. We defer to a subsequent article the development of a

priori global Schauder Ck,2+α
s (Ō) estimates, existence, and regularity theory for solutions u to

the elliptic boundary value problem (1.1), (1.2) when f and the coefficients, a, b, c, of L in (1.3)

belong to Ck,αs (Ō), the boundary data function g belongs to Ck,2+α
s (Ō), and O has boundary

portion ∂1O of class Ck+2,α and Ck,2+α-transverse to ∂0O. For reasons we summarize in [19, §1.3],
the development of global Schauder a priori estimates, regularity, and existence theory appears
very difficult when the intersection ∂0O ∩ ∂1O is non-empty.

However, if O ⊂ Rd is a bounded domain and L is an elliptic linear second-order partial
differential operator which is equivalent to an operator Lx0 of the form (1.3) in local coordinates

near every point x0 ∈ ∂O, then Theorem 1.1 will quickly lead to a global Ck,2+α
s (Ō) a priori

estimate for u if ∂O is of class Ck,2+α
s . Moreover, for g ∈ Ck,2+α

s (Ō), the method of proof of
[30, Theorem 6.5.3] (or indeed [6, Theorem II.1.1]) should adapt to give existence of a solution

u ∈ Ck,2+α
s (Ō) to (1.1), (1.2).

As we noted in Remark 1.14, we expect our existence results (Theorem 1.11 and Corollary
1.11) for solutions to the Dirichlet boundary value problem (1.22), (1.23) to generalize from the
case of the Heston operator, A, in (1.20) on subdomains of the half-plane to operators of the form

L in (1.3) on subdomains of the half-space with Ck,αs (O) coefficients, a, b, c. These generalizations
may be developed in two ways. First, the proof of Theorem 1.11 relies on existence and regularity
theory for solutions to a variational equation defined by (1.22) and a choice of suitable weighted
Sobolev spaces in [5, 17, 19]; we expect that analysis to extend without difficulty to operators of
the form L in (1.3). Second, we expect the a priori interior Schauder estimates that we develop
in this article, which are in the style of [26, Corollary 6.3], to extend to more refined and sharper
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a priori “global” interior Schauder estimates, in the style of [26, Theorem 6.2, Lemmas 6.20
and 6.21]. Aside from facilitating “rearrangement arguments”, we expect such “global” a priori
interior Schauder estimates — relying on a choice of suitable weighted Hölder spaces similar to
those employed in [26, Chapter 6] — to permit the use of the continuity method to prove existence
of solutions within a self-contained Schauder framework and this theme will be developed by the
authors in a subsequent article.

While our a priori Schauder estimates rely on the specific form of the degeneracy factor, xd, of
the operator L in (1.3) on a subdomain of the half-space, we obtained weak and strong maximum
principles for a much broader class of degenerate operators in [16]. Therefore, we plan to extend
the a priori Schauder estimates and regularity theory for degenerate-elliptic operators such as

Lv = −ϑ tr(aD2v)− b ·Dv + cv on O, v ∈ C∞(O),

where ϑ ∈ Cαloc(Ō) and ϑ > 0 on a subdomain O ⊂ Rd with non-empty boundary portion
∂0O = int({x ∈ ∂O : ϑ(x) = 0}).

1.4. Outline and mathematical highlights of the article. For the convenience of the reader,
we provide a brief outline of the article. In §2 , we review the construction of the Daskalopoulos-
Hamilton-Hölder families of norms and Banach spaces [6].

In §3, we derive a priori local C0 estimates for derivatives of solutions, u, to Lu = 0 on half-
balls B+

r0(x0) ⊂ H centered at points x0 ∈ ∂H, when L has constant coefficients. However, our
method of proof differs significantly from that of Daskalopoulos and Hamilton [6], who apply
a comparison principle for a certain non-linear parabolic operator and which directly uses the
fact that this operator is parabolic. We were not able to replace their “parabolic” comparison
argument by one which is suitable for the elliptic operators we consider in this article. Instead,
we employ a simpler approach using a version of Brandt’s finite-difference method [4] to estimate
derivatives in directions parallel to ∂H and methods of ordinary differential equations to estimate
derivatives in directions normal to ∂H.

In §4, we adapt and slightly streamline the arguments of Daskalopoulos and Hamilton in [6] for
their model degenerate-parabolic operator (1.25) to the case of our degenerate-elliptic operator
(1.3) and derive a C0 a priori estimate of the remainder of the first-order Taylor polynomial of a
function u on a half-ball, B+

r0(x0).

In §5, we obtain a priori local interior Schauder estimates for a function u on a ball Br0(x0) b H,
where we keep track of the distance between the ball center, x0 ∈ H, and ∂H, again when L has
constant coefficients.

In §6, we apply the results of the previous sections to prove our main C2+α
s a priori interior

local Schauder estimate (Theorem 3.2) for an operator L with constant coefficients on a half-ball,
B+
r0(x0).

In §7, we prove Ck,2+α
s a priori interior local Schauder estimate (Theorem 7.1) and a global a

priori global Schauder estimate on a strip (Corollary 7.2), both when L has constant coefficients.
In §8, we relax the assumption in the preceding sections that the coefficients of the operator L

in (1.3) are constant and prove a C2+α
s a priori interior local Schauder estimate (Theorem 8.1) for

a function, u, on a half-ball, B+
r0(x0) when L has variable coefficients. We then prove a Ck,2+α

s a
priori local interior Schauder estimate for arbitrary k ∈ N (Theorem 8.3) and complete the proofs

of Theorem 1.1 and Corollary 1.3. Next, we prove our global Ck,2+α
s (S̄) existence result on strips,

Theorem 1.6, and complete the proofs of our main Ck,2+α
s regularity result, Theorem 1.8, and

the Ck,2+α
s (O) existence results, Theorem 1.11 and Corollary 1.13, for solutions to a Dirichlet

boundary value problem for the Heston operator.
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We collect some additional useful results and their proofs in several appendices to this article.
In Appendix A, we prove a comparison principle for operators which include those of the form
L in (1.3) with c ≥ 0 (rather than c ≥ c0 for a positive constant c0) when the domain, O, is
unbounded but has finite height, extending one of the comparison principles in [16]. In Appendix
B, we prove Theorem 1.5. In Appendix C, we summarize the interpolation inequalities and
boundary properties of functions in weighted Hölder spaces proved in [6] and [18].

1.5. Notation and conventions. In the definition and naming of function spaces, including
spaces of continuous functions and Hölder spaces, we follow Adams [2] and alert the reader to
occasional differences in definitions between [2] and standard references such as Gilbarg and
Trudinger [26] or Krylov [30].

We let N := {0, 1, 2, 3, . . .} denote the set of non-negative integers. If S ⊂ Rd, we let S̄ denote
its closure with respect to the Euclidean topology and denote ∂S := S̄\S. For r > 0 and x0 ∈ Rd,
we let Br(x

0) := {x ∈ Rd : |x − x0| < r} denote the open ball with center x0 and radius r. We
denote B+

r (x0) := Br(x
0) ∩H when x0 ∈ ∂H. When x0 is the origin, O ∈ Rd, we denote Br(x

0)
and B+

r (x0) by Br and B+
r for brevity.

If V ⊂ U ⊂ Rd are open subsets, we write V b U when U is bounded with closure Ū ⊂ V . By
supp ζ, for any ζ ∈ C(Rd), we mean the closure in Rd of the set of points where ζ 6= 0.

We use C = C(∗, . . . , ∗) to denote a constant which depends at most on the quantities appearing
on the parentheses. In a given context, a constant denoted by C may have different values
depending on the same set of arguments and may increase from one inequality to the next.

2. Preliminaries

In this section, we review the construction of the Daskalopoulos-Hamilton-Hölder families of
norms and Banach spaces [6].

We first recall the definition of the cycloidal distance function, s(·, ·), on H̄ by

s(x1, x2) :=
|x1 − x2|√

x1
d + x2

d + |x1 − x2|
, ∀x1, x2 ∈ H̄, (2.1)

where xi = (xi1, . . . , x
i
d), for i = 1, 2, and |x1 − x2| denotes the usual Euclidean distance be-

tween points x1, x2 ∈ Rd. Analogues of the cycloidal distance function (2.1) between points
(t1, x1), (t2, x2) ∈ [0,∞)× H̄, in the context of parabolic differential equations, were introduced
by Daskalopoulos and Hamilton in [6, p. 901] and Koch in [28, p. 11] for the study of the porous
medium equation.

Observe that, by (2.1),

s(x, x0) ≤ |x− x0|1/2, ∀x, x0 ∈ H̄. (2.2)

The reverse inequality take its simplest form when x0 ∈ ∂H, so x0
d = 0, in which case the

inequalities xd ≤ |x− x0| and

|x− x0| = s(x, x0)
√
xd + |x− x0| ≤ s(x, x0)

√
2|x− x0|,

give

|x− x0| ≤ 2s(x, x0)2, ∀x ∈ H̄, x0 ∈ ∂H. (2.3)

Following [2, §1.26], for a domain U ⊂ H, we let C(U) denote the vector space of continuous
functions on U and let C(Ū) denote the Banach space of functions in C(U) which are bounded
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and uniformly continuous on U , and thus have unique bounded, continuous extensions to Ū , with
norm

‖u‖C(Ū) := sup
U
|u|.

Noting that U may be unbounded, we let Cloc(Ū) denote the linear subspace of functions u ∈ C(U)
such that u ∈ C(V̄ ) for every precompact open subset V b Ū . We let Cb(U) := C(U) ∩ L∞(U).

Daskalopoulos and Hamilton provide the

Definition 2.1 (Cαs norm and Banach space). [6, p. 901] Given α ∈ (0, 1) and a domain U ⊂ H,
we say that u ∈ Cαs (Ū) if u ∈ C(Ū) and

‖u‖Cαs (Ū) <∞,

where

‖u‖Cαs (Ū) := [u]Cαs (Ū) + ‖u‖C(Ū), (2.4)

and

[u]Cαs (Ū) := sup
x1,x2∈U
x1 6=x2

|u(x1)− u(x2)|
s(x1, x2)α

. (2.5)

We say that u ∈ Cαs (U) if u ∈ Cαs (V̄ ) for all precompact open subsets V b U , recalling that
U := U ∪ ∂0U . We let Cαs,loc(Ū) denote the linear subspace of functions u ∈ Cαs (U) such that

u ∈ Cαs (V̄ ) for every precompact open subset V b Ū .

It is known that Cαs (Ū) is a Banach space [6, §I.1] with respect to the norm (2.4).

We shall need the following higher-order weighted Hölder Ck,αs and Ck,2+α
s norms and Banach

spaces pioneered by Daskalopoulos and Hamilton [6]. We record their definition here for later
reference.

Definition 2.2 (Ck,αs norms and Banach spaces). [6, p. 902] Given an integer k ≥ 0, α ∈ (0, 1),

and a domain U ⊂ H, we say that u ∈ Ck,αs (Ū) if u ∈ Ck(Ū) and

‖u‖
Ck,αs (Ū)

<∞,

where

‖u‖
Ck,αs (Ū)

:=
∑
|β|≤k

‖Dβu‖Cαs (Ū), (2.6)

where β := (β1, . . . , βd) ∈ Nd and

‖u‖Cαs (Ū) := ‖u‖C(Ū) + [u]Cαs (Ū).

When k = 0, we denote C0,α
s (Ū) = Cαs (Ū).

Definition 2.3 (Ck,2+α
s norms and Banach spaces). [6, pp. 901–902] Given an integer k ≥ 0,

a constant α ∈ (0, 1), and a domain U ⊂ H, we say that u ∈ Ck,2+α
s (Ū) if u ∈ Ck+1,α

s (Ū),
the derivatives, Dβu, β ∈ Nd with |β| = k + 2, of order k + 2 are continuous on U , and the
functions, xdD

βu, β ∈ Nd with |β| = k + 2, extend continuously up to the boundary, ∂U , and
those extensions belong to Cαs (Ū). We define

‖u‖
Ck,2+α
s (Ū)

:= ‖u‖
Ck+1,α
s (Ū)

+
∑
|β|=k+2

‖xdDβu‖Cαs (Ū). (2.7)
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We say that5 u ∈ Ck,2+α
s (U) if u ∈ Ck,2+α

s (V̄ ) for all precompact open subsets V b U . When

k = 0, we denote C0,2+α
s (Ū) = C2+α

s (Ū).

For any non-negative integer k, we let Ck0 (U) denote the linear subspace of functions u ∈ Ck(U)
such that u ∈ Ck(V̄ ) for every precompact open subset V b U and define C∞0 (U) := ∩k≥0C

k
0 (U).

Note that we also have C∞0 (U) = ∩k≥0C
k,α
s (U) = ∩k≥0C

k,2+α
s (U).

3. Interior local estimates of derivatives

As in [6], we begin with the derivation of local estimates of derivatives of solutions on half-
balls B+

r (x0) centered at points x0 ∈ ∂H, but the method of proof differs significantly from
the method of proof in [6, §I.4 & I.5]. In [6], Daskalopoulos and Hamilton apply a comparison
principle to a suitably chosen function, defined in terms of the derivatives (see the definitions of
Y at the beginning of [6, §I.5] and of X in the proof of [6, Corollary I.5.3]). Their comparison
principle directly uses the fact that the operator is parabolic, and we were not able to replace the
“parabolic” comparison argument by one which is suitable for the elliptic operators we consider in
this article. (The Daskalopoulos-Hamilton approach can be viewed as a variant of the Bernstein
method — see the proof [30, Theorem 8.4.4] in the case of the heat operator and [30, Theorem
2.5.2] in the case of the Laplace operator.)

Instead, we apply a combination of finite-difference arguments, methods of ordinary differential
equations, and, in this section, restrict to the homogeneous of version of the equation (1.1) with
f = 0. We adapt Brandt’s finite-difference method [4] (see also [26, §3.4]) to obtain a priori local
estimates for Dβu, where β ∈ Nd is any multi-index with non-negative integer entries of the form
β = (β1, . . . , βd−1, 0). The method of Brandt also uses a comparison principle, but it is applied
to finite differences, instead of functions of derivatives of u, such as X and Y in [6, §I.5]. Brandt’s
approach is also mentioned by Gilbarg and Trudinger in [26, p. 47] as an alternative to the usual
methods for proving a priori interior Schauder estimates such as [26, Corollary 6.3]. We are able
to apply the finite-difference estimates method not only on balls Br(x

0) b H as in [4], but also on
half-balls B+

r (x0) ⊂ H centered at points x0 ∈ ∂H because the degeneracy of the elliptic operator
L in (1.3) along ∂0B

+
r (x0) and the fact that bd > 0 along ∂0B

+
r (x0) (see (3.2)) implies that no

boundary condition need be imposed along ∂0B
+
r (x0).

In §3.1 we summarize the interior local Schauder estimate and regularity results we will prove
in sections 3, 4, 5, and 6. In §3.2, we develop C0 interior local estimates for derivatives Dβu when
βd = 0 and in §3.3, we extend those estimates to case βd > 0.

3.1. A priori interior local Schauder estimate and regularity statements in the case
of constant coefficients. Throughout sections 3, 4, 5, and 6, we further assume the

Hypothesis 3.1 (Constant coefficients and positivity). The coefficients, a, b, c, of the operator
L in (1.3) are constant; there is a positive constant, λ0, such that 6

〈aξ, ξ〉 ≥ λ0|ξ|2, ∀, ξ ∈ Rd; (3.1)

and 7

bd = b0 > 0. (3.2)

5In [6, pp. 901–902], when defining the spaces Ck,αs (A ) and Ck,2+α
s (A ), it is assumed that A is a compact

subset of the closed upper half-space, H̄.
6Condition (3.1) is first used in the proof of Lemma 5.1
7Condition (3.2) is required by our maximum principle (Lemma A.1 and Corollary A.2). Our maximum principle

is in turn required in §3; sections 4 and 5 depend on §3; and sections 6, 7, and 8 each depend on sections 5 and 6.
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The condition (3.2) is first required in the proof of Lemma 5.1. When the coefficients of L are
constant, we denote

Λ =
d∑

i,j=1

|aij |+ max
i
|bi|+ |c|. (3.3)

Our main goal in sections 3, 4, 5, and 6 is to prove the following versions of Theorems 1.1 and 1.8
when k = 0 and L has constant coefficients and the domain is a half-ball, B+

r0(x0) with x0 ∈ ∂H.

Theorem 3.2 (A priori interior local Schauder estimate when L has constant coefficients). For
any α ∈ (0, 1) and constants r and r0 with 0 < r < r0, there is a positive constant, C =
C(α, r, r0, d, λ0, b0,Λ), such that the following holds. If x0 ∈ ∂H and u ∈ C2+α

s (B+
r0(x0)), then

‖u‖C2+α
s (B̄+

r ) ≤ C
(
‖Lu‖Cαs (B̄+

r0
(x0)) + ‖u‖C(B̄+

r0
(x0))

)
. (3.4)

Our goal in the remainder of this section is to derive a priori estimates for Du and xdD
2u on

half-balls, B+
r (x0), centered at points x0 ∈ ∂H. Because our operator, L, is invariant with respect

to translations in the variables (x1, . . . , xd−1) when the coefficients, a, b, c, are constant, we can
assume without loss of generality that x0 is the origin, O ∈ Rd, and write B+

r0(x0) = B+
r0 and

B+
r (x0) = B+

r in our proof of Theorem 3.2.

3.2. Interior local estimates for derivatives parallel to the degenerate boundary. To
derive a priori local estimates for Dβu, for β ∈ Nd with βd = 0, it will be useful to consider the
following transformation,

u(x) =: v(y), x ∈ H, (3.5)

where y = φ(x) := x+ ξxd and ξ = (ξ1, . . . , ξd−1, ξd) ∈ Rd. We choose ξ such that

ξi := −bi/bd, ∀i 6= d, ξd = 0, (3.6)

where we have used assumption (3.2) that bd > 0. Note that φ is a diffeomorphism on H̄ which

restricts to the identity map on ∂H. We now consider the operator L̃0 defined by

L0u(x) =: L̃0v(y), x ∈ H,

and by direct calculations we obtain

L̃0v = −ydãijvyiyj − b̃ivyi on H, (3.7)

where

ãij := aij +
1

2

(
ξja

id + ξia
jd
)

+ ξiξja
dd, ∀i, j 6= d,

ãid = ãdi := aid + ξia
dd, ∀i 6= d,

ãdd := add,

b̃i := bi + ξib
d, ∀i 6= d,

b̃d = bd.

(3.8)

The purpose of the transformation (3.5) is to ensure that the coefficients b̃i of the partial deriva-

tives with respect to yi in the definition (3.7) of the operator L̃0 are zero when i 6= d. The matrix
ã is symmetric and positive definite, but now the constant of strict ellipticity depends on bi/bd,
that is, on bd and Λ, and on the constant of strict ellipticity, λ0, of the matrix a.
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Lemma 3.3 (Local estimates for first-order derivatives of v parallel to ∂H). Let 0 < r < r0, and
let v ∈ C2(B+

r0) ∩ C(B̄+
r0) obey

L̃0v = 0 on B+
r0 ,

and assume that v satisfies

Dv, ydD
2v ∈ C(B+

r0) and ydD
2v = 0 on ∂0B

+
r0 . (3.9)

Then there is a positive constant, C = C(r, r0, d, λ0, b0,Λ), such that

‖vyk‖C(B̄+
r ) ≤ C‖v‖C(B̄+

r0
), ∀k 6= d.

Proof. We adapt the finite-difference argument employed by Brandt (1969) in [4] to prove the local
estimates for derivatives, vyk , when k 6= d. We let r2 := (r+r0)/2 and r3 := min{(r0−r)/2, 1/2},
and consider the (d+ 1)-dimensional cylinder,

C :=
{

(y, yd+1) ∈ H× R+ : y ∈ B+
r2 , 0 < yd+1 < r3

}
.

We consider the auxiliary function,

φ(y, yd+1) :=
1

2
(v(y + yd+1ek)− v(y − yd+1ek)) , ∀(y, yd+1) ∈ C,

where C is defined above, and ek ∈ Rd is the vector whose coordinates are all zero except for the
k-th coordinate, which is 1. We choose a constant c0 > 0 small enough, say c0 = λ0/2, such that
the differential operator,

L̃1
0 := L̃0 − c0yd∂ykyk + c0yd∂yd+1yd+1

,

is elliptic on H× R+. By the definition of the function φ, we notice that

L̃1
0φ = 0 on C,

because L̃0v = 0 on B+
r0 . For y0 ∈ B̄+

r , we consider the auxiliary function defined on C,

ψ := C1‖v‖C(B̄+
r0

)

[
yd+1(1− yd+1) + C2

(
d−1∑
i=1

(yi − y0
i )

2 + y2
d(yd − y0

d) + y2
d+1

)]
,

where the positive constants C1, C2 will be suitably chosen below. We want to choose C2 suffi-
ciently small that

L̃1
0ψ ≥ 0 on C.

By direct calculation, we obtain

ψyi = 2C1C2‖v‖C(B̄+
r0

)(yi − y
0
i ), i = 1, 2, . . . , d− 1,

ψyiyi = 2C1C2‖v‖C(B̄+
r0

), i = 1, 2, . . . , d− 1,

ψyd+1yd+1
= 2C1 (C2 − 1) ‖v‖C(B̄+

r0
),

ψyd = 2xdC1C2‖v‖C(B̄+
r0

)

(
3

2
yd − y0

d

)
,

ψydyd = 2C1C2‖v‖C(B̄+
r0

)

(
3yd − y0

d

)
,
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and so,

L̃1
0ψ = −ydãijvyiyj − b̃ivyi − c0yd

(
ψyd+1yd+1

− ψykyk
)

= −2ydC1‖v‖C(B̄+
r0

)

[
C2

((
d−1∑
i=1

ãii

)
+ ãdd(3yd − y0

d)− c0 + b̃d
(

3

2
yd − y0

d

))
+ c0(C2 − 1)

]

≥ −2ydC1‖v‖C(B̄+
r0

)

[
C2

((
d−1∑
i=1

ãii

)
+ 3rãdd + 2rb̃d

)
− c0

]
on C,

using the facts that the ãii, for i = 1, . . . , d, and b̃d are positive constants, while b̃i = 0, i 6= d, by
the transformation (3.5), and yd < r. We choose the constant C2 such that

C2 ≤ c0

(
d−1∑
i=1

ãii + 3rãdd + 2rb̃d

)−1

,

so that we have

L̃1
0ψ ≥ 0 on C.

Because L̃1
0φ = 0 on C, the preceding inequality yields

L̃1
0 (±φ− ψ) ≤ 0 on C.

By the definition of the auxiliary function, ψ, and using the fact that y0 ∈ B̄+
r and 0 < yd+1 < 1/2,

we may choose a positive constant, C1 = C1(r, r0, C2), large enough that

± φ− ψ ≤ 0 on ∂1C. (3.10)

The portion ∂1C of the boundary of C consists of the sets

{yd+1 = 0, y ∈ B+
r2}, {yd+1 = r3, y ∈ B+

r2}, and {yd+1 ∈ (0, r3), y ∈ ∂1B
+
r2}.

To establish inequality (3.10) along the portion {yd+1 = 0} of the boundary, ∂1C, note that φ = 0,
and so (3.10) holds on this portion of the boundary since ψ ≥ 0. For the second portion of the
boundary, ∂1C, using the fact that r3 ≤ 1/2, we notice that

yd+1(1− yd+1) + C2

(
d−1∑
i=1

(yi − y0
i )

2 + y2
d(yd − y0

d) + y2
d+1

)
≥ r3/2 on {yd+1 = r3, y ∈ B+

r2}.

For the third portion of the boundary, using the fact that y0 ∈ B+
r and y ∈ B+

r2 and r < r2, we
see that on {yd+1 ∈ (0, r3), y ∈ ∂1B

+
r2} we have

yd+1(1− yd+1) + C2

(
d−1∑
i=1

(yi − y0
i )

2 + y2
d(yd − y0

d) + y2
d+1

)
≥ C2(d− 1)(r2 − r)2.

Therefore, we can find a constant C3 = C3(r, r0, d) such that

ψ ≥ C1C3‖v‖C(B+
r ) on {yd+1 = r3, y ∈ B+

r2} ∪ {yd+1 ∈ (0, r3), y ∈ ∂1B
+
r2}

We may choose the constant C1 = C1(r, r0, d) large enough so that C1C3 ≥ 1, and using the
definition of φ, we have

ψ ≥ |φ| on {yd+1 = r3, y ∈ B+
r2} ∪ {yd+1 ∈ (0, r3), y ∈ ∂1B

+
r2}.

Now, inequality (3.10) follows. By (3.9) we have φ ∈ C(C̄), and Dφ, ydD
2φ ∈ C(C ∪ ∂0C), and

ydD
2φ = 0 on ∂0C, where ∂0C is the interior of {yd = 0}∩ C̄. Since ψ ∈ C∞(C̄), we may apply the
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comparison principle [16, Theorem 5.1] to φ and ψ on the domain C. We find that ±φ − ψ ≤ 0
on C, and so by the definition of the function φ, we have, for all y0 ∈ B+

r and yd+1 ∈ (0, r3),

1

2yd+1
|v(y0 + yd+1ek)− v(y0 − yd+1ek)| ≤ C1‖v‖C(B̄+

r0
) (1− yd+1 + C2yd+1) .

The preceding inequality yields

|vyk(y0)| ≤ C1‖v‖C(B̄+
r0

), ∀y0 ∈ B̄+
r ,

for a constant C1 = C1(r, r0, d, λ0, b0,Λ), and this concludes the proof. �

Lemma 3.4 (Local estimates for higher-order derivatives of v parallel to ∂H). Let k ∈ N and
0 < r < r0. Then there is a constant C = C(k, r, r0, d, λ0, b0,Λ), such that for any v ∈ C∞(B̄+

r0)
obeying

L̃0v = 0 on B+
r0 ,

we have

‖Dβv‖C(B̄+
r ) ≤ C‖v‖C(B̄+

r0
), (3.11)

for all multi-indices β = (β1, . . . , βd−1, 0) ∈ Nd such that |β| ≤ k.

Proof. Lemma 3.3 establishes the result when |β| = 1. We prove the higher-order derivative
estimates parallel to ∂H by induction. We assume the induction hypothesis: For any 0 < r < r0,
there is a constant C1 = C1(k − 1, r, r0, d, λ0, b0,Λ), such that

‖Dβ′v‖C(B̄+
r ) ≤ C1‖v‖C(B̄+

r0
),

for all multi-indices β′ = (β′1, . . . , β
′
d−1, 0) ∈ Nd such that |β′| ≤ k − 1. Since L̃0v = 0 on B+

r0 , we

also have that L̃0D
βv = 0 on B+

r0 , for all multi-indices β with βd = 0. We fix such a multi-index
β. Let k ∈ N be such that βk 6= 0, and set β′ := β−ek. We set r2 := (r+r0)/2 and apply Lemma

3.3 to Dβ′v with 0 < r < r2 to obtain

‖Dβv‖C(B̄+
r ) ≤ C2‖Dβ′v‖C(B̄+

r2
),

for some positive constant C2 = C2(r, r2, d, λ0, b0,Λ). The conclusion now follows from the

preceding estimate and the induction hypothesis applied to Dβ′v with 0 < r2 < r0, since |β′| ≤
k − 1. �

From (3.5), we have

Dβu(x) = Dβv(y), y = x+ ξxd, x ∈ H,

for all β ∈ Nd such that βd = 0. Therefore, Lemmas 3.3 and 3.4 give us the following estimates
for Dβu.

Lemma 3.5 (Local estimates of higher-order derivatives of u parallel to ∂H). Let k ∈ N and
r0 > 0. Then there are positive constants, r1 = r1(r0, b0,Λ) < r0 and C = C(r0, d, k, λ0, b0,Λ),
such that for any function u ∈ C∞(B̄+

r0) solving

L0u = 0 on B+
r0 , (3.12)

we have, for all β ∈ Nd with βd = 0 and |β| ≤ k,

‖Dβu‖C(B̄+
r1

) ≤ C‖u‖C(B̄+
r0

).
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Proof. Let φ : H → H be the affine transformation y = φ(x) = x + ξxd, x ∈ H, where ξ ∈ Rd
is defined by (3.6). Let s0 = s0(r0, b0,Λ) > 0 be small enough such that B+

s0 ⊂ φ(B+
r0). Then,

v ∈ C∞(B̄+
s0) and L̃0v = 0 on B+

s0 , since u ∈ C∞(B̄+
r0), and L0u = 0 on B+

r0 . Let s1 = s0/2 and
apply Lemma 3.4 to v with r replaced by s1 and r0 replaced by s0. For any k ∈ N, there is a
positive constant C = C(k, r0, d, λ0, b0,Λ), such that for all β ∈ Nd with βd = 0, we have

‖Dβv‖C(B̄+
s1

) ≤ C‖v‖C(B̄+
s0

). (3.13)

We now choose r1 = r1(s1, b0,Λ) small enough such that φ(B+
r1) ⊂ B+

s1 . Using the fact that

Dβu(x) = Dβv(φ(x)), we obtain

‖Dβu‖C(B̄+
r1

) ≤ ‖D
βv‖C(B̄+

s1
) (by the facts that φ(B+

r1) ⊂ B+
s1 and u(x) = v(φ(x)))

≤ C‖v‖C(B̄+
s0

) (by (3.13))

≤ C‖u‖C(B̄+
r0

) (by the facts that B+
s0 ⊂ φ(B+

r0) and u(x) = v(φ(x))).

This concludes the proof. �

3.3. Interior local estimates for derivatives normal to the degenerate boundary. We
again shall use the affine transformation (3.5) of coordinates, but now with a different choice of
the vector ξ, that is

ξi := −aid/add, ∀i 6= d, ξd = 0, (3.14)

and, given a function u on H, we define the function w by

u(x) =: w(y), y = x+ ξxd, x ∈ H. (3.15)

Then, by analogy with (3.7), we obtain

L̄0w := ydā
ijwyiyj + b̄iwyi on H,

where we notice that āid = 0 by (3.8) and the choice of the vector ξ. Also, we have that
Dβu(x) = Dβw(y), for all β ∈ Nd with βd = 0. Thus, Lemma 3.5 applies to w, and we obtain a
priori local estimates for all derivatives of w parallel to ∂H.

Next, we derive an a priori local estimate for wyd .

Lemma 3.6 (Local estimate for wyd). Let 0 < r < r0. Then there is a positive constant,
C = C(r, r0, d, λ0, b0,Λ), such that for any function w ∈ C∞(B̄+

r0) obeying

L̄0w = 0 on B+
r0 , (3.16)

we have

‖wyd‖C(B̄+
r ) ≤ C‖w‖C(B̄+

r0
).

Proof. Because āid = 0, for all i 6= d, we can rewrite the equation L̄0w = 0 on B+
r0 as

ydwydyd + θwyd = f on B+
r0 ,

where, for simplicity, we denote θ := b̄d/ādd > 0, and define f by

f := yd

d−1∑
i,j=1

āij

ādd
wyiyj +

d−1∑
i=1

b̄i

ādd
wyi on B̄+

r0 .
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We can estimate ‖f‖C(B̄+
r ) in terms of ‖w‖C(B̄+

r0
) by applying Lemma 3.5 to control the supremum

norms of wyi and wyiyj on B̄+
r , for all i, j 6= d. The preceding ordinary differential equation can

be rewritten as (
yθdwyd

)
yd

= yθ−1
d f on B+

r0

and, integrating with respect to yd, we obtain

yθdwyd(y) =

∫ yd

0
f(y′, s)sθ−1 ds, y ∈ B+

r0 ,

where denote y = (y′, yd), and use the fact that θ > 0, and wyd ∈ C(B̄+
r0). Thus, we have

|yθdwyd(y)| ≤ ‖f(y′, ·)‖C([0,yd])

∫ yd

0
sθ−1 ds =

1

θ
yθd‖f(y′, ·)‖C([0,yd]), y ∈ B+

r0 ,

from where it follows, by the definition of f , that

|wyd(y)| ≤ C
∑
β∈Nd

βd=0; |β|≤2

‖Dβw(y′, ·)‖C([0,yd]), y ∈ B+
r0 ,

for some constant C = C(λ0, b0,Λ). Now applying Lemma 3.5 to estimate Dβw on B+
r , for all

0 < r < r0, and for all β ∈ Nd with βd = 0 and |β| ≤ 2, we obtain the supremum estimate for
wyd on B̄+

r in terms of the supremum estimate of w on B̄+
r0 . �

Lemma 3.7 (Local estimates for DβDydw with βd = 0). Let k ∈ N, and let 0 < r < r0. Then
there is a constant, C = C(k, r, r0, d, λ0, b0,Λ), such that for any function w ∈ C∞(B̄+

r0) obeying
(3.16) we have

‖DβDydw‖C(B̄+
r ) ≤ C‖w‖C(B̄+

r0
),

for all β ∈ Nd with βd = 0 and |β| ≤ k.

Proof. Since L̄0w = 0 on B+
r0 , we also have L̄0D

βw = 0 on B+
r0 , for all β ∈ Nd with βd = 0.

Lemma 3.6 then applies with r replaced by r2 = (r + r0)/2, and gives us

‖DβDydw‖C(B̄+
r ) ≤ C0‖Dβw‖C(B̄+

r2
),

where C0 = C0(r, r0, d, λ0, b0,Λ) is a positive constant. Next, we apply Lemma 3.5 to estimate
Dβw and give a constant C1 = C1(k, r2, r0, d, λ0, b0,Λ) such that

‖Dβw‖C(B̄+
r2

) ≤ C1‖w‖C(B̄+
r0

).

Now combining the preceding two inequalities, we obtain the a priori local estimate for DβDydw.
�

Lemma 3.8 (Local estimate for wydyd). Let k ∈ N and 0 < r < r0. Then there is a positive
constant, C = C(r, r0, d, λ0, b0,Λ), such that for any function w ∈ C∞(B̄+

r0) obeying (3.16) we
have

‖wydyd‖C(B̄+
r ) ≤ C‖w‖C(B̄+

r0
).

Proof. By taking another derivative with respect to yd in the equation L̄0w = 0 on B+
r0 , we see

that wyd is a solution to

yd

d∑
i,j=1

āij(wyd)yiyj +

d−1∑
i=1

(
b̄i + 2āid

)
(wyd)yi +

(
b̄d + ādd

)
(wyd)yd = −

d−1∑
i,j=1

āijwyiyj .
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Applying the method of proof of Lemma 3.6 with θ :=
(
b̄d + ādd

)
/ādd and

f := −
d−1∑
i,j=1

āijwyiyj − yd
d−1∑
i,j=1

āijwydyiyj −
d−1∑
i=1

(
b̄i + 2āid

)
wydyi ,

we obtain

‖wydyd‖C(B̄+
r ) ≤ C

∑
β∈Nd

βd=0,1; |β|≤3

‖Dβw‖C(B̄+
r ),

where C = C(d, λ0, b0,Λ) is a positive constant. We can estimate the supremum norms of Dβw
on B+

r , for all β ∈ Nd with βd = 0, 1, in terms of the supremum norm of w on B+
r0 with the aid

of Lemmas 3.5 and 3.7. Now, the supremum estimate for wydyd on B+
r follows immediately. �

From the definition (3.15) of w, using the fact that ξd = 0, we have

uxd(x) =

d−1∑
k=1

ξkwyk(y) + wyd(y),

uxi(x) = uyi(y), ∀i 6= d,

uxdxd(x) =

d−1∑
k,l=1

ξkξlwykyl(y) + 2

d−1∑
k=1

ξkwykyd(y) + wydyd(y),

uxixd(x) =

d−1∑
k=1

ξkwyiyk(y) + wyiyd(y), ∀i 6= d,

uxixj (x) = wyiyj (y), ∀i, j 6= d,

(3.17)

for x ∈ H. Using the preceding identities together with the estimates of Lemmas 3.6, 3.7 and 3.8,
we obtain

Lemma 3.9 (Local estimates for second-order derivatives of u). Let r0 > 0. Then there are
positive constants, r1 = r1(r0, λ0, b0,Λ) < r0 and C = C(r0, d, λ0, b0,Λ), such that for all u ∈
C∞(B̄+

r0) obeying (3.12), we have

‖Dβu‖C(B̄+
r1

) ≤ C‖u‖C(B̄+
r0

),

for all β ∈ Nd with |β| ≤ 2.

Proof. Let φ : H → H be the affine transformation y = φ(x) = x + ξxd, x ∈ H, where ξ ∈ Rd
is defined by (3.14). Let s0 = s0(r0, λ0,Λ) > 0 be small enough such that B+

s0 ⊂ φ(B+
r0). Let

s1 = s1(s0, b0,Λ) < s0 denote the constant r1 given by Lemma 3.5 applied with r0 replaced by

s0. Then, the function w defined by (3.15) has the property that w ∈ C∞(B̄+
s0) and L̃0w = 0 on

B+
s0 , since u ∈ C∞(B̄+

r0) and L0u = 0 on B+
r0 . We apply Lemma 3.6, if β = ed, Lemma 3.7, if

β = ei + ed and i 6= d, and Lemma 3.8, if β = 2ed, to the function w with r replaced by s1 and r0

replaced by s0. We apply Lemma 3.5, if β = ei or β = ei + ej , for all i, j 6= d, to the function w
with r1 replaced by s1 and r0 replaced by s0. Then, for any k ∈ N, there is a positive constant,
C = C(k, r0, d, λ0, b0,Λ), such that for all β ∈ Nd with |β| ≤ 2, we have

‖Dβw‖C(B̄+
s1

) ≤ C‖w‖C(B̄+
s0

). (3.18)
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We now choose r1 = r1(r0, λ0, b0,Λ) small enough such that φ(B+
r1) ⊂ B+

s1 . Using (3.17), we
obtain

‖Dβu‖C(B̄+
r1

) ≤ ‖D
βw‖C(B̄+

s1
) (by the facts that φ(B+

r1) ⊂ B+
s1 and u(x) = w(φ(x)))

≤ C‖w‖C(B̄+
s0

) (by (3.18))

≤ C‖u‖C(B̄+
r0

) (by the facts that B+
s0 ⊂ φ(B+

r0) and u(x) = w(φ(x))).

This concludes the proof. �

4. Polynomial approximation and Taylor remainder estimates

We adapt and slightly streamline the arguments of Daskalopoulos and Hamilton in [6, §I.6 &
I.7] for their model degenerate-parabolic operators acting on functions u(t, x), (t, x) ∈ R+ × R2,
to the case of our degenerate-elliptic operators acting on functions u(x), x ∈ Rd. The goal of this
section is to derive an estimate of the remainder of the first-order Taylor polynomial of a function
u on half-balls centered at points in ∂H (Corollary 4.7). This result, when combined with the
interior Schauder estimates of section §5, will lead to the full Schauder estimate for a solution on a
half-ball centered at point in ∂H (Theorem 3.2). Throughout this section, we continue to assume
Hypothesis 3.1 and so the coefficients, a, b, c, of the operator L in (1.3) and the coefficients, a, b,
of the operator L0 in (1.4) are constant.

We let TPk v denote the Taylor polynomial of degree k of a smooth function v, centered at a

point P ∈ Rd, and let RPk := v− TPk denote the remainder. We then have the following analogue
of [6, Theorem I.6.1].

Proposition 4.1 (Polynomial approximation). There is a positive constant C = C(d, λ0, b0,Λ),
such that for any r0 > 0, and any function u ∈ C∞(B̄+

r0), there is a polynomial p of degree 1,
such that for any r ∈ (0, r0) we have

‖u− p‖C(B̄+
r ) ≤ C

(
r2

r2
0

‖u‖C(B̄+
r0

) + r0‖L0u‖C(B̄+
r0

)

)
. (4.1)

Proof. We first consider the case when r0 = 1 and then when r0 > 0 is arbitrary.

Step 1 (r0 = 1). We let f := L0u and we choose a smooth, non-negative, cutoff function, ψ,
such that

ψ �B+
1/2
≡ 1 and ψ �H\B+

1
≡ 0.

We fix some ν > 1, and let S = Rd−1 × (0, ν) as in (1.10). By Theorem B.3, there is a unique
solution, u1 ∈ C∞(S̄), to {

L0u1 = ψf on S,

u1(·, ν) = 0 on Rd−1.

Then, by setting u2 := u− u1, we see that u2 ∈ C∞(B̄+
r0) and satisfies L0u2 = (1− ψ)f on B+

r0 .
Notice that the definition of the functions u1 and u2 differs from that of their analogues, h and
f − h, in the proof of [6, Theorem I.6.1]. The reason for this change is that the zeroth-order
coefficient in the definition of L0 is zero, and so uniqueness of C∞(H̄) solutions to the equation
L0u = f on H does not hold since we may add any constant to a solution, u. Since u = u1 + u2,
we have

‖u− T 0
1 u2‖C(B̄+

r ) ≤ ‖u2 − T 0
1 u2‖C(B̄+

r ) + ‖u1‖C(B̄+
r ). (4.2)
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By the Mean Value Theorem, we know that

‖u2 − T 0
1 u2‖C(B̄+

r ) ≤ Cr
2‖D2u2‖C(B̄+

r ),

where C = C(d). Because L0u2 = 0 on B+
1/2, we may apply Lemma 3.9 to u2 with r = 1/2. Then

there are constants, r1 = r1(d) and C = C(d, λ0, b0,Λ), such that for any r ∈ (0, r1) we have

‖D2u2‖C(B̄+
r ) ≤ C‖u2‖C(B̄+

1/2
),

from where it follows that

‖u2 − T 0
1 u2‖C(B̄+

r ) ≤ Cr
2‖u2‖C(B̄+

1 ).

Corollary A.2 gives the estimate

‖u1‖C(Rd−1×(0,ν)) ≤ C‖ψf‖C(Rd−1×(0,ν)) ≤ ‖f‖C(B̄+
1 ), (4.3)

where the second inequality follows because the support of ψ is contained in B̄+
1 . Since u = u1+u2,

we have
‖u2‖C(B̄+

1 ) ≤ ‖u‖C(B̄+
1 ) + ‖u1‖C(B̄+

1 ),

and so, combining the preceding two inequalities,

‖u2‖C(B̄+
1 ) ≤ ‖u‖C(B̄+

1 ) + ‖f‖C(B̄+
1 ).

Thus, we have proved that

‖u2 − T 0
1 u2‖C(B̄+

r ) ≤ Cr
2‖u‖C(B̄+

1 ) + C‖f‖C(B̄+
1 ), ∀r ∈ (0, r1).

When r ∈ [r1, 1), we have, for all x ∈ B̄+
r ,

|u2(x)− T 0
1 u2(x)| ≤ d|Du2(0)|r + |u2(x)|+ |u2(0)|

≤ Cr2‖u‖C(B̄+
1 ) (by Lemma 3.9 and the fact that r1 ≤ r),

where C = C(d) is a positive constant. Combining the cases 0 < r < r1 and r1 ≤ r < 1, we
obtain

‖u2 − T 0
1 u2‖C(B̄+

r ) ≤ Cr
2‖u‖C(B̄+

1 ) + C‖f‖C(B̄+
1 ), ∀r ∈ (0, 1),

for a constant C = C(d, λ0, b0,Λ). The preceding estimate together with the identity u = u1 +u2

and (4.3) show that

‖u− T 0
1 u2‖C(B̄+

r ) ≤ C
(
r2‖u‖C(B̄+

s ) + ‖L0u‖C(B̄+
s )

)
,

and so, the conclusion (4.1) follows with p = T 0
1 u2, in the special case when r0 = 1.

Step 2 (Arbitrary r0 > 0). When r0 > 0 is arbitrary, we use rescaling. We let ũ(x) := u(r0x),
for all x ∈ B+

1 , and we see that (L0ũ)(x) = r0(L0u)(r0x). Notice that the rescaling property
(L0ũ)(x) = r0(L0u)(r0x) does not hold in this form if the zeroth-order coefficient of L0 is non-zero.

We apply the preceding step to ũ with r replaced by r/r0. Then, there is a polynomial p̃ such
that

‖ũ− p̃‖C(B̄+
r/r0

) ≤ C
(
r2

r2
0

‖ũ‖C(B̄+
1 ) + ‖L0ũ‖C(B̄+

1 )

)
,

which is equivalent to

‖u− p‖C(B̄+
r ) ≤ C

(
r2

r2
0

‖u‖C(B̄+
r0

) + r0‖L0u‖C(B̄+
r0

)

)
,

where we set p(x) := p̃(x/r0). We notice that the polynomial p depends on r0, but not on r.
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The proof of Proposition 4.1 is now complete. �

Proposition 4.1 is used to obtain the following analogue of [6, Theorem I.7.1].

Proposition 4.2. For any α ∈ (0, 1), there is a positive constant S = S(d, λ0, b0,Λ), such that
for any u ∈ C∞(B̄+

1 ) with T 0
1 u = 0, we have

sup
0<r≤1

‖u‖C(B̄+
r )

r1+α
≤ S

(
‖u‖C(B̄+

1 ) + sup
0<r≤1

‖L0u‖C(B̄+
r )

rα

)
. (4.4)

Proof. Because T 0
1 u = 0 and u ∈ C∞(B̄+

1 ), it follows that the quantity on the left-hand side of
the inequality (4.4) is finite. In addition, T 0

1 u = 0 implies that L0u(0) = 0, and so we also have

sup
0<r≤1

‖L0u‖C(B̄+
r )

rα
<∞.

Let r∗ ∈ (0, 1] be such that

sup
0<r≤1

‖u‖C(B̄+
r )

r1+α
=
‖u‖C(B̄+

r∗ )

r1+α
∗

,

and we define for simplicity

Q := ‖u‖C(B̄+
1 ) + sup

0<r≤1

‖L0u‖C(B̄+
r )

rα
. (4.5)

We let S (depending on u) be such that

‖u‖C(B̄+
r∗ )

r1+α
∗

= SQ. (4.6)

It is sufficient to find an upper bound on S, independent of u, to give the conclusion (4.4).
Let q and s be positive constants such that 0 < q < r∗ < s ≤ 1. We apply Proposition 4.1 to

u with r replaced by q and r∗ and r0 replaced by s. Then, we can find a degree-one polynomial,
p, such that

‖u− p‖C(B̄+
q ) ≤ C

(
q2

s2
‖u‖C(B̄+

s ) + s‖L0u‖C(B̄+
s )

)
, (4.7)

‖u− p‖C(B̄+
r∗ ) ≤ C

[
r2
∗
s2
‖u‖C(B̄+

s ) + s‖L0u‖C(B̄+
s )

]
. (4.8)

But

‖p‖C(B̄+
r∗ ) ≤ C

r∗
q
‖p‖C(B̄+

q ),

for some positive constant C, depending only on d. We can then estimate

‖p‖C(B̄+
r∗ ) ≤ C

r∗
q

(
‖u− p‖C(B̄+

q ) + ‖u‖C(B̄+
q )

)
,

and using (4.7) and the fact that q < r∗, we obtain

‖p‖C(B̄+
r∗ ) ≤ C

r∗
q

[
r2
∗
s2
‖u‖C(B̄+

s ) + s‖L0u‖C(B̄+
s ) + ‖u‖C(B̄+

q )

]
. (4.9)

From

‖u‖C(B̄+
r∗ ) ≤ ‖u− p‖C(B̄+

r∗ ) + ‖p‖C(B̄+
r∗ ),
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and (4.8) and (4.9), we see that

‖u‖C(B̄+
r∗ ) ≤ C

[
r2
∗
s2
‖u‖C(B̄+

s ) + s‖L0u‖C(B̄+
s ) +

r3
∗

qs2
‖u‖C(B̄+

s ) +
r∗s

q
‖L0u‖C(B̄+

s ) +
r∗
q
‖u‖C(B̄+

q )

]
≤ C

[
r2
∗
s2
‖u‖C(B̄+

s ) +
r∗
q
‖u‖C(B̄+

q ) +
r∗s

q
‖L0u‖C(B̄+

s )

]
,

where we have used the fact that q < r∗ < s to obtain the last inequality. We divide by r1+α
∗ and

find that

‖u‖C(B̄+
r∗ )

r1+α
∗

≤ C

[(r∗
s

)1−α ‖u‖C(B̄+
s )

s1+α
+

(
q

r∗

)α ‖u‖C(B̄+
q )

q1+α
+
s

q

(
s

r∗

)α ‖L0u‖C(B̄+
s )

sα
.

]
From the preceding inequality and definitions (4.5) of Q and (4.6) of S, we deduce that

SQ ≤ C
[(r∗

s

)1−α
+

(
q

r∗

)α]
SQ+ C

s

q

(
s

r∗

)α
Q,

By choosing r∗/s and q/r∗ small enough, we obtain a bound on S depending only on C =
C(d, λ0, b0,Λ). Hence, the estimate (4.4) now follows. �

We apply Proposition 4.2 to R0
1u := u− T 0

1 u. Note that L0T
0
1 u = (L0u)(0) and so

L0

(
u− T 0

1 u
)

= L0u− (L0u)(0) = R0
0L0u,

because xdD
2u = 0 on ∂H and the zeroth-order coefficient of L0 is zero. Thus, Proposition 4.2

yields the following analogue of [6, Corollary I.7.2].

Corollary 4.3. For any α ∈ (0, 1), there is a positive constant S = S(d, λ0, b0,Λ), such that for
any u ∈ C∞(B̄+

1 ) we have

sup
0<r≤1

‖R0
1u‖C(B̄+

r )

r1+α
≤ S

(
‖R0

1u‖C(B̄+
1 ) + sup

0<r≤1

‖R0
0L0u‖C(B̄+

r )

rα

)
.

Using the inequality (2.3),

|x| ≤ 2s(x, 0)2, ∀x ∈ H,
where we recall that the cycloidal distance function, s(x1, x2) for all x1, x2 ∈ H̄, is given by (2.1),
we see that there is a positive constant, C = C(α, d), such that

sup
0<r≤1

‖R0
0L0u‖C(B̄+

r )

rα
≤ C sup

0<r≤1

∥∥∥∥L0u(x)− L0u(0)

s2α(x, 0)

∥∥∥∥
C(B̄+

r )

≤ C [L0u]C2α
s (B̄+

1 ) .

Therefore, Corollary 4.3 gives us the following partial analogue of [6, Corollary I.7.5].

Corollary 4.4. For any α ∈ (0, 1), there is a positive constant C = C(α, d, λ0, b0,Λ), such that
for any u ∈ C∞(B̄+

1 ) and 0 < r ≤ 1, we have

‖R0
1u‖C(B̄+

r ) ≤ Cr
1+α/2

(
‖R0

1u‖C(B̄+
1 ) + [L0u]Cαs (B̄+

1 )

)
.

Next, we improve the estimate in Corollary 4.4 with the following analogue of [6, Theorem
I.7.3 & I.7.6].
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Proposition 4.5. For any α ∈ (0, 1), there is a positive constant C = C(α, d, λ0, b0,Λ), such
that for any u ∈ C∞(B̄+

1 ) we have

‖T 0
1 u‖C(B̄+

1 ) ≤ C
(
‖u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
.

Proof. Because T 0
1 is a degree-one polynomial, there is a positive constant C = C(d) such that

‖T 0
1 u‖C(B̄+

1 ) ≤
C

r
‖T 0

1 u‖C(B̄+
r ), ∀r ∈ (0, 1].

By Corollary 4.4, we have for all r ∈ (0, 1],

‖R0
1u‖C(B̄+

r ) ≤ Cr
1+α/2

(
‖u‖C(B̄+

1 ) + ‖T 0
1 u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
.

By combining the preceding two inequalities, we find that

‖T 0
1 u‖C(B̄+

1 ) ≤
C

r

(
‖u‖C(B̄+

1 ) + ‖R0
1u‖C(B̄+

1 )

)
≤
(
C

r
+ Crα/2

)
‖u‖C(B̄+

1 ) + Crα/2‖T 0
1 u‖C(B̄+

1 ) + Crα/2 [L0u]Cαs (B̄+
1 ) .

By choosing r small enough so that Crα/2 ≤ 1/2, we obtain the conclusion. �

Proposition 4.5 implies the following special case (r = 1) of [6, Corollary I.7.8].

Corollary 4.6. For any α ∈ (0, 1), there is a positive constant C = C(α, d, λ0, b0,Λ), such that
for any u ∈ C∞(B̄+

1 ) we have

‖R0
1u‖C(B̄+

1 ) ≤ C
(
‖u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
.

Corollaries 4.4 and 4.6 yield the following analogue of [6, Corollary I.7.8].

Corollary 4.7. For any α ∈ (0, 1), there is a positive constant C = C(α, d, λ0, b0,Λ), such that
for any u ∈ C∞(B̄+

1 ) and 0 < r ≤ 1, we have

‖R0
1u‖C(B̄+

r ) ≤ Cr
1+α/2

(
‖u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
.

5. Schauder estimates away from the degenerate boundary

In this section, we use a scaling argument to obtain elliptic Schauder estimates away from
the degenerate boundary analogous to the parabolic versions of those estimates in [6, §I.8]. Our
argument is shorter because we only aim to obtain the estimates in Lemma 5.1 and Corollary
5.3. Even though these estimates are weaker than their analogues [6, Corollary I.8.7] and [6,
Corollary I.8.8], respectively, they are sufficient to obtain the full Schauder estimate (3.4) in
Theorem 3.2. The estimate (3.4) is proved using a combination of the Schauder estimate on balls
Br(x0) b H which we prove in this section, and the results of §6. The proof of Proposition 6.1
uses Corollary 5.3, which is derived from Lemma 5.1. We have encountered a similar situation
in the proof of Hölder continuity along ∂H of a weak solution to the Heston elliptic equation in
[17, Theorem 1.11]. Throughout this section, we continue to assume Hypothesis 3.1 and so the
coefficients, a, b, c, of the operator L in (1.3) and the coefficients, a, b, of the operator L0 in (1.4)
are constant.

For any r > 0, we let Qr denote the point red ∈ H. We have the following analogue of [6,
Corollary I.8.7].
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Lemma 5.1. For any α ∈ (0, 1) and positive constants µ and λ such that 0 < µ < λ < 1, there
is a positive constant C = C(α, µ, λ, d, λ0,Λ), such that the following holds. For any function
u ∈ C∞(B̄λr(Qr)), we have

[Du]Cαs (B̄µr(Qr))
+
[
xdD

2u
]
Cαs (B̄µr(Qr))

≤ C
[

1

r1+α/2
‖u‖C(B̄λr(Qr))

+
1

rα/2
‖L0u‖C(B̄λr(Qr))

+ [L0u]Cαs (B̄λr(Qr))

]
.

(5.1)

Remark 5.2. The estimate in [6, Corollary I.8.7] does not contain the term ‖L0u‖C(B̄λr(Qr))

appearing on the right-hand side of our interior estimate (5.1). However, our estimate is sufficient
to give the Schauder estimate (3.4) in our Theorem 3.2.

Proof. The result follows by rescaling. We denote x = (ry′, r+ ryd) ∈ H, where we recall that we
denote y = (y′, yd) ∈ H = Rd−1 × R+, and define

v(y) = u(x), ∀y ∈ Bλ.

By the hypothesis u ∈ C∞(B̄λr(Qr)), it follows that v ∈ C∞(Bλ) and v is a solution to the
strictly elliptic equation

1 + yd
2

aijvyiyj (y) + bivyi(y) = rf̃(y), ∀y = (y′, yd) ∈ Bλ,

where f̃(y) := f(ry′, r + ryd), for all y ∈ Bλ, and f := L0u. By the interior Schauder estimates
[30, Theorem 7.1.1], there is a constant C = C(α, µ, λ, d, λ0,Λ), such that

‖D2v‖Cα(B̄µ) ≤ C
(
‖v‖C(Bλ) + r‖f̃‖Cα(B̄λ)

)
. (5.2)

By direct calculation, we obtain

‖v‖C(B̄λ) = ‖u‖C(B̄λr(Qr))
,

‖f̃‖C(B̄λ) = ‖f‖C(B̄λr(Qr))
,

[f̃ ]Cα(B̄λ) ≤ Crα/2 [f ]Cαs (B̄λr(Qr))
,

(5.3)

where C = C(α). To see the last inequality, recall that x = (ry′, r + ryd), for all (y′, yd) ∈ Bλ.
For any yi ∈ Bλ, for i = 1, 2, we have

|f̃(y1)− f̃(y2)|
|y1 − y2|α

=
|f(x1)− f(x2)|
s(x1, x2)α

s(x1, x2)α

|y1 − y2|α
.

By (2.1), we notice that

s(x1, x2)

|y1 − y2|
=

r|y1 − y2|√
r(2 + y1

d + y2
d + |y1 − y2|)

1

|y1 − y2|
≤
√
r

2
,

and so, by letting C = 2−α/2, we obtain

[f̃ ]Cα(B̄λ) ≤ Crα/2 [f ]Cαs (B̄λr(Qr))
.

We also have [
xdD

2u
]
Cαs (B̄µr(Qr))

≤ Cr−(1+α/2)‖D2v‖Cα(B̄µ), (5.4)
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for a constant C = C(α, d). To establish (5.4), we only need to consider quotients of the form

|x1
dD

2u(x1)− x2
dD

2u(x2)|
s(x1, x2)α

,

where x1, x2 ∈ Bµr, and all their coordinates coincide, except for the i-th one, where i = 1, . . . , d.
We only consider the case when i = d, as all the other cases, i = 1, . . . , d− 1, follow in the same
way. Recall that we denote x = (ry′, r + ryd), for all y ∈ Bµ. We obtain

|x1
dD

2u(x1)− x2
dD

2u(x2)|
s(x1, x2)α

≤
|x1
d − x2

d|
s(x1, x2)α

|D2u(x1)|+ x2
d

|D2u(x1)−D2u(x2)|
s(x1, x2)α

.

Using the definition of the cycloidal metric (2.1), and the fact that D2u(x) = 1/r2D2v(y), for all
x ∈ Bµr, we see that

|x1
dD

2u(x1)− x2
dD

2u(x2)|
s(x1, x2)α

≤
(
2x1

d + 2x2
d

)α/2 |x1
d − x2

d|1−α
1

r2
|D2v(y1)|

+ x2
d

1

r2

|D2v(y1)−D2v(y2)|
|y1 − y2|α

|y1 − y2|α

s(x1, x2)α

≤ 2αr−(1+α/2)‖D2v‖C(B̄µ)

+ r−1
[
D2v

]
Cα(B̄µ)

|y1 − y2|α

s(x1, x2)α
,

where we used the fact that xid ≤ r, for all x1, x2 ∈ Bµr. We also have by (2.1),

|y1 − y2|
s(x1, x2)

=
r−1|x1

d − x2
d|

|x1
d − x2

d|

√
x1
d + x2

d + |x1
d − x2

d| ≤ Cr
−1/2,

which implies that

|x1
dD

2u(x1)− x2
dD

2u(x2)|
s(x1, x2)α

≤ Cr−(1+α/2)‖D2v‖Cαs (B̄µ),

for a constant C = C(α). Now, the inequality (5.4) follows immediately.
Using the preceding estimates (5.3) and (5.4), it follows by (5.2) that[
xdD

2u
]
Cαs (B̄µr(Qr))

≤ C
(
r−(1+α/2)‖u‖C(B̄λr(Qr))

+ r−α/2‖L0u‖C(B̄λr(Qr))
+ [L0u]Cαs (B̄λr(Qr))

)
,

where we substituted L0u for f .
To obtain the estimate for the Hölder seminorm of Du, we proceed by analogy with the

argument for xdD
2u. �

We have the following analogue of [6, Corollary I.8.8].

Corollary 5.3. For any α ∈ (0, 1) and positive constants µ and λ such that 0 < µ < λ < 1, there
is a constant C = C(α, µ, λ, d, λ0,Λ), such that for any function u ∈ C∞(Br(Qr)) we have

‖RQr2 u‖C(B̄µr(Qr)) ≤ C
(
‖u‖C(B̄λr(Qr))

+ r1+α/2 [L0u]Cαs (B̄λr(Qr))
+ r‖L0u‖C(B̄λr(Qr))

)
.

Proof. As in case of the inequality preceding [6, Corollary I.8.8], we have

‖RQr2 u‖C(B̄µr(Qr))
≤ Cr1+α/2

[
xdD

2u
]
Cαs (B̄µr(Qr))

,

for a constant C = C(d). Thus, the conclusion follows from Lemma 5.1 and the preceding
inequality. �
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6. Schauder estimates near the degenerate boundary

In this section, we use the results of the previous sections to prove our main a priori interior
local Schauder estimate (Theorem 3.2) for the operator L on half-balls centered at points in the
“degenerate boundary”, ∂H. Throughout this section, we continue to assume Hypothesis 3.1, and
so the coefficients, a, b, c, of the operator L in (1.3) and the coefficients, a, b, of the operator L0

in (1.4) are constant.
We begin with an analogue of [6, Theorem I.9.1].

Proposition 6.1. For any α ∈ (0, 1), there is a constant C = C(α, d, λ0, b0,Λ), such that the
following holds. For any function u ∈ C∞(B̄+

1 ) and any 0 < r ≤ 1/2, we have

|D2u(Qr)| ≤ Crα/2−1
(
‖u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
.

Proof. We choose µ = 1/4 and λ = 1/2 in Corollary 5.3. We consider the points Qr := red and

P := O ∈ Rd. Let p := TQr2 u − TP1 u, where we recall that TQr2 u is the second-degree Taylor
polynomial of u at Qr, and TP1 u is the first-degree Taylor polynomial of u at P . Then, we also

have that p := RP1 u − R
Qr
2 u, where we recall that RQr2 u is the remainder of the second-degree

Taylor polynomial of u at Qr, and RP1 u is the remainder of the first-degree Taylor polynomial of
u at P . There is a positive constant, C = C(d, µ), such that

|D2p| ≤ C

r2
‖p‖C(B̄µr(Qr)),

which implies, from the definition of p, that

|D2u(Qr)| ≤
C

r2
‖RP1 u−R

Qr
2 u‖C(B̄µr(Qr)). (6.1)

Corollary 4.7 applied to RP1 u gives

‖RP1 u‖C(B̄+
r ) ≤ Cr

1+α/2
(
‖u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
, (6.2)

and the interior Schauder estimate in Corollary 5.3 applied to RP1 u yields

‖RQr2 RP1 u‖C(B̄µr(Qr)) ≤ C
(
‖RP1 u‖C(B̄λr(Qr))

+ r‖L0R
P
1 u‖C(B̄λr(Qr))

+ r1+α/2
[
L0R

P
1 u
]
Cαs (B̄λr(Qr))

)
,

for a constant C = C(α, µ, λ, d, λ0,Λ). We notice that L0R
P
1 u = L0u− (L0u)(P ), from where it

follows that
‖L0R

P
1 u‖C(B̄λr(Qr))

≤ Crα/2 [L0u]Cαs (B̄+
1 ) , (6.3)

using the fact (2.2) that s(x1, x2) ≤ |x1 − x2|1/2, for all x1, x2 ∈ H̄, and also that[
L0R

P
1 u
]
Cαs (B̄λr(Qr))

= [L0u]Cαs (B̄λr(Qr))
. (6.4)

The preceding three inequalities, together with (6.2), give us

‖RQr2 RP1 u‖C(B̄µr(Qr)) ≤ Cr
1+α/2

(
‖u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
,

where we used the fact that Bµr(Qr) ⊂ B1, when 0 < r ≤ 1, for all 0 < µ < 1. Notice that

RQr2 u = RQr2 RP1 u, and so the preceding estimate becomes

‖RQr2 u‖C(B̄µr(Qr)) ≤ Cr
1+α/2

(
‖u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
.
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The conclusion now follows from the preceding estimate, and inequalities (6.2) and (6.1). �

Note that the definition (2.1) of the cycloidal metric gives

s((x′, xd), (x
′, 0)) =

√
xd/2, ∀(x′, xd) ∈ H,

and hence, via Proposition 6.1, we obtain the following analogues of [6, Theorems I.9.3 & I.9.4].

Corollary 6.2. For any α ∈ (0, 1), there is a constant C = C(α, d, λ0, b0,Λ), such that for all
0 < xd ≤ 1/2 and x′ ∈ Rd−1, and any function u ∈ C∞(B̄+

1 (x′, 0)), we have

|xdD2u(x′, xd)| ≤ Cs
(
(x′, xd), (x

′, 0)
)α (‖u‖C(B̄+

1 (x′,0)) + [L0u]Cαs (B̄+
1 (x′,0))

)
.

Corollary 6.3. For any α ∈ (0, 1), there is a constant C = C(α, d, λ0, b0,Λ), such that for all
0 < xd ≤ 1/2 and x′ ∈ Rd−1, and any function u ∈ C∞(B̄+

1 (x′, 0)), we have

|Du(x′, xd)−Du(x′, 0)| ≤ Cs
(
(x′, xd), (x

′, 0)
)α (‖u‖C(B̄+

1 (x′,0)) + [L0u]Cαs (B̄+
1 (x′,0))

)
.

Proof. Following the proof of [6, Theorem I.9.4], using Proposition 6.1 and translation-invariance
with respect to x′ ∈ Rd−1 to obtain the second inequality, we have

|Du(x′, xd)−Du(x′, 0)| ≤
∫ xd

0
|Duxd(x

′, t)|dt

≤ C
(
‖u‖C(B̄+

1 (x′,0)) + [L0u]Cαs (B̄+
1 (x′,0))

)∫ xd

0
tα/2−1dt

= C
(
‖u‖C(B̄+

1 (x′,0)) + [L0u]Cαs (B̄+
1 (x′,0))

)
x
α/2
d .

Using the fact that s((x′, xd), (x
′, 0)) =

√
xd/2, we obtain the conclusion. �

Next, we use Lemma 5.1 (for estimates away from ∂H) and the Taylor remainder estimates in
Corollary 4.7 (for estimates near ∂H) to prove the following analogue of [6, Theorems I.9.5].

Proposition 6.4. Let α ∈ (0, 1), and 0 < r ≤ 1/4, and 0 < µ < 1. Then there is a constant,
C = C(α, µ, d, λ0,Λ), such that for any function u ∈ C∞(B̄+

1 ), we have

[Du]Cαs (B̄µr(Qr))
+
[
xdD

2u
]
Cαs (B̄µr(Qr))

≤ C
(
‖u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
.

Proof. For simplicity, we denote v := RP1 u = u− TP1 u. We notice that

[Du]Cαs (B̄µr(Qr)) = [Dv]Cαs (B̄µr(Qr)) and [xdD
2u]Cαs (B̄µr(Qr)) = [xdD

2v]Cαs (B̄µr(Qr)),

and hence we only need to estimate [Dv]Cαs (B̄µr(Qr)) and [xdD
2v]Cαs (B̄µr(Qr)). The proof is similar

to the proof of Proposition 6.1. The interior Schauder estimates in Lemma 5.1 applied to v with
λ = (1 + µ)/2 yield

[Dv]Cαs (B̄µr(Qr))
+
[
xdD

2v
]
Cαs (B̄µr(Qr))

≤ C
[

1

r1+α/2
‖v‖C(B̄λr(Qr))

+
1

rα/2
‖L0v‖C(B̄λr(Qr))

+ [L0v]Cαs (B̄λr(Qr))

]
,

for some constant C = C(α, µ, d, λ0,Λ). The conclusion now follows from the preceding estimate
and inequalities (6.2) applied on Bλr(Qr) instead of B+

r (notice that Bλr(Qr) ⊂ B+
1/2, since

0 < r ≤ 1/4), together with (6.3) and (6.4). �

Next, we have the following analogue of [6, Theorems I.9.7 & I.9.8].
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Proposition 6.5. For α ∈ (0, 1), there are constants γ = γ(d) ∈ (0, 1), and C = C(α, d, λ0, b0,Λ),
such that for any function u ∈ C∞(B̄+

1 ), we have

[Du]Cαs (B̄+
γ ) +

[
xdD

2u
]
Cαs (B̄+

γ )
≤ C

(
‖u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
. (6.5)

Proof. We combine the arguments of the proofs of [6, Theorems I.9.7 & I.9.8]. Let xi ∈ B+
γ , for

i = 1, 2, where γ will be fixed below. We may assume without loss of generality that x1
d ≥ x2

d.
We consider two cases.

Case 1 (x1 and x2 close together relative to dist(·, ∂H)). If |x1−x1| ≤ x1
d/4, then x2 ∈ Bx1

d/4
(x1),

and the estimate (6.5) follows if we assume 0 < γ ≤ 1/2 and apply Proposition 6.4 with µ = 1/4
and r = x1

d.

Case 2 (x1 and x2 farther apart relative to dist(·, ∂H)). We next consider the case when

|x1 − x2| > x1
d/4. (6.6)

Writing x = (x̄, xd) ∈ Rd−1 × R+, we define the points,

x3 := (x̄1, 0) and x4 := (x̄2, 0),

x5 := (x̄1, r) and x6 := (x̄2, r),

where the positive constant r will be chosen below. Notice that when (6.6) holds, we have

s(x1, x2) ≥ 1

8

√
x1
d,

by the definition (2.1) of the cycloidal distance function. By the definition of the points xi, for

i = 3, 4, and the fact that s((x′, xd), (x
′, 0)) =

√
xd/2, we see that

s(x1, x2) ≥ 8s(x1, x3),

s(x1, x2) ≥ 8s(x2, x4) (since x1
d ≥ x2

d).
(6.7)

Let v denote Du or xdD
2u, and consider the difference

v(x1)− v(x2) =
(
v(x1)− v(x3)

)
+
(
v(x3)− v(x5)

)
+
(
v(x5)− v(x6)

)
+
(
v(x6)− v(x4)

)
+
(
v(x4)− v(x2)

)
.

(6.8)

Using the distance inequalities (6.7), we find that∣∣v(x1)− v(x3)
∣∣

s(x1, x2)α
≤ 8α

∣∣v(x1)− v(x3)
∣∣

s(x1, x3)α
,∣∣v(x2)− v(x4)

∣∣
s(x1, x2)α

≤ 8α
∣∣v(x2)− v(x4)

∣∣
s(x2, x4)α

.

By Corollary 6.2, if v = xdD
2u, and Corollary 6.3, if v = Du, we obtain∣∣v(x1)− v(x3)
∣∣

s(x1, x2)α
+

∣∣v(x2)− v(x4)
∣∣

s(x1, x2)α
≤ C

(
‖u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
, (6.9)

for a constant C = C(α, d, λ0, b0,Λ).
We now let r := Bs2(x1, x2), where the constant B will be chosen below. Using the fact that

s(x3, x5) =
√
r/2 and definition of xi, for i = 3, 5, we obtain∣∣v(x3)− v(x5)

∣∣
s(x1, x2)α

= (B/2)α/2
∣∣v(x3)− v(x5)

∣∣
s(x3, x5)α

.
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Because xi ∈ B+
γ , for i = 1, 2, and due the inequality (2.2), we can choose the constant B :=

1/(4γ) such that

r = Bs2(x1, x2) ≤ B|x1 − x2| ≤ Bγ ≤ 1/4.

We apply Corollary 6.2, when v = xdD
2u, and Corollary 6.3, when v = Du, to obtain∣∣v(x3)− v(x5)

∣∣
s(x1, x2)α

≤ C (B/2)α/2
(
‖u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
. (6.10)

The inequality, ∣∣v(x4)− v(x6)
∣∣

s(x1, x2)α
≤ C (B/2)α/2

(
‖u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
, (6.11)

follows by the same argument used to obtain the estimate (6.10).
Using (6.6) and the assumption x1

d ≥ x2
d, we see that

|x̄1 − x̄2| ≤ |x1 − x2| ≤ 3

2

|x1 − x2|2

x1
d + x2

d + |x1 − x2|
=

3

2
s2(x1, x2).

Recalling that B = 1/(4γ) and r = Bs2(x1, x2), we have

|x̄1 − x̄2| ≤ 3

2B
Bs2(x1, x2) ≤ 6γr.

Next, we choose γ = 1/24, and so

|x̄1 − x̄2| ≤ r/4.
for all xi = (xi1, · · · , xid) ∈ B+

γ , for i = 1, 2. Because |x̄1 − x̄2| ≤ r/4, we may apply Proposition
6.4, with µ = 1/4, to obtain∣∣v(x5)− v(x6)

∣∣
s(x5, x6)α

≤ C
(
‖u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
.

Again using the definition r := Bs2(x1, x2), we notice that

s(x5, x6) ≤ |x̄
1 − x̄2|√

2r
≤
√

3

4
s(x1, x2),

and so the preceding two inequalities yield∣∣v(x5)− v(x6)
∣∣

sα(x1, x2)
≤ C

(
‖u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
. (6.12)

Combining the estimates (6.9), (6.10), (6.11) and (6.12) gives us the estimate (6.5), when condition
(6.6) holds.

The conclusion now follows from the two cases we considered. �

By analogy with [6, Corollary I.9.9], we have

Proposition 6.6. For any α ∈ (0, 1), there are positive constants γ = γ(d) ∈ (0, 1), and C =
C(α, d, λ0, b0,Λ), such that the following holds. If u ∈ C∞(B̄+

1 ), then

‖u‖C2+α
s (B̄+

γ ) ≤ C
(
‖u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
. (6.13)
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Proof. Let γ = γ(d) ∈ (0, 1) be as in Proposition 6.5. The bound on xdD
2u follows from

Corollary 6.2. Proposition 6.5 gives us the estimate (6.13) for the Cαs (B̄+
γ ) Hölder seminorms

of Du and xdD
2u. We only need to show the bound on of Du, namely that there is a constant

C = C(α, d, λ0, b0,Λ), such that

‖Du‖C(B̄+
γ ) ≤ C

(
‖u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
. (6.14)

We follow the argument of [6, p. 932]. Let x0 ∈ B̄+
γ be such that |Du(x0)| = ‖Du‖C(B̄+

γ ). Then

by Proposition 6.5 we have, for all x ∈ B̄+
γ ,

|Du(x)−Du(x0)| ≤ C0

(
‖u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
,

for a constant C0 = C0(α, d, λ0, b0,Λ).
Let N ≥ 2 be a positive integer such that

‖Du‖C(B̄+
γ ) ≥ NC0

(
‖u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
.

Estimate (6.14) will follow if we can find an upper bound on N , independent of u. The preceding
two inequalities give

|Du(x)| ≥ (N − 1)C0

(
‖u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
, ∀x ∈ B̄+

γ ,

and the Mean Value Theorem yields

|u(x)− u(x0)| ≥ |x− x0|(N − 1)C0

(
‖u‖C(B̄+

1 ) + [L0u]Cαs (B̄+
1 )

)
, ∀x, x0 ∈ B̄+

γ .

Choosing x ∈ B+
γ such that |x−x0| ≥ γ/2, we obtain a contradiction with (6.5) if N is too large.

Thus, (6.14) follows. �

We have the following corollary of Proposition 6.6:

Corollary 6.7. For any α ∈ (0, 1), there are positive constants, γ = γ(d) ∈ (0, 1) and C =
C(α, d, λ0, b0,Λ), such that for any r > 0 the following holds. If u ∈ C∞(B̄+

r ), then

‖u‖C2+α
s (B̄+

γr)
≤ Cr−(1+α/2)

(
‖u‖C(B̄+

r ) + [L0u]Cαs (B̄+
r )

)
. (6.15)

Proof. Let γ = γ(d) ∈ (0, 1) be as in Proposition 6.5. We set v(x) := u(rx), for all x ∈ B+
1 . The

estimates of Proposition 6.6 applied to v give us

‖u‖C2+α
s (B̄+

γr)
≤ C

(
‖u‖C(B̄+

r ) + [L0u]Cαs (B̄+
r )

)
,

where C = C(α, r, d, λ0, b0,Λ). The dependency of the constant C on r follows as in the proof of
Lemma 5.1, and so we obtain (6.15). �

We now generalize Corollary 6.7 to allow for any γ ∈ (0, 1) and make explicit the dependency
of the constant C appearing in (6.15) on r and γ.

Corollary 6.8. If α ∈ (0, 1), then there are positive constants, p = p(α) and C = C(α, d, λ0, b0,Λ),
such that, for any r > 0 and γ ∈ (0, 1), the following holds. If u ∈ C∞(B̄+

r ), then

‖u‖C2+α
s (B̄+

γr)
≤ C((1− γ)r)−p

(
‖u‖C(B̄+

r ) + [L0u]Cαs (B̄+
r )

)
. (6.16)
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Proof. Let γd ∈ (0, 1) be the constant appearing in the hypotheses of Corollary 6.7. We consider
two cases, 0 < γ ≤ γd and γ > γd, and clearly we only need to consider the second case. Our
proof of (6.16) now follows standard covering argument. Let t := (1 − γ)r/2 and divide the
half-ball, B+

γr, into the two regions,

U1 := B+
γr ∩

(
Rd−1 × (0, γdt/2)

)
and U2 := B+

γr \ U1.

We cover U1 by a finite number of half-balls, B+
γdt

(xn), centered at points xn ∈ ∂0B
+
r (x0) and we

apply the estimate (6.15) to obtain

‖u‖C2+α
s (B̄+

γdt
(xn)) ≤ Ct

−(1+α/2)
(
‖u‖C(B̄+

r ) + [L0u]Cαs (B̄+
r )

)
≤ C((1− γ)r)−(1+α/2)

(
‖u‖C(B̄+

r ) + [L0u]Cαs (B̄+
r )

)
(using t = (1− γ)r/2) .

In the region U2, the operator L0 is strictly elliptic (because xd ≥ γdt/2 > 0), and so we may
apply [26, Corollary 6.3]. Using the elliptic analogue of the parabolic estimate [18, Proposition
3.13], there is a positive constant p = p(α) such that

‖u‖C2+α
s (Ū2) ≤ C((1− γ)r)−p

(
‖u‖C(B̄+

r ) + [L0u]Cαs (B̄+
r )

)
.

Estimate (6.16) follows by combining the preceding two inequalities. �

Proof of Theorem 3.2. We combine the localization procedure in the proof of [30, Theorem 8.11.1]
with Corollary 6.8. We divide the proof in two steps. Set R := (r + r0)/2.

Step 1 (A priori estimate for u ∈ C∞(B+
r0)). Consider the sequence of radii, {rn}n≥1 ⊂ [r,R),

defined by r1 := r and

rn := r + (R− r)
n−1∑
k=1

1

2n
, ∀n ≥ 2. (6.17)

Denote Bn := B+
rn(x0), for all n ≥ 1. Let {ϕn}n≥1 be a sequence of C∞0 (H̄) cutoff functions such

that, for all n ≥ 1, we have 0 ≤ ϕn ≤ 1 with ϕn = 1 on Bn and ϕn = 0 outside Bn+1. Let

αn := ‖uϕn‖C2+α
s (B̄n), ∀n ≥ 1. (6.18)

By applying the estimate (6.16) to uϕn with r = rn+1 and γ = rn/rn+1, we obtain

αn ≤ C(rn+1 − rn)−p
(
‖uϕn‖C(B̄n+1) + [L0u]Cαs (B̄n+1)

)
≤ C(R− r)−p2(n−1)p

(
‖uϕn‖C(B̄n+1) + ‖Lu‖Cαs (B̄n+1) + ‖uϕn+1‖Cαs (B̄n+1)

)
,

where the last inequality follows from the fact that L = L0 + c by (1.3) and (1.4) and employing
(6.17). The interpolation inequalities (Lemma C.2) give, for any ε > 0,

‖uϕn+1‖Cαs (B̄n+1) ≤ εαn+1 + Cε−m‖uϕn+1‖C(Bn+1) (by (6.18)),

where C = C(d, α,R) and m = m(d, α) are positive constants independent of ε. Choosing

ε := δC−12−(n−1)p(R− r)p, we obtain, for all δ > 0,

αn ≤ δαn+1 + C
(

(R− r)−p2(n−1)p + δ−m(R− r)−p(m+1)2(n−1)(m+1)p
)

×
(
‖Lu‖Cαs (B̄+

R(x0)) + ‖uϕn+1‖Cαs (B̄+
R(x0))

)
,

and now the estimate (3.4) follows as in the proofs of [30, Theorem 8.11.1] or [18, Theorem 3.8].
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Step 2 (A priori estimate for u ∈ C2+α
s (B+

r0(x0))). Choose a sequence {un}n∈N ⊂ C∞(B̄+
R(x0))

such that un → u in C2+α
s (B̄+

R(x0)) as n→∞. Applying the estimate (3.4) to each un and then
taking the limit as n→∞, yields the a priori estimate (3.4) for u ∈ C2+α

s (B+
r0(x0)).

This concludes the proof of Theorem 3.2. �

7. Higher-order a priori Schauder estimates for operators with constant
coefficients

In this section, we prove a higher-order version of Theorem 3.2, our basic a priori local interior
Schauder estimate, and a global a priori global Schauder estimate on a strip (Corollary 7.2), both
when L has constant coefficients. Throughout this section, we continue to assume Hypothesis 3.1
and so the coefficients, a, b, c, of the operator L in (1.3) and the coefficients, a, b, of the operator
L0 in (1.4) are constant.

Theorem 7.1 (Higher-order a priori local interior Schauder estimate when L has constant coef-

ficients). Assume the hypotheses of Theorem 3.2 and let k ∈ N. If u ∈ Ck,2+α
s (B+

r0(x0)), then

‖u‖
Ck,2+α
s (B̄+

r )
≤ C

(
‖Lu‖

Ck,αs (B̄+
r0

(x0))
+ ‖u‖C(B̄+

r0
(x0))

)
, (7.1)

where C now also depends on k.

Proof. Choose r1 := (r+r0)/2 ∈ (r, r0). For any multi-index β ∈ Nd with |β| := β1 + · · ·+βd ≤ k,
direct calculation yields

DβLv = L(βd)D
βv − βd

∑
i,j 6=d

aijDβ0+(βd−1)edvxixj , v ∈ C∞(H), (7.2)

where we write β0 := β − βded and, for l ∈ N,

L(l)v := −xdaijvxixj −
∑
i 6=d

(
bi + 2laid

)
vxi +

(
bd + ladd

)
vxd + cv.

Note that L(0) = L. To prove (7.1), we see by Definition 2.3 that it suffices to establish

‖Dβu‖C2+α
s (B̄+

r ) ≤ C
(
‖Lu‖

Ck,αs (B̄+
r0

(x0))
+ ‖u‖C(B̄+

r0
(x0))

)
, (7.3)

for any multi-index β ∈ Nd with |β| ≤ k, where C has the dependencies given in our hypotheses.
Theorem 3.2 yields (7.1) when k = 0. Therefore, as an induction hypothesis for k, we assume

that (7.1) holds with k replaced by any l ∈ N in the range 0 ≤ l ≤ k − 1 and we seek to prove
(7.3) and hence (7.1) by induction on l when |β| = k.

We first consider the case βd = 0, so LDβv = DβLv. Then

‖Dβu‖C2+α
s (B̄+

r ) ≤ C
(
‖LDβu‖Cαs (B̄+

r1
(x0)) + ‖Dβu‖C(B̄+

r1
(x0))

)
(by (3.4)

≤ C
(
‖DβLu‖Cαs (B̄+

r1
(x0)) + ‖Dβu‖C(B̄+

r1
(x0))

)
(by (7.2))

≤ C
(
‖Lu‖

Ck,αs (B̄+
r1

(x0))
+ ‖u‖

Ck,αs (B̄+
r1

(x0))

)
(by Definition 2.2)

≤ C
(
‖Lu‖

Ck,αs (B̄+
r1

(x0))
+ ‖u‖

Ck−1,2+α
s (B̄+

r1
(x0))

)
(by Definition 2.3)

≤ C
(
‖Lu‖

Ck,αs (B̄+
r1

(x0))
+ ‖Lu‖

Ck−1,α
s (B̄+

r0
(x0))

+ ‖u‖C(B̄+
r0

(x0))

)
,
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where the final inequality follows by induction on l and the a priori Schauder estimate (7.1) with
k replaced by l = k − 1 (and r replaced by r1). Since r1 < r0, we can combine terms and obtain
(7.3) in the case βd = 0.

Now we consider the case 0 ≤ βd ≤ k and argue by induction on βd. As an induction hypothesis
for βd, we assume that (7.3) holds when 0 ≤ βd ≤ k − 1. For βd in the range 1 ≤ βd ≤ k (and
thus |β0| ≤ k − 1), we have

‖Dβu‖C2+α
s (B̄+

r )

≤ C
(
‖L(βd)D

βu‖Cαs (B̄+
r1

(x0)) + ‖Dβu‖C(B̄+
r1

(x0))

)
(by (3.4))

≤ C

‖DβLu‖Cαs (B̄+
r1

(x0)) +
∑
i,j 6=d

‖Dβ0+(βd−1)eduxixj‖Cαs (B̄+
r1

(x0)) + ‖Dβu‖C(B̄+
r1

(x0))


≤ C

(
‖Lu‖

Ck,αs (B̄+
r1

(x0))
+ max

i 6=d
‖Dβ0+ei+(βd−1)edu‖

C1,α
s (B̄+

r1
(x0))

+ ‖u‖
Ck,αs (B̄+

r1
(x0))

)
,

where the penultimate inequality follows from (7.2) and the final inequality by Definition 2.2 of

our Hölder norms. Because C2+α
s (B̄+

r1(x0)) ↪→ C1,α
s (B̄+

r1(x0)) by Definitions 2.2 and 2.3, we see
that

‖Dβu‖C2+α
s (B̄+

r ) ≤ C
(
‖Lu‖

Ck,αs (B̄+
r1

(x0))
+ max

i 6=d
‖Dβ0+ei+(βd−1)edu‖C2+α

s (B̄+
r1

(x0)) + ‖u‖
Ck,αs (B̄+

r1
(x0))

)
≤ C

(
‖Lu‖

Ck,αs (B̄+
r1

(x0))
+ ‖Lu‖

Ck,αs (B̄+
r0

(x0))
+ ‖u‖C(B̄+

r0
(x0)) + ‖u‖

Ck,αs (B̄+
r1

(x0))

)
(by induction on βd and (7.3) since βd − 1 ≤ k − 1)

≤ C
(
‖Lu‖

Ck,αs (B̄+
r0

(x0))
+ ‖u‖

Ck,αs (B̄+
r1

(x0))
+ ‖u‖C(B̄+

r0
(x0))

)
(since r1 < r0)

≤ C
(
‖Lu‖

Ck,αs (B̄+
r0

(x0))
+ ‖u‖Ck−1,2+α(B̄+

r1
(x0)) + ‖u‖C(B̄+

r0
(x0))

)
≤ C

(
‖Lu‖

Ck,αs (B̄+
r1

(x0))
+ ‖Lu‖

Ck−1,α
s (B̄+

r0
(x0))

+ ‖u‖C(B̄+
r0

(x0))

)
,

where the penultimate inequality follows from the embedding Ck−1,2+α
s (B̄+

r1(x0)) ↪→ Ck,αs (B̄+
r1(x0))

implied by Definitions 2.2 and 2.3 and the final inequality follows by induction on l and the a
priori Schauder estimate (7.1) with k replaced by l = k − 1 (and r replaced by r1). Again, since
r1 < r0, we can combine terms and obtain (7.3) in this case too. �

Let ν > 0 and let S = Rd−1× (0, ν), as in (1.10). Theorem 7.1 together with a priori estimates
for strictly elliptic operators in [26, §6] now imply the following global Schauder estimate on
strips.

Corollary 7.2 (A priori global Schauder estimate on a strip when L has constant coefficients).
For any α ∈ (0, 1), constant ν > 0, and k ∈ N, there is a positive constant, C = C(k, α, ν, d, λ0, b0,Λ),

such that the following holds. If u ∈ Ck,2+α
s (S̄) and u = 0 on ∂1S, then

‖u‖
Ck,2+α
s (S̄)

≤ C
(
‖Lu‖

Ck,αs (S̄)
+ ‖u‖C(S̄)

)
. (7.4)

and, when c ≥ 0,

‖u‖
Ck,2+α
s (S̄)

≤ C‖Lu‖
Ck,αs (S̄)

. (7.5)
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Proof. Let r := ν/2, and let {xn}n∈N ⊂ ∂H be a sequence of points such that

Rd−1 × (0, r/4) ⊂
⋃
n∈N

B+
r/2(xn).

Using the a priori interior local Schauder estimate (3.4) on each half-ball B+
r (xn), we obtain

‖u‖
Ck,2+α
s (B̄+

r/2
(xn))

≤ C
(
‖Lu‖

Ck,αs (B̄+
r (xn))

+ ‖u‖C(B̄+
r (xn))

)
.

By applying a standard covering argument to the strip S0 := Rd−1 × (0, r), we find that

‖u‖
Ck,2+α
s (S̄0)

≤ C
(
‖Lu‖

Ck,αs (S̄)
+ ‖u‖C(S̄)

)
.

By [26, Lemma 6.5 & Problem 6.2] and a similar covering argument, there is a constant δ > 0
such that, if S1 := Rd−1 × (ν − δ, ν), we have

‖u‖
Ck,2+α
s (S̄1)

≤ C
(
‖Lu‖

Ck,αs (S̄)
+ ‖u‖C(S̄)

)
.

Setting S2 := Rd−1 × (r/4, ν − δ/2) and now applying [26, Corollary 6.3 & Problem 6.1] and a
covering argument, we obtain

‖u‖
Ck,2+α
s (S̄2)

≤ C
(
‖Lu‖

Ck,αs (S̄)
+ ‖u‖C(S̄)

)
.

By combining the preceding three estimates, we obtain (7.4) and by appealing to Corollary A.2,
we obtain (7.5). �

8. A priori Schauder estimates, global existence, and regularity for operators
with variable coefficients

In §8.1, we relax the condition in Hypothesis 3.1 that the coefficients, a, b, c, of the operator L in
(1.3) are constant, which we assumed in sections 3, 4, 5, and 6, to prove a generalization (Theorem
8.1) of our C2+α

s a priori Schauder estimate (Theorem 3.2) from the case of constant coefficients,
a, b, c, to the case of variable coefficients. We then prove Theorem 8.3, extending the preceding

C2+α
s a priori Schauder estimate to a Ck,2+α

s a priori Schauder estimate for arbitrary k ∈ N. This
allows us to complete the proofs of Theorem 1.1 and Corollary 1.3. In § refsubsec:Regularity, we

prove our global Ck,2+α
s (S̄) existence result on strips, S, and hence a Ck,2+α

s (B+
r0(x0))-regularity

result, Theorem 8.4, on half-balls, B+
r0(x0). We conclude the section with the proofs of Theorems

1.8 and 1.11, and Corollary 1.13.

8.1. A priori Schauder estimates for operators with variable coefficients. We begin
with a generalization of Theorem 3.2 to the case of variable coefficients.

Theorem 8.1 (A priori interior local Schauder estimate when L has variable coefficients). Let
α ∈ (0, 1) and let r0, λ0, b0, Λ be positive constants. Suppose that the coefficients aij, bi, and c
of L in (1.3) belong to Cαs (B+

r0(x0)), where x0 ∈ ∂H, and obey

‖a‖Cαs (B̄+
r0

(x0)) + ‖b‖Cαs (B̄+
r0

(x0)) + ‖c‖Cαs (B̄+
r0

(x0)) ≤ Λ, (8.1)

bd ≥ b0 on ∂0B
+
r0(x0), (8.2)

〈aξ, ξ〉 ≥ λ0|ξ|2 on B+
r0(x0), ∀ ξ ∈ Rd, (8.3)
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Then, for all r ∈ (0, r0), there is a positive constant C = C(α, r, r0, d, λ0, b0,Λ) such that, for any
function8 u ∈ C2+α

s (B+
r0(x0)), we have

‖u‖C2+α
s (B̄+

r (x0)) ≤ C
(
‖Lu‖Cαs (B̄+

r0
(x0)) + ‖u‖C(B̄+

r0
(x0))

)
. (8.4)

Proof. We use the a priori interior local Schauder estimate (3.4) for the operator with constant
coefficients (given by Theorem 3.2) and the interpolation inequalities for the Hölder norms defined
by the cycloidal metric (Lemma C.2), the method of freezing coefficients as in the proofs of 9

[30, Theorem 7.1.1] (elliptic case), [30, Theorem 8.11.1] (parabolic case), and, in particular, [18,
Theorem 3.8] for the parabolic version of our elliptic operator (1.3) to obtain (8.4). �

We now generalize Corollary 7.2 to the case of variable coefficients when u has compact support
in a strip.

Proposition 8.2 (Higher-order a priori global Schauder estimate for compactly supported func-
tions on a strip when L has variable coefficients). Let α ∈ (0, 1) and ν, λ0, b0, Λ be positive
constants and k ∈ N. Suppose S = Rd−1 × (0, ν) as in (1.10) and the coefficients a, b, c of L in

(1.3) belong to Ck,αs (S̄) and obey (1.11), (1.12), and (1.13). Then there are positive constants,
C = C(k, α, ν, d, λ0, b0,Λ) and δ = δ(k, α, ν, d, λ0, b0,Λ) < ν/2, such that the following holds. If

u ∈ Ck,2+α
s (S̄) has compact support in S̄ with diam(suppu) ≤ δ and u = 0 on ∂1S, then

‖u‖
Ck,2+α
s (S̄)

≤ C
(
‖Lu‖

Ck,αs (S̄)
+ ‖u‖C(S̄)

)
, (8.5)

and, when c ≥ 0 on S,

‖u‖
Ck,2+α
s (S̄)

≤ C‖Lu‖
Ck,αs (S̄)

. (8.6)

Proof. Fix x0 ∈ S∩suppu and let Lx0 denote the operator with constant coefficients a(x0), b(x0),
c(x0). By applying (7.4) for the operator Lx0 with constant coefficients, we obtain

‖u‖
Ck,2+α
s (S̄)

≤ C0

(
‖Lx0u‖Ck,αs (S̄))

+ ‖u‖C(S̄)

)
,

and hence

‖u‖
Ck,2+α
s (S̄)

≤ C0

(
‖Lu‖

Ck,αs (S̄)
+ ‖(L− Lx0)u‖

Ck,αs (S̄)
+ ‖u‖C(S̄)

)
, (8.7)

where C0 has the dependencies stated for the constant C in the estimate (7.4).
For any x1, x2 ∈ suppu, the cycloidal distance-function bound (2.2) and our hypothesis on

suppu imply that s(x1, x2) ≤ |x1 − x2|1/2 ≤ δ1/2, for some δ ∈ (0, ν/2) to be selected later. We
first consider the case suppu ⊂ B+

2δ(y
0) for some y0 ∈ ∂0S. We further restrict to the case k = 0

initially. Observe that

(L− Lx0)u = −xd tr((a− a(x0))D2u)− (b− b(x0)) ·Du+ (c− c(x0))u.

We consider in turn each of the three terms appearing in our expression for (L − Lx0)u. From
Definition 2.2,

‖(b− b(x0)) ·Du‖Cαs (S̄) = ‖(b− b(x0)) ·Du‖C(S̄) + [(b− b(x0)) ·Du]Cαs (S̄).

8It is enough to require u ∈ C2+α
s (B+

r0
(x0)) since the estimate trivially holds if ‖Lu‖

Cαs (B̄+
r0

(x0))
and ‖u‖

C(B̄+
r0

(x0))

are not finite.
9This method is also employed in the proof of [26, Theorem 6.2], but Gilbarg and Trudinger employ a family of

“global” interior Hölder norms (which we do not develop in this article) which allows a rearrangement argument.
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The coefficient bounds (8.14) ensure that

‖(b− b(x0)) ·Du‖C(S̄) ≤
(
‖b‖C(S̄) + |b(x0)|

)
‖Du‖C(S̄) ≤ 2Λ‖Du‖C(S̄),

while the interpolation inequality (C.3) yields, for some m = m(d, α) and C1 = C1(d, α, δ)
(because diam(suppu) = δ) and any ε ∈ (0, 1),

‖Du‖C(S̄) ≤ ε‖u‖C2+α
s (S̄) + C1ε

−m‖u‖C(S̄), (8.8)

and thus, combining (8.8) with the preceding inequality, yields

‖(b− b(x0)) ·Du‖C(S̄) ≤ 2εΛ‖u‖C2+α
s (S̄) + C1Λε−m‖u‖C(S̄). (8.9)

Writing, for x1, x2 ∈ S ∩ suppu,

(b(x1)− b(x0)) ·Du(x1)− (b(x2)− b(x0)) ·Du(x2)

s(x1, x2)α

=
(b(x1)− b(x2))

s(x1, x2)α
·Du(x1) + (b(x1)− b(x0)) ·

(
Du(x1)−Du(x2)

)
s(x1, x2)α

,

we obtain

[(b− b(x0)) ·Du]Cαs (S̄) ≤ [b]Cαs (S̄)

(
‖Du‖C(S̄) + s(x1, x0)α[Du]Cαs (S̄)

)
.

Since diam(suppu) = δ and x0, x1 ∈ suppu, by combining the preceding inequality with the
coefficient bounds (8.14) and the interpolation inequality (8.8), we see that

[(b− b(x0)) ·Du]Cαs (S̄) ≤ Λ
(
ε‖u‖C2+α

s (S̄) + C1ε
−m‖u‖C(S̄) + δα/2‖u‖C2+α

s (S̄)

)
. (8.10)

Therefore, by combining (8.9) and (8.10), we obtain

‖(b− b(x0)) ·Du‖Cαs (S̄) ≤ Λ(3ε+ δα/2)‖u‖C2+α
s (S̄) + 2C1Λε−m‖u‖C(S̄). (8.11)

An identical analysis, just replacing the coefficient vector b by the matrix a, and Du by xdD
2u,

and the interpolation inequality (C.4) by (C.5), yields

‖ tr(xd(a− a(x0))D2u)‖Cαs (S̄) ≤ Λ(3ε+ δα/2)‖u‖C2+α
s (S̄) + 2C1Λε−m‖u‖C(S̄). (8.12)

Similarly, replacing the coefficient vector b by the function c, and Du by u, and the interpolation
inequality (C.4) by (C.2), yields

‖(c− c(x0))u‖Cαs (S̄) ≤ Λ(3ε+ δα/2)‖u‖C2+α
s (S̄) + 2C1Λε−m‖u‖C(S̄). (8.13)

We combine (8.11), (8.12), and (8.13) to give

‖(L− Lx0)u‖Cαs (S̄) ≤ 3Λ(3ε+ δα/2)‖u‖C2+α
s (S̄) + 6C1Λε−m‖u‖C(S̄).

We now choose ε > 0 such that 9C0Λε = 1/4 and choose δ ∈ (0, ν/2) (which we fix for the

remainder of the proof) such that 3C0Λδα/2 ≤ 1/4 and combine the preceding inequality with
(8.7) to give

‖u‖C2+α
s (S̄) ≤ C0‖Lu‖Cαs (S̄) +

1

2
‖u‖C2+α

s (S̄) + C2‖u‖C(S̄),

for some constant C2 with at most the dependencies stated for C stated in our hypotheses.
Rearrangement and the maximum principle estimate (Corollary A.2) for ‖u‖C(S̄) now give the

conclusions (8.5) and (8.6) when c ≥ 0 on S in the case k = 0.
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Next, suppose k ≥ 1 and let β ∈ Nd be a multi-index with |β| ≤ k. Because

Dβ(vw) =
∑

β′+β′′=β
β′,β′′∈Nd

Dβ′vDβ′′w.

for any v, w ∈ Ck,αs (S̄), we may apply the preceding analysis virtually unchanged with v =
a− a(x0), b− b(x0), or c− c(x0) and w = xdD

2u, Du, or u, respectively, for each β, β′, β′′ ∈ Nd
with |β| ≤ k and β′+β′′ = β. This completes the proof when suppu ⊂ B+

δ (y0) for some y0 ∈ ∂0S.
Because suppu ⊂ Bδ/2(x∗), for some x∗ ∈ S̄, the case dist(x∗, ∂0S) ≤ δ is covered by our

analysis for half-balls, B+
2δ(y

0), with y0 ∈ ∂0S. If dist(x∗, ∂0S) ≥ δ/2, then the operator L is
strictly elliptic since xd ≥ δ/2 and [26, Theorem 6.6 and Problem 6.2] imply that

‖u‖
Ck,2+α
s (S̄)

≤ C0

(
‖Lu‖

Ck,αs (S̄))
+ ‖u‖C(S̄)

)
,

which is just (8.5). Combining the preceding inequality with the maximum principle estimate
(Corollary A.2) for ‖u‖C(S̄) again gives the conclusion (8.6) when c ≥ 0 on S. �

Finally, we use Proposition 8.2 to generalize Theorem 7.1 to the case of variable coefficients to
obtain the following analogue of [6, Theorem I.1.3] (for a related degenerate-parabolic operator
with constant coefficients) and [26, Corollary 6.3 & Problem 6.1].

Theorem 8.3 (Higher-order a priori interior local Schauder estimate when L has variable co-
efficients). Let α ∈ (0, 1) and let r0, λ0, b0, Λ be positive constants and let k ∈ N. Suppose the

coefficients a, b, c of L in (1.3) belong to Ck,αs (B+
r0(x0)), where x0 ∈ ∂H, and obey (8.2), (8.3),

and

‖a‖
Ck,αs (B̄+

r0
(x0))

+ ‖b‖
Ck,αs (B̄+

r0
(x0))

+ ‖c‖
Ck,αs (B̄+

r0
(x0))

≤ Λ. (8.14)

Then, for any r ∈ (0, r0), there is a positive constant, C = C(k, α, r, r0, d, λ0, b0,Λ) such that the

following holds. If u ∈ Ck,2+α
s (B+

r0(x0)) then

‖u‖
Ck,2+α
s (B̄+

r (x0))
≤ C

(
‖Lu‖

Ck,αs (B̄+
r0

(x0))
+ ‖u‖C(B̄+

r0
(x0))

)
. (8.15)

Proof. We apply an induction argument. When k = 0, the estimate (8.15) follows from Theorem
8.1 and so we may assume without loss of generality that k ≥ 1. By induction, we may assume
that the estimate (8.15) holds with constant C = C(l, ∗) when k is replaced by l ∈ N in the range
0 ≤ l ≤ k − 1.

Let r1 := (r + r0)/2 and choose a cutoff function ϕ ∈ C∞0 (H̄) such that 0 ≤ ϕ ≤ 1 on H̄
and ϕ = 1 on B̄+

r (x0) while suppϕ ⊂ B̄+
r1(x0) and note that, for u ∈ Ck,2+α

s (B+
r0(x0)) and thus

u0 := ϕu ∈ Ck,2+α
s (S̄), we have

‖u‖
Ck,2+α
s (B̄+

r (x0))
≤ ‖u0‖Ck,2+α

s (S̄)
,

where S = Rd−1 × (0, r0) is the strip as in (1.10), and u0 = 0 on ∂1S. By Proposition 8.2, we
obtain

‖u0‖Ck,2+α
s (S̄)

≤ C0

(
‖Lu0‖Ck,αs (S̄)

+ ‖u0‖C(S̄)

)
,

where we use C0 to denote the constant C in (8.5), and hence, combining the preceding two
inequalities,

‖u‖
Ck,2+α
s (B̄+

r (x0))
≤ C0

(
‖L(ϕu)‖

Ck,αs (B̄+
r1

(x0))
+ ‖u‖C(B̄+

r0
(x0))

)
. (8.16)
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Notice that L(ϕu) = ϕLu+ [L,ϕ]u and that [L,ϕ] is a first-order partial differential operator,

[L,ϕ]u = L(ϕu)− ϕLu
= − tr(xdaD

2(ϕu))− b ·D(ϕu) + ϕ tr(xdaD
2u) + ϕb ·Du,

and so

[L,ϕ]u = − tr(xda((D2ϕ)u+Dϕ×Du))− (b ·Dϕ)u, (8.17)

where Dϕ×Du denotes the d× d matrix with entries ϕxiuxj . Observe that

‖L(ϕu)‖
Ck,αs (B̄+

r1
(x0))

≤ ‖[L,ϕ]u‖
Ck,αs (B̄+

r1
(x0))

+ ‖ϕLu‖
Ck,αs (B̄+

r1
(x0))

.

Because of the structure (8.17) of [L,ϕ] (with factor xd in the coefficients of the first-order

derivatives) and the fact that Ck,αs (B̄+
r1(x0)) ⊂ Ck−1,2+α

s (B̄+
r1(x0)) (by Definitions 2.2 and 2.3),

we obtain

‖[L,ϕ]u‖
Ck,αs (B̄+

r1
(x0))

≤ C‖u‖
Ck−1,2+α
s (B̄+

r1
(x0))

,

where C has at most the dependencies stated for the constant in the estimate (8.15). By our
induction hypothesis, we can apply the local Schauder estimate (8.15) with k replaced by l = k−1
to give

‖u‖
Ck−1,2+α
s (B̄+

r1
(x0))

≤ C
(
‖Lu‖

Ck−1,α
s (B̄+

r0
(x0))

+ ‖u‖C(B̄+
r0

(x0))

)
.

Combining the preceding three bounds with (8.16) yields the inequality,

‖u‖
Ck,2+α
s (B̄+

r (x0))
≤ C

(
‖Lu‖

Ck,αs (B̄+
r0

(x0))
+ ‖u‖C(B̄+

r0
(x0))

)
, (8.18)

and this is (8.15). �

We can now prove the generalization of Corollary 7.2 to the case of variable coefficients.

Proof of Corollary 1.3. The proof is virtually identical to that of Corollary 7.2 except that we
replace appeals to Theorems 3.2 and 7.1 (for the case of constant coefficients) by appeals to
Theorems 8.1 and 8.3 (for the case of variable coefficients). �

We can now give the

Proof of Theorem 1.1. Since we can apply Theorem 8.3 to half-balls, B+
r0(x0) = Br0(x0)∩H ⊂ O

when x0 ∈ ∂O, and the standard a priori interior Schauder estimate for strictly elliptic operators
[26, Corollary 6.3 & Problem 6.1] to balls, Br0(x0) b O when x0 ∈ O, the remainder of the
argument is very similar to the proof of Corollary 7.2, when the domain, O, is an infinite strip. �

8.2. Regularity. We begin with the proof of our global existence result on strips.

Proof of Theorem 1.6. The proof follows by the method of continuity. We denote

L0 := −xd
d∑
i=1

∂xixi − ∂xd .

Then Corollary B.4 implies that, for any f ∈ Ck,αs (S̄), there is a unique solution u ∈ Ck,2+α
s (S̄).

We consider Lt := (1 − t)L0 + tL, for all t ∈ [0, 1]. Given Corollary 1.3 and the existence and

uniqueness of solutions in Ck,2+α
s (S̄) for the operator L0, the method of continuity [26, Theorem

5.2] applies and gives the result. �

We have the following analogue of [26, Theorem 6.17], albeit with a quite different proof.
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Theorem 8.4 (Higher-order interior local regularity of solutions when L has variable coefficients).
Assume the hypotheses of Theorem 8.3 for the operator L in (1.3). If u ∈ C2(B+

r0(x0)) obeys

u, Du, xdD
2u ∈ C(B+

r0(x0)) and Lu ∈ Ck,αs (B+
r0(x0)), (8.19)

xdD
2u = 0 on ∂0B

+
r0(x0), (8.20)

then u ∈ Ck,2+α
s (B+

r0(x0)).

Proof. Let r ∈ (0, r0), and r1 := (r + r0)/2, and r2 := (r1 + r)/2, so r < r1 < r2 < r0.
Let ϕ ∈ C∞0 (H̄) be a cutoff function such that 0 ≤ ϕ ≤ 1 on H with ϕ = 1 on B̄+

r1(x0) and

suppϕ ⊂ B̄+
r2(x0). Denoting S = Rd−1 × (0, r0) as in (1.10) and u0 := uϕ on S̄, we see that

u0 ∈ C2(S) is a solution to (1.16), (1.17) with f replaced by

f0 := ϕLu+ [L,ϕ]u on S̄.

By hypothesis, ϕLu ∈ Ck,αs (B+
r0(x0)), while Lemma C.3 and (8.19) and (8.20) ensure that

[L,ϕ]u ∈ Cαs (S̄), so

f0 ∈ Cαs (S̄),

while the conditions (8.19) and (8.20) on u imply that u0 obeys

u0, Du0, xdD
2u0 ∈ C(S) and xdD

2u0 = 0 on ∂0S.

Corollary B.4 implies that there is a unique solution v ∈ C2+α
s (S̄) to (1.16), (1.17) with f replaced

by f0 and the maximum principle, Lemma A.1, implies that u0 = v. Thus, u ∈ C2+α
s (B̄+

r (x0)).

When k ≥ 1, we argue by induction and suppose that u ∈ Ck−1,2+α
s (B̄+

r (x0)) as our induction

hypothesis. But then [L,ϕ]u ∈ Ck,αs (B̄+
r (x0)) by the proof of Theorem 8.3 and so f0 ∈ Ck,αs (S̄).

Now Corollary B.4 implies that v ∈ Ck,2+α
s (S̄) by the preceding argument for k = 0, and thus

u ∈ Ck,2+α
s (B̄+

r (x0)) since u0 = v on S̄. �

We can now complete the

Proof of Theorem 1.8. This is an immediate consequence of Theorem 8.4 and [26, Theorem 6.17]
since we can apply those regularity results to any half-ball, B+

r0(x0) = Br0(x0) ∩ H b O when

x0 ∈ ∂H, or ball, Br0(x0) b O when x0 ∈ H, respectively. �

Finally, we complete the proofs of Theorem 1.11 and Corollary 1.13.

Proof of Theorem 1.11. The argument is very similar to the proof of Corollary B.4, so we just

highlight the differences. Because f ∈ Ck,αs (O)∩Cb(O), we can apply the regularizing procedure
described in [6, §I.11] and [6, Theorem I.11.3] to construct a sequence of functions {fn}n∈N ⊂
C∞0 (H̄) such that fn → f in Ck,αs (Ū) ∩ Cb(O) as n→∞, for all U b O, and

‖fn‖Ck,αs (Ū ′)
≤ C ′‖f‖

Ck,αs (Ū)
, ∀n ∈ N,

where U ′ b U and U b O and C ′ may depend on U and U ′, and

‖fn‖C(Ō) ≤ C‖f‖C(Ō), ∀n ∈ N,

for some positive constant, C = C(d).
Let {un}n∈N ⊂ C∞(O) ∩ C(O ∪ ∂1O) ∩ Cb(O) be the corresponding (unique) sequence of

solutions to (1.22), (1.23), with f replaced by fn, provided by [19, Theorem 1.11]. The maximum
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principle estimate (Corollary A.2 for the case c0 = 0 and [16, Proposition 2.19 & Theorem 5.3]
for the case c0 > 0) implies that

‖un‖C(Ō) ≤ C0‖fn‖C(Ō), ∀n ∈ N,

for a constant C0 depending on the coefficients of A and ν when height(O) = ν and c0 = 0 or
C0 = 1/c0 when c0 > 0 and height(O) =∞. The remainder of the argument is now the same as
the proof of Corollary B.4. �

Proof of Corollary 1.13. The conclusion follows immediately from Theorem 1.11 and [19, Corol-
lary 1.13], since the latter result ensures that u ∈ C(Ō). �

Appendix A. Maximum principle for degenerate-elliptic operators on domains of
finite height

In this appendix, we prove a comparison principle for operators which include those of the
form L in (1.3) with c ≥ 0 when the domain, O, is unbounded. Notice that when c does not
have a uniform positive lower bound, the weak maximum principle [16, Theorem 5.3] does not
immediately apply when O is unbounded.

Lemma A.1 (Comparison principle on a strip). Let O j H be a domain of finite height. Let10

Lv := − tr(aD2v)− b ·Dv + cv on O, v ∈ C∞(O),

require that its coefficients, a : Ō → Rd×d, and b : Ō → Rd, and c : Ō → R obey

a(x) = 0 on ∂0O,

〈aξ, ξ〉 ≥ 0 on O, ∀ξ ∈ Rd,

inf
O
bd > 0 on O,

tr(a(x)) + 〈x, b(x)〉 ≤ K(1 + |x|2), ∀x ∈ O,

sup
O
add <∞ on O,

c ≥ 0 on O,

for some positive constant K. Suppose that u ∈ C2(O) ∩ Cloc(Ō), and supO u < ∞, and
Du, tr(aD2u) ∈ C(O), and

tr(aD2u) = 0 on ∂0O.

If Lu ≤ 0 on O and u ≤ 0 on ∂1O, then u ≤ 0 on Ō.

Proof. Define constants b0 > 0 and Λ > 0 by

Λ := sup
O
add and b0 := inf

O
bd. (A.1)

Let σ be a positive constant, to be fixed shortly, and define v ∈ C2(O)∩Cloc(Ō) with supO v <∞
by the transformation

u(x′, xd) = e−σxdv(x′, xd), ∀(x′, xd) ∈ Ō, (A.2)

noting that supO v < ∞ since supO v < ∞ and height(O) < ∞ by hypothesis. By direct
calculation, we find that

Lu = e−σxd
(
−aijvxixj −

(
bi − 2σaid

)
vxi +

(
c+ σbd − σ2add

)
v
)
.

10Note the more general definition of the coefficient a(x) in Lemma A.1 and Corollary A.2.
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We now define coefficients ã, b̃, c̃ of an operator L̃ by

L̃v := −ãijvxixj − b̃ivxi + c̃v

:= −aijvxixj −
(
bi − 2σaid

)
vxi +

(
c+ σbd − σ2add

)
v,

and we notice, by our hypotheses on u and definition of v, that L̃v ≤ 0 on O and v ≤ 0 on ∂1O.
Since a = 0 on ∂0O, we have

b̃d = bd ≥ b0 > 0 on ∂0O.

We now choose σ := b0/(2Λ), so that, using c ≥ 0 and add ≤ Λ,

c̃ ≡ c+ σbd − σ2add ≥ σb0 − σ2Λ = σb0/2 > 0 on O.

Then, [16, Theorem 5.3] applies to v, and now the conclusion follows immediately for u also. �

Corollary A.2 (Maximum principle estimate). Let ν > 0 and let O j Rd−1×(0, ν) be a domain,
let L be as in Lemma A.1, and let f ∈ Cb(O), and g ∈ Cb(∂1O). If u obeys the regularity properties
on Ō in the hypotheses of Lemma A.1 and

Lu = f on O,

u = g on ∂1O,

then there is a positive constant, C = C(ν, b0,Λ) with b0,Λ as in (A.1), such that

‖u‖C(Ō) ≤ C
(
‖f‖C(Ō) + ‖g‖C(∂1O)

)
.

Proof. We define v = eσxdu as in (A.2), where σ is chosen as in the proof of Lemma A.1. Then,

L̃v = f̃ on O,

v = g̃ on ∂1O,

where f̃ := eσxdf on O and g̃ := eσxdg on ∂1O. Because c̃ ≥ b20/(4Λ) > 0 on O from the proof of
Lemma A.1, we can apply [16, Proposition 2.19] to give

‖v‖C(Ō) ≤
1

c̃

(
‖f̃‖C(Ō) + ‖g̃‖C(∂1O)

)
.

The conclusion follows since xd ∈ [0, ν] for all x ∈ Ō and we can take C := eσν/c̃ = 4Λeσν/b20. �

Appendix B. Existence of solutions for degenerate-elliptic operators with
constant coefficients on half-spaces and strips

In this section, we prove existence of smooth solutions to Lu = f on the half-space H or on
strips S = Rd−1× (0, ν) as in (1.10), for some ν > 0, when the source function f is assumed to be
smooth with compact support in H̄ or in Rd−1× [0, ν), respectively, and under the assumption of
Hypothesis 3.1, that the coefficients, a, b, c, of the operator L in (1.3) and so the coefficients, a, b,
of the operator L0 in (1.4) are constant. The method of proof is similar to that of [6, Theorem
I.1.2] and it is based on taking the Fourier transform in the first (d− 1)-variables. The problem
is then reduced to the study of the Kummer ordinary differential equations whose solutions can
be expressed in terms of the confluent hypergeometric functions, M and U [1, §13].

We begin by reviewing the properties of the confluent hypergeometric functions which will be
used in the proofs of Theorems 1.5 and B.3.
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Lemma B.1 (Properties of the confluent hypergeometric functions). [1] Let a ∈ C be such that
its real part is positive, <(a) > 0, and let b be a positive constant. Then the following holds, for
all y > 0.

(1) Asymptotic behavior as y → +∞:

M(a, b, y) =
Γ(b)

Γ(a)
ya−bey

(
1 +O(y−1)

)
[1, § 13.1.4], (B.1)

U(a, b, y) = y−a
(
1 +O(y−1)

)
[1, § 13.1.8]. (B.2)

(2) Asymptotic behavior as y → 0:

M(a, b, 0) = 1 [1, § 13.1.2] and M(a, b, y) = 1 +O(y) [1, § 13.5.5], (B.3)

and

U(a, b, y) =
Γ(b− 1)

Γ(a)
y1−b +O(yb−2) if b > 2, [1, § 13.5.6],

U(a, b, y) =
Γ(b− 1)

Γ(a)
y1−b +O(| log y|) if b = 2, [1, § 13.5.7],

U(a, b, y) =
Γ(b− 1)

Γ(a)
y1−b +O(1) if 1 < b < 2, [1, § 13.5.8],

U(a, b, y) = − 1

Γ(a)
(log y + ψ(a) + 2γ) +O(y| log y|) if b = 1, [1, § 13.5.9],

U(a, b, y) =
Γ(1− b)

Γ(1 + a− b)
+O(y1−b) if 0 < b < 1, [1, § 13.5.10],

U(a, b, 0) =
Γ(1− b)

Γ(1 + a− b)
if 0 < b < 1, [1, § 13.1.2 & 13.1.3],

(B.4)

where ψ(a) = Γ′(a)/Γ(a) and γ ∈ R is Euler’s constant [1, § 6.1.3].
(3) Differential properties:

M ′(a, b, y) =
a

b
M(a+ 1, b+ 1, y) [1, § 13.4.8], (B.5)

U ′(a, b, y) = −aU(a+ 1, b+ 1, y) [1, § 13.4.21]. (B.6)

(4) Recurrence relations:

(b− 1)M(a− 1, b− 1, y) = (b− 1− y)M(a, b, y) + yM ′(a, b, y) [1, § 13.4.14], (B.7)

U(a− 1, b− 1, y) = (1− b+ y)U(a, b, y)− yU ′(a, b, y) [1, § 13.4.27]. (B.8)

We can now give the

Proof of Theorem 1.5. Uniqueness of the solution, u ∈ C∞(H̄), follows from the maximum prin-
ciple [16, Theorem 5.3]. By simple changes of variables described in the proof of [18, Proposition
A.1], which leave invariant any strip of the form Rd−1× (0, ν), for ν > 0, we may assume without
loss of generality that aij = δij in (1.3) and so the differential operator L has the form

Lv = −xdvxixi − bivxi + cv, ∀v ∈ C2(H),

where bd and c are again positive constants.
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We adapt the method of proof of [6, Theorem I.1.2]. We fix f ∈ C∞0 (H̄). If u ∈ C∞(H̄) is a
solution to Lu = f on H, then we expect that its Fourier transform in the x′ = (x1, . . . , xd−1)-
variables,

ũ(ξ;xd) :=
1

(2π)d/2

∫
Rd−1

u(x′, xd)e
−ix′ξ dx′, ∀ξ ∈ Rd−1,

is a solution, for each ξ ∈ Rd−1, to the ordinary differential equation,

− xdũxdxd(ξ;xd)− b
dũxd(ξ;xd) +

(
c+ i

d−1∑
k=1

bkξk + |ξ|2xd

)
ũ(ξ;xd) = f̃(ξ;xd), (B.9)

for all xd ∈ (0,∞), where f̃(ξ;xd) is the Fourier transform of f(x′, xd) with respect to x′ ∈ Rd.
We show that the ordinary differential equation (B.9) has a smooth enough solution, ũ, in a sense
to be specified, such that its inverse Fourier transform,

u(x′, xd) :=
1

(2π)d/2

∫
Rd−1

ũ(ξ;xd)e
ix′ξ dξ, (B.10)

is a C∞(H̄) solution to the equation Lu = f on H.
Defining the function v(ξ; y), for y = 2|ξ|xd and each ξ ∈ Rd−1 \ {0}, by

ũ(ξ;xd) =: e−|ξ|xdv(ξ; 2|ξ|xd), ∀ξ ∈ Rd−1 \ {0}, ∀xd ∈ R+, (B.11)

we see that v is a solution to the Kummer ordinary differential equation,

− yvyy(ξ; y)− (b− y)vy(ξ; y) + a(ξ)v(ξ; y) = g(ξ; y), ∀y ∈ R+, (B.12)

where we denote

b :=
bd

2
,

a(ξ) :=
c+ bd|ξ|+ i

∑d−1
k=1 b

kξk
2|ξ|

,

g(ξ; y) :=
ey/2

2|ξ|
f̃

(
ξ;

y

2|ξ|

)
.

(B.13)

Because bd > 0 and c > 0 by hypothesis, we see that b > 0 and <(a(ξ)) > 0 when ξ 6= 0. Since f
has compact support in H̄, the function g(ξ; ·) also has compact support in R̄+.

It suffices to study the solutions, v(ξ; ·), to the Kummer equations for ξ ∈ Rd−1 \ {0}, and so
without loss of generality, we will assume in the sequel that ξ 6= 0. The remainder of the proof
of Theorem 1.5 is completed in two steps.

Step 1 (Solution to the Kummer ordinary differential equation). The general solution to the
Kummer ordinary differential equation (B.12) can be written in the form v = vh + vp, where

vh(ξ; y) := c1M(a(ξ), b; y) + c2U(a(ξ), b; y),

vp(ξ; y) := −M(a(ξ), b; y)

∫ ∞
y

g(ξ; z)
U(a(ξ), b; z)

W (a(ξ), b; z)
dz − U(a(ξ), b; y)

∫ y

0
g(ξ; z)

M(a(ξ), b; z)

W (a(ξ), b; z)
dz,

with c1, c2 ∈ R, and

W (a(ξ), b; y) := −Γ(b)y−bey

Γ(a(ξ))
, ∀ξ ∈ Rd−1 \ {0}, ∀y ∈ R̄+, (B.14)

is the Wronskian of the Kummer function, M(a(ξ), b, y), and the Tricomi function, U(a(ξ), b, y),
[1, § 13.1.22]. We want to find a solution, v ∈ C∞(R̄+), to (B.12).
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From (B.1), we see that the function M(a(ξ), b; y) is unbounded as y tends to +∞, and so we
choose the constant c1 = 0, because we only consider bounded solutions. At y = 0, we obtain
from (B.6) and (B.4) that U ′(a(ξ), b, y) is unbounded, since b > 0, and so we choose the constant
c2 = 0, because we only consider solutions to the Kummer equation which are smooth on R̄+.
Thus, we obtain

v(ξ; y) = −M(a(ξ), b; y)

∫ ∞
y

g(ξ; z)
U(a(ξ), b; z)

W (a(ξ), b; z)
dz

− U(a(ξ), b; y)

∫ y

0
g(ξ; z)

M(a(ξ), b; z)

W (a(ξ), b; z)
dz.

(B.15)

Given v defined as above, and ũ defined as in (B.11), we will prove the following properties of the
solution, ũ, to verify that u defined by (B.10) is a C∞(H̄) solution to Lu = f on H, as asserted
by Theorem 1.5.

Lemma B.2 (Properties of ũ). If f ∈ C∞0 (H̄), then the function ũ defined by (B.11) has the
following properties.

(1) For all ξ ∈ Rd−1 \ {0}, we have

lim
xd↗∞

ũ(ξ;xd) = 0. (B.16)

(2) The function ũ(ξ; ·) belongs to C∞(R̄+), for all ξ ∈ Rd−1 \ {0}.
(3) The function ũ(ξ; ·) obeys

|ũ(ξ;xd)| <
1

c
sup
y≥0
|f̃(ξ; y)|, ∀ξ ∈ Rd−1 \ {0}, ∀xd ∈ R̄+, (B.17)

where c is the zeroth-order coefficient of L in (1.3).
(4) The function ũ(·;xd) decays faster than any polynomial in ξ, for all xd ∈ R̄+.
(5) The functions Dk

xd
ũ decay faster than any polynomial in ξ, for all k ∈ N.

Step 2 (Existence of a solution, u ∈ C∞(H̄), to Lu = f on H). From Lemma B.2, Items (2) and
(4), we see that the function u defined by (B.10) has an arbitrary number of derivatives in the
first (d− 1)-variables which are continuous on H̄. From Lemma B.2, Item (2), we see that u also
admits an arbitrary number of derivatives in the xd-variable, and they are continuous on H̄. Now
we consider Dβdedu, for βd ∈ N, which satisfies

Dβdedu(x′, xd) :=
1

(2π)d/2

∫
Rd−1

Dβded ũ(ξ;xd)e
ix′ξ dξ, ∀xd ∈ R+.

By Lemma B.2, Item (5), the function Dβded ũ decays faster than any polynomial in ξ, and so
DλDβdedu exists and is continuous on H̄, for all λ ∈ Nd with λd = 0. Thus, u belongs to C∞(H̄).
Since ũ solves (B.9), we find that u solves Lu = f on H by taking the inverse Fourier transform
of ũ(ξ;xd) in ξ ∈ Rd−1. From [16, Theorem 5.3], it follows that u is the unique C∞(H̄) solution
to Lu = f on H.

Aside from the proof of Lemma B.2, given below, this completes the proof of Theorem 1.5. �

It remains to prove Lemma B.2.

Proof of Lemma B.2. We organize the proof into several steps.
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Step 1 (Proof of Item (1)). First, we verify that the function v defined in Equation (B.15) is
well-defined. We write v = v1 + v2, where we set

v1(ξ; y) := −M(a(ξ), b; y)

∫ ∞
y

g(ξ; z)
U(a(ξ), b; z)

W (a(ξ), b; z)
dz,

v2(ξ; y) := −U(a(ξ), b; y)

∫ y

0
g(ξ; z)

M(a(ξ), b; z)

W (a(ξ), b; z)
dz.

Recall that g(ξ; ·) has compact support in R̄+, and so for the function v1(ξ; y), we only need to
verify that it is continuous up to y = 0. From the property (B.3) in Lemma B.1, we know that
M(a(ξ), b; y) is continuous in y up to y = 0 with M(a(ξ), b; 0) = 1. Identities (B.4) and definition
(B.14) of the Wronskian imply that

U(a(ξ), b; y)

W (a(ξ), b; y)
∼


max{y, y2(b−2)}, if b > 2,

y log y, if b = 2,

y, if 1 ≤ b < 2,

yb, if 0 < b < 1,

and so this function is integrable near y = 0. Since g(ξ; ·) has compact support in R̄+, we see
that v1(ξ, ·) ∈ C(R̄+) and

lim
y↗∞

v1(ξ; y) = 0, ∀ξ ∈ Rd−1 \ {0}.

Next, we consider the behavior of the function v2(ξ; ·). Near y = 0, the property (B.3) and
definition (B.14) of the Wronskian yield

M(a(ξ), b; y)

W (a(ξ), b; y)
∼ yb.

Combining this result the asymptotic behavior (B.4) of U as y → 0, we find that the limit of
v2(ξ; y), as y tends to 0, exists. The limit of the integral,∫ y

0
g(ξ; z)

M(a(ξ), b; z)

W (a(ξ), b; z)
dz,

as y → ∞ obviously exists because the function g(ξ; ·) has compact support in R̄+. Moreover,
using the asymptotic behavior (B.2) of U(a(ξ), b; y) as y → +∞, we obtain

lim
y↗∞

v2(ξ; y) = 0, ∀ξ ∈ Rd−1 \ {0}.

Since v = v1 + v2, we obtain the limit property (B.16) for ũ as y → +∞ using (B.11).

Step 2 (Proof of Item (2)). The argument employed in Step 1 shows that ũ(ξ; ·) ∈ C(R̄+), for all
ξ ∈ Rd−1 \{0}. Next, we want to show that Dk

xd
ũ(ξ; ·) ∈ C(R̄+), for all k ∈ N and ξ ∈ Rd−1 \{0},

but for this it is suffices to show that Dk
yv(ξ; ·) ∈ C(R̄+), for all k ∈ N, by (B.11).

We first consider the case k = 1. A direct calculation shows that

vy(ξ; y) = −My(a(ξ), b; y)

∫ ∞
y

g(ξ; z)
U(a(ξ), b; z)

W (a(ξ), b; z)
dz

− Uy(a(ξ), b; y)

∫ y

0
g(ξ; z)

M(a(ξ), b; z)

W (a(ξ), b; z)
dz.
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Using identities (B.5) and (B.6), we obtain

vy(ξ; y) = −a(ξ)

b
M(a(ξ) + 1, b+ 1; y)

∫ ∞
y

g(ξ; z)
U(a(ξ), b; z)

W (a(ξ), b; z)
dz

+ a(ξ)U(a(ξ) + 1, b+ 1; y)

∫ y

0
g(ξ; z)

M(a(ξ), b; z)

W (a(ξ), b; z)
dz,

(B.18)

and the same argument as in the beginning of the proof of Lemma B.2, gives us immediately that
vy(ξ; ·) ∈ C(R̄+). Hence, v(ξ; ·) ∈ C1(R̄+), for all ξ ∈ Rd−1 \ {0}.

We next show that vy(ξ; ·) in (B.18) is the unique C1(R̄+) solution to the Kummer equation,

−ywyy(ξ; y)− (b+ 1− y)wy(ξ; y) + (a(ξ) + 1)w(ξ; y) = gy(ξ; y), ∀y ∈ R+.

Our goal is to show that vy = w, where we define

w(ξ; y) := −M(a(ξ) + 1, b+ 1; y)

∫ ∞
y

gz(ξ; z)
U(a(ξ) + 1, b+ 1; z)

W (a(ξ) + 1, b+ 1; z)
dz

− U(a(ξ) + 1, b+ 1; y)

∫ y

0
gz(ξ; z)

M(a(ξ) + 1, b+ 1; z)

W (a(ξ) + 1, b+ 1; z)
dz,

for y ∈ R+, ξ ∈ Rd−1 \ {0}. Integrating by parts in the expression of w, we obtain

w(ξ; y) = M(a(ξ) + 1, b+ 1; y)

∫ ∞
y

g(ξ; z)
UzW − UWz

W 2
(a(ξ) + 1, b+ 1; z) dz

+ U(a(ξ) + 1, b+ 1; y)

∫ y

0
g(ξ; z)

MzW −MWz

W 2
(a(ξ) + 1, b+ 1; z) dz.

The expression of vy in (B.18) coincides with that of w if

−UzW − UWz

W 2
(a(ξ) + 1, b+ 1; z) =

a(ξ)

b

U

W
(a(ξ), b; z),

−MzW −MWz

W 2
(a(ξ) + 1, b+ 1; z) = −a(ξ)

M

W
(a(ξ), b; z).

But the preceding two identities follow from the definition of the Wronskian, W , in (B.14), from
(B.5) and (B.6), and from the recursion relations (B.7) and (B.8). Hence, the function vy is the
unique C1(R̄+) solution to the corresponding Kummer equation, which obviously implies that
vyy ∈ C(R̄+).

Inductively, it follows that, for any k ∈ N, the derivative Dk
yv exists and is the unique C1(R̄+)

solution to the Kummer equation,

−y(Dk
yv)yy(ξ; y)− (b+ k − y)(Dk

yv)y(ξ; y) + (a(ξ) + k)Dk
yv(ξ; y) = Dk

yg(ξ; y), ∀y ∈ R+.

Thus, v(ξ; ·) ∈ C∞(R̄+), and so ũ(ξ; ·) ∈ C∞(R̄+) by (B.11), and Dkũ(ξ; ·) satisfies the ordinary
differential equation, for all xd ∈ (0,∞) and k ∈ N,

− xd(Dk
xd
ũ)xdxd(ξ;xd)− (b+ k − 2|ξ|xd)(Dk

xd
ũ)xd(ξ;xd) + (a(ξ) + k)Dk

xd
ũ(ξ;xd)

= (2|ξ|)k+1Dk
yg(ξ; 2|ξ|xd).

(B.19)

Notice that the right-hand side in the preceding equation is a function with compact support in
R̄+.
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Step 3 (Proof of Items (3) and (4)). We adapt the argument of [6, Theorem I.1.2]. We fix ξ 6= 0.

We write ũ(ξ;xd) = p(ξ;xd) + iq(ξ;xd) and f̃(ξ;xd) = g̃(ξ;xd) + ih̃(ξ;xd). Then, equation (B.9)
becomes{

−xdpxdxd(ξ;xd)− bdpxd(ξ;xd) + (c+ xd|ξ|2)p(ξ;xd)− bξq(ξ;xd) = g̃(ξ;xd),

−xdqxdxd(ξ;xd)− bdqxd(ξ;xd) + (c+ xd|ξ|2)q(ξ;xd) + bξp(ξ;xd) = h̃(ξ;xd),

where bξ denotes the inner product of (b1, . . . , bd−1) with ξ. Defining F (ξ;xd) := |ũ(ξ;xd)|2 =
p2(ξ;xd) + q2(ξ;xd), we obtain (where now we omit the (ξ;xd)-variables)

Fxd = 2ppxd + 2qqxd ,

Fxdxd = 2p2
xd

+ 2ppxdxd + 2q2
xd

+ 2qqxdxd ,

which gives us

xdFxdxd + bdFxd − 2cF

= 2p(xdpxdxd + bdpxd − cp) + 2q(xdqxdxd + bdqxd − cq) + 2xd(p
2
xd

+ q2
xd

)

≥ 2p
(
−g̃ + xd|ξ|2p− bξq

)
+ 2q

(
−h̃+ xd|ξ|2q + bξp

)
≥ −2pg̃ − 2qh̃

≥ −cF − 1

c

(
g̃2 + h̃2

)
,

where we recall that c > 0 by hypothesis, and so it follows that

xdFxdxd(ξ;xd) + bdFxd(ξ;xd)− cF (ξ;xd) ≥ −
1

c
sup
xd∈R̄+

|f̃(ξ;xd)|2, ∀xd ∈ R+.

Now let

G(ξ;xd) := F (ξ;xd)−
1

c2
sup
xd∈R̄+

|f̃(ξ;xd)|2.

Then, {
xdGxdxd(ξ;xd) + bdGxd(ξ;xd)− cG(ξ;xd) ≥ 0,

limxd↗∞G(ξ;xd) ≤ 0,

where we used (B.16) to determine the behavior of G(ξ;xd) as xd approaches ∞. Therefore, the
function G(ξ;xd) is bounded, and the maximum principle [16, Theorem 5.3] then implies that
G(ξ, xd) ≤ 0, for all xd ∈ R̄+, and so

|ũ(ξ;xd)|2 ≤
1

c2
sup
y∈R̄+

|f̃(ξ; y)|2, ∀xd ∈ R̄+,

which is equivalent to (B.17).

Since f belongs to C∞0 (H̄), the function supy∈R̄+
|f̃(ξ; y)| decays faster than any polynomial in

ξ by [23, Theorem 8.22 (e)]. Therefore, from (B.17) we see that the function ũ also decays faster
than any polynomial in ξ.

Step 4 (Proof of Item (5)). By (B.19) and the fact that the right-hand side in (B.19) is a function
with compact support in R̄+, we see that the preceding steps can be applied to Dk

xd
ũ instead of

ũ, for all k ∈ N. Therefore, we obtain that the functions Dk
xd
ũ decay faster than any polynomial

in ξ, for all k ∈ N.
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This completes the proof of Lemma B.2. �

We now prove the existence and uniqueness of smooth solutions on strips in the half-space.
We fix ν > 0 and recall from (1.10) that S = Rd−1 × (0, ν), so that ∂0S = Rd−1 × {0} and
∂1S = Rd−1 × {ν}. We have the following elliptic analogue of [6, Theorem I.1.2] in the parabolic
case, but for finite-height strips rather than the half-space.

Theorem B.3 (Existence and uniqueness of a C∞(S̄) solution on a strip when L has constant
coefficients). Let L be an operator of the form (1.3) and require that the coefficients, a, b, c, are
constant with bd > 0 and c ≥ 0. Then, for any function, f ∈ C∞0 (S̄), there is a unique solution,
u ∈ C∞(S̄), to {

Lu = f on S,

u = 0 on ∂1S.
(B.20)

Proof. The method of proof is the same as that of Theorem 1.5, so we only highlight the main
differences. Uniqueness of the solution, u ∈ C∞(S̄), follows from the maximum principle, Lemma
A.1, for L. By analogy with (B.9), for each ξ ∈ Rd−1 \ {0}, we construct the function ũ(ξ; ·) to
be the unique solution in C∞([0, x0

d]) to

−xdũxdxd(ξ;xd)− b
dũxd(ξ;xd) +

(
c+ i

d−1∑
k=1

bkξk + |ξ|2xd

)
ũ(ξ;xd) = f̃(ξ;xd), ∀xd ∈ (0, ν),

ũ(ξ; ν) = 0,

by defining the new function, v(ξ; ·), by (B.11) and proving that v(ξ; ·) is the unique solution in
C∞([0, x0

d]) to the Kummer equation,

−yvyy(ξ; y)− (b− y)vy(ξ; y) + a(ξ)v(ξ; y) = g(ξ; y), ∀y ∈ (0, 2|ξ|ν),

v(ξ; 2|ξ|ν) = 0,

for each ξ ∈ Rd−1 \ {0}, where the coefficients b and a(ξ), and the function g are defined in the
same way as in (B.13). The arguments employed in the proof of Theorem B.3 show now that the
unique solution in C∞(S̄) to the preceding ordinary differential equation is given by

v(ξ; y) := CM(a(ξ), b, y)−M(a(ξ), b; y)

∫ ∞
y

g(ξ; z)
U(a(ξ), b; z)

W (a(ξ), b; z)
dz

− U(a(ξ), b; y)

∫ y

0
g(ξ; z)

M(a(ξ), b; z)

W (a(ξ), b; z)
dz,

where the constant C is chosen such that the boundary condition, v(ξ, 2|ξ|ν) = 0, is satisfied.
The only remaining modification that we need lies in Step 3 of the proof of Lemma B.2. The
reason why this part of the proof does not adapt immediately is because we used the fact that
the zeroth-order coefficient, c, of L in (1.3) is strictly positive to derive (B.17), while now we
assume c ≥ 0. To circumvent this issue, we apply the method of proof of Step 3 of Lemma B.2
not to F , but to e−σxdF , where we choose the positive constant, σ, small enough. Notice that
this is the same as the approach we employed in the proof of Lemma A.1 to overcome the fact
that c = 0. �

Corollary B.4 (Existence and uniqueness of a Ck,2+α
s solution on a strip when L has constant

coefficients). Let α ∈ (0, 1) and k ∈ N. Let L be an operator as in (1.3) and require that the

coefficients, a, b, c, are constant with bd > 0 and c ≥ 0. If f ∈ Ck,αs (S̄), then there is a unique

solution u ∈ Ck,2+α
s (S̄) to the boundary problem (B.20).
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Proof. Uniqueness of the solution, u ∈ Ck,2+α
s (S̄), follows from the maximum principle, Lemma

A.1, for L since any u ∈ Ck,2+α
s (S̄) has the property that Du and xdD

2u are continuous on S̄ by
Definition 2.3 and that xdD

2u = 0 on ∂0S by Lemma C.1. Let {fn}n∈N ⊂ C∞0 (S̄) be a sequence

such that fn → f in Ck,2+α
s (S̄) as n→∞ and

‖fn‖Ck,αs (S̄)
≤ C‖f‖

Ck,αs (S̄)
.

Such a sequence can be constructed using [6, Theorem I.11.3]. Let un ∈ C∞(S̄) be the unique
solution to (B.20), with f replaced by fn, given by Theorem B.3. In particular, each solution
satisfies the global Schauder estimate (1.15) which, when combined with the preceding inequality,
gives

‖un‖Ck,2+α
s (S̄)

≤ C‖f‖
Ck,αs (S̄)

, ∀n ∈ N.

By applying the Arzelà-Ascoli Theorem, we can extract a subsequence, which we continue to

denote by {un}n∈N, which converges in Ck,2+α
s (S̄) to a limit function u ∈ Ck,2+α

s (S̄) as n →
∞. Since {fn}n∈N, {un}n∈N, {Dun}n∈N and {xdD2un}n∈N also converge uniformly on compact
subsets of S̄ to f , u, Du and xdD

2u, respectively, as n→∞, we see that u solves (B.20). �

Appendix C. Interpolation inequalities and boundary properties of functions in
weighted Hölder spaces

A parabolic version of following result is included in [6, Proposition I.12.1] when d = 2 and
proved in [18] when d ≥ 2 for parabolic weighted Hölder spaces. For completeness, we restate the
result here for the elliptic weighted Hölder spaces used in this article.

Lemma C.1 (Boundary properties of functions in weighted Hölder spaces). [18, Lemma 3.1] If
u ∈ C2+α

s (H) then, for all x0 ∈ ∂H,

lim
H3x→x0

xdD
2u(x) = 0. (C.1)

In [18], we also proved the following interpolation inequalities parabolic weighted Hölder spaces
analogous to those for standard parabolic Hölder spaces [30, 32]. For completeness, we restate
these interpolation inequalities below for elliptic weighted Hölder spaces, analogous to those for
standard elliptic Hölder spaces in [26, Lemmas 6.32 & 6.35], [30, Theorem 3.2.1].

Lemma C.2 (Interpolation inequalities for weighted Hölder spaces). [18, Lemma 3.2] Let α ∈
(0, 1) and r0 > 0. Then there are positive constants, m = m(d, α) and C = C(d, r0, α), such that
the following holds. If u ∈ C2+α

s (B̄+
r0(x0)), where x0 ∈ ∂H, and ε ∈ (0, 1), then

‖u‖Cαs (B̄+
r0

(x0)) ≤ ε‖u‖C2+α
s (B̄+

r0
(x0)) + Cε−m‖u‖C(B̄+

r0
(x0)), (C.2)

‖Du‖C(B̄+
r0

(x0)) ≤ ε‖u‖C2+α
s (B̄+

r0
(x0)) + Cε−m‖u‖C(B̄+

r0
(x0)), (C.3)

‖xdDu‖Cαs (B̄+
r0

(x0)) ≤ ε‖u‖C2+α
s (B̄+

r0
(x0)) + Cε−m‖u‖C(B̄+

r0
(x0)), (C.4)

‖xdD2u‖C(B̄+
r0

(x0)) ≤ ε‖u‖C2+α
s (B̄+

r0
(x0)) + Cε−m‖u‖C(B̄+

r0
(x0)). (C.5)

We add here the following

Lemma C.3 (Hölder continuity for xdDu). Let r > 0, and assume that u ∈ C2(Br) is such that
Du and xdD

2u belong to C(B̄+
r ). Then, xdDu ∈ Cαs (B̄+

r ).
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Proof. For this we only need to show that for any x1, x2 ∈ B+
r2 such that all their coordinates

coincide, except for the i-th one, we have

|x1
dDu(x1)− x2

dDu(x2)|
s(x1, x2)α

≤ C,

for some positive constant, C. We show this for the case i = d, and all the other cases, i =
1, . . . , d− 1, follow by a similar argument. We have

|x1
dDu(x1)− x2

dDu(x2)|
s(x1, x2)α

≤
|x1
d − x2

d|
s(x1, x2)α

|Du(x1)|+ x2
d

|Du(x1)−Du(x2)|
s(x1, x2)α

≤
(
‖Du‖C(B̄+

r2
) + x2

d|D2u(x3)|
) |x1 − x2|
s(x1, x2)α

,

where x3 ∈ Br3 is a point on the line connecting x1 and x2, and we apply the Mean Value
Theorem. We may assume without loss of generality that x2

d < x1
d, and because x3

d ≥ x2
d, we have

that x2
d|D2u(x3)| ≤ ‖xdD2u‖C(B̄+

r2
). Using the definition (2.1) of the cycloidal metric, we obtain

|x1
dDu(x1)− x2

dDu(x2)|
s(x1, x2)α

≤
(
‖Du‖C(B̄+

r2
) + ‖xdD2u‖C(B̄+

r2
)

)
r

1−α/2
2 .

Therefore, xdDu belongs to Cαs (B̄+
r2), for all α ∈ (0, 1). This completes the proof of Lemma

C.3 �
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