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Abstract. We study the application of the novel tensor formats (TT, QTT, QTT-
Tucker) to the solution of d-dimensional chemical master equations, applied mostly
to gene regulating networks (signaling cascades, toggle switches, phage-λ). For some
important cases, e.g. signaling cascade models, we prove good separability properties of
the system operator. The time is treated as an additional variable, with the Quantized
tensor representations (QTT, QTT-Tucker) employed, leading to the log-complexity in
the system size. This global space-time (d + 1)-dimensional system, approximated in
the QTT or QTT-Tucker formats, is solved in the block-diagonal form by the ALS-
type iterations. Another issue considered is the quantification of uncertainty, which
means that some model parameters are not known exactly, but only their ranges can
be estimated. It occurs frequently in real-life systems. In this case, we introduce the
unknown parameters as auxiliary variables discretized on the corresponding grids, and
solve the global space-parametric system at once in the tensor formats.

Keywords: multilinear algebra, tensor products, chemical master equation, parameter de-
pendent problems
AMS Subject Classification: 65F50, 15A69, 65F10, 82C31, 80A30, 34B08,

1. Introduction

The paper is devoted to the solution of a chemical master equation in structured tensor
formats. This problem arises mostly in the modeling of chemical reactions (kinetics) in ge-
netic regulatory networks, cell systems and so on. Typically the number of molecules of a
given chemical species in intra-cellular systems is up to the order of hundreds. At such con-
centrations, solution of systems in terms of ordinary differential equations is inappropriate,
since stochastic fluctuations in numbers of molecules (of the relative order of 10−1) play an
important role in the evolution of the system [1, 2]. In such a case, we cannot ignore the
stochasticity of the system. The stochastic description of the chemical reaction kinetics is
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Priority Research Program OMN-3 at Institute of Numerical Mathematics, Russian Academy of Sciences,
Russia, 119333 Moscow, Gubkina 8.
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given by the chemical master equation (CME), see (2) below, which simulates the probability
distribution describing the state of the system [3, 4, 5].

During the history of the chemical kinetics modeling in biology, different approaches were
developed. Monte Carlo methods are based on a statistically large ensemble of realizations of
the stochastic process associated with the CME. The most famous is the stochastic simula-
tion algorithm (SSA) by Gillespie [4]. Several improvements include the advanced sampling
techniques [6], τ-leaping methods [7], system-partitioning hybrid methods [8, 9]. Addition-
ally, the chemical Fokker-Planck equation may be considered [10] to treat high-concentration
systems, which can be discretized on coarser grids than the CME.

In order to analyze a stochastic reaction system, all Monte Carlo techniques require a
lot of realizations. Sometimes important biological events may be very rare, and extremely
large number of realizations may be required to catch the relevant statistics.

A principal alternative to the Monte Carlo-type methods is the solution of the master
equation directly as a linear ODE. For many systems, it is observed that the probability
distribution vanishes rapidly outside a bounded domain. Thus, it is possible to truncate the
state space to a finite domain, and approximate the exact solution by the solution of the
resulting truncated CME [11].

However, even the truncated state space volume is usually still very large, and grows
exponentially with the number of species. This problem is called a curse of dimensionality
since [12]. For example, a system with 10 species and typical concentrations of about 100
would be described by 10010 float numbers, which is infeasible on any supercomputer. So,
some low-parametric approximation is needed.

As such reduced grid-based methods, we would like to mention the sparse grids technique
[13], as well as the initial tensor-structured approaches: the greedy algorithm in the canonical
tensor format [14, 15, 16, 17, 18], and the solver in the Tucker format, based on the manifold
dynamics via the projection onto the tangent space [19]. The latter exploits the so-called
Dirac-Frenkel principle to propagate the system on the tensor product manifold. For a
detailed description we refer to [20, 21, 22].

Alternatively, one can formulate an implicit time propagation scheme (Euler, Crank-
Nicolson), and apply some tensor structured solver to the linear system involved. Moreover,
we may consider the time as an independent variable and solve the coupled space-time system
at once, taking benefits from the reduction of complexity based on the tensor structuring.
This technique can be considered as an adaptive construction of the tensor manifold without
a priori knowledge on the system, in contrast to the propagation of a predefined manifold
in the tensor Dirac-Frenkel scheme. The initial application of this approach to the Fokker-
Planck equation was given in [23], and here we shall use it for the chemical master equation
as well. For another coupled space-time technique for hyperbolic equations see [24].

A certain part of this paper contains the theoretical analysis of the tensor representation
of the linear system matrix, which demonstrates a nice structure. As a bi-product, we prove
TT rank estimates for Hamiltonians of the Heisenberg (XYZ) spin system models. Provided
that a solution can be computed with a prescribed accuracy, we are free from an additional
error analysis, which is required in Monte Carlo or hybrid methods.

As such a tensor-structured linear solver, we use the Alternating Minimal Residual
(AMR) method [25] (the one-block version AMR(one)). It employs the ideas of the al-
ternating least squares (ALS) and MALS (DMRG) methods [26, 27, 28, 29], improved by
combining with the GMRES approach to determine a new correction direction. The initial
verification of the AMR methods and their comparison with the DMRG was conducted on
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some examples of the Fokker-Planck and master equations. It was found, that the ALS and
MALS techniques fail to compute the solution of nonsymmetric systems (which appear in
the CME simulation), and recasting the problem to the normal equations is too expensive,
whereas the AMR methods are much faster and provide the desired accuracy, see Section
5.1 for an additional discussion. Here we give a thorough study of more complicated CME
models.

The paper is organized as follows. In Section 2, the chemical kinetic and master equa-
tions are presented, as well as the parameter-dependent problems, and basic properties
are mentioned. Section 3 describes tensor formats, principal techniques and corresponding
notations. Section 4 is devoted to some typical CME operators and their analytic tensor-
structured representations. In Section 5 we present the main computational schemes for the
time propagation, as well as the stationary solution. Finally, Sections 6 and 7 provide the
illustrative numerical experiments and conclusion.

2. Problem statement

2.1. From a stochastic to deterministic model

Suppose that d different active chemical species S1, ..., Sd are given, and they can react inM
reaction channels. Denote the vector of their concentrations in terms of number of molecules
as x = (x1, ..., xd), xi ∈ ({0} ∪ N). Each channel is specified by the stoichiometric vector
zm ∈ Zd, and the propensity function wm(x) : ({0} ∪ N)d → R, m = 1, ...,M.

The deterministic ODE on the concentrations is written as follows:

dxi

dt
=

M∑
m=1

zmi w
m(x), i = 1, ..., d. (1)

However, in some cases (e.g. small concentrations), the reaction occurrence is a stochastic
process, and (1) does not hold any more in the deterministic sense. Instead of stochastic
simulation (SSA, [4]), one may consider a deterministic difference equation on the joint
probability density - the chemical master equation [3], which reads

dP(x, t)

dt
= AP =

M∑
m=1

wm(x− zm)P(x− zm, t) −wm(x)P(x, t), (2)

where
P(x, t) : ({0} ∪ N)d → R

is the joint probability of species S1, ..., Sd to be presented in the system in concentrations
x1, ..., xd at the time t.

Since x represents the number of molecules, its values belong to ({0} ∪ N)d. Thus, the
discretization grid arises naturally from the model:

xi ∈ {xi(ji)} = {ji}, ji = 0, 1, ..., i = 1, ..., d.

The chemical master equation (CME) can be considered as a discrete partial differential
equation with spatial differences instead of derivatives. Note that in the exact formulation ji
are not bounded. However, very large values are unlike, and we consider the finite state space
projection (FSP) [11] on a cubic grid: each ji is considered in a finite range ji = 0, ...,Ni−1.
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In the following, we will use a more convenient counterpart to (2) via the shift matrices.
Denote

Jz =


0
... . . .

1
. . .

0
. . . . . .

1 · · · 0

← |z|-th row, if z 6 0, and J−z = Jz>. (3)

Now we write (2) as a discrete difference equation:

dP(x, t)

dt
=

M∑
m=1

(Jzm − J0)diag(wm(x))P(x, t), (4)

where the multidimensional shift operator reads

Jz = Jz1 ⊗ · · · ⊗ Jzd ,

and diag(w) is a diagonal matrix with the values of w(x) at all grid points. Note that J0 is
just an identity matrix of proper sizes.

The operator A possesses the following properties:

1. A 6 0, so that P(x, t)→ P∗(x), t→∞ - the stationary solution, AP∗ = 0.

2. A> · 1 = 0, so that the total probability normalization
∑
x

P(x, t) is conserved in time.

One usually normalizes
∑
x

P(x, t) = 1.

3. The stoichiometric vectors can be split into two parts: zm = zm+ + zm−, where zm+
i =

max(zmi , 0), and z
m−
i = min(zmi , 0), i = 1, ..., d. As will be considered in more details

in Section 4.1, a reaction in the channel zm+ corresponds to the increasing of the specie
concentration, whereas the reaction zm− leads to the destruction of the molecules. Since
the number of molecules can not become negative, the following boundary condition
has to be imposed:

wm(x0−) = 0, x0−i = 0, if zm−
i 6= 0.

In other words, the probability of the concentration-decreasing reaction is zero, if the
corresponding species are absent. Thus, the concentrations can not be advanced into
the negative domain.

2.2. Parametric problems and uncertainty quantification

In addition to the state variables x, there can be auxiliary dimensions. Especially in biological
models which are under consideration here, some of the coefficients (e.g. in propensities)
might be given not exactly, but in a certain range. The goal might be in finding such
parameter values so that the model quantities are as close as possible to the observed ones.

This is the case when tensor methods are worth to be used: we introduce some discretiza-
tion grid in each parameter variable in its range (e.g. uniform or Chebyshev), and add this
new dimension to the model equation. We hope that the dependence on a parameter is not
very strong, and the coupled system can be approximated efficiently in a tensor-structured

4



format. Thus, the complexity of such a space-time-parametric solution is expected to be
lower than of solutions computed at all parametric points independently.

Such a parameter fitting is called the uncertainty quantification (after the “uncertainly”
defined coefficients, traces back to [30]), and was also considered in the framework of stochas-
tic PDEs, reformulated in terms of parameter-dependent equations [31]. Specific greedy
approach to the Chemical Master Equation was presented in [14].

The general parametric problem is formulated as follows. Suppose the matrix A depends
on a parameter A = A(y), and the parametric grid y1, ..., yN is given. We assemble the
global system

∂P

∂t
= AP =

A(y1) . . .
A(yN)


P(y1)...
P(yN)

 .
Despite the diagonality, since N might be large (if y is in fact a multiparameter tuple), it
is more efficient to consider the structured tensor solution of the global space-parametric
system. That is, we agree formally that xd+1 = y, x̃ = (x1, ..., xd, y), and formulate the
corresponding larger dimensional problem with the new matrix A, and P(x, yi, t) stacked
into a one large vector P(x̃, t).

For instance, in the CME problem, typically the parametrization is incorporated in the
coefficients of the propensity functions, wm = wm(x, y) = wm(x̃). Then the CME operator
(4) recasts as

dP(x̃, t)

dt
= AP(x̃, t) =

M∑
m=1

(
(Jzm − J0)⊗ IN

)
diag(wm(x̃))P(x̃, t).

Since the range of x is
[
0, ...,Ni − 1

]⊗d
, (4) turns to the linear ODE in time of size

d∏
i=1

Ni 6 Nd. Even for moderate N and d (of order tens), the problem becomes too huge

to be treated via standard methods. Even higher complexity arises in the parametric case

where the range of x̃ is
[
0, ...,Ni − 1

]⊗d
⊗ [1, ...,N]. Instead, we will use the tensor format

approximations to reduce the number of unknowns. The simplest but robust format is the
Tensor Train format (TT, Matrix Product States).

3. Tensor formats

The Matrix Product States representation appeared in the quantum physics community [32,
33, 27]. A great development was made in the modeling of quantum many-body systems. The
so-called density matrix renormalization group (DMRG) [32, 33, 27] is a numerical variational
technique devised to obtain the ground states of spin systems with high accuracy. It traces
back to [27], and it is nowadays the most efficient method for 1-dimensional quantum systems,
but its generalization to 2 or 3-dimensional tensor network cases is still an open question.
It was then noticed, that the DMRG is a minimization method for the Rayleigh quotient
in the Matrix Product States (MPS) [32], which also arise in the study of entanglement in
quantum systems.

In the community of numerical analysis, the MPS was reopened by Tyrtyshnikov and
Oseledets in 2009, as the so-called tensor train format, or simply TT-format [34, 35]. A
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d-dimensional tensor A is said to be in the TT-format, if its elements are represented as a
matrix product

A(i1, . . . , id) = G1(i1)G2(i2) · · ·Gd(id), ik = 1, ..., nk, (5)

where Gk(ik) is a rk−1 × rk matrix for each fixed ik. To make the matrix-by-matrix product
in (5) scalar, boundary conditions r0 = rd = 1 are imposed (the so-called open boundary
conditions). The numbers rk, called TT-ranks, play the crucial role in storage and complexity
estimates. Equation (5) can be recast to the sum of Kronecker products,

A =
∑

α1,...,αd−1

G1(:, α1)⊗G2(α1, :, α2)⊗ · · · ⊗Gd(αd−1, :), (6)

where the sum over αk goes from 1 to rk. For fixed values of r = [r1, . . . , rd−1] the parametric
representation (5) defines a closed embedded manifold TTr [36] in the linear space of all d-
tensors. It is clear, that all TT-cores Gk(ik) are 3-tensors of sizes rk−1 × nk × rk, thus if
all the ranks rk are bounded by some constant r, and the mode sizes nk by n, the storage
is estimated as O(dnr2). The connection between the TT and DMRG/ALS schemes was
discussed, in particular, by R. Schneider et. al., see [36, 28].

The operators (multilevel matrices) are represented in the TT format in a slightly different
way. Given a matrix {A(i, j)} = {A((i1, ..., id), (j1, ..., jd))}, we perform the index permutation
and decompose

A(i1, j1, . . . , id, jd) = G1(i1, j1)G2(i2, j2) · · ·Gd(id, jd).

This format is consistent in a sense, that it reduces to the standard matrix Kronecker product
in the 2D case and r1 = 1 (cf. (6)).

The functional (or parametric) representation (5) is convenient in constructive represen-
tations, since the TT blocks contraction can be written as the standard product (“·”) of
matrices, depending on mode indices ik as parameters. The equations are meant to hold
for all possible values of mode indices - parameters. Due to that fact, we may omit the
mode indices, if we are considering the TT structure only without specifying the dependence
on mode indices. The Kronecker representation (6) is used mostly for rank-1 tensors or
matrices, and to describe the mode structure.

One may use also the diagrammatic notations, introduced by White and then used in
[28, 37, 38] as especially convenient to demonstrate tensor networks: a multiindex array
(block) is represented by a rectangle, its indices by lines, and if a line connects two rectangles,
the new array is computed by multiplying the elements of the connected blocks and summing
by the common index. For example, the TT (MPS) structure looks like

X1

i1

α1
X2

i2

α2 · · ·
αd−1

Xd

id

Traditional and commonly used tensor representations in multilinear algebra and nu-
merical analysis include canonical and Tucker formats, see the surveys and lecture notes
[26, 39, 40]. The canonical rank-R format is the representation of form

A(i1, . . . , id) =

R∑
α=1

U1(i1, α) . . . Ud(id, α),
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while the Tucker rank-(r1, ..., rd) format is defined by

A(i1, . . . , id) =
∑

α1,...,αd

G(α1, . . . , αd)U1(i1, α1) . . . Ud(id, αd).

If a tensor has the canonical representation with rank R, then there exists a TT-representation
with TT-ranks bounded by R (but they can be much smaller). The tensors with bounded
canonical rank do not form a manifold, and algorithms for the computation of the best
fixed-rank approximation are not robust, since the corresponding optimization problem is
ill-posed. Thus this format can not be used in conjunction with the time-stepping schemes,
since the truncation has to be done at each step. The Tucker format can be used for small
and moderate values of d. Some efficient methods arise from the combination of formats,
e.g. the multilevel solver for the Hartree-Fock equation in the Tucker format with the
canonical representation of the core [41, 42]. In quantum molecular dynamics simulation,
the Tucker format was successfully used in the MCTDH framework (see the book [43]). The
disadvantage of the Tucker format is the inherent exponential scaling in the dimension. In
turn, the TT-format has linear scaling in the dimension, provided that the TT-ranks are
bounded.

Another alternative to the Tucker format might be the HT format [44]. It also has an
analog in the physics community, the so-called Tensor Tree Networks (TTN) representation
[45].

In this paper, along the line with the TT-format, the so-called Quantized-TT (QTT)-
format is used. The idea is as follows. Suppose that the one-dimensional grid size is a power
of 2, i.e. n = 2L. Then a tensor can be reshaped to a D = dL-dimensional tensor with mode
sizes equal to 2. After that, the TT-decomposition is applied to this tensor. If the TT-ranks
of this D-tensor (or QTT-ranks) are small, then the logarithmic complexity, O(d logn), is
attained. The idea of TT applied to reshaped tensors with virtual dimensions was first
proposed in [46] for 2L × 2L matrices, and then generalized to the class of function-related
tensors in [47] being named the QTT format, where its beneficial approximation properties
were established. Moreover, the QTT-format allows simple constructive representations of
basic operators (Laplacian, gradient and divergence operators) [48] on uniform tensor grids.

The logarithmic dependence on the one-dimensional grid size makes it a very promis-
ing tool for high-dimensional problems. For example, one may use the global space-time
discretization of a differential equation, using the QTT at least in the time variable [23, 24].

There are also algorithms, which exploit the binary QTT structure heavily, such as the
super-fast data-sparse Fourier transform [37].

The small mode sizes (2 for the QTT-format) motivated the construction of a fast ap-
proximate DMRG-like solver for a QTT-structured matrix. Such a solver, the TT-Solve
algorithm, was described in [29] (see also [49] for the eigenvalue solver of this type and [28],
where the general ALS-type schemes are discussed). However, for a large mode size its n2
storage complexity becomes prohibitive, and recently the new alternating techniques have
been developed [25]. See also the discussion in Section 5.1.

However, in some cases, the ranks of the straightforward QTT representation described
above (referred later as linear QTT ) grow very rapidly with the accuracy. To overcome this
problem, some new tensor representation was proposed, called the QTT-Tucker format [38].
It exploits the QTT approximation not for the TT cores, but for the Tucker factors instead,
thus keeping the entanglement of physical variables separately from the virtual ones. To get
rid of the curse of dimensionality, the Tucker core is stored in the TT format. From these
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considerations, one winds up with the following tensor network:

X(c)1

γ1

α1
X(c)2

γ2

α2 · · ·
αd−1

X(c)d

γd

X(f)d,1
id,1

γd,1
...

γd,L−1

X(f)d,L
id,L

X(f)2,1
i2,1

γ2,1
...

γ2,L−1

X(f)2,L
i2,L

X(f)1,1
i1,1

γ1,1
...

γ1,L−1

X(f)1,L
i1,L

(7)

The TT-Tensor

X(e)k
αk−1,αk

(ik) = X
(c),k(αk−1, αk)X

(f)k,1(ik,1) · · ·X(f)k,L(ik,L),

corresponding to the quantized k-th Tucker factor, connected with one core block, is called
the extended factor ([38], Def. 4), and the initial tensor is now the product of the extended
factors,

X(i1, ..., id) = X
(e)1(i1) · · ·X(e)d(id).

In the numerical experiments (Section 6), we will investigate both the linear QTT and the
QTT-Tucker formats.

4. TT representation of typical CME operators

To employ tensor decompositions, we need to present all initial data in our favorable format.
Assuming the tensor separability of each propensity function wm, we obtain immediately
the rank estimate of the whole operator:

rank(A) 6
M∑
m=1

2 · rank(wm). (8)

We use here the rank-1 form of any Jz, TT-addition rule, and the fact that the diagonal
matrix is constructed from a vector without changing the TT ranks.

4.1. Reversible monomolecular reactions

A case of special interest is the reactions of form

∅� Si, Si � Sk

(the first one denotes creation/destruction of a specie without involving the others), when

each zm contains only +1 or −1 at just one position, and
M∑
m=1

zmi = 0, i = 1, ..., d. Such

reactions appear frequently in gene regulatory networks, such as switches, cascades, etc.
(see below). We have thus M = 2d reactions, and (4) can be separated in two parts,
corresponding respectively to the creation and destruction of a specie:

dP(x, t)

dt
=

d∑
m=1

(Jm+ − J0)diag(wm+(x))P(x, t) +
d∑

m=1

(Jm− − J0)diag(wm−(x))P(x, t), (9)
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wm+ is the propensity corresponding to creation reactions with zm > 0, wm− corresponds
to zm 6 0, and

Jm+ = J0 ⊗ · · · ⊗ J−1︸ ︷︷ ︸
m

⊗J0 · · · ⊗ J0, Jm− = J0 ⊗ · · · ⊗ J1︸ ︷︷ ︸
m

⊗J0 · · · ⊗ J0.

Thus the shift operators in each part can be collected into rank-1 difference operators, acting
only on xm:

∇−
m = J0 ⊗ · · · ⊗ (J0 − J−1)︸ ︷︷ ︸

m

⊗J0 · · · ⊗ J0, ∇+
m = J0 ⊗ · · · ⊗ (J1 − J0)︸ ︷︷ ︸

m

⊗J0 · · · ⊗ J0. (10)

Now, the CME (9) reads

dP(x, t)

dt
= AP = (A+ +A−)P,

A+ = −
d∑

m=1

∇−
mdiag(w

m+(x)), A− =
d∑

m=1

∇+
mdiag(w

m−(x)).
(11)

which has the very close form to the diffusion equation discretized using the finite difference
scheme.

The tensor rank of the whole operator A is straightforwardly estimated as the sum of the
ranks of the propensities, see (8). However, we would like to consider typical gene networks
in more details.

4.2. Signaling cascade genetic model

A cascading process occurs when (usually) adjacent genes produce a protein which influences
on the expression of the succeeding gene, see Fig. 1. This is a typical model in genetic
networks; as an example, the lytic phase of the λ-phage system [50] can be considered. A
mutually repressing gene pair, or gene toggle (Fig. 2), that can be found in such systems, is
also a case of the cascade model, with the dimension 2.

Figure 1. Cascade signaling network

S1 S2 · · · Sd

Figure 2. Toggle switch

S1 S2

In many such cases the m-th destruction propensity depends only on xm, thus its rank-1
decomposition reads

wm−(x) = e1 ⊗ · · · ⊗wm−(xm)⊗ · · · ⊗ ed,

where ei is the vector of all ones. Now, the whole destruction operator A− in (11) has the
Laplace-like form

A− = D1 ⊗ J0 · · · ⊗ J0 + · · ·+ J0 ⊗ · · · ⊗Dd, Dm = (J1 − J0)diag(wm−(xm)),

which is proven to have TT rank 2 [48].
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The creation part is usually more complicated (it contains feedbacks between species),
and depends on several variables. In the cascade networks (including also the toggle switch),
the m-th creation propensity depends on xm−1 (or xm+1), and, probably, on xm. Thus, the
corresponding operator part sums the two-variables terms:

A+ = D1
1 ⊗ J0 · · · ⊗ J0 +D2

1 ⊗D2
2 ⊗ J0 · · · ⊗ J0 + · · ·+ J0 · · · ⊗Dd

d−1 ⊗Dd
d,

where Dm
m−1 = diag(wm+(xm−1)), Dm

m = −(J0 − J−1) (we assume here that wm+ does not
depend on xm; the generalization will be given in Remark 1). What is nice, such a sum can
be represented as a rank-3 TT-tensor, as shown in Lemma 1. Thus, its storage is linear in
d.

Lemma 1. Given the matrices Ek, Fkk, F
k+1
k ∈ RNk×Nk . The cascadic sum

H = F11 ⊗

(
d⊗
k=2

Ek

)
+

d∑
i=2

(
i−2⊗
k=1

Ek

)
⊗ Fii−1 ⊗ Fii ⊗

(
d⊗

k=i+1

Ek

)
(12)

possesses an explicit exact rank-3 TT decomposition H = H1(i1, j1) · · ·Hd(id, jd), where

H1 =
[
E1 F21 F11

]
, Hk =

Ek Fk+1k 0

0 0 Fkk
0 0 Ek

 , Hd−1 =

Fdd−1 0

0 Fd−1d−1

0 Ed−1

 , Hd =

[
Fdd
Ed

]
.

For the Tucker decomposition the same rank-3 bound holds.

Proof. We begin to split the dimensions recursively, extracting the linearly independent
elements, in the same way as in the TT-SVD algorithm [35]. So, the first step reads 1

H =
[
E1 F21 F11

] F32F33 · · ·Ed + · · ·+ E2 · · · Fdd−1FddF22E3 · · ·Ed
E2 · · ·Ed

 .
The first term here is exactly the first TT block of the decomposition. Now, suppose we
have the following form

Hk =
[
Fk+1k Fk+1k+1 · · ·Ed + · · ·+ E2 · · · Fdd−1Fdd FkkEk+1 · · ·Ed Ek · · ·Ed

]>
. (13)

We split the k-th dimension of each row in the same manner,

Hk =

Ek Fk+1k 0

0 0 Fkk
0 0 Ek

Fk+2k+1F
k+2
k+2 · · ·Ed + · · ·+ Ek+1 · · · Fdd−1Fdd

Fk+1k+1Ek+2 · · ·Ed
Ek+1 · · ·Ed

 ,
and derive the k-th TT block,Ek Fk+1k 0

0 0 Fkk
0 0 Ek

 , k = 2, ..., d− 2. (14)

1In the proof of the lemma, by the indexless quantities we mean not the full tensors (e.g. like in the
representation (6)), but the parametric matrices, constructed by fixing mode indices in (5). No ambiguity
arises since we are not considering the mode structure of these matrices, but only their appearance in the
TT representation.
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The rest dimensions are presented in the same form as (13), so we can continue the splitting.
The last two blocks are splitted as followsFdd−1FddFd−1d−1Ed

Ed−1Ed

 =

Fdd−1 0

0 Fd−1d−1

0 Ed−1

[Fdd
Ed

]
,

giving the (d − 1)-th and d-th TT blocks, respectively. We see, that all the TT ranks are
equal to 3, except the (d− 1)-th, which is equal to 2, that confirms the claim of the lemma.
To obtain the Tucker rank estimate, it is sufficient to note that each TT block contains only
3 independent elements, and follow the TT-to-Tucker procedure described in [38].

Remark 1. In (12), each summand is a rank-1 tensor. However, we can straightforwardly
generalize it to the case, when the neighboring terms are summed from several components:

Fkk−1 ⊗ Fkk → rk∑
αk=1

Fkk−1,αk
⊗ Fkk,αk

(i.e., the rank of each propensity is not equal to 1). In this case, we can collect respectively
the row and column vectors

Fkk−1 =
[
Fkk−1,1 · · · Fkk−1,rk

]
, Fkk =

 F
k
k,1
...
Fkk,rk

 ,
and the constructions (14) will be considered as block matrices, with the sizes (i.e. the TT
ranks) (2+ rk)× (2+ rk+1). Counting the linearly independent elements in each TT block,
we conclude that the k-th Tucker rank is bounded by 1+ rk + rk+1.

Remark 2. The sum (12) can be considered in the canonical format as well. However, its
rank is bounded by O(d). In Lemma 1 we establish a refined result, that the TT ranks
may be bounded by a constant independently on d, which is especially interesting in high-
dimensional cases.

Corollary 1. If the destruction propensity wm− depends only on xm, and the creation
propensity wm+ depends only on xm−1, the whole CME operator admits an explicit exact
TT decomposition of rank 4, A = A1(i1, j1) · · ·Ad(id, jd), where

A1 =


J0

D2
1

D1
1

D1


>

, Ak =


J0 Dk+1

k 0 Dk

0 0 Dk
k 0

0 0 J0 0

0 0 0 J0

 , Ad−1 =

Dd
d−1 J0 Dd−1

0 0 Dd−1
d−1

0 J0 0

0 0 J0

 , Ad =
Dd

d

Dd

J0

 .
The same rank-4 bound holds for the Tucker decomposition.

Proof. The rank-2 decomposition of the destruction operator was already discussed. For
the creation part we use Lemma 1, by setting Ek = J0, Fkk−1 = diag(wm+(xm−1)), and
Fkk = −(J0 − J−1).

11



The straightforward TT-addition gives the rank-5 structure, but due to the fact that J0
encounters both A+ and A−, the rank can be reduced as follows. The first block reads

[
J0 D2

1 D1
1 J0 D1

]
=
[
J0 D2

1 D1
1 D1

] 
1 0 0 1 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

 .
Multiplying the latter mode-independent term with the second rank-5 block, obtain

J0 D3
2 0 J0 D2

0 0 D2
2 0 0

0 0 J0 0 0

0 0 0 0 J0

 =


J0 D3

2 0 D2

0 0 D2
2 0

0 0 J0 0

0 0 0 J0



1 0 0 1 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

 .
We see that after the reduction of linear dependency, the same scalar factor arose, as in the
first step. So we can continue the process and come to the form claimed by the corollary.

4.3. Application to spin models

The similar Hamiltonians arise also in the one-dimensional spin systems modeling with near-
est neighbor interactions. For example, the Heisenberg (XYZ) model with open boundary

conditions [51, 52], acting on
d⊗
i=1

C2, reads

H = jxHxx + jyHyy + jzHzz + λHx,

Hµν =
d∑
i=2

(
i−2⊗
k=1

Ek

)
⊗ Pµ ⊗ Pν ⊗

(
d⊗

k=i+1

Ek

)
,

Hµ =
d∑
i=1

(
i−1⊗
k=1

Ek

)
⊗ Pµ ⊗

(
d⊗

k=i+1

Ek

)
,

where Ek are the identity matrices, Pµ are the Pauli matrices (µ = x, y, z):

Px =

(
0 1

1 0

)
, Py =

(
0 −i
i 0

)
, Pz =

(
1 0

0 −1

)
,

and jµ, λ are scalars. Lemma 1 and Remark 1 can be applied straightforwardly, giving the
following rank estimate:

Lemma 2. The Heisenberg (XYZ) Hamiltonian admits an explicit rank-7 TT (or Tucker)
representation.

Proof. Assembling the blocks

Fkk−1 =
[
jxPx jyPy jzPz

]
, Fkk =

[
Px Py Pz

]>
,

we reduce the problem to that is described by Lemma 1 and Remark 1, with rk = 3.
Taking into account the Laplacian-like structure of λHx of rank 2, obtain the estimate
(2+ 3) + 2 = 7.

If some of jx, jy, jz are equal to zero, the reduced models appear, for example, the Heisen-
berg (XY) Hamiltonian with jz = 0 and TT rank 6, or Ising (ZZ) model with jx = jy = 0

and TT rank 5.

12



5. Computational scheme

5.1. Solving the dynamical problem

To solve equation (2), we employ the implicit Crank-Nicolson time integration scheme(
Ix −

τ

2
A
)
P(tp+1,x) =

(
Ix +

τ

2
A
)
P(tp,x), p = 0, ...,Nt − 1, (15)

where τ = tp+1 − tp and Nt are chosen so that approximately a steady state is reached, and
Ix is the identity matrix of the same sizes as A. One issue in the high dimensional cascade
modeling is the long-time integration, such that the total time T = τNt is of the order of
100− 1000, and the successive integration using Formula (15) requires too many steps.

Instead, we will consider time as an additional independent variable and formulate the
global space-time (d+ 1)-dimensional linear system, as it was done in [23]:[

(It − J
−1
t )⊗ Ix − τ

2
(It + J

−1
t )⊗A

]
P(t) = e1 ⊗

(
P(t0) +

τ
2
AP(t0)

)
, (16)

where J−1t ∈ RNt×Nt is the down shift matrix according to (3), It is the identity matrix of size
Nt, and e1 is its first column. This system can be approximated either in the linear QTT
or the QTT-Tucker formats (7), with the quantization in the time variable as well, leading
to a logarithmic dependence on the number of steps log(Nt). The computational benefits of
this scheme w.r.t. the traditional time stepping one (15) were demonstrated in [23].

However, as we have addressed in [23], it might be more efficient not to solve (16) for
the whole time range [0, T ], but split it to subintervals [0, T0], [T0, 2T0], ..., [T − T0, T ], and
perform such a restarted solution. In the numerical experiments for a 20-dimensional cascade
(Section 6.1) we have found an optimal value T0 ∼ 15, whereas T = 400. In other words, we
cast (16) to the block-diagonal form,

IP ⊗
[
(It ′ − J

−1
t ′ )⊗ Ix − τ

2
(It ′ + J

−1
t ′ )⊗A

]
P(t) =

{
e1 ⊗

(
P(tp) +

τ
2
AP(tp)

)}P−1
p=0
, (17)

where tp = pT0, p = 0, ..., P − 1, P = T/T0, and It ′ , J−1t ′ ∈ RNt/P×Nt/P.
As the linear solver to (16) in the structured tensor format, we employ the alternating-

direction approach. Up to now, there are three (at least, most robust) realizations of this
technique in the TT format:

• ALS (Alternating Linear Scheme) [28],

• MALS/DMRG (Modified ALS) [28, 29], and

• AMR (Alternating Minimal Residual) [25].

The simplest Alternating Linear Scheme (ALS), and its Modified version (MALS, a.k.a.
DMRG in quantum physics community), were brought to the numerical math community
in [28], and [29] contains further improvements. The main ideas of these methods are given
below. For more details we refer to [28, 29].

In the ALS, we perform a succeeding optimization for each TT block, i.e. we fix all
the blocks from a previous iteration, then reduce and solve the problem for the entries of
a certain block (only one!), and proceed to the next block. The ALS method is known to
have the following drawbacks: first, the solution ranks are fixed to those of the initial guess
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and cannot be updated during the iterations, and second, it might take a lot of iterations
(∼ 104 − 105) to achieve a reasonable accuracy.

The MALS calculates in each step the elements not of one block, but of two succeeding
blocks, contracted into a larger supercore with two mode indices. After its elements are
found, the supercore is separated to the two updated TT cores by a simple matrix SVD.
This step allows to determine the TT ranks adaptively during the iterations. Moreover, its
convergence is usually much faster in practice than of the previous method. The cyclic sweep
through all TT cores (now in fact the pairs!) is done in the same manner as in the ALS.
The MALS method was used in [23] to solve the global space-time system (16).

However, since paired supercores are involved, the asymptotic complexity per iteration
of the MALS is higher than of the simpler ALS.

Lemma 3. [28, 29] Suppose that the d-dimensional matrix A with the mode sizes n is given
in the TT format with the ranks bound rA, the R.H.S is given in the TT format with the
ranks bound ry, and the solution ranks are bounded by r. Then, one iteration of the ALS
method requires

O(dnr2 + dr2rA + drry)

memory, and
O(dnr3rA + dn2r2r2A + dnr2ry)

operations.
One iteration of the MALS method needs

O(dn2r2 + dr2rA + drry)

memory, and performs

O(dn2r3rA + dn3r2r2A + dn2r2ry + dn
3r3)

operations.

In [38] it was shown that the TT versions of these solvers can be naturally exploited inside
the corresponding algorithms for the QTT-Tucker format. Along the line, the complexity
increase up to n3 of the MALS was discussed, since there the Tucker ranks play the role of
the mode sizes in a certain step. In the linear QTT n = 2, and a slightly higher cost of one
iteration is fully compensated by a significantly reduced number of iterations of the MALS
vs ALS, but if n ∼ 20, it is already much more difficult to work with.

Another issue is that the theoretical convergence analysis of the standard ALS-type
methods is hard to be provided. There are only local estimates [53], which might be too
restrictive in practice. The situation becomes much more pessimistic, if the convergence
does not take place at all even for the Modified ALS algorithm, as for the 20d example here
(Section 6.1).

To get rid of these problems, the family of AMR methods was developed [25]. The linear
system solution is restricted to the elements of one TT core as in the ALS, but in addition,
a special rank adaptation technique is performed: we compute principal components of the
residual (in practice, only a certain part of the residual may be used, giving the cost reduction,
but without a serious corruption of the convergence), and then add the corresponding TT-
tensor to the approximant. Since the TT-addition sums the ranks of the addends, this is
the way to increase the ranks during the computations (to reduce the ranks, it is sufficient

14



to perform the simple TT-rounding). Moreover, the next core optimization mimics now
the Galerkin correction, using the residual components as the basis. This is why the name
Alternating Minimal Residual has appeared, and this method is indeed much more robust
in practice than (M)ALS, especially for nonsymmetric matrices, which is the case in the
Chemical Master Equation.

Since all the operations involve only one block entries in each step, the method has the
same asymptotic complexity as the ALS, see Lemma 3. It is the method that will be used
in the numerical tests below.

5.2. Computing the stationary state

Since the CME operator A 6 0 and does not depend on time, the dynamical problem
converges eventually to a single steady state 2. Sometimes we need only the stationary
distribution, but not the transient processes. In this case, the global formulation (16) is not
efficient.

Contrarily, we employ the simplest implicit Euler iteration:

(I− τA)P(tp+1,x) = P(tp,x), p = 1, ...,Nt, (18)

solving the linear system in the left hand side via the alternating method. Note, that
here the time step τ might be quite large. The intermediate solutions do not approximate
the transient processes accurately, but the method is convergent to the stationary state, if
A 6 0, which is the case in our CME model. As an additional cost reduction, we can use the
following trick. After each step (18), compute the closeness of the approximant to the kernel:
ε = ||AP||

||P||
. If ε is large, we do not need to solve (18) very precisely. When ε diminishes, the

accuracy may be improved. Practically, a rule of the form ε = 10−1 · ε, where ε is the
tensor rounding and solution accuracy, is used. This approach decreases the complexity of
intermediate iterations significantly.

In the following we will refer to this method as Euler ◦ AMR, after its two-level iterative
scheme:

• outer Euler iterations in the full tensor space, and

• inner AMR iterations in the space of TT-elements to find a solution to (18).

As an alternative, one may try to solve directly the null-space problem AP = 0. How-
ever, the ALS and DMRG eigensolvers are designed to minimize the Rayleigh quotient and
require a symmetric matrix. For the CME, one should solve A>AP = 0, which was found
to be completely uncompetitive with the Euler ◦ AMR approach, in terms of both the cost
(the conditioning and TT ranks of the matrix are squared) and accuracy (in the low-rank
projected system, the lowest eigenvalue is not exactly zero; since lots of other small eigenval-
ues are possible, the DMRG solver may formally decrease the Rayleigh quotient below the
tolerance, but the corresponding eigenvector will be completely irrelevant). A development
of efficient alternating methods for nonsymmetric eigenvalue problems is a matter of future
research.

2Note the difference with the initial reaction ODE (1), which is nonlinear and in general has a nontrivial
attractor; this is not the case for the linear CME, this is one reason why our approach is more reliable than
the direct stochastic simulation
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6. Numerical experiments

The experiments were conducted on a Linux x86_64 machine with Intel Xeon E5504 pro-
cessor at 2.00 GHz with the cache size 4096 KB/core. The Alternating Minimal Residual
method (TT and QTT-Tucker versions) for the linear solution and approximation (for fast
MatVecs) was implemented in MATLAB as a part of the TT-Toolbox3 with the most time
consuming routines called externally from C/FORTRAN MEX files.

6.1. 20-dimensional signaling cascade

First, we test the simplest but high-dimensional cascade problem from [13, 14], for which we
have provided a theoretical analysis of the operator separability. The model parameters are
fixes as follows:

• d = 20, hence M = 40;

• for m = 1: wm+ = 0.7, zm = −em: generation of the first protein;

• for m > 1: wm+ =
xm−1

5+ xm−1

, zm = −em: succeeding creation reactions;

• for m = 1, ..., 20: wm− = 0.07 · xm, zm = em: destruction reactions.

The notationsm+,m−, as well as the operator assembly are according to (11), and em is the
m-th identity vector (the practical operator construction can be done using the Corollary 1
directly, with the TT-rank bound 4).

The computational scheme specifications are the following

• Computational domain x ∈ [0, ..., 63]⊗d. The PDF value at xi = 63 is below the
machine precision.

• Linear QTT format for space and time. Since N = 64, and the function decays
rapidly, the QTT-rank overhead w.r.t. the TT or Tucker formats is small; moreover,
the alternating scheme is even more efficient in the linear QTT, since the size of one
block is 2r2, instead of r̃3 in the QTT-Tucker format, and the ranks r and r̃ are almost
the same. However, we will benefit from the QTT-Tucker representation for the larger
grid tests below.

• We solve the dynamical problem until T = 400, restarting the global space-time solver
as proposed in Section 5.1. We perform an additional test to find an optimal restarting
parameter T0.

• As the initial condition, we choose P(x, 0) = e1⊗· · ·⊗ e1, i.e. all species are presented
in zero concentrations with probability 1.

• Tensor rounding and solution accuracy ε = 10−5.
3http://github.com/oseledets/TT-Toolbox
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As a resulting quantity, we compute the mean concentrations of all species in time,

〈xi〉(t) =

∑
x

xiP(x, t)∑
x

P(x, t)
, i = 1, ..., d,

which are shown in Fig. 3. Additionally, the convergence of the transient solution to the
steady state is shown in Fig. 4. One of the interesting features in the cascade systems is the

Figure 3. Mean concentrations 〈xi〉(t). Figure 4. Closeness to the kernel
||AP||

||P||
(t)

intrinsic delay between the equal concentrations of different species, which can be observed
in Fig. 3. To keep the time solution history accurately is important to measure such delays.
Fig. 4 shows that actually T ∼ 300 is enough to approximate the stationary solution with
the desired accuracy. In the rest of the time interval, some perturbations occur, since the
solution is computed with almost random noise of the magnitude ε.

To demonstrate the performance of the global space-time scheme, we present the CPU
times of the solver with different numbers of time steps Nt in each interval [(p − 1)T0, pT0]
(Fig. 5), p = 1, ..., T/T0, and the time interval widths T0 (Fig. 6). We see, that the
computational time grows logarithmically with the time grid size. The fastest method was
obtained by setting T0 = 15. For smaller T0, the solution in each interval is cheap, but the
amount of intervals is large. For large T0 vise versa, the conditioning (and TT ranks) of each
system is high, and it takes more time for the method to converge.

6.2. A toggle switch in E.Coli with uncertainly defined coefficients

Now, consider the solution in presence of uncertainty (see Section 2.2). In this test, we
simulate the synthetic genetic bistable toggle switch developed in Escherichia coli [54]. The
CME model reads

• d = 2, M = 4:

• w1+ =
α1

1+ xβ2
, z = −e1: generation of S1;
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Figure 5. CPU time (sec.) versus log2(Nt),
T0 = 15.

Figure 6. CPU time (sec.) versus T0, Nt =
214.

• w1− = x1, z = e1: destruction of S1;

• w2+ =
α2

1+
x1

(1+ y/K)η

, z = −e2: generation of S2;

• w2− = x2, z = e2: destruction of S2;

• α1 = 156.25, α2 = 15.6, β = 2.5, η = 2.0015, K = 2.9618 · 10−5.

The parameter y is the concentration of the IPTG catalyst, and is varying from 10−6 to
10−2. The main feature of this system is the stabilization in the so-called low state (low
concentration of S2) or high state depending on the concentration y, see Figure 11. As a
result, we end up with the 3-dimensional x̃ = (x1, x2, y) problem. The system matrix does
not possess an exact TT decomposition, due to the form of w2+, but still admits an accurate
ε-approximation with TT ranks of the order of 10.

In our modeling, we introduce the exp-uniform grid in the parameter and seek for the
steady state using the outer Euler iterations Euler ◦ AMR (see Section 5.2) till T = 1000, so
that the stationarity accuracy is below the tensor rounding tolerance ε = 10−5. The time
step τ is varied from 1 to 10.

This is one of the most illustrative examples when the null-space formulation AP = 0

is completely useless: since the stiffness matrix is diagonal w.r.t. the parametric points,
the alternating method is likely to converge to some identity vector in y. The solution at
that corresponding parameter point could be computed accurately (hence formally ||AP|| is
small), but the other points will be lost.

We present the comparison of the linear and the QTT-Tucker formats for solution of the
system (18). The concentration x1 is quite high, so we choose the spatial domain [0, ..., 511]⊗2,
and from 27 to 213 grid points in y.

First of all, check the computational times versus the parametric grid size (Figure 7) and
the time step τ (Figure 8). The growth is asymptotically logarithmic with Ny which confirms
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Figure 7. CPU time vs. log2(Ny), τ = 5. Figure 8. CPU time vs. τ, Ny = 2
12.

the advantages of the QTT format. Additionally, we see that the QTT-Tucker method is
about 4 times faster; moreover, it allows to treat the case τ = 10, whereas the linear QTT
solver failed to converge due to a high condition number of the matrix involved.

In the second figure series, we test the accuracy of computing the average concentration
〈x2〉 at the parameter point y∗ = 3 · 10−5; this point corresponds to a transient region (see
Fig. 11), which is interesting to track. Since the grid does not contain this point exactly,
the nearest-neighbor interpolation is used. As a reference value x∗2 we use that is obtained
on the grid Ny = 213. The accuracies of computing x2 are presented in Figures 9 and 10.
In both cases, the asymptotic is better than the theoretical O(hy). Though it is possible to

Figure 9. Interpolation accuracy of x2(y∗) vs.
log2(Ny). τ = 5, linear QTT

Figure 10. Interpolation accuracy of x2(y∗)
vs. log2(Ny). τ = 5, QTT-Tucker.

consider more sophisticated interpolation techniques, the quantization approach allows to
consider such fine grids and achieve accurate results without excessive computational cost.

Finally, we plot the average concentrations of both reacting proteins versus the concen-
tration of the catalyst, see Figure 11. The quantity 〈x2〉 can be used also as a measure of the
fraction of the cells ensemble being presented in the high (low) state. Indeed, it demonstrates
the asymptotic: with y tending to ∞, the cells tend to occupy the high state. As a result,
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Figure 11. Average concentrations 〈x1〉, 〈x2〉 versus y

normalizing 〈x2〉 to its maximal value, obtain the fraction of high-state cells. It is the plot
that was given in [54], Fig. 5(b), and we observe a good agreement with the experimental
results.

6.3. λ-phage

The last example is the simulation of the life cycle of the bacteriophage-λ [13, 19]. The
first paper [13] considers the sparse grids approach. The second one is more tensor related
and uses the so-called Dirac-Frenkel principle for the dynamical low-rank approximation
in the Tucker format (DLRA). However, the simulation was done for a small time interval
(T = 10) only, which is far from providing the stationary solution. The reason is that the
stationary concentration of the second specie is too high (∼ 104) to be efficiently treated by
the algorithms proposed. In this article, we present an efficient computation of the stationary
solution on very large grids with the use of the QTT format and the alternating linear solver.

The model parameters read:

• d = 5, M = 10:

• w1+ =
a1b1

b1 + x2
, z = −e1: generation of S1; a1 = 0.5, b1 = 0.12.

• w1− = c1 · x1, z = e1: destruction of S1; c1 = 0.0025.

• w2+ =
(a2 + x5)b2
b2 + x1

, z = −e2: generation of S2; a2 = 1, b2 = 0.6.

• w2− = c2 · x2, z = e2: destruction of S2; c2 = 0.0007.

• w3+ =
a3b3x2

b3 · x2 + 1
, z = −e3: generation of S3; a3 = 0.15, b3 = 1.

• w3− = c3 · x3, z = e3: destruction of S3; c3 = 0.0231.

• w4+ =
a4b4x3

b4 · x3 + 1
, z = −e4: generation of S4; a4 = 0.3, b4 = 1.
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• w4− = c4 · x4, z = e4: destruction of S4; c4 = 0.01.

• w5+ =
a5b5x3

b5 · x3 + 1
, z = −e5: generation of S5; a5 = 0.3, b5 = 1.

• w5− = c5 · x5, z = e5: destruction of S5; c5 = 0.01.

The matrix assembly is done by summing the rank-2 Laplace-like TT decomposition of the
destruction part and 5 creation parts, obtaining the total TT rank bound 7.

First of all, we give a comparison with the dynamical Tucker approximation algorithm
from [19]. That paper reports that the grid of sizes 15×40×10×10×10 was used; however,
to employ the QTT format, we restrict ourselves to the powers of two: 16×64×16×16×16.
The time interval is T = 10, and since this is a transient process, accurate time integration is
necessary. To achieve that, we solve the coupled space-time system as in the first example,
Section 6.1, for different inner time intervals T0 and time grid sizes Nt. As the initial state,
the (n = 3, p = [0.05, ..., 0.05])-multinomial distribution was chosen:

P(x, 0) =
3!

x1! · · · x5! · (3− |x|)!
0.05|x|(1− 5 · 0.05)3−|x| · θ(3− |x|),

where |x| = x1+· · ·+x5, and θ(ξ) is the Heaviside function. This function can be constructed
straightforwardly as a full-format 4 × 4 × 4 × 4 × 4-tensor thanks to the zeroing Heaviside
function if any of xi is greater than 3. After that, the TT decomposition (with ranks 4) is
computed, and each block is expanded by zeros to the appropriate grid size. In the end, the
TT representation is reapproximated into the QTT one.

The timings of the linear QTT solution are presented in Table 1. With such small QTT

Table 1. CPU times (sec.) versus T0 and Nt

T0 \ Nt 256 512 1024 2048
1 20.66 23.89 21.18 20.38
2 18.49 19.52 19.44 17.70
5 16.33 16.35 17.55 16.01
10 25.34 15.51 12.49 11.23

ranks (∼ 30), the CPU times are almost independent on the time grid size, and even tend
to decrease, since the finer discretization provides more accurate and smooth solution. The
same situation may be observed with respect to T0 as well. In all cases the computation is
much faster than 5 minutes of the DLRA, and a fortiori than ∼ 3 hours of the SSA, reported
in [19].

To check the accuracy, we compare the marginal probability densities with those are
computed in the full format on the grid 16× 64× 10× 10× 10. The corresponding Crank-
Nicolson propagation matrices of size 1024000 were assembled in the MATLAB sparse
format, with the use of gmres as the iterative solver. The integration was conducted with
the time step 0.01, which required 1071 seconds of CPU time. The marginal distributions are
shown in Figures 12-16, and the 2-norm errors are presented in Table 2. One should note,
that the time step 0.01 used in the full-format simulations, as well as the FSP truncation
at lower grid sizes yield the error in the full solution O(1e − 4). That is, the QTT solution
with Nt = 256, T0 = 2 (the time step ∼ 0.01) appears to be closer to the full-format one,
than with the finer discretization. However, in all cases the accuracy O(1e− 4) is achieved.
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Figure 12. P1(x1) Figure 13. P2(x2) Figure 14. P3(x3)

Figure 15. P4(x4) Figure 16. P5(x5)

Table 2. ||Pqtt − Pfull||/||Pfull|| versus T0 and Nt

T0 \ Nt 256 512 1024 2048
1 7.971e-5 7.096e-5 7.277e-5 8.543e-5
2 4.780e-5 6.700e-5 4.356e-5 7.643e-5
5 6.387e-5 8.733e-5 2.102e-4 2.769e-4
10 1.435e-4 2.296e-4 2.933e-4 3.963e-4

To integrate the system until the stationary solution is a much more difficult problem.
First, we set the grid sizes to 128 × 65536 × 64 × 64 × 64, in accordance to very high
(∼ 4 · 104) concentrations of the second specie, see Fig. 18. Second, the relaxation time is
large, T ∼ 2 · 104. In our simulation, we use the exponential splitting of the time interval:

tp = exp(0.05 · p), p = 1, ..., 200.

To obtain an accurate time history, in each subinterval [tp−1, tp] we solve the coupled space-
time system with an additional splitting into 1024 time steps (encapsulated in the QTT
format). The convergence history and the cumulative CPU times are shown in Figure 17.
We see, that it takes about an hour of computational time to recover the whole time history
with the stationarity accuracy ∼ 10−7. Despite the large grids, this is the case, when the
QTT-Tucker does not outperform the linear QTT format due to large core ranks (i.e. the
physical dimensions are strongly connected), and its larger (cubic) asymptotic leads to a
larger time. In this example, the QTT-Tucker solver takes about 4000 seconds.

If we are not interested in the transient processes, we may use the Euler ◦ AMR iterations
over the time points tp. The total CPU time in this case is 669 seconds in the linear QTT
format, or 413 seconds in the QTT-Tucker format, and the relative accuracies of the mean
concentrations at the final time point w.r.t. the finer time splitting are the following:
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S1 S2 S3 S4 S5
4.6e-5 1.7e-6 6.2e-8 3.1e-7 1.7e-7.

Figure 17. Closeness to the kernel
||AP||

||P||
(t),

and the cumulative CPU time (sec.)

Figure 18. Average concentrations 〈xi〉 vs. t

It shows the advantages of using the newer tensor methods even in such nontrivial prob-
lems.

7. Conclusions

We have investigated the tensor product structure approach to the Chemical Master Equa-
tion. The main contributions include:

• analysis of the operators (Hamiltonians) in the TT and QTT format,

• construction of the QTT- and QTT-Tucker-based computational algorithm for the
multidimensional CME, and its complexity analysis,

• demonstration of the computational efficiency of the tensor-structured solution method
to the block space-time discretized system.

The techniques have been applied to commonly used model biological systems governed by
the CME, such as cascade gene networks, chemical switches, as well as more realistic ones,
such as the λ-phage. The algorithms employed for the block space-time systems (16), (17),
in particular, the AMR linear solver, manifest a significant reduction of the computational
time and error with respect to the previous methods, such as the time stepping iterations on
tensor product manifolds, and classical Monte-Carlo-like methods (SSA). Use of the virtual
tensorisation (QTT format) allows to treat efficiently even the cases of very large space
and time grids, which appear in high-concentration systems (Section 6.3). In addition, the
simulation in presence of parametrically and uncertainly defined coefficients was considered,
and the tensor methods were found to be a very promising tool.
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