
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

Tensor Structured Evaluation of Singular Volume

Integrals

by

Jonas Ballani and Peter Meszmer

Preprint no.: 70 2012

Tensor Structured Evaluation of

Singular Volume Integrals

Jonas Ballani, Peter Meszmer

December 3, 2012

In this article, we introduce a new method for the accurate and fast com-
putation of singular integrals over cuboids in three-dimensional space. Using
a straightforward geometric parametrisation of the domain of integration, we
interpret the integral as a smooth function on a high-dimensional parameter
space. A standard interpolation scheme then leads to a high-dimensional
tensor to which an approximation in the data-sparse hierarchical tensor for-
mat is applied. Once this approximation is available, the evaluation of an
integral value becomes an easy task which does no longer require the treat-
ment of singular terms. Numerical experiments illustrate the potential of the
proposed approach for typical examples.

1 Introduction

Singular volume integrals appear in a wide range of applications from e.g. physics and
quantum chemistry. In particular, the discretisation of singular integral equations in
three-dimensional space leads to the task of evaluating integrals of the form

∫

X

∫

Y
ϕ(x)κ(x, y)ψ(y) dy dx, X, Y ⊂ R

3. (1)

Here, κ : R3 × R
3 → R denotes a kernel function that has a singularity at x = y and is

analytic elsewhere and the functions ϕ : X → R, ψ : Y → R are assumed to be smooth.
In a standard axis-aligned discretisation, the subsets X,Y ⊂ R

3 are cuboids of the form

X = X1 ×X2 ×X3, Y = Y1 × Y2 × Y3, (2)

with bounded intervals Xµ, Yµ ⊂ R, µ = 1, 2, 3. Classical examples for this setting are
the evaluation of the Newton potential with κ(x, y) = 1/(4π ‖x− y‖) and problems from
the context of electromagnetic scattering, micromagnetics, or radiative heat transfer.

The computation of integrals of the form (1) is particularly challenging when the two
cuboids X and Y either intersect or have small positive distance. Due to the singularity

1

of the kernel function κ, standard quadrature routines can only be applied at significant
computational costs in order to obtain high accuracies which motivates the development
of alternative techniques.

1.1 Evaluation by Interpolation

In this article, we propose a method which prepares suitable auxiliary data in a setup
step which is required only once. A single integral value can then be obtained in a cheap
way by a few (simple) operations. The key idea of our approach is the investigation of
functions of the type

f(a) :=

∫

X(a)

∫

Y (a)
ϕ(x)κ(x, y)ψ(y) dy dx (3)

where a ∈ I := I1 × . . . × Ip, Iµ ⊂ R, is a parameter tuple that describes the geometric
shapes of the cuboids X(a) and Y (a). In practice, we can easily choose this parametri-
sation in such a way that f is smooth in the whole parameter space I ⊂ R

p. We
therefore expect to be able to approximate f in I by polynomials that can be evaluated
very efficiently. Note that we have used this approach already in [1] to accelerate the
computation of singular surface integrals appearing in the boundary element method.

In order to get rid of the specific choice of the functions ϕ,ψ, we assume that they
can be represented (or approximated) in a fixed basis set. Due to the smoothness
assumptions, we restrict ourselves to a polynomial basis of fixed maximal degree. We
hence require that we can represent (or approximate) ϕ,ψ in the form

ϕ(x) =

mX
∑

i=0

ϕ(ξXi)LXi (x), ψ(y) =

mY
∑

j=0

ψ(ξYj)L
Y
j (y),

with interpolation points ξXi ∈ X, ξYj ∈ Y , and products of Lagrange polynomials

LXi : X → R, LYj : Y → R, of order mX ,mY , respectively, where for X,Y ⊂ R
3 we

have mX := (mX ,mX ,mX), mY := (mY ,mY ,mY). We are then left with the task of
evaluating integrals of the form

fi,j(a) :=

∫

X(a)

∫

Y (a)
LXi (x)κ(x, y)LYj (y) dy dx.

Note that for a fixed kernel function κ, the functions fi,j : I → R do no longer depend
on the specific choice of ϕ and ψ, but only on the geometric shapes of the cuboids X
and Y .

We now interpolate the function fi,j on the parameter space I ⊂ R
p by a multivari-

ate interpolation scheme of order mI . The values of fi,j in the interpolation points
(ξ1,ℓ1 , . . . , ξp,ℓp) ∈ I, define a (p + 6)-dimensional tensor

A ∈ R
(mX+1)3×(mY +1)3×(mI+1)p

2

given by

A(i,j,ℓ) := fi,j(ξ1,ℓ1 , . . . , ξp,ℓp), ℓµ = 0, . . . ,m, µ = 1, . . . , p, (4)

with ℓ = (ℓ1, . . . , ℓp).
The interpolation on its own does not lead to an efficient scheme since the tensor

A contains (mX + 1)3(mY + 1)3(mI + 1)p entries which even may exceed the available
memory for moderate values of mX ,mY ,mI , and p. We therefore look for a tensor Ã in
a data-sparse representation that approximates A and which can be evaluated efficiently.

1.2 Tensor Approximation

Several formats have been proposed to represent a tensor A ∈ R
n1×...×nd in a data-sparse

way:

1. The Tucker format which represents a tensor in a storage complexity ofO(kd+dkn).

2. The canonical format (CP, r-term representation) which represents a tensor in a
storage complexity of O(drn).

3. The hierarchical format by Hackbusch and Kühn [9] which represents a tensor in
a storage complexity of O(dk3 + dkn). This format also contains the TT format
introduced by Oseledets and Tyrtyshnikov [12] as a special case.

Here, r and k denote ranks in the specific format which depend on the tensor which
has to be represented and n := max1≤µ≤d nµ. For a detailed introduction to tensor
representations, we refer the reader to [8].

In this article, we focus on the hierarchical tensor format since it allows for a struc-
tured and data-sparse representation of tensors even in high dimensions d. Moreover,
reliable truncation procedures are available [5] that enable us to determine the necessary
representation ranks adaptively to reach a given target accuracy. In addition, in [2] we
have developed an efficient black box strategy to find an approximation of a tensor in
the hierarchical format from a small subset of its entries. This is particularly important
if the quantity nd is very large such that a full representation of A is not available. Once
an approximation of the tensor A from (4) in the hierarchical format has been obtained,
the evaluation of a single integral becomes a simple task which can be carried by a few
standard arithmetic operations.

1.3 Alternative Evaluation Techniques for Singular Integrals

Various techniques have been developed in the literature to cope with singular volume
integrals. For the Newton potential, the integration can be carried out analytically
where a proper stabilisation of the resulting antiderivatives is required [6]. A large class of
integrals can be computed by the approximation by exponential sums [7] or by optimised
sinc-quadruature [3]. Both methods exploit the tensor structure of approximate kernel
representations such that integral values even in high spatial dimensions can be obtained
at moderate costs.

3

In [10], we have introduced a quite general hierarchical quadrature scheme for the
computation of singular integrals that only relies on standard quadrature routines for
regular integrals. This method even allows the computation of hyper-singular integrals
and is hence applicable to a very general class of singular integrals. As a drawback,
the number of required regular integrals that need to be computed is relatively large.
Fortunately, in our new approach which is based on interpolation in a geometric param-
eter space, the initial quadrature routine is only required once in the setup step and not
needed for the actual evaluation of singular integrals. We can therefore afford to use
the method developed in [10] in the setup step which enables us to treat a large class
of singular integrals by a uniform approach. We will review the concept of hierarchical
quadrature in Section 5.

2 Tensor Structured Tools in High Dimensions

In this section, we recall some basic concepts from the field of high-dimensional approx-
imation. We start with the definition of a standard multivariate interpolation scheme
which naturally leads to the problem of the representation and approximation of data
in high dimensions. We continue with an introduction to the hierarchical tensor format
from [9]. Furthermore, we summarise some approximation results for this format from
the literature.

2.1 Multivariate Interpolation

Let d ∈ N and f : I → R be smooth in a subset I ⊂ R
d which is given as the cartesian

product of intervals,

I := I1 × . . .× Id, Iµ = [αµ, βµ] ⊂ R, µ = 1, . . . , d. (5)

In order to construct an interpolant of f on I, we first define the interpolation on an
interval [α, β] ⊂ R. On the reference interval [−1, 1], we introduce the m-th order
Chebyshev points by

ξ̂i := cos

(

2i+ 1

2m+ 2
π

)

, i = 0, . . . ,m.

The reference points ξ̂i may be transformed to the given interval [α, β] by the elementary
relation

ξ
[α,β]
i :=

α+ β

2
+
β − α

2
ξ̂i, i = 0, . . . ,m.

The corresponding Lagrange polynomials have the form

L
[α,β]
i (x) =

m
∏

j=0,j 6=i

x− ξ
[α,β]
j

ξ
[α,β]
i − ξ

[α,β]
j

, i = 0, . . . ,m.

4

Now, we can define a one-dimensional interpolation operator by

I
[α,β]
m : C[α, β] → Pm, g 7→

m
∑

i=0

g
(

ξ
[α,β]
i

)

L
[α,β]
i , (6)

where Pm is the space of polynomials of degree at most m.
We can apply the one-dimensional construction on all intervals Iµ with interpolation

points ξ
Iµ
µ ∈ Iµ and corresponding Lagrange polynomials L

Iµ
i , i = 0, . . . ,m, to define

interpolation operators I
Iµ
m as in (6) for all µ = 1, . . . , d. Due to the product structure

of I, the one-dimensional interpolation operators can be combined to a d-dimensional
interpolation operator by forming their tensor product

I
I
m := I

I1
m ⊗ . . .⊗ I

Id
m . (7)

The interpolation function then explicitly reads

I
I
m[f](x) =

m
∑

i1=0

. . .

m
∑

id=0

f(ξI1i1 , . . . , ξ
Id
id
)LI1i1 (x1) . . . L

Id
id
(xd) (8)

with x = (x1, . . . , xd).

2.2 Hierarchical Tensor Representation

Given d ∈ N, let I1, . . . ,Id be finite index sets with I := I1 × · · · × Id. Already for
moderate d, the data-sparse representation of tensors A ∈ R

I is of interest. A quite
general concept for the representation of tensors has been introduced by Hackbusch and
Kühn [9] and was further analysed by Grasedyck [5]. In this approach, data-sparsity is
obtained by a hierarchical representation of tensors which can be applied even in high
dimensions d. As a first important ingredient, we define a matrix representation of a
given tensor.

Definition 1 (matricisation). Let D := {1, . . . , d}. Given a subset t ⊂ D with comple-
ment s := D \ t, the matricisation

Mt : R
I → R

It ⊗ R
Is , It :=×

µ∈t

Iµ, Is :=×
µ∈s

Iµ,

of a tensor A ∈ R
I is defined by its entries

Mt(A)(iµ)µ∈t,(iµ)µ∈s := A(i1,...,id), iµ ∈ Iµ, µ ∈ D.

In order to allow for a hierarchical representation, the subsets t ⊂ D are organised in
a binary tree.

Definition 2 (dimension tree). Let D := {1, . . . , d}. A tree TD is called a dimension

tree if the following three conditions hold:

5

(a) the index set D is the root of the tree TD,

(b) all vertices t ∈ TD are non-empty subsets t ⊂ D,

(c) every vertex t ∈ TD with #t ≥ 2 has two sons t1, t2 ∈ TD with the property

t = t1 ∪ t2, t1 ∩ t2 = ∅.

The set of leaves of TD is defined by L(TD) := {t ∈ TD : #t = 1}. For all t ∈ TD \L(TD),
we denote the set of sons of t by sons(t).

Based on the concept of the matricisation of tensors and the definition of a dimension
tree, we can now introduce the hierarchical tensor format.

Definition 3 (hierarchical rank, hierarchical format). Let TD be a dimension tree. The
hierarchical rank k := (kt)t∈TD of a tensor A ∈ R

I is defined by

kt := rank(Mt(A)), t ∈ TD.

For a given hierarchical rank k := (kt)t∈TD , the hierarchical format Hk is defined by

Hk := {A ∈ R
I : rank(Mt(A)) ≤ kt, t ∈ TD}.

A key feature of a tensor in Hk is that it can be represented in a recursive fashion.

Lemma 4 (cf. [5]). Let A ∈ Hk. Then A = (UD)·,1 can be represented by the recursive

relation

(Ut)·,j =

kt1
∑

j1=1

kt2
∑

j2=1

(Bt)j,j1,j2(Ut1)·,j1 ⊗ (Ut2)·,j2 , j = 1, . . . , kt,

for all t ∈ TD \ L(TD) with sons(t) = {t1, t2} where Bt ∈ R
kt×kt1×kt2 and Ut ∈ R

It×kt,

It := ×µ∈t Iµ, for all t ∈ TD.

As a consequence of the last lemma, one only needs to store the matrices Ut ∈ R
Iµ×kt

in the leaves t = {µ} ∈ L(TD) and the transfer tensors Bt ∈ R
kt×kt1×kt2 for all inner

nodes t = {t1, t2} ∈ TD \ L(TD) in order to represent a tensor in Hk. The complexity
for this representation then sums up to O((d − 1)k3 + dkn), where k := maxt∈TD kt,
n := maxµ∈D#Iµ.

2.3 Tensor Approximation

Let A ∈ R
I be defined by the values of its entries A(i1,...,id). Given ε > 0, we look for a

tensor Ã ∈ Hk with an appropriately chosen hierarchical rank k such that ‖A− Ã‖2 ≤ ε.
For moderate sizes nd, n := maxµ∈D#Iµ, it is still possible to compute and store all
entries of A. This full representation can then be used to find an approximation in Hk.
For large sizes nd, we can no longer compute and store all entries of A. We therefore
have to find an approximation of A in Hk from a subset of its entries in a black box
fashion.

6

Approximation from Full Representation to Hk

The approximation of a tensor A ∈ R
I from its full representation to a tensor Ã ∈ Hk

has been investigated in [9, 5]. Let TD be a dimension tree and assume that for ε > 0
there exists a best approximation Abest ∈ Hk of hierarchical rank k = (kt)t∈TD with the
property

‖A−Abest‖2 ≤ ε.

Then Remark 3.12 from [5] shows that by means of a hierarchical singular value decom-
position it is possible to construct an approximation Ã ∈ Hk of the best approximation
with hierarchical rank k and the property

‖A− Ã‖2 ≤
√
2d− 3‖A−Abest‖2 ≤

√
2d− 3ε.

The complexity for the hierarchical singular value decomposition is bounded by

O
(

dnd+1 + dk2nd
)

,

where k := maxt∈TD kt, n := maxµ∈D#Iµ. For given ε > 0, the necessary hierarchical
rank k can be determined adaptively by standard linear algebra tools like the SVD.

Black Box Approximation to Hk

In [2] we have introduced a heuristic algorithm for the approximation of a tensor A ∈ R
I

in Hk which is given by the evaluation of a function

A(i1,...,id) := f(ξ1,i1 , . . . , ξd,id), iµ ∈ Iµ, µ = 1, . . . , d.

The algorithm is based on the construction of low rank approximations of the matricisa-
tions of A by inspecting only very few tensor entries. Given a balanced dimension tree
TD of depth log(d), the number of required function evaluations is bounded by

O
(

dk3 + d log(d)k2n
)

,

where k := maxt∈TD kt, n := maxµ∈D#Iµ. The algorithm is rank-adaptive in the
sense that it finds the necessary hierarchical rank k = (kt)t∈TD for the representation of
Ã ∈ Hk with Ã ≈ A automatically to guarantee a (heuristic) accuracy of

‖A− Ã‖∞ ≤ ε.

The overall complexity for the setup of Ã ∈ Hk is bounded by

O
(

dk4 + d log(d)k2n
)

.

Despite its heuristic nature, the proposed black box strategy has produced reliable and
accurate results in a number of numerical examples, cf. [2, 1].

7

3 Approximate Evaluation of Integrals

In the following, we introduce an efficient scheme for the evaluation of

f(a) :=

∫

X(a)

∫

Y (a)
ϕ(x)κ(x, y)ψ(y) dy dx (9)

which is based on an appropriately chosen parametrisation of the cuboids X(a), Y (a)
in terms of a parameter vector a ∈ I ⊂ R

p. In a first step, the functions ϕ,ψ are
interpolated within the cuboids X,Y . Secondly, we apply a multivariate interpolation
scheme in the parameter space I ⊂ R

p. In a third step, we approximate the resulting
interpolation function by a tensor-structured expression which allows for an efficient
evaluation.

3.1 Interpolation

Let X,Y ⊂ R
3 be cuboids of the form (2) and let ϕ,ψ be polynomials of fixed maximal

degree on X,Y , respectively. We can express ϕ,ψ in the form

ϕ(x) =

mX
∑

i1=0

mX
∑

i2=0

mX
∑

i3=0

ϕ
(

ξX1

i1
, ξX2

i2
, ξX3

i3

)

3
∏

µ=1

L
Xµ
iµ

(xµ),

ψ(y) =

mY
∑

j1=0

mY
∑

j2=0

mY
∑

j3=0

ψ
(

ξY1j1 , ξ
Y2
j2
, ξY3j3

)

3
∏

µ=1

L
Yµ
jµ
(yµ)

with interpolation points ξ
Xµ
iµ

∈ Xµ, ξ
Yµ
jµ

∈ Yµ and Lagrange polynomials L
Xµ
iµ

: Xµ → R,

L
Yµ
jµ

: Yµ → R of order mX ,mY , respectively. We may then write (9) in the form

f(a) =

mX
∑

i=0

mY
∑

j=0

viwjfi,j(a) (10)

with
vi := ϕ

(

ξX1

i1
, ξX2

i2
, ξX3

i3

)

, wj := ψ
(

ξY1j1 , ξ
Y2
j2
, ξY3j3

)

(11)

and

fi,j(a) :=

∫

X(a)

∫

Y (a)
LXi (x)κ(x, y)LYj (y) dxdy, (12)

where mX := (mX ,mX ,mX), mY := (mY ,mY ,mY), and

LXi (x) :=
3
∏

µ=1

L
Xµ
iµ

(xµ), LYj (y) :=
3
∏

µ=1

L
Yµ
jµ
(yµ).

Note that for a fixed kernel function κ, the functions fi,j from (12) do no longer depend
on the specific choice of ϕ,ψ but only on the geometric shapes of the cuboids X,Y . An

8

interpolation of fi,j in the geometric parameter space I now reads

fi,j(a) ≈ I
I
mI

[fi,j](a) =

mI
∑

ℓ1=0

· · ·
mI
∑

ℓp=0

fi,j(ξ
I1
ℓ1
, . . . , ξ

Ip
ℓp
)

p
∏

µ=1

L
Iµ
ℓµ
(aµ). (13)

The values of fi,j at the interpolation points define a d-dimensional tensor A ∈ R
I ,

d := p+ 6, with index set I := I1 × . . . × Id where

I1 = I2 = I3 = {0, . . . ,mX},
I4 = I5 = I6 = {0, . . . ,mY }, (14)

I7 = . . . = Id = {0, . . . ,mI}.

The entries of A are given by

A(i,j,ℓ) := fi,j(ξ
I1
ℓ1
, . . . , ξ

Ip
ℓp
), ℓ = (ℓ1, . . . , ℓp). (15)

It is clear that an efficient scheme can only be obtained if a structured and data-sparse
representation of the tensor A is available.

3.2 Tensor Structured Evaluation

The representation of the function f from (10) involves three-dimensional coupling terms
of the form (11). In order to fully profit from a tensor-structured approach, we need to
make an additional assumption on the functions ϕ,ψ.

Assumption 5. The functions ϕ : X → R, ψ : Y → R, have separable representations
of the form

ϕ(x) =

rϕ
∑

s=1

3
∏

µ=1

ϕµ,s(xµ), ψ(y) =

rψ
∑

s=1

3
∏

µ=1

ψµ,s(yµ).

Such a representation becomes particularly attractive whenever rϕ ≪ (mX + 1)3, or
rψ ≪ (mY + 1)3. Under Assumption 5, the coefficients from (11) can be written in the
form

v(i1,i2,i3) =

rϕ
∑

s=1

3
∏

µ=1

(vµ)iµ,s, (vµ)iµ,s := ϕµ,s(ξ
Xµ
iµ

),

w(j1,j2,j3) =

rψ
∑

s=1

3
∏

µ=1

(wµ)jµ,s, (wµ)jµ,s := ψµ,s(ξ
Yµ
jµ

).

We can then express (10) as

f(a) =

rϕ
∑

s1=1

rψ
∑

s2=1

f̂(s1,s2)(a) (16)

9

with

f̂(s1,s2)(a) :=

mX
∑

i1=0

mX
∑

i2=0

mX
∑

i3=0

mY
∑

j1=0

mY
∑

j2=0

mY
∑

j3=0

fi,j(a)

3
∏

µ=1

((vµ)iµ,s1(wµ)jµ,s2). (17)

The main task is now to evaluate a single term f̂ = f̂(s1,s2) from (16) at a fixed point
a ∈ I in a structured way.

Let DX := {1, 2, 3}, DY := {4, 5, 6}, DI := {7, . . . , p + 6}, and D := DX ∪DY ∪DI .
Moreover, let TD be a dimension tree according to Definition 2. We assume that the
tensor A ∈ R

I from (15) can be approximated by a tensor Ã ∈ R
I represented in

hierarchical format with hierarchical rank k := (kt)t∈TD , i.e. Ã ∈ Hk. Then Ã can be
represented recursively by

(Ut)·,j =

kt1
∑

j1=1

kt2
∑

j2=1

(Bt)j,j1,j2(Ut1)·,j1 ⊗ (Ut2)·,j2 , j = 1, . . . , kt,

for all t ∈ TD \ L(TD) with sons(t) = {t1, t2} and final representation Ã = (UD)·,1.
First note that for each µ ∈ DX ∪DY , there appears a single sum in expression (17).

Equivalently, for each µ ∈ DI , there appears a single sum in expression (13). Due to the
multilinearity of the tensor product, each of these sums can be moved to a leaf t ∈ L(TD)
for which t = {µ}. This observation immediately leads to an efficient recursive evaluation
scheme.

Evaluation in the Leaves

Let t = {µ} ∈ L(TD). We then define ut ∈ R
kt by

(ut)j :=
∑

i∈Iµ

cµ,i(Ut)i,j , j = 1, . . . , kt, (18)

where

cµ,i :=











(vµ)i,s1 , µ ∈ DX ,

(wµ−3)i,s2 , µ ∈ DY ,

L
Iµ−6

i (aµ−6), µ ∈ DI .

(19)

For µ ∈ DX ∪DY , the evaluation of the vector ut requires O(kt ·#Iµ) operations. For
µ ∈ DI , the same complexity can be obtained by using Horner’s scheme applied to
Newton’s divided differences (which can be precomputed).

Evaluation in the Inner Nodes

Let t ∈ TD \ L(TD) with sons(t) = {t1, t2}. Assume that vectors ut1 ∈ R
kt1 , ut2 ∈ R

kt2

have been computed for the sons of t. Then a new vector ut ∈ R
kt is defined by

(ut)j :=

kt1
∑

j1=1

kt2
∑

j2=1

(Bt)j,j1,j2(ut1)j1(ut2)j2 , j = 1, . . . , kt.

The evaluation of the vector ut requires O(ktkt1kt2) operations.

10

Final Representation

The final value is obtained by the vector uD ∈ R
1 in the root of TD, i.e.

f̂(a) ≈ (uD)1.

The complexity for the evaluation at all inner nodes sums up to O((d − 1)k3), k :=
maxt∈TD kt. Adding the computational costs for the evaluation at the leaf nodes, we end
up with an overall complexity of O((d− 1)k3 + dkn), n := max{#Iµ : µ ∈ D}.

A Refined Strategy

So far, the evaluation of a single term from (16) has been discussed. A straightforward
summation over all involved terms therefore leads to a computational cost of O(rϕrψ((d−
1)k3 + dkn)) operations for the evaluation of a single integral value. However this is not
optimal since we can easily identify a repeated computation of the same data that refer
to the parameter vector a ∈ I describing the geometric configuration of the cuboids.

First note that whenever µ ∈ DI , the vectors ut, t = {µ} ∈ L(TD), from (18) do not
change for all rϕrψ terms in (16). Once they are computed, we can reuse them in all
computations involving different values of the coefficients cµ,i from (19) for µ ∈ DX∪DY .
The evaluation in the leaves t = {µ} for µ ∈ DI requires O(pkn) operations. Then the
summations at the inner nodes t ∈ TD \L(TD) for which t∩D3 6= ∅ can be carried out in
O(pk3). All further evaluations then require only O(5k3 + 6kn) operations. The overall
cost is therefore O(pk3 + pkn+ rϕrψ(5k

3 + 6kn)).

4 Parametrisation of Cuboids

The aim of this section is to find parametrisations of the cuboidsX(a), Y (a) in such a way
that the function fi,j from (12) is smooth for all a ∈ I ⊂ R

p. Given a fixed coordinate
system, each cuboid can be described in terms of its corners by a 6-dimensional parameter
tuple. Therefore, in general, we have to deal with a 12-dimensional parameter space I.
However, we are not always forced to use a fixed coordinate system to describe the
geometrical setting. If the integral value does not change under certain coordinate
transformations, a local coordinate system which requires less parameters is sufficient to
describe the relative position of the cuboids. Moreover, if the two cuboids intersect, a
further reduction of the dimension of the parameter space is possible.

Local Coordinate Systems

A local coordinate system can be defined by taking advantage of the properties of the
kernel function κ.

Definition 6 (kernel properties). We call κ : R3 × R
3 → R

(a) translationally invariant if for all c ∈ R
3

κ(x+ c, y + c) = κ(x, y), x, y ∈ R
3, (20)

11

(b) homogeneous of degree α if for all λ > 0

κ(λx, λy) = λακ(x, y), x, y ∈ R
3. (21)

In the following, we assume that κ is at least translationally invariant. W.l.o.g., we
may therefore assume that the cuboids X,Y from (2) are defined by

Xµ = [0,Xµ,2], Yµ = [Yµ,1, Yµ,2], µ = 1, 2, 3.

Note that the Lagrange polynomials in expression (12) do not change under translations
of the coordinate system since they were defined with respect to the cuboids X,Y .

Given a suitable local numbering of the coordinate directions µ = 1, 2, 3, the following
five situations may occur in a standard conforming mesh:

1. the case of identical cuboids X = Y which leads to a parameter space of dimension
p = 3,

2. the case of cuboids with a common face with Y2,1 = Y3,1 = 0 and Y1,1 = X1,2,
Y2,2 = X2,2, Y3,2 = X3,2 which leads to a parameter space of dimension p = 4,

3. the case of cuboids with a common edge with Y3,1 = 0 and Y1,1 = X1,2, Y2,1 = X2,2,
Y3,2 = X3,2 such that p = 5,

4. the case of cuboids with a common vertex wih Y1,1 = X1,2, Y2,1 = X2,2, Y3,1 = X3,2

such that p = 6, and finally

5. the case of disjoint cuboids such that p = 9.

In all five cases, a parametrisation of the cuboidsX,Y by a parameter tuple a ∈ I ⊂ R
p

can be obtained in a straighforward way.

The Case of Identical Cuboids

The parameter space is of dimension p = 3. We set

X1,2 := a1,

X2,2 := a2,

X3,2 := a3. x1

x2

x3

The Case of Cuboids with a Common Face

The parameter space is of dimension p = 4. We set

X1,2 := a1, Y1,2 := a1 + a4,

X2,2 := a2,

X3,2 := a3. x1

x2

x3

12

The Case of Cuboids with a Common Edge

The parameter space is of dimension p = 5. We set

X1,2 := a1, Y1,2 := a1 + a4,

X2,2 := a2, Y2,2 := a2 + a5,

X3,2 := a3. x1

x2

x3

The Case of Cuboids with a Common Vertex

The parameter space is of dimension p = 6. We set

X1,2 := a1, Y1,2 := a1 + a4,

X2,2 := a2, Y2,2 := a2 + a5,

X3,2 := a3, Y3,2 := a3 + a6.

x1

x2

x3

The Case of Disjoint Cuboids

The parameter space is of dimension p = 9. We set

X1,2 := a1, Y1,1 := a1 + a7, Y1,2 := a1 + a4 + a7,

X2,2 := a2, Y2,1 := a2 + a8, Y2,2 := a2 + a5 + a8,

X3,2 := a3, Y3,1 := a3 + a9, Y3,2 := a3 + a6 + a9.

x1

x2

x3

Note that all parametrisations have been chosen in such a way that one can easily de-
fine suitable parameter spaces I ⊂ R

p such that reasonable geometric configurations can
be guaranteed for all a = (a1, . . . , ap) ∈ I. Moreover, the smoothness of the parametri-
sation of the corners of the cuboids X,Y guarantees the smoothness of the function fi,j
from (12) for all a ∈ I. This result directly follows from basic tools from shape calculus
mimicking the proof in [1] which is not repeated here.

5 Hierarchical Quadrature

The construction of a data-sparse approximation of the tensor A from (4) at least requires
the ability of evaluating entries of A at given indices. Since each entry of A corresponds to
the evaluation of a singular integral, this is a challenging task itself. Here, we focus on the
technique of hierarchical quadrature which was introduced for the one-dimensional case
in [4]. A key feature of this approach is to express singular integrals in terms of regular
ones by the solution of an appropriately chosen (simple) linear system. In [10, 11], we

13

could generalise this method to the computation of multidimensional singular integrals
over hypercubes.

In the following, we sketch the main idea of hierarchical quadrature by a simple one-
dimensional example which can also be found in [4]. We assume that the kernel function
κ is translationally invariant (20) and homogeneous of degree α (21). To simplify the
presentation, let the orders of the Lagrange polynomials in (12) by given by m := mX =
mY .

One-Dimensional Case

In the one-dimensional case, we have to compute integrals

fi,j :=

∫

X

∫

Y
LXi (x)κ(x, y)L

Y
j (y) dy dx

over intervals X := [αx, βx], Y := [αy, βy]. In order to transform the integral to the
reference domain [0, 1]2, we introduce mappings

Φ(x) := x(βx − αx),

Ψ(y) := y(βy − αy).

We first consider the case of identical elements, i.e. when X = Y . Due to (20), we may
then write

fi,j = cdet

∫ 1

0

∫ 1

0
LXi (αx +Φ(x))κ(αx +Φ(x), αy +Ψ(y))LYj (αy +Ψ(y)) dy dx

= cdet

∫ 1

0

∫ 1

0
Li(x)κ(Φ(x),Ψ(y))Lj(y) dy dx,

where cdet := |detΦ′| |detΨ′| and Li := L
[0,1]
i . For Ω ⊂ Ω0 := [0, 1]2, we introduce

integrals

f
Ω,(λ,ν)
i,j :=

∫∫

Ω
Li(x)κ(Φ(λx),Ψ(νy))Lj(y) dy dx, (22)

where λ, ν ∈ {−1, 1}. With this notation, we have

fi,j = cdetf
Ω0,(1,1)
i,j .

The domain Ω0 is split into four subdomains

Ω1 := [0, 12]× [0, 12], Ω2 := [0, 12]× [12 , 1], Ω3 := [12 , 1] × [0, 12], Ω4 := [12 , 1] × [12 , 1],

such that Ω0 = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4. Omitting the constant cdet, the integral can now be
represented by the sum

f
Ω0,(λ,ν)
i,j = f

Ω1,(λ,ν)
i,j + f

Ω2,(λ,ν)
i,j + f

Ω3,(λ,ν)
i,j + f

Ω4,(λ,ν)
i,j . (23)

14

For λ = ν = 1, all four terms are again singular. Our aim is now to express the integrals
on the right-hand side of (23) in terms of integrals of the form (22) with Ω = Ω0. Due
to (21), we can write the first term as

f
Ω1,(1,1)
i,j = chom

∫∫

Ω0

Li

(x

2

)

κ(Φ(x),Ψ(y))Lj

(y

2

)

dy dx

with chom := 1
4

(

1
2

)α
. In order to get rid of the factor 1

2 within the arguments of the

Lagrange polynomials, we introduce transfer matrices T δ ∈ R
(m+1)×(m+1) by

T δi,j := Li

(

ξ
[0,1]
j + δ

2

)

, δ = 0, 1.

Clearly,

Li

(

x+ δ

2

)

=
m
∑

s=0

T δi,sLs(x).

We can therefore write

f
Ω1,(1,1)
i,j = chom

m
∑

s=0

m
∑

t=0

T 0
i,sT

0
j,tf

Ω0,(1,1)
s,t .

Analogously, we get for the fourth term from (23)

f
Ω4,(1,1)
i,j = chom

m
∑

s=0

m
∑

t=0

T 1
i,sT

1
j,tf

Ω0,(1,1)
s,t .

The second term from (23) reads

f
Ω2,(1,1)
i,j =

∫ 1/2

0

∫ 1

1/2
Li (x)κ(Φ(x),Ψ(y))Lj (y) dy dx

=

∫ 1/2

0

∫ 1/2

0
Li

(

1

2
− x

)

κ

(

Φ

(

1

2
− x

)

,Ψ

(

y +
1

2

))

Lj

(

y +
1

2

)

dy dx

= chom

∫ 1

0

∫ 1

0
Li

(

1− x

2

)

κ(Φ(−x),Ψ(y))Lj

(

y + 1

2

)

dy dx

= chom

∫ 1

0

∫ 1

0
Lm−i

(

x+ 1

2

)

κ(Φ(−x),Ψ(y))Lj

(

y + 1

2

)

dy dx

= chom

m
∑

s=0

m
∑

t=0

T 1
m−i,sT

1
j,tf

Ω0,(−1,1)
s,t .

Equivalently, the third term from (23) can be expressed by

f
Ω3,(1,1)
i,j = chom

m
∑

s=0

m
∑

t=0

T 1
i,sT

1
m−j,tf

Ω0,(1,−1)
s,t .

15

The terms f
Ω0,(−1,1)
i,j and f

Ω0,(1,−1)
i,j represent integrals over point singularities. With the

same splitting strategy as before, these terms can be expressed as a sum of the form
(23). Now, only the first term in the sum is singular for which we can derive

f
Ω1,(−1,1)
i,j = chom

m
∑

s=0

m
∑

t=0

T 0
i,sT

0
j,tf

Ω0,(−1,1)
s,t .

And equivalent expression holds for f
Ω1,(1,−1)
i,j .

The relation between the different integral values can now be expressed by the linear
system

(Id−chomM)f = b (24)

with

M :=





M1,1 M1,2 M1,3

0 M2,2 0
0 0 M3,3



 , f :=





fΩ0,(1,1)

fΩ0,(−1,1)

fΩ0,(1,−1)



 , b :=





0
b2

b3



 ,

where

M1,1 := T 0 ⊗ T 0 + T 1 ⊗ T 1, M1,2 := JT 1 ⊗ T 1, M1,3 := T 1 ⊗ JT 1,

M2,2 =M3,3 := T 0 ⊗ T 0,

and
b2i,j := f

Ω0\Ω1,(−1,1)
i,j , b3i,j := f

Ω0\Ω1,(1,−1)
i,j .

Here, J ∈ R
(m+1)×(m+1) with Ji,j := δi,m−j , i, j = 0, . . . ,m, denotes the standard flip

matrix.
The sytem (24) is non-singular as long as α 6= −1,−2 (cf. [10]). Note that the

right-hand side b contains only regular integrals which can be computed by standard
quadrature routines. The first block of the solution vector f comprises the integral values

f
Ω0,(1,1)
i,j for all indices i, j = 0, . . . ,m.
Let us now consider the case of two elements sharing a single point, i.e. βx = αy or

αx = βy. In the first case, we can write

fi,j = cdet

∫ 1

0

∫ 1

0
LXi (βx +Φ(−x))κ(βx +Φ(−x), αy +Ψ(y))LYj (αy +Ψ(y)) dy dx

= cdet

∫ 1

0

∫ 1

0
Li(1− x)κ(Φ(−x),Ψ(y))Lj(y) dy dx

= cdet

∫ 1

0

∫ 1

0
Lm−i(x)κ(Φ(−x),Ψ(y))Lj(y) dy dx

= cdetf
Ω0,(−1,1)
m−i,j .

The values f
Ω0,(−1,1)
i,j may be obtained from a simple linear system which corresponds to

the second row of the block system (24).

16

Multidimensional Case

The splitting strategy from the one-dimensional example can be generalised to the n-
dimensional case. For the details, we refer the reader to [10]. The linear system is then
again of the form (24) where M is an upper triangular block matrix

M =













M1,1 · · · · · · M1,s

0
. . .

...
...

. . .
. . .

...
0 · · · 0 M s,s













where each block Mσ,τ can be represented as

Mσ,τ =

r
∑

j=1

2n
⊗

µ=1

Mσ,τ
µ,j ,

with Mσ,τ
µ,j ∈ {0, T 0, T 1, JT 1}. The scaling constant is then given by chom =

(

1
2

)2n+α

such that (24) is non-singular for α 6= −2n + n′ with n′ = 0, . . . , n. Note that by an
alternative splitting strategy, the restrictions on the degree of the homogeneity α can be
avoided, cf. [11].

Solution of the Parameter Dependent System

So far, we have considered a fixed geometric configuration of the cuboids X and Y . If
we include the dependence on a parameter vector a ∈ I ⊂ R

p into our formulation, we
end up with a linear system of the form

(Id−chomM)f(a) = b(a).

After a discretisation of the parameter a in I, each block of b = [b1, . . . , bs]⊤ can be inter-
preted as a tensor bσ ∈ R

I with index set I from (14). This tensor may be approximated
in the hierarchical format Hk by the techniques presented in Section 2.3.

Since each block of the upper triangular system matrix possesses Kronecker product
structure, solution methods which explicitly exploit the tensor structure become appli-
cable. For a detailed investigation of these methods we refer the reader to [13] and the
references therein. In our application, we have used a truncated version of a GMRES
method to obtain the (approximate) solution f such that each block of f is represented
in the hierarchical format Hk. The first block of f then corresponds to the sought tensor
A from (4).

6 Numerical Examples

In this section, we analyse the numerical properties of our approximation scheme for the
evaluation of integrals of the form (1). The purpose of the chosen numerical examples is

17

two-fold. First, we demonstrate that the geometric parametrisation of cuboids in terms
of a parameter vector a ∈ I ⊂ R

p leads to functions of the form (12) which can be well
approximated by interpolation. Second, we show that the resulting tensor A ∈ R

I from
(4) possesses a data-sparse representation in the hierarchical format Hk.

In all numerical examples, we fix the order of the Lagrange polynomials from (12) by
mX = mY := 10. Using the parametrisations from Section 4, we define the parameter
space by I := [0.5, 2]p ⊂ R

p which accounts for typical geometrical configurations in a
volume mesh. In order not to overload the presentation, we restrict ourselves to kernel
functions κ of the form

κ(x, y) = ‖x− y‖α , α ∈ R.

In the singular case, we can then compute the tensor entries of A from (4) by hier-
archical quadrature. For the computation of the regular integrals and in the case of
disjoint cuboids, we use Gauss quadrature of sufficiently large order such that the rela-
tive quadrature error lies below 10−8.

To test the interpolation quality within the set I, we compute test integrals of the
form

∫

X

∫

Y

x1x2x3y1y2y3

‖x− y‖−α
dxdy

for 100 randomly chosen parameter samples from I. Note that for α = −1, an analytic
integration is possible [6] to which we can compare the results of our tensor structured
approach. For other values of α, we use a relatively high interpolation order of mI := 15
to test the interpolation error within I.

Once we have determined the required interpolation order mI to reach a given relative
accuracy of ε, we analyse the properties of the tensor A from (4). To this end, we first
determine a highly accurate approximation of A in the hierarchical format Hk from the
solution of the linear system (24), where the right-hand side has been determined by
the adaptive (but heuristic) black box strategy from [2]. This tensor is truncated to a
tensor Aε such that ‖A−Aε‖2 ≤ ε ‖A‖2. Depending on the accuracy ε, we monitor the
behaviour of the hierarchical rank of Aε. To facilitate the comparison of the hierarchical
ranks for different tensors, we compute the so-called effective rank keff which corresponds
to a storage complexity of Aε of size O((d − 1)k3eff + dkeff

∑d
µ=1 #Iµ).

For α = −1 and α = −2, we report our numerical results for the case of identical
cuboids in Table 1, for the case of cuboids with a common face in Table 2, for the case of
cuboids with a common edge in Table 3, for the case of cuboids with a common vertex
in Table 4, and in case of disjoint cuboids in Table 5. On the left-hand side, we observe
that in all five cases the interpolation error decays exponentially with the interpolation
order mI . On the right-hand side, we can see that the required effective rank keff for
the representation of the truncated tensor Aε increases only mildly with the accuracy ε.
This means that even for high accuracies, functions of the type (12) can be approximated
in a structured and data-sparse way.

18

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 2 4 6 8 10

in
te

rp
ol

at
io

n
er

ro
r

interpolation order mI

identical cuboids

alpha = -1
alpha = -2

α = −1 α = −2
ε mI keff mI keff

1e-03 3 6.8 3 6.9
1e-04 4 7.4 4 7.6
1e-05 5 8.4 6 8.4
1e-06 6 9.0 7 9.3
1e-07 7 9.9 8 10.4

Table 1: Identical cuboids with p = 3. Left: interpolation error. Right: interpolation or-
dersmI and ranks keff of the tensor approximation toHk for different accuracies
ε.

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 2 4 6 8 10

in
te

rp
ol

at
io

n
er

ro
r

interpolation order mI

cuboids with a common face

alpha = -1
alpha = -2

α = −1 α = −2
ε mI keff mI keff

1e-03 3 5.6 4 6.8
1e-04 4 6.8 5 8.0
1e-05 5 8.0 7 9.0
1e-06 7 9.7 9 10.2
1e-07 8 11.9 10 12.2

Table 2: Cuboids with a common face with p = 4. Left: interpolation error. Right:
interpolation orders mI and ranks keff of the tensor approximation to Hk for
different accuracies ε.

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 2 4 6 8 10

in
te

rp
ol

at
io

n
er

ro
r

interpolation order mI

cuboids with a common edge

alpha = -1
alpha = -2

α = −1 α = −2
ε mI keff mI keff

1e-03 3 4.3 4 5.8
1e-04 4 5.8 5 7.7
1e-05 5 7.5 6 9.1
1e-06 6 8.8 7 10.5
1e-07 7 11.7 8 12.2

Table 3: Cuboids with a common edge with p = 5. Left: interpolation error. Right:
interpolation orders mI and ranks keff of the tensor approximation to Hk for
different accuracies ε.

19

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 2 4 6 8 10

in
te

rp
ol

at
io

n
er

ro
r

interpolation order mI

cuboids with a common vertex

alpha = -1
alpha = -2

α = −1 α = −2
ε mI keff mI keff

1e-03 3 3.4 3 4.7
1e-04 4 4.9 4 6.6
1e-05 5 6.6 5 8.4
1e-06 6 8.2 7 10.1
1e-07 7 10.1 8 11.6

Table 4: Cuboids with a common vertex with p = 6. Left: interpolation error. Right:
interpolation orders mI and ranks keff of the tensor approximation to Hk for
different accuracies ε.

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 2 4 6 8 10

in
te

rp
ol

at
io

n
er

ro
r

interpolation order mI

disjoint cuboids

alpha = -1
alpha = -2

α = −1 α = −2
ε mI keff mI keff

1e-03 2 2.8 3 3.0
1e-04 3 3.4 4 4.1
1e-05 4 4.2 5 5.0
1e-06 5 5.2 6 6.0
1e-07 6 6.5 7 7.3

Table 5: Disjoint cuboids with p = 9. Left: interpolation error. Right: interpolation or-
dersmI and ranks keff of the tensor approximation toHk for different accuracies
ε.

7 Conclusion

In this article, we have introduced a tensor-structured scheme for the evaluation of
singular volume integral over cuboids. The key ingredient of our approach was the
interpretation of singular integrals as high-dimensional functions to which data-sparse
tensor approximations can be applied. For a number of standard numerical examples,
we have shown that data-sparsity can be maintained even for high accuracies. This
means that highly accurate integral values can be obtained by a small number of simple
arithmetic operations in a fast and stable way.

As was already shown in [1], it is possible to include further parameters into our
formulation, as e.g. the wave number for Helmholtz problems. This approach can be
used for a simultaneous approximation of singular integral values for a fixed parameter
range. Moreover, we would like to stress that our scheme is not restricted to integrals
over cuboids. One can also generalise our method to singular integrals over tetrahedra.
However, in this case the appropriate choice of the geometric parameters is much more

20

challenging and is left for further investigations.

References

[1] J. Ballani. Fast evaluation of singular BEM integrals based on tensor approxima-
tions. Numer. Math., 121(3):433–460, 2012.

[2] J. Ballani, L. Grasedyck, and M. Kluge. Black box approximation of tensors in
hierarchical Tucker format. Linear Algebra Appl., to appear.

[3] C. Bertoglio and B. N. Khoromskij. Low-rank quadrature-based tensor approxi-
mation of the Galerkin projected Newton/Yukawa kernels. Comput. Phys. Comm.,
183(4):904–912, 2012.

[4] S. Börm and W. Hackbusch. Hierarchical quadrature of singular integrals. Com-

puting, 74:75–100, 2005.

[5] L. Grasedyck. Hierarchical singular value decomposition of tensors. SIAM J. Matrix

Anal. Appl., 31:2029–2054, 2010.

[6] W. Hackbusch. Direct integration of the Newton potential over cubes. Computing,
68(3):193–216, 2002.

[7] W. Hackbusch. Entwicklungen nach Exponentialsummen. Preprint 4/2005, Max
Planck Institute for Mathematics in the Sciences, 2005.

[8] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus. Springer, Berlin,
2012.

[9] W. Hackbusch and S. Kühn. A new scheme for the tensor representation. J. Fourier
Anal. Appl., 15(5):706–722, 2009.

[10] P. Meszmer. Hierarchical quadrature for multidimensional singular integrals. J.

Numer. Math., 18(2):91–117, 2010.

[11] P. Meszmer. Hierarchical quadrature for multidimensional singular integrals – part
II. Preprint xx/2012, Max Planck Institute for Mathematics in the Sciences, 2012.

[12] I. V. Oseledets and E. E. Tyrtyshnikov. Breaking the curse of dimensionality, or
how to use SVD in many dimensions. SIAM J. Sci. Comp., 31(5):3744–3759, 2009.

[13] C. Tobler. Low-rank Tensor Methods for Linear Systems and Eigenvalue Problems.
PhD thesis, ETH Zürich, 2012.

21

