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Abstract

In a previous part I, we introduced a method for the evaluation of singular integrals
arising in the discretization of integral equations based on the repeated subdivision
of domains. The integrals defined on these subdomains are classified such that a
class of integrals can be expressed as a sum of regular integrals and representatives
of other classes. A system of equations describes the relations between the classes.
Furthermore the approximate value of the singular integrals only depends on the
accuracy of the calculation of regular integrals. Part I left a gap on certain parameter
configurations on which the mentioned system of equations is irregular. This paper
shall close this gap. To this end, we introduce an alternative splitting strategy based
on a modified Hadamard partie finie integral.

AMS Subject Classifications: 65D32, 42B20.
Keywords: Numerical cubature, singular integrals.

1 Introduction

Let us consider integrals as they arise in the discretization of integral equations. In
simplified notation, terms of the form

I=
∫

Dx

∫
Dy
‖x− y‖α dydx or I=

∫
Dx

∫
∂Dy
‖x− y‖α dydx (1)

over domains Dx, Dy ⊂ Rn appear.
I is integrable for all α ∈ R, if the distance between the domains Dx and Dy is strictly

positive. Likewise the integral is regular, if α ∈ 2N0. In this case the integral can be
evaluated exactly or treated by standard quadrature techniques [11], [3].

∗Max Planck Institute for Mathematics in the Sciences, Inselstr. 22-26, D-04103 Leipzig, Germany. Email:
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Therefore we want to consider the case α ∈ R\2N0 in which Dx and Dy share at least
one common point. If −1 <α < 0, the kernel function is improperly integrable. If α≤−1
the integrals are strongly singular and I has to be interpreted as a partie finie integral in
the sense of Hadamard [6], [4], [7]. Our assumptions are explained for

I=
∫

Dx

∫
Dy

κ(x,y) dydx (2)

with a kernel κ satisfying particular conditions.
In [8] we adapt the method given in [2] to arbitrary dimensions n for cubical domains

and to n ≤ 3 for simplicial ones. But it cannot be applied to certain hypersingular inte-
grals. For example, if an n-dimensional element and an m-dimensional element share a
d-dimensional face, we are restricted to α 6= −(n+m)+ d∗, ∀d∗ = d . . .0. In the case of
n = m = 1, [2] introduces a solution to the problem in the form of an alternative splitting
strategy. This is based on the concept of Hadamard integrals and cannot be generalized
to higher dimensions as it would require the use of curved subdomains.

With this paper we shall close this gap by replacing the Euclidean norm used in the
definition of Hadamard integrals by the maximum norm. So the concepts given in [2]
can be used for higher dimensions as well.

2 Basic definitions

The hierarchical quadrature mainly exploits two characteristics of the integrand κ(x,y),
denoted as translation invariance and homogeneity. Both are defined as follows.

Definition 2.1 (translational invariance)
A kernel κ(x,y) is called translational invariant, if it satisfies

κ(x,y) = κ(x+ c,y+ c) (c ∈ Rn) . (3)

Definition 2.2 (homogeneity)
A kernel κ(x,y) is called homogeneous, if it satisfies

κ(x,y) = sg
κ(sx,sy) (s ∈ R>0) , (4)

where g ∈ R is the degree of homogeneity. Typically the parameters g and −α from (1)
will coincide.

Furthermore, κ is assumed to be sufficiently smooth outside a neighborhood of the
possible singularity at x = y. A useful characterization of the smoothness is given by the
asymptotic smoothness (confer for instance [5]).
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Definition 2.3 (asymptotic smoothness)
The kernel κ(x,y) is called asymptotically smooth, if there are constants h0, h1 ∈R>0 such
that

|∂ν
x∂

µ
yκ(x,y)| ≤ h1(h0)

|ν+µ|(µ+ν)! ‖ x− y ‖−g−|ν+µ| (5)

holds for all multi-indices ν ∈ Nn
0, µ ∈ Nm

0 , and g ∈ R as mentioned in Definition 2.2.

Remark 2.4 (on the regularity of the grid)
We consider integrals as they arise in the discretization of integral equations. Therefore we
assume that the domains Dx, Dy originate from a regular grid without hanging nodes. Two
domains can either have a positive distance, share a common face (edge, vertex, ... ) or are
identical.

The next definition clarifies the designation of pairs of domains.

Definition 2.5 (regular and singular pairs of domains)
A pair of two domains is called regular, if the distance between the domains is strictly
positive. Otherwise it is called singular. The dimension of the common face in the
singular case is denoted by d ≥ 0. The set of regular pairs is denoted by Γreg and the set
of singular pairs sharing a common d-dimensional face is denoted by Γd .

Pairs of domains can be classified using equivalence classes. The underlying equiva-
lence relation is defined next.

Definition 2.6 (equivalence of domains and of pairs of domains)
We call two domains ρ, σ⊂Rn equivalent, if a bijective transformation Φ : Rn→Rn exists
satisfying

Φ(σ) = ρ (6)

where Φ is a mapping given by

x = Φ(x̂) = t + cIx̂ (x ∈ ρ, x̂ ∈ σ),

with a constant vector t ∈ Rn, a constant c ∈ R, and the identity matrix I. The transfor-
mation Φ allows scaling and translation of elements but no rotations.

Furthermore, we call two pairs of domains ρ1×ρ2 and σ1×σ2 equivalent, if

Φ(σ1) = ρ1,
Φ(σ2) = ρ2

(7)

holds with the same mapping Φ.

Let us now recall the most important ideas of hierarchical quadrature.

3 Basic concepts of hierarchical quadrature

This section gives a short summarization of [8], collecting only the basic facts and ideas
of hierarchical quadrature.
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3.1 Hypercubical domains

Consider an arbitrary axis-aligned n-cube C. The n-dimensional reference cube γ n :=
[0,1]n can be mapped to C by a linear transformation ΦC. Due to this mapping we can
transform the integral I to an integral over n- and m-dimensional reference elements and
write

I=
∫

Cx

∫
Cy

κ(x,y) dydx = c1

∫
γ n

∫
γ m

κγ(x̂, ŷ,0,0) dŷdx̂ (8)

with
κγ(x̂, ŷ,υx,υy) := κ

(
ΦCx

(x̂)+υx,ΦCy
(ŷ)+υy

)
= κ(x+υx,y+υy) (υx,υy ∈ Rn)

(9)

and c1 being the product of the Jacobian determinants of ΦCx
: Rn→ Rn and ΦCy

: Rm→
Rn, w.l.o.g. n≥ m > 0.

Remark 3.1 (on the subdivision of n-cubes)
Any n-cube C given by its vertices {v1, . . . ,v2n} can be subdivided into 2n subcubes:

C1 = conv{v1,v12, . . . ,v1,2n}
C2 = conv{v21,v2,v23, . . . ,v2,2n}

...
C2n−1 = conv{v2n−1,1, . . . ,v2n−1,2n−2,v2n−1,v2n−1,2n}
C2n = conv{v2n,1, . . . ,v2n−1,2n ,v2n}

with vi j := vi+v j
2 denoting the midpoint between two vertices vi and v j.

Remark 3.2 (on equivalent elements)
Let Cx ⊂ Rn and Cy ⊂ Rm be two arbitrary hypercubes embedded in Rn sharing a common
d-dimensional face, so w.l.o.g.: n≥ m≥ d ≥ 0 and m > 0, with a labeling as follows:

Cx = conv{v1, . . . ,v2d ,vx
2d+1, . . . ,v

x
2n},

Cy = conv{v1, . . . ,v2d ,vy
2d+1, . . . ,v

y
2m}.

Furthermore let these elements be subdivided according to the rules mentioned in Remark
3.1. Then for the pairs Cx

i ×Cy
i , i ∈ {1, . . . ,2d}, there exists a labeling such that these

elements are equivalent to Cx×Cy with respect to Definition 2.6 using c = 1
2 . An example is

given in Figure 1.

With the Remarks 3.1 and 3.2 in mind, we express the integral I as follows:

4



v2

v1

v3

v4

vy
2

vy
1

vy
3

vy
4

vx
2

vx
1

vx
3

vx
4

Figure 1: A possible labeling in the case of two cubes sharing a common 2-face.

I = 2dcI +c1 ∑
γ n

i ×γ m
j ∈Γreg

∫
γ n

i

∫
γ m

j

κγ(x̂, ŷ,0,0)dŷdx̂

+c1

d−1

∑
d∗=0

∑
γ n

i ×γ m
j ∈Γd∗

∫
γ n

i

∫
γ m

j

κγ(x̂, ŷ,0,0)dŷdx̂

=
c1

1−2dc

 ∑
γ n

i ×γ m
j ∈Γreg

∫
γ n

i

∫
γ m

j

κγ(x̂, ŷ,0,0)dŷdx̂

+
d−1

∑
d∗=0

∑
γ n

i ×γ m
j ∈Γd∗

∫
γ n

i

∫
γ m

j

κγ(x̂, ŷ,0,0)dŷdx̂


(10)

which is only valid for constants

c =
(

1
2

)n+m+α

, α 6=−(n+m)+d.

The sums on the right-hand side of (10) contain only regular terms and singular ones
of lower dimension. After a maximum of d applications of the method to the remaining
singular integrals, all singular parts can be expressed in terms of regular integrals.

In a further step, we introduce equivalence classes induced by the relation given in
Definition 2.6 to decrease the number of regular integrals and reuse already achieved
results. The number N of equivalence classes is given by

N =
d

∑
d∗=0

Nd∗ =
d

∑
d∗=0

2d−d∗
(

d
d∗

)
and the solution can be described by a system of linear equations of the form AÎ = b.
Each row of the N×N-matrix A = ai j|Ni, j=1, which has triangular structure if an appropri-
ate sorting of the equivalence classes is used, describes the representation of one integral
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Ii, i = 1 . . .N, defined on a representative of the class i in terms of all equivalence classes.
The diagonal and the off-diagonal elements read

aii = 1−2d∗c = 1−2d∗−n−m−α,
ai j =−ni jc,

where ni j reflects how often class j occurs in the representation of class i.
The vector Î stores the values of the remapped representatives Ii of the equivalence

classes which have to be determined, and each entry of b collects the values of the sum
of the regular integrals of the class in question. This method enables us to calculate the
value of the integral I for all α 6=−(n+m)+d∗, ∀d∗ = d . . .0.

3.2 Simplicial domains

The n-simplex T is the convex hull of a set of n+ 1 affinely independent points in Eu-
clidean space of dimension n or higher. Working with simplices is not as straightforward
as dealing with hypercubes as the splitting is more involved and the number of equiv-
alence classes is higher. Compare [8] for further details and examples. As before, the
singular integrals I,

I=
∫

T x

∫
T y

κ(x,y) dydx = c1

∫
τ n

∫
τ m

κτ(x̂, ŷ,0,0) dŷdx̂

with a kernel transformation as given in (9), may be mapped to the reference element
τ by the same method shown in Section 3.1 and expressed in terms of regular integrals
by means of a linear system. This system is again solvable with a unique solution for
α 6=−(n+m)+d∗, ∀d∗ = d . . .0.

4 Hadamard partie finie integrals

The methods described above cannot be applied to certain hypersingular integrals. The
paper [2] introduces a solution for the case n = m = 1, which is based on the concept of
Hadamard integrals and cannot be generalized to higher dimensions as it would require
the use of curved subdomains.

In the following sections we are going to overcome this problem by replacing the
Euclidean norm by the maximum norm in the definition of the Hadamard partie finie.
In this way, the concepts given in [2] can be used for higher dimensions as well.
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4.1 Concepts of Hadamard partie finie integrals

Let f (x) be a locally integrable and homogeneous1 function with degree g in R\{0} and
let f vanish for x < 0. Moreover let

I(ε) =
∫ a

ε

f (x)dx (a > ε > 0) .

Suppose furthermore, I(ε) can be written as

I(ε) = I0(ε)+ I∞(ε), (11)

with I∞(ε) = ∑
k
i=0 βiφi(ε), k := max{m ∈ Z|m≤−1−g} using coefficients βi ∈R and func-

tions φ1(ε) . . .φn(ε) being taken from a fixed set of functions which consists usually of
inverse powers of ε and logarithms yielding

lim
ε→0

I∞(ε) = ∞ (∀βi 6= 0) ,

while
lim
ε→0

I0(ε) = h ∈ R

exists. I0(ε) and I∞(ε) are called the finite and the infinite part of the integral
∫ a

0 f (x)dx.
The Hadamard partie finie is then defined as [4]

p.f.
∫ a

0
f (x)dx = h. (12)

This definition can be easily extended to a multidimensional integral by

p.f.
∫

Ω

f (x)dx = lim
ε→0

{∫
Ω\‖x‖2<ε

f (x)dx−
k

∑
i=0

βiφi(ε)

}
(13)

with k := max{m ∈ Z|m≤−dim(Ω)−g}, βi and φi(ε) as before. If the integral I exists in
regular sense or as a Cauchy principal value, one can show the identity of the expres-
sions.

4.2 Fixing the singularity by relative coordinates

In contrast to the notation used in (13), this paper is based on a double integral notation,
derived from the finite element method. This entails that the singularity is not obviously

1In general f (x) has to be only a pseudohomogeneous function [7] which is a slightly weaker definition
than postulated in Definition 2.2. But as we confined ourselves in this paper to homogeneous functions,
we shall use this definition here as well.
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located in the origin. Because of this the introduction of relative coordinates z as used
in [10] seems favorable.

Let Dx ⊂ Rn and Dy ⊂ Rm be domains embedded in Rn, D◦ ∈ {C,T}, ◦ ∈ {x,y}, with
a common d-dimensional face, w.l.o.g., n ≥ m ≥ d ≥ 0 and m > 0. Furthermore let
ΦDx

: ρn→Dx and ΦDy
: ρm→Dy be mappings defined on the reference elements ρ∈ {γ,τ}

to the corresponding domains as introduced before. We now focus on ΦDx (
ρn|x̂i

)
∩

ΦDy (
ρm|ŷi

)
= σ for i ∈ {1, . . . ,m}, xi ∈ ρn and yi ∈ ρm. Depending on the shape of σ

we distinguish the following cases:

1. σ is a line segment: One direction of z is given as ŷi− x̂i.

2. σ is a single point: One direction of z corresponds to x̂i and one to ŷi, respectively.

The following example describes the procedure. The dimension p of the relative coordi-
nates z is given by

p = n+m−d.

Example 4.1 (coordinates z in the case of two squares)
Let Dx = [0,1]× [0,1] and Dy = [−1,0]× [0,1] sharing a common one-dimensional face.
With ρ = γ2 = [0,1]× [0,1] we note

Φ
Dx
(

γ2|x̂1

)
∩Φ

Dy
(

γ2|ŷ1

)
= {0},

Φ
Dx
(

γ2|x̂2

)
∩Φ

Dy
(

γ2|ŷ2

)
= [0,1].

z is therefore given as
z = {x1,y1,y2− x2}.

Remark 4.2 (on the ordering of entries in z)
The ordering of entries in z is arbitrary.

After fixing the singularity at the origin, the singularity can be enclosed by a p-
dimensional ε-ball in order to apply the above and subsequent statements.

4.3 Replacing an ε-ball by an ε-cube

As mentioned, the definition given in (13) cannot be used to generalize the concepts
given in [2] to higher dimensions as it would require the use of curved domains. But
we shall show that it is possible to replace the ε-ball used in the definition of the multi-
dimensional Hadamard integral by an axis-aligned hypercube. This implies the usage of
the maximum norm instead the Euclidean norm in (13).
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Let Bε(z) be an n-dimensional ε-ball around the point z and let furthermore Hε(z) be
the smallest axis-aligned hypercube containing Bε(z). Using this notation, we rewrite
(13) as an Hadamard integral:

p.f.
∫

Ω

f (z)dz = lim
ε→0

{∫
Ω\Bε(0)

f (z)dz−
k

∑
i=0

βiφi(ε)

}
,

= lim
ε→0

{∫
Ω\Hε(0)

f (z)dz+
∫

Hε(0)\Bε(0)
f (z)dz−

k

∑
i=0

βiφi(ε)

}
.

We have to investigate the characteristics of the second integral on the right-hand side.
We restrict ourselves to kernels of the shape f (z)= ‖z‖α. Furthermore we use n-dimensional
polar coordinates to determine the integral defined on the difference between the hy-
percube Hε and the inner ball Bε.

Remark 4.3 (on polar coordinates in higher dimensions)
The n-dimensional polar coordinates are given by [1] (r,φ,ϑ1 . . .ϑn−2), a transformation

ξ1 = cos(ϕ)sin(ϑ1)sin(ϑ2) . . .sin(ϑn−2),
ξ2 = sin(ϕ)sin(ϑ1)sin(ϑ2) . . .sin(ϑn−2),
ξ3 = cos(ϑ1)sin(ϑ2) . . .sin(ϑn−2),

...
ξn−1 = cos(ϑn−3) . . .sin(ϑn−2),
ξn = cos(ϑn−2),

and
xi = ci + r ξi,

with r ∈ (0,R), ϕ ∈ [−π,π), ϑi ∈ [0,π)∀i = {1, . . . ,n−2}. c = (ci)
n
i=1 ∈ Rn defines the center

of the ball. The Jacobian is therefore given as

rn−1 dr dϕ

n−2

∏
j=1

sin j(ϑ j)dϑ j.

Using the polar coordinates given above, the difference integral can be expressed as∫
Hε(0)\Bε(0)

‖z‖α dz =∫ 2π

ϕ=0

∫
π

ϑ1=0
· · ·

∫
π

ϑn−2=0

∫ R

r=ε

rαrn−1 dr g(ε,ϕ,ϑ1, · · · ,ϑp−2)
n−2

∏
j=1

sin j(ϑ j)dϑ j dϕ

(14)

using an appropriate chosen function R = R(ε,ϕ,ϑ1, · · · ,ϑn−2). For some examples of this
function confer for instance [9][Anhang B]. In general, R(ε,ϕ,ϑ1, · · · ,ϑn−2) has to fulfill
the conditions
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R(ε,ϕ,ϑ1, · · · ,ϑp−2) = R(ε,ϕ−π,π−ϑ1, · · · ,π−ϑp−2) (15a)

and
R(ε,ϕ,ϑ1, · · · ,ϑp−2) = εR̄(ϕ,ϑ1, · · · ,ϑp−2) (15b)

with ε from Bε. The function g is of the shape

g(ϕ,ϑ1, · · · ,ϑp−2) =

(√
ḡ(ϕ,ϑ1, · · · ,ϑp−2)

)α

using a polynomial ḡ in the variables ϕ,ϑ1, · · · ,ϑp−2. The shape of ḡ depends on the
kernel in question and the ordering of the relative coordinates z. As R, g fulfills:

g(ϕ,ϑ1, · · · ,ϑp−2) = g(ϕ−π,π−ϑ1, · · · ,π−ϑp−2). (16)

Now we are going to examine the structure of the innermost integral of (14) for
various parameters α.

• The case of a regular or weakly singular kernel, α >−p.
It is sufficient to examine only the innermost integration. We note∫ R(ε,ϕ,ϑ1,··· ,ϑn−2)

r=ε

rα+n−1 dr =
εα+n

α+n
(R̄(ϕ,ϑ1, · · · ,ϑn−2)−1)

with R̄ from (15b). This expression converges to 0 for ε→ 0.

• The case of a Cauchy singular value, α =−p.
To determine the integral in the context of a Cauchy singular value, (14) has to be
split. To simplify the notation, we define

h̄(ϕ,ϑ1, · · · ,ϑp−2) := g(ϕ,ϑ1, · · · ,ϑp−2)
p−2

∏
j=1

sin j(ϑ j).

This yields with (16)

h̄(ϕ,ϑ1, · · · ,ϑp−2) = g(ϕ,ϑ1, · · · ,ϑp−2)
p−2

∏
j=1

sin j(ϑ j)

= g(ϕ−π,π−ϑ1, · · · ,π−ϑp−2)
p−2

∏
j=1

sin j(π−ϑ j)

= h̄(ϕ−π,π−ϑ1, · · · ,π−ϑp−2).
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The polar coordinates ξ := ξ(ϕ,ϑ1, · · · ,ϑp−2) introduced above, can be used to com-
press the notation:

h(ξ) = h(ξ(ϕ,ϑ1, · · · ,ϑp−2)) := h̄(ϕ,ϑ1, · · · ,ϑp−2)

obviously, h(ξ) = h(−ξ), and the following equation is valid:∫
π

ϑp−2=0
· · ·

∫
π

ϕ=−π

∫ R(ε,ϕ,...,ϑp−2)

r=ε

r−1 dr h(ξ)dϕ . . . dϑp−2 (17)

=
∫

π

ϑp−2=0
· · ·

∫ 0

ϕ=−π

∫ R(ε,ϕ,...,ϑp−2)

r=ε

r−1 dr h(ξ)dϕ . . . dϑp−2

+
∫

π

ϑp−2=0
· · ·

∫
π

ϕ=0

∫ R(ε,ϕ,ϑ1,··· ,ϑp−2)

r=ε

r−1 dr h(ξ)dϕ . . . dϑp−2.

Substituting ϕ by ϕ+π, ϑi by π−ϑi and r by −r in the first integral of the right-
hand side and a permutation of the integral bounds in ϑi and r, we note for the
first integral (17)∫

π

ϑp−2=0
· · ·

∫ 0

ϕ=−π

∫ R(ε,ϕ,...,ϑp−2)

r=ε

r−1 dr h(ξ)dϕ . . . dϑp−2 =∫
π

ϑp−2=0
· · ·

∫
π

ϕ=0

∫ −ε

r=−R(ε,ϕ,...,ϑp−2)
r−1 dr h(ξ)dϕ . . . dϑp−2,

as R(ε,ϕ−π, . . . ,π−ϑp−2) = R(ε,ϕ, . . . ,ϑp−2) and h(ξ) = h(−ξ). Integration w.r.t. r
yields∫

π

ϑp−2=0
· · ·

∫
π

ϕ=0

[
ln |r|−ε

−R(ε,ϕ,...,ϑp−2)
+ ln |r|R(ε,ϕ,ϑ1,··· ,ϑp−2)

ε

]
︸ ︷︷ ︸

=0

h(ξ)dϕ . . . dϑp−2 = 0.

• The case of a hypersingular kernel in the sense of Hadamard, α <−p.

∫ R(ε,ϕ,ϑ1,··· ,ϑn−2)

r=ε

rα+n−1 dr =
εα+n

α+n
(R̄(ϕ,ϑ1, · · · ,ϑn−2)−1) .

with R̄ from (15b). The expression εα+n

α+n (R̄(ϕ,ϑ1, · · · ,ϑn−2)−1) is of the shape of a
single term of I∞ from (11) and converges to ∞ for ε→ 0 as α+n < 0. Hence it has
no influence on the value of the integral.

Using the comments above, we are able to rewrite (13) by

p.f.
∫

Ω

f (x)dx = lim
ε→0

{∫
Ω\‖x‖∞<ε

f (x)dx−
k

∑
i=0

β̄iφi(ε)

}
(18)

using a constant k := max{m ∈ Z|m ≤ −dim(Ω)− g} and functions β̄i ∈ R and φi(ε) as
given in 4.1.
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5 A modified splitting strategy based on the Hadamard partie finie integral

With the replacement of the Euclidean norm by the maximum norm we are now able
to develop a new splitting strategy which reflects the modified integral concept given in
(18).

The following Section 5.1 describes the method in the two-dimensional case as intro-
duced in [2] and can be seen as an introductory example. Section 5.2 extends the idea
to hypercubes and Section 5.3 provides remarks on the treatment of higher dimensional
simplices.

5.1 The two-dimensional case

This section describes the ideas given [2] in a short and compact fashion. For more
details on the method and extended examples we therefore refer the reader to [2]. In
the 1d×1d case we have

I(ε) =
∫ 1

0

∫ 1

0
|x−y|≥ε

κ(x̂, ŷ,0,0)dŷdx̂

=
∫ 1−ε

0

∫ 1

x̂+ε

κ(x̂, ŷ,0,0)dŷdx̂+
∫ 1

ε

∫ x̂−ε

0
κ(x̂, ŷ,0,0)dŷdx̂ (19)

with a kernel function κ(x̂, ŷ,0,0) as introduced in (8).
For ε = 0 this is equivalent to an integration defined on domains Cl and Cu as given

below
Cl := {(x̂, ŷ) ∈ [0,1]2 : ŷ < x̂}, Cu := {(x̂, ŷ) ∈ [0,1]2 : ŷ≥ x̂}. (20)

In R2 the domains Cl and Cu describe an upper and a lower triangle. After multiple
applications of the "red" splitting strategy on the singular elements, a sequence of ele-
ments can be described, as depicted in Figure 2. The regular elements of the subdivision
are shaded in gray, the remaining singular elements are white.

Figure 2: Sequence of regular (gray) and singular elements after multiple "red" subdivi-
sions of the singular elements.
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As introduced in Section 3.1, equivalence classes can be used to describe and classify
the singular domains. For the domain Cl the following classes exist:

Il
0 :=

∫ 1

0

∫ x̂

0
κ(x̂, ŷ,0,0)dŷdx̂, Il

1 :=
∫ 1

0

∫ 1

x̂
κ(x̂, ŷ,1,0)dŷdx̂,

Il
2 :=

∫ 1

0

∫ x̂

0
κ(x̂, ŷ,1,0)dŷdx̂, Il

3 :=
∫ 1

0

∫ 1

x̂
κ(x̂, ŷ,2,0)dŷdx̂

(21)

Only the elements Il
0 and Il

1 are singular, the elements Il
2 and Il

3 are regular. The classes
are linked by the relations

Il
0 = 2cIl

0 + cIl
1 + cIl

2, (22a)

Il
1 = cIl

1 + cIl
2 +2cIl

3 (22b)

using a constant c =
(1

2

)1+1+α
as introduced before. Furthermore the domain Cu can be

described by

Iu
0 :=

∫ 1

0

∫ 1

x̂
κ(x̂, ŷ,0,0)dŷdx̂, Iu

1 :=
∫ 1

0

∫ x̂

0
κ(x̂, ŷ,0,1)dŷdx̂,

Iu
2 :=

∫ 1

0

∫ 1

x̂
κ(x̂, ŷ,0,1)dŷdx̂, Iu

3 :=
∫ 1

0

∫ x̂

0
κ(x̂, ŷ,0,2)dŷdx̂,

(23)

with singular elements Iu
0, Iu

1 and regular elements Iu
2 and Iu

3, connected by the relation

Iu
0 = 2cIu

0 + cIu
1 + cIu

2, (24a)

Iu
1 = cIu

1 + cIu
2 +2cIu

3. (24b)

Remark 5.1 (on the notation)
By I◦•, • ∈ {0, . . . ,3}, ◦ ∈ {u, l}, we identify the integral defined on a given domain as well
as its value.

Using (22) and (24), we derive a system of linear equations:
2c c

c
2c c

c




Il
0
Il

1
Iu

0
Iu

1

+


cIl

2
2cIl

3 + cIl
2

cIu
2

2cIu
3 + cIu

2

=


Il

0
Il

1
Iu

0
Iu

1

 . (25)

A repeated application of this equation yields

Î= AÎ+b = A(AÎ+b)+b = . . .= AkÎ+
k−1

∑
`=0

A`b

from which we extract the partial sums

Îk =
k−1

∑
`=0

A`b. (26)
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The right-hand side of (26) is formed by regular integrals only, corresponding to the
regular elements after k subdivisions. Furthermore, the partial sums Îk correspond to
the Hadamard partie finie (19) using ε = 2−k. The solution is therefore given by

I(2−k) := Îk
1 + Îk

3. (27)

Evaluation of the geometric series (26) yields Îk = (I−A)−1(I−Ak)b using the identity
I ∈ R4×4. This expression converges in the case of a regular or weakly singular integrals
to (I−A)−1, as Ak converges to zero and as a result we get

Î∞ = (I−A)−1b. (28)

For the general case we highlight, that the equation noted above can be expressed via

Î∞ = TDT−1b

=


1 −1

1
1 −1

1




1
1−2c

1
1−c

1
1−2c

1
1−c




1 1
1

1 1
1

b (29)

=


b1+b2
1−2c −

b2
1−c

b2
1−c

b3+b4
1−2c −

b4
1−c

b4
1−c

 . (30)

Using this notation, it is possible to calculate even hyper-singular integrals. Only the
case of a Cauchy singular value in the identical element (α = −2) or in the common
point (α = −1) cannot be calculated, as in this case (I−A) is not regular anymore and
therefore not invertible.

Following the principle of Hadamard partie finie integrals, divergent parts of the in-
tegral in question are collected in the expression I∞(ε) and discarded, if they are of the
shape as described in (11). By the definition of a function ς(λ),

ς(λ) :=
{ 1

λ
, ∀λ 6= 0,

0, λ = 0

and the usage of the pseudo-inverse matrix

(I−A)+ = T


ς(1−2c)

ς(1− c)
ς(1−2c)

ς(1− c)

T−1

14



the needed shape for the divergent parts is achieved. So the principle of Hadamard
partie finie integrals can be adapted to (30) and we summarize

Î∞ = (I−A)+b

=


(b1 +b2)ς(1−2c)− (b2)ς(1− c)

b2ς(1− c)
(b3 +b4)ς(1−2c)−b4ς(1− c)

b4ς(1− c)

 . (31)

In the case of a regular (I−A) the upper equation is equivalent to (28) but is defined
for all values of α and yields the desired results.

Remark 5.2 (on symmetric kernels)
In the case of a symmetric kernel κγ, Il

0 = Iu
0 and Il

1 = Iu
1 are valid and therefore (25) can be

simplified to (
1−2c −c

0 1− c

)(
Il

0
Il

1

)
=

(
cIl

2
cIl

2 +2cIl
3

)
.

The solution is given by I= 2Il
0.

5.2 The higher dimensional case for cubes

Considering the ideas on Hadamard partie finie integrals given in Section 4.3 and the
modified splitting strategy given before, it is now possible to extend the given method
to higher dimensions.

For the sake of clarity and readability we first restrict ourselves to the case of two
hypercubes of the same dimension and extend the method later. We consider the integral

I=
∫ 1

0
· · ·

∫ 1

0

∫ 1

0
· · ·

∫ 1

0
κγ(x̂, ŷ,0,0)dŷdx̂,

x̂ ∈ Rn, ŷ ∈ Rn. In each space dimension a splitting as in (20) can be applied. This yields
a sum of 2n integrals. These subintegrals are subdivided in each space direction using a
"red" refinement strategy. After separating regular and singular integrals, singular ele-
ments have to subdivided again, if they are not equivalent to the element they originate
from.

The connection of different splitting rules regarding (21) and (23) shall be depicted
by the symbol ×. The following Example 5.3 explains the notation and the method.

Example 5.3 (subdivision of a 2d×2d Integral)
Let us consider the integrals I defined on [0,1]4 using a kernel κγ(x̂, ŷ,0,0) as given in
(9). The first step of subdivisions yields 4 integrals, representing the integration on the

15



product of two triangles as depicted in (20):

I=
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
κγ(x̂, ŷ,0,0)dŷdx̂

=
∫ 1

0

∫ 1

0

∫ x̂1

0

∫ x̂2

0︸ ︷︷ ︸
Il

0×Il
0

κγ(x̂, ŷ,0,0)dŷdx̂+
∫ 1

0

∫ 1

0

∫ 1

x̂1

∫ x̂2

0︸ ︷︷ ︸
Iu

0×Il
0

κγ(x̂, ŷ,0,0)dŷdx̂

+
∫ 1

0

∫ 1

0

∫ x̂1

0

∫ 1

x̂2︸ ︷︷ ︸
Il

0×Iu
0

κγ(x̂, ŷ,0,0)dŷdx̂+
∫ 1

0

∫ 1

0

∫ 1

x̂1

∫ 1

x̂2︸ ︷︷ ︸
Iu

0×Iu
0

κγ(x̂, ŷ,0,0)dŷdx̂

using Il
0 and Iu

0 as shown in (21) and (23). Each of these four given subintegrals is
subdivided using the "red" refinement strategy. As an example we present this step using
the integral Il

0× Iu
0. In the case of Il

0 a subdivision regarding (22a) and in the case of Iu
0

a subdivision regarding (24a) is necessary and we obtain

Il
0× Iu

0 = 4cIl
0× Iu

0 + 2cIl
0× Iu

1 + 2cIl
0× Iu

2
+ 2cIl

1× Iu
0 + cIl

1× Iu
1 + cIl

1× Iu
2

+ 2cIl
2× Iu

0 + cIl
2× Iu

1 + cIl
2× Iu

2 .

The general shape of the subdivisions is valid for the pairs Il
0× Il

0, Iu
0× Il

0 and Iu
0× Iu

0 as
well.

All elements of the third row and third column of the right-hand side in the upper
scheme are regular, all remaining pairs are singular and have to be further subdivided if
they are not equivalent to the element they originate from.

For the pair of elements Il
1× Iu

0 the following is valid:

Il
1× Iu

0 = 2cIl
1× Iu

0 + cIl
1× Iu

1 + cIl
1× Iu

2
+ 2cIl

2× Iu
0 + cIl

2× Iu
1 + cIl

2× Iu
2

+ 4cIl
3× Iu

0 + 2cIl
3× Iu

1 + 2cIl
3× Iu

2

with singular elements Il
1× Iu

0 and Il
1× Iu

1.

After such a sequential subdivision of all singular elements and the identification of
equivalence classes, the relations between the representatives of the classes yields a
system of linear equations whose entries are connected to the entries of (25) reading

n⊗
µ=1

Îµ =
n⊗

µ=1

(
AµÎµ +bµ

)
, (32)
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using the known constant c =
(1

2

)n+n+α
,

A1 =


2c c

c
2c c

c

 , Aµ =


2 1

1
2 1

1

 ∀µ > 1, Îµ =


Il

0
Il

1
Iu

0
Iu

1


and the terms bµ given by

b1 =


cIl

2
cIl

2 +2cIl
3

cIu
2

cIu
2 +2cIu

3

and bµ =


Il

2
Il

2 +2Il
3

Iu
2

Iu
2 +2Iu

3

 ∀µ > 1,

using the notation

Îµ1⊗ Îµ2 =


Il

µ1,0× Il
µ2,0

Il
µ1,0× Il

µ2,1
Il

µ1,0× Iu
µ2,0

...

 .

The product on the right-hand side can be split into a singular part,
⊗n

µ=1 AµÎµ, and a
regular part, labeled as breg in the following. An integral can be considered as regular, if
in at least one space dimension the elements have a positive distance. We rewrite (32)
as

n⊗
µ=1

Îµ =
n⊗

µ=1

(
AµÎµ

)
+breg =

n⊗
µ=1

Aµ

(
n⊗

µ=1

Îµ

)
+breg. (33)

This system is transformed analogously as (25). The repeated application of the equation
yields

n⊗
µ=1

Îµ =
n⊗

µ=1

Aµ

n⊗
µ=1

Îµ +breg =
n⊗

µ=1

Aµ

(
n⊗

µ=1

Aµ

n⊗
µ=1

Îµ +breg

)
+breg

= · · ·

=

(
n⊗

µ=1

Aµ

)k n⊗
µ=1

Îµ +
k−1

∑
`=0

(
n⊗

µ=1

Aµ

)`

breg

=
n⊗

µ=1

Ak
µ

n⊗
µ=1

Îµ +
k−1

∑
`=0

n⊗
µ=1

A`
µbreg. (34)
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The partial sums

⊗Îk :=
k−1

∑
`=0

n⊗
µ=1

A`
µbreg =

(
n⊗

µ=1

Iµ−
n⊗

µ=1

Aµ

)−1( n⊗
µ=1

Iµ−
n⊗

µ=1

Ak
µ

)
breg (35)

are formed by regular integrals, as in the case of (26). After k steps they are equivalent
to the modified Hadamard partie finie, described in Section 4.3, using ε = 2−k. The final
solution is therefore given as

I(2−k) :=
(
⊗Îk
)
(1,1,...,1)

+
(
⊗Îk
)
(1,1,...,3)

+ · · ·+
(
⊗Îk
)
(3,3,...,3)

.

Figure 3 shows the projection of the I(2−k) using k = 1, . . . ,5 on the (y1,y2)-plane for a
fixed (x1,x2) = (0.7,0.9) following Example 5.3.

Figure 3: Series of regular elements (gray) in the variable y ∈ [0,1]2 after repeated sub-
divisions (white lines with ε = 1

2 , . . . ,
1

32) using (x1,x2) = (0.7,0.9).

For regular or only weakly singular integrals the expression
⊗n

µ=1 Ak
µ converges to zero

18



and we consider again

⊗Î∞ =

(
n⊗

µ=1

Iµ−
n⊗

µ=1

Aµ

)−1

breg

=

(
n⊗

µ=1

Tµ

(
n⊗

µ=1

Iµ−
n⊗

µ=1

Dµ

)
n⊗

µ=1

T−1
µ

)−1

breg

=

 n⊗
µ=1

Tµ

(
n⊗

µ=1

Iµ−
n⊗

µ=1

Dµ

)−1 n⊗
µ=1

T−1
µ

breg (36)

using matrices Tµ, T−1
µ , as given in (29), and

D1 =


2c

c
2c

c

 , Dµ =


2

1
2

1

 ∀µ > 1.

The inverse
(⊗n

µ=1 Iµ−
⊗n

µ=1 Dµ
)−1 is given as a diagonal matrix with the entries 1

1−2`c ,

` ∈ {0, . . . ,n}, and c =
(1

2

)n+n+α
. By definition of a function

ς(A) := ς(ai j) :=

{
1

ai j
, ∀ai j 6= 0,

0, ai j = 0,
(37)

it is again possible to introduce a pseudo-inverse matrix(
n⊗

µ=1

Iµ−
n⊗

µ=1

Dµ

)+

:= ς

(
n⊗

µ=1

Iµ−
n⊗

µ=1

Dµ

)
.

The diagonal entries of the pseudo-inverse matrix equal

ς

(
n⊗

µ=1

Iµ−
n⊗

µ=1

Dµ

)
((i1,i1),...,(in,in))

=

{ 1
1−2`c , ∀1−2`c 6= 0,
0, 1−2`c = 0,

` ∈ {0, . . . ,n} and c =
(1

2

)n+n+α
. As in the two-dimensional case shown in (31), the

solution ⊗Î∞ is given by

⊗Î∞ =

(
n⊗

µ=1

Iµ−
n⊗

µ=1

Aµ

)+

breg (38)

for all parameters α. In the case of weakly singular and regular integrals this is equal to
the solution of the system (32).
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Example 5.4 (computation of a 2d×2d integral)
In extension of Example 5.3 we are going to determine the first entries of the elements
of the system given in (32).

2⊗
µ=1

Î =
2⊗

µ=1

(
AµÎµ +bµ

)
⇔ Î1⊗ Î2 =

(
A1Î1 +b1

)
⊗
(
A2Î2 +b2

)
⇔ Î1⊗ Î2 = A1Î1⊗A2Î2 +A1Î1⊗b2 +b1⊗A2Î2 +b1⊗b2

⇔ Î1⊗ Î2 = (A1⊗A2)
(
Î1⊗ Î2

)
+A1Î1⊗b2 +b1⊗A2Î2 +b1⊗b2

⇔


Il

0×Il
0

Il
0×Il

1
Il

0×Iu
0

...

 =

( 4c 2c 0 0 2c c 0 0 0
0 2c 0 0 0 c 0 0 0 ···
0 0 4c 2c 0 0 2c c 0

...

)
Il

0×Il
0

Il
0×Il

1
Il

0×Iu
0

...

+breg.

The added breg is given in this example by three elements which read

breg =A1Î1⊗b2 +b1⊗A2Î2 +b1⊗b2

=


2cIl

0×Il
2+cIl

1×Il
2

2cIl
0×Il

2+4cIl
0×Il

3+cIl
1×Il

2+2cIl
1×Il

3
cIl

0×Iu
2+cIl

1×Iu
2

...

+


2cIl

2×Il
0+cIl

2×Il
1

cIl
2×Il

1
2cIl

2×Iu
0+cIl

2×Iu
1

...

+


cIl

2×Il
2

cIl
2×Il

2+2cIl
2×Il

3
cIl

2×Iu
2

...

 .

The constant c is again given as 2−(2+2+α). Applying (38) yields the solution of the
system for all parameters α ∈ R as

⊗Î∞ =

 ς(1−4c) ς(1−4c)−ς(1−2c) 0 0 ς(1−4c)ς(1−2c)
0 ς(1−2c) 0 0 0 ···
0 0 ς(1−4c) ς(1−4c)−ς(1−2c) 0

...

breg

using a function ς as introduced in (37).

Remark 5.5 (on not identical elements)
The method given above is based on the idea of representing the domain of integration as
Cartesian product of line segments in direction of the unit vectors n of a Cartesian coordinate
system.

In the case of not identical elements the projection of some coordinate directions show
the appearance of a "common point". For the corresponding space directions the elements of
(32) simplify to

Aµ =

{
(c), µ = 1,
(1), µ 6= 1,

Îµ = (I•1) ,

bµ =

{
(cI•2 +2cI•3), µ = 1,
(I•2 +2I•3), µ 6= 1
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using • ∈ {l,u} regarding the relation of the elements to each other. As a result we apply
the following simplifications to the system given in (38) for the space direction in question:

Dµ =

{
(c), µ = 1,
(1), µ 6= 1,

Tµ = T−1
µ = (1).

Remark 5.6 (on elements with different dimensions)
Following the notation throughout this paper, let n = dim(Cx), m = dim(Cy), d be the di-
mension of the common face of the elements in question and w.l.o.g. n ≥ m ≥ d ≥ 0 and
m > 0.

In the case of elements with different dimensions we are able to identify n−m space
directions i for which the kernel κγ is constant w.r.t. the variable yi. The integrals in the
corresponding space directions xi are subdivided as shown in the following. The resulting
elements have to be integrated in the systems (32) and (38) according to their index:

I0 =
∫ 1

0
κγ(x̂, ŷ,0,0)dx̂i

= c
∫ 1

0
κγ(x̂, ŷ,0,0)dx̂i + c

∫ 1

0
κγ(x̂, ŷ,ei,0)dx̂i

= cI0 + cI1

using the i-th unit vector ei of the Cartesian coordinate system and c given by the values of
n, m, d and α. The elements of (32) and (38) are given by

Aµ =

{
(c), µ = 1,
(1), µ 6= 1,

Îµ = (I0) ,

bµ =

{
(cI1), µ = 1,
(I1), µ 6= 1,

Dµ =

{
(c), µ = 1,
(1), µ 6= 1,

Tµ = T−1
µ = (1).

5.3 The higher dimensional case for simplices

The method described for cubes in Section 5.2 can be applied to simplices as well. But,
as mentioned in Section 3.2 and shown in [8], the subdivision of simplices becomes
much more difficult than in the case of hypercubes. Therefore, we only show that the
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ideas given before can be transferred to the case of simplices. Let

I=
∫ 1

0

∫ 1−x̂1

0

∫ 1

0

1∥∥∥∥( x̂1− ŷ
x̂2

)∥∥∥∥2 dŷdx̂2 dx̂1 (39)

=
∫ 1

0

∫ 1−x̂1

0

∫ 1

0
κτ(x̂, ŷ,0,0)dŷdx̂

using x̂ = (x̂1, x̂2) and the kernel function κτ as defined before.
This configuration equals the product of a triangle and a line segment, as shown in

Figure 4. The given integral is not solvable by the method mentioned in Section 3.2 and
given [8], as α = −(n+m)+ d = −2. The solution can be obtained using the method,
based on the modified Hadamard partie finie integrals, given above.

In a first step, the domain is subdivided regarding (20):

I=
∫ 1

0

∫ 1−x̂1

0

∫ x̂1

0
κτ(x̂, ŷ,0,0)dŷdx̂ (40a)

+
∫ 1

0

∫ 1−x̂1

0

∫ 1

x̂1

κτ(x̂, ŷ,0,0)dŷdx̂. (40b)

The two domains of integration represent the domains shown Figure 4 and shall be
denoted as IA and IB in the following.

After this first step of subdivision, the resulting domains are again subdivided regard-
ing (21) and (23) in x̂1-ŷ. Furthermore a subdivision in x̂1-x̂2 has to be applied. Figure 5
visualizes the projections of the applied subdivisions. The domains of integration given
in (40a) and (40b) are treated independently. For (40a) the results are presented in the
following. Besides the original element IA, we identify the two equivalence classes of
singular elements for (40a) shown below

IA1 =
∫ 1

0

∫ 1

1−x̂1

∫ x̂1

0
κτ(x̂, ŷ,0,0)dŷdx̂,

IA2 =
∫ 1

0

∫ 1−x̂1

0

∫ 1

x̂1

κτ(x̂, ŷ,υA2,0)dŷdx̂

with υA2 = (1,0,0)T .
As relation between the element classes we formulate a system of linear equations

AÎA +breg = ÎA, comparable to system (25), 2c c c
c

c

 IA

IA1
IA2

+

 cbA

cbA1
cbA2

=

 IA

IA1
IA2

 ,

with the representatives IA, IA1, IA2 of the equivalence classes, sums of scaled regular
elements cbA, cbA1, cbA2 and the parameter c =

(1
2

)n+m+α
, defined by c =

(1
2

)2+1−2
= 1

2 .
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1 x̂1

1

x̂2

1

ŷ

Figure 4: The domains corresponding to the domains of integration of (39) after the first
step of subdivision regarding (40a) (gray) and (40b) (white).
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Figure 5: Projections after the second step of subdivisions for different pairs of space
directions. The shading corresponds to Figure 4.
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The repeated application of the system to itself as used in (26) and (35) yields again
a partial sum Îk

A, whose entries are formed by regular elements. We note

Îk
A =

k−1

∑
`=0

A`b = (I−A)−1(I−Ak)breg. (41)

I represents an appropriately chosen unit matrix.
In the case of regular or only weakly singular integrals, the expression Ak converges

to zero and the solution is given by Î∞
A = (I−A)−1b. In the general case, the idea noted

in (29) or (30) can be used:

Î∞
A = TDT−1breg

=

 1 −1 −1
1

1

 1
1−2c

1
1−c

1
1−c

 1 1 1
1

1

 cbA

cbA1
cbA2

 .

For an irregular I−A, the diagonal matrix D is not given. Because of this a pseudo-
inverse matrix has to be introduced:

(I−A)+ = T

 ς(1−2c)
ς(1− c)

ς(1− c)

T−1.

The function ς is defined as

ς(λ) :=
{ 1

λ
, ∀λ 6= 0,

0, λ = 0

as already done in (37). The solution of the system of linear equations is given for all
parameters α by

Î∞
A = (I−A)+breg.

The value of the integral in question, IA, is represented by the first entry of the vector
Î∞

A . For the second part, IB, the same technique applies. Finally, the solution I of (39) is
given as I= IA + IB.

6 Conclusion and a remark on the connection between the methods of
hierarchical integration

The methods presented in [8] and outlined in the Sections 3.1 and 3.2 for hypercubes
and simplices describe methods for the distinct solution of integrals of the shape

I=
∫

Dx

∫
Dy

κ(x,y)dydx
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defined on hypercubes or simplices, using a translational invariant and homogeneous
kernel function κ with a degree of homogeneity α. These methods exclude configura-
tions with

α =−(n+m)+d,

n = dim(Dx), m = dim(Dy) and d as given before.
The modified subdivision strategy for hypercubes and simplices, outlined in Sections

5.2 and 5.3 of this paper, describe alternative methods, which again yield distinct solu-
tions, but do not restrict ourselves in the choice of the parameter α. The drawback of
this method is the higher number of regular integrals.

The methods described in [8], outlined in this paper and the modifications undertaken
in Sections 5.2 and 5.3 have in common, that they represent the integral in question as
a distinct sum of integrals defined on distinct subdomains of the original domain of
integration. From these sums the methods deduce systems of linear equations which
again yield distinct solutions.

Therefore the methods represent, if they originate from identical specifications to ar-
eas and parameters, different representations of the same fact and therefore provide the
same result.

References

[1] Herbert Amann and Joachim Escher. Analysis III. Birkhäuser, Basel, 2001.

[2] Steffen Börm and Wolfgang Hackbusch. Hierarchical quadrature for singular inte-
grals. Computing, 74(2):75–100, 2005.

[3] Ronald Cools and Philip Rabinowitz. Monomial cubature rules since ”stroud”: a
compilation. Journal of Computational and Applied Mathematics, 48(3):309–326,
1993.

[4] Ricardo Estrada and Ram P. Kanwal. A Distributional Approach to Asymptotics.
Birkhäuser Advanced Texts Basler Lehrbücher, Boston, 2002.

[5] Wolfgang Hackbusch. Hierarchische Matrizen. Springer, Berlin, 2009.

[6] Jacques Hadamard. Lectures on Cauchy’s problem in linear partial differential equa-
tions. Dover Publications, New York, 1952.

[7] George C. Hsiao and Wolfgang L. Wendland. Boundary Integral Equations. Springer,
Berlin, 2008.

[8] Peter Meszmer. Hierarchical quadrature for multidimensional singular integrals.
Journal of Numerical Mathematics, 18(2):91–117, 2010.

25



[9] Peter Meszmer. Hierarchische Integration und der Strahlungstransport in streuenden
Medien. PhD thesis, Universität Leipzig, 2012.

[10] Stefan Sauter and Christoph Schwab. Boundary Element Methods. Springer Series
in Computational Mathematics. Springer, Berlin, 2011.

[11] Arthur H. Stroud. Approximate Calculation of Multiple Integrals. Prentice-Hall,
Englewood Cliffs (NJ), 1971.

26


