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Abstract Wave propagation problems in unbounded homogeneous domains can be
formulated as time-domain integral equations. An effective way to discretize such
equations in time are Runge-Kutta based convolution quadratures. In this paper the
behaviour of the weights of such quadratures are investigated. In particular approx-
imate sparseness of their Galerkin discretization is analyzed. Application of these
results in the construction of fast algorithms for the construction of the fully discrete
systems is also briefly described.

Keywords convolution quadrature · Runge-Kutta methods · time-domain boundary
integral equations · wave equation

Mathematics Subject Classification (2000) 65R20 · 65L06 · 35L05 · 65M38

1 Introduction

In many physical applications, e.g. electromagnetic scattering, it is necessary to solve
the exterior boundary value problem for three-dimensional wave equation. Such prob-
lems can be effectively treated with the use of time-domain boundary integral equa-
tions (TDBIE). The well-posedness of such formulations for the wave equation was
analyzed in [2,3].

Solution of time domain boundary integral equations is usually performed with
Galerkin time-space methods [14], collocation methods [11], time-stepping tech-
niques or Laplace-domain approaches. A review of these methods can be found in
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[10]. However, compared to the field of elliptic problems, fast solvers for time do-
main boundary integral equations are not that extensively developed. A particularly
efficient approach for solution of retarded potential boundary integral equations is
offered in [13].

One of the methods for solution of TDBIE, convolution quadrature [18–20], com-
bines Laplace-domain and time-stepping techniques. It is stable, efficient and does
not require underlying space quadratures to be evaluated with high accuracy, as e.g.
Galerkin time-space methods. Applicability of the method to external boundary-value
problems for wave equation was justified in [20,8]. These results were supported
by extensive numerical experiments in [4]. In the same work it was shown that the
Runge-Kutta convolution quadrature [21] is preferable to the multistep convolution
quadrature whenever the scattering domain is non-star-shaped. In [5] the theoretical
justification of this fact was given.

In this paper we apply an m-stage A-stable Runge-Kutta convolution quadrature
[21]. The weights of the convolution quadrature are integral operators. The main part
of this paper is devoted to the investigation of the behaviour of the kernels of these
weights. Estimates are proved that show the exponential decay of the kernels wh

n(d)
away from nh ≈ d. The paper ends with an illustration of how these results can be
used to speed up existing algorithms for the computation of convolution weights.

2 Statement of the problem

Let Ω ⊂ R3 be a bounded Lipschitz domain with boundary Γ and let Ω c = R3 \Ω
be its complement.

We will consider the homogeneous wave equation set in Ω c,

∂ 2u
∂ t2 −∆u = 0 in [0,T ]×Ω c,

u(0, .) =
∂u
∂ t

(0, .) = 0 in Ω c, (2.1)

u(t,x) = g(t,x) on [0,T ]×Γ .

For any boundary data g, the solution u of the above system can be represented
as the single-layer potential of an unknown density λ

u(t, x̃) = (S λ )(t, x̃) =
t∫

0

∫
Γ

δ (t− τ−‖x̃− y‖)
4π‖x̃− y‖ λ (τ,y)dΓydτ,

=
∫

Γ

λ (t−‖x̃− y‖)
4π‖x̃− y‖ dΓy, (t, x̃) ∈ [0,T ]×Ω c,

where δ (·) denotes the Dirac delta function. Single layer potential S λ is also known
as the retarded potential, the name being justified by the second expression above. For
any density λ , the function u = S λ satisfies the first two equations in (2.1), therefore
to solve (2.1) it remains to choose λ so that the boundary condition is also satisfied.
Single layer potential S λ is continuous across Γ , so letting in the above equation
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x̃→ x∈Γ and using the boundary condition from (2.1), we obtain a boundary integral
equation for the unknown density λ

g(t,x) = (V λ )(t,x) =
t∫

0

∫
Γ

δ (t− τ−‖x− y‖)
4π‖x− y‖ λ (τ,y)dΓydτ,

∀(t,x) ∈ [0,T ]×Γ .

(2.2)

Here, the operator V is called the single layer boundary integral operator. For exis-
tence and uniqueness of solutions of this equation see [2].

For further discussion we will require the Laplace transforms of S and V . With
the Laplace transform defined by

L f (s) =
∫

∞

0
e−st f (t)dt, Res > 0,

and causal f , i.e. f (t) = 0, for t ≤ 0, it holds that

L ( f (·− r))(s) =
∫

∞

0
e−st f (t− r)dt = e−srL f (s), r ≥ 0. (2.3)

Hence the Laplace transforms of S and V are given respectively by

S(s)ϕ(x̃) =
∫

Γ

e−s‖x̃−y‖

4π‖x̃− y‖ϕ(y)dΓy, x̃ ∈Ω c,

and

V (s)ϕ(x) =
∫

Γ

e−s‖x−y‖

4π‖x− y‖ϕ(y)dΓy, x ∈ Γ .

Next, we address the time-discretization of retarded potentials.

2.1 Convolution quadrature based on backward differences

Let h > 0 denote the timestep and t j = jh the equally spaced time-points. Then the
derivative of a causal function f can be approximated by

f ′(t)≈ 1
h ( f (t)− f (t−h)). (2.4)

Taking the Laplace transform of the above approximation and applying (2.3) gives

sL f (s)≈ 1− e−sh

h
L f (s). (2.5)

We can also reverse this procedure: approximate the differentiation symbol s in the
Laplace domain by 1−e−sh

h = s+sO((sh)), see (2.5), and compute the inverse Laplace
transform of the approximation to obtain the backward difference approximation of
the derivative (2.4).
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Convolution quadrature of S λ and V λ proceeds in a similar way. First the ap-
proximation in Laplace domain is made

V (s)L λ ≈V
(

1−e−sh

h

)
L λ (2.6)

and then the inverse Laplace transform of the approximation is computed and used
as an approximation of V λ . Let the following expansion hold

V
(

1−e−sh

h

)
=

∞

∑
j=0

ω j(V )e−sh j =
∞

∑
j=0

ω j(V )e−st j , Res > 0.

Remark 2.1 Note that V (s) is an analytic and bounded function of s for Res > 0,

‖V (s)‖H1/2(Γ )←H−1/2(Γ ) ≤C(σ)|s|, Res≥ σ > 0,

see [2]. Also 1−e−sh is an analytic function of e−sh and Re(1−e−sh) > 0 for Res > 0.
Hence, the above expansion is well defined and the linear operators ω j(V ) : H−1/2(Γ )→
H1/2(Γ ) are bounded.

Using (2.3) again, we see that the inverse Laplace transform of the approximation
in (2.6) is given by

V λ (t)≈
∞

∑
j=0

ω j(V )λ (t− t j).

Assuming causality of λ we obtain the convolution quadrature approximation at t =
tn:

n

∑
j=0

ω j(V )λ (tn− t j) =
n

∑
j=0

ωn− j(V )λ (t j).

Error and stability analysis of this first order time-discretization method and of con-
volution quadrature based on other A-stable linear multistep methods can be found
in [20].

2.2 Runge-Kutta based convolution quadrature

Since A-stable linear multistep methods have order restricted to p≤ 2, Runge-Kutta
based methods need to be considered. For the importance of high order methods
in wave propagation problems see [4] and for the analysis of the resulting discrete
systems see [21] and [7].

Let an m-stage Runge-Kutta method be given by its Butcher tableau:

c A

bT
.
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In terms of A, b, and c, an m-stage Runge-Kutta discretization of the initial value
problem y′ = f (t,y), y(0) = y0, is given by the recurrence

Yni = yn +h
m

∑
j=1

ai j f (tn + c jh,Yn j), i = 1, . . . ,m,

yn+1 = yn +h
m

∑
j=1

b j f (tn + c jh,Yn j);

here, h is the time-step and t j = jh. The values Yni and yn are approximations to
y(tn +cih) and y(tn), respectively. This Runge-Kutta method is said to be of (classical)
order p≥ 1 and stage order q if for sufficiently smooth right-hand side f ,

Y0i− y(cih) = O(hq+1), for i = 1, . . . ,m, and y1− y(t1) = O(hp+1),

as h→ 0.
The corresponding stability function is defined by R(z) = 1 + zbT (I−Az)−11,

where 1= (1 . . . 1)T and the following approximation property holds

R(z) = ez +O(zp+1). (2.7)

We will only use Runge-Kutta methods with nonsingular matrix A whose stability
function satisfies the following assumptions.

Assumption 2.1 (a) A-stability, namely |R(z)| ≤ 1 for all z, s.t. Rez≤ 0.
(b) stiff accuracy, i.e. R(∞) = 0.
(c) for all y ∈ R\{0}, |R(iy)|< 1.

These assumptions are required by the theory of Runge-Kutta convolution quadrature
representation, see [7].

Runge-Kutta methods work not just on equally spaced points t j = jh, but also at
stages t j + cih, i = 1, . . . ,m. For simplicity we will assume that 0 < c1 < c2 < · · · <
cm = 1. As in the previous section we will want to approximate the derivative of a
function f , but this time at the vector of stages:

f (t + ch) =

 f (t + c1h)
...

f (t + cmh)

 .

Using (2.3) and proceeding as in the previous section we see that an approximation
in the Laplace domain of the form

secshL f (s)≈ ∆(e−sh)
h

ecshL f (s)

is required, where

ecsh =

ec1sh

...
ecmsh


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and ∆(ζ ) : C→ Cm×m is a matrix valued function with the property

∆(e−z)ecz ≈ zecz.

Next lemma gives a definition of such a function and proves some of its properties.

Lemma 2.1 Let

∆(ζ ) =
(

A+
ζ

1−ζ
1bT

)−1

= A−1−ζ A−1
1bT A−1. (2.8)

Then the following hold:

(a) For z→ 0 it holds
∆(e−z)ecz = zecz +O(zq+1).

(b) If µ /∈ σ(A−1), then R(µ) = ζ−1 if and only if µ ∈ σ(∆(ζ )).

Proof The equality in (2.8) is readily proved by using the Sherman-Morrison formula
and the assumption bT A−11= 1. Result (b) follows from the expression

(zI−∆(ζ ))−1 = A(zA− I)−1− ζ
1−R(z)ζ

(zA− I)−1
1bT (zA− I)−1

proved in [21, Lemma 2.4].
Proof of (a) requires a few more steps. In [7, Lemma 2.5], it has been shown that

zbT ecz = ez−1+O(zp+1) and zAecz = ecz−1+O(zq+1).

Hence,

∆(e−z)−1zecz = ecz−1+
1

1− e−z1−
e−z

1− e−z1+O(zq+1)

= ecz +O(zq+1).

ut

Therefore we are in a similar position as in the previous section. The last step that we
need to do is construct the expansion

V
(

∆(ζ )
h

)
=

∞

∑
j=0

W h
n (V )ζ j.

Remark 2.2 Note that A-stability and Lemma 2.1(b) imply that the eigenvalues of
∆(ζ ) for |ζ | < 1 all lie in the right-half complex plane. Therefore the same argu-
ments as in Remark 2.1 tell us that the above expansion is well defined and that the
convolution weights W h

n (V ) are m×m matrices of bounded linear operators mapping
from H−1/2(Γ ) to H1/2(Γ ).
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Recalling the definition of V (s) we see that W h
n (V ) are integral operators defined

by

W h
n λ (x) =

∫
Γ

wh
n(‖x− y‖)λ (y)dΓy, x ∈ Γ ,

where the kernels wh
n(d) are defined by the corresponding expansion

exp
(
−∆(ζ )

h d
)

4πd
=

∞

∑
n=0

wh
n (d)ζ n. (2.9)

Let us denote by gn and gn the following functions

gn(x) = g(nh,x), gn(x) =

g(nh+ c1h,x)
...

g(nh+ cmh,x)

 .

With this notation the Runge-Kutta convolution quadrature of (2.2) is given by

gn(x) =
n

∑
i=0

(
W h

n−iλ i

)
(x),

where λ n denotes

λ n(x) =

λ (nh+ c1h,x)
...

λ (nh+ cmh,x)

 .

In the remainder of the paper we will require the scaled convolution kernels
wn(d) := 4πdwh

n(hd). Notice that wn(d) are the coefficients of the following expan-
sion:

exp(−∆(ζ )d) =
∞

∑
n=0

wn (d)ζ n. (2.10)

3 Sparsity of Runge-Kutta Convolution Weights

Our task in this section is to find the estimates for convolution weights wh
n(d) in terms

of d and n. To do so, we first derive bounds for scaled convolution weights wn(d) and
next use these results to show that similar bounds hold also for wh

n(d).
The scaled convolution weight wn(d) for d > 0 can also be expressed as

wn(d) =
1

2πi

∮
γ

R(z)n−1(I−Az)−1
1bT (I−Az)−1e−zddz, (3.1)

see [21]. Here, γ represents a contour that encloses all the eigenvalues of A−1.
To prove the main estimates, we will require to choose carefully the contour γ .

First, we consider the domain ϒr, r > 0:

ϒr = {z ∈C : |R(z)|> r} .
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The contour γr is defined as the boundary this domain, i.e., γr := ∂ϒr. Hence, |R(z)|=
r holds for all z ∈ γr. Next, we prove some properties of domains ϒr.

Let
A+ = {z ∈ C : |R(z)|> |ez|, Rez > 0}

denote the order star of R restricted to the right-half complex plane, see [17]. In fact
A+ denotes just the m bounded fingers containing the m, counting multiplicities, sin-
gularities of R. Since |R(iy)|< 1 for y 6= 0, the origin is the only point of intersection
of the closure of the order star with the imaginary axis and hence

A+ ⊂ϒ1∪{0}.
We will need the following well-known lemma. Its proof can be found in Ap-

pendix.

Lemma 3.1 There exist q,ν > 0, such that the domain

{(x,y) | |y|< νx
1
` , 0 < x < q}

belongs to ϒ1 (and intersects all the order star fingers). Here

` =
{

p+1, if p is odd,
2s, if p is even,

where s is defined by

E(y) = |Q(iy)|2−|P(iy)|2 = e0y2s +O(y2s+2), e0 > 0.

Lemma 3.2 Under Assumption 2.1, the domain ϒ1 is located in the open right-half
plane and is bounded and connected (possibly multiply).

Proof The boundedness follows directly from the assumption of stiff accuracy R(∞)=
0. A-stability and the bound |R(iy)|< 1, y ∈R\0 imply that ϒ1 is located in the open
right-half plane.

Let ϒ̃1 be a connected (possibly multiply) component of ϒ1. Then, by the max-
imum principle, ϒ̃1 must contain a singularity of R(z) and the closure of the corre-
sponding finger (minus the origin). According to Lemma 3.1, the intersection of ϒ̃1
with the all the other fingers is nonempty. Since ϒ̃1 contains all the singularities of ϒ1,
by the maximum modulus principle applied to R(z), it coincides with ϒ1. ut
Remark 3.1 The domain ϒ1 is not necessarily simply connected: it can have a hole,
namely, there can exist a bounded domain ϒ ′, s.t. R(z) vanishes in one of its interior
points, |R(z)|< 1 inside ϒ ′ and ∂ϒ ′ ⊂ ∂ϒ1.

Remark 3.2 Note that in a small enough vicinity of r = 1, ϒr stays bounded and
connected. This follows from the fact that z ∈ ∂ϒr is equivalent to

P(z)− 1
reiφ Q(z) = 0, φ ∈ [0, 2π) , Q(z) 6= 0.

The roots of the polynomial depend continuously on its coefficients, and hence there
exists δ∗ s.t.

the domain ϒr is bounded and connected for |r−1|< δ∗. (3.2)
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Fig. 3.1 Curves γr , for the 2-stage Radau IIA method, are plotted for r = 1 (middle curve in blue) and
the critical values r = r1 = 5+3

√
3 (outer curve in green) and r = r2 = 3

√
3−5 (inner curve in red). For

r > r1 and r < r2 the curve splits into two disjoint curves.

Corollary 3.1 If the stability function of a Runge-Kutta method coincides with Padé
approximant for the exponential, the domain ϒ1 is simply connected.

Proof For the proof we need two ingredients:

1. Ehle’s Conjecture [22, Theorem 7]. Any Padé approximation R(z) = P(z)
Q(z) , degP =

k, degQ = m is A-stable iff m−2≤ k ≤ m.
2. All zeros of such Padé approximants lie in the open left-half plane, see [12].

Hence, the existence of a bounded domain ϒ ′, s.t. |R(z)|< 1 inside ϒ ′ and ∂ϒ ′ ⊂ ∂ϒ1
(i.e. a hole in ϒ1), contradicts the maximum modulus principle applied to the analytic
function 1

R(z) , z ∈ C+. ut

Lemma 2.1(b) provides us with an easy way to draw the curves γr = ∂ϒr, i.e., by
plotting the eigenvalues of ∆(ζ ) for all |ζ |= 1/r.

In [4] the multiplicity of the eigenvalues of ∆(ζ ) for the 2- and 3-stage Radau IIA
Runge-Kutta methods was discussed. In both cases ∆(ζ ) has only simple eigenvalues
for |ζ | = 1, as explained also by Corollary 3.1. For the 2-stage version, eigenvalues
of multiplicity greater than 1 occur only for ζ =−5±3

√
3. For a plot of these curves

at the critical values and r = 1 see Figure 3.1.
Let us fix r > 0 satisfying (3.2) and choose a positively oriented contour γ = γr.

For the rest of the paper we will assume that the domain ϒ1 is simply connected.
However, all the arguments can be trivially extended to the case when it is multi-
ply connected. By Remark 3.2, ϒr, for sufficiently small |r− 1|, is then also simply
connected.

Remark 3.3 Note that the length of the curve γr is bounded, see [1, Lemma 3], by:

|γr| ≤ 4md(γr),

where d(γr) is a diameter of the curve.
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From (3.1) the following bound on the Euclidean norm of wn(d) follows:

‖wn(d)‖ ≤ 1
2π

∥∥∥∥∥∥
∫
γr

R(z)n−1e−zd(I−Az)−1
1bT (I−Az)−1dz

∥∥∥∥∥∥
≤ 1

2π
|γr|rn−1 max

z∈γr
‖e−zd(I−Az)−1

1bT (I−Az)−1‖.

Denoting by QA(z) = (I−Az)−1, one can deduce the bound

max
z∈γr
‖(I−Az)−1

1bT (I−Az)−1‖ ≤max
z∈γr
‖(I−Az)−1‖2‖1bT‖

≤max
z∈γr
‖QA(z)‖2‖b‖√m,

which implies that

‖wn(d)‖ ≤ 1
2π

rn−1|γr|‖b‖
√

mmax
z∈γr
|e−zd |max

z∈γr
‖QA(z)‖2. (3.3)

To understand the behaviour of a scaled convolution weight wn(d) we need to
find a bound on max

z∈γr
|e−zd |. To do so, we use the fact that the stability function R(z)

is an approximant to ez, see (2.7), and thus max
z∈γr
|e−zd | can be expressed via the value

of |R(z)| on γr.
For a Runge-Kutta method of order p we can write

R(z) = ez + f (z),

where f (z) = O(zp+1).
Let us consider z ∈ γr and d ∈ R>0. Multiplying the last equation by e−zR(z)−1,

taking modulus and raising to the dth power both sides of the equation we obtain

max
z∈γr
|e−zd |= max

z∈γr
|R(z)−1 (1+ f (z)e−z) |d

= r−d max
z∈γr
|1+ f (z)e−z|d .

On the other hand,
max
z∈γr
|e−zd |= e−x0d ,

where x0 = min
z∈γr

Rez.

Hence

e−x0d = r−d∣∣1+ f (z0)e−z0
∣∣d , (3.4)

where z0 = x0 + iy0 is a point, such that

Rez′ ≥ Rez0, for all z′ ∈ γr. (3.5)

In order to bound this product we need to understand how x0 and x0 + iy0 behave.
This question has been studied in [16] examining the behaviour of R(z) in the order
star [22]. Namely, when r→ 1, such x0 is close to r−1 and |z0|= |x0 + iy0| is close
to |r− 1|. This and the fact that f (z) = O(zp+1) will allow us to obtain the required
bounds on scaled convolution weights. Here we will employ the results from [16].
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Definition 3.1 ([16]) Given a rational function R(z) we define the error growth func-
tion as the real-valued function φ(x) := sup

Rez<x
|R(z)|.

Theorem 3.1 (Theorem 7 in [16]) Let R(z) = P(z)
Q(z) be an A-stable approximation to

ez of exact order p≥ 1, namely:

R(z) =
P(z)
Q(z)

= ez +Cp+1zp+1 +O(zp+2), for z→ 0, Cp+1 6= 0. (3.6)

Furthermore, assume |R(iy)|< 1 for y 6= 0, and |R(∞)|< 1. Then we have for x→ 0:

– if p is odd,
φ(x) = ex +O(xp+1),

– if p is even and (−1)p/2Cp+1x > 0,

φ(x) = ex +O(xp+1).

– if p is even and (−1)p/2Cp+1x < 0,

φ(x) = ex +O(x1+p/(2s−p)),

where s is defined by

E(y) = |P(iy)|2−|Q(iy)|2 = e0y2s +O(y2s+2), e0 > 0. (3.7)

Remark 3.4 ([16]) For x < Reλmin, with λmin being an eigenvalue of A−1 with the
smallest real part, φ(x) is a strictly monotonically increasing continuous function.

The following proposition shows that for r→ 1 x0 = min
z∈γr

Rez is close to r−1.

Proposition 3.1 Let R(z) be the stability function of the Runge-Kutta method satis-
fying Assumption 2.1, let (3.6) hold and let x0 = min

z∈γr
Rez. Then for r→ 1:

– if p is odd,
x0 = r−1+O((r−1)2).

– if p is even and (−1)p/2Cp+1x0 > 0,

x0 = r−1+O((r−1)2).

– if p is even and (−1)p/2Cp+1x0 < 0,

x0 = r−1+o(|r−1|).

Proof On the contour γr |R(z)|= r. Since the error growth function φ(x) is a strictly
monotonically increasing continuous function, see Remark 3.4, φ(x0) = r. The state-
ment of the proposition follows from the application of the implicit function theorem
to the 3 cases of Theorem 3.1 and the fact that φ(0) = 1, dφ

dx (0) = 1. ut
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Next proposition shows that when r ≈ 1, the point z0 defined by (3.5) lies in a
small circle centered at the origin.

Proposition 3.2 Let R(z) be the stability function of the Runge-Kutta method sat-
isfying Assumption 2.1 and (3.6). Then there exists δ0 > 0 and K > 0, s.t. for all
r : |r−1|< δ0 the point z0 ∈ γr defined by (3.5) lies inside one of the circles specified
below:

1. for p odd:

|z0| ≤ K|r−1|.

2. for p even:
(a) if r > 1 and (−1)

p
2 Cp+1 > 0 or r < 1 and (−1)

p
2 Cp+1 < 0,

|z0| ≤ K|r−1|.

(b) if r > 1 and (−1)
p
2 Cp+1 < 0 or r < 1 and (−1)

p
2 Cp+1 > 0,

|z0| ≤ K|r−1| 1
2s−p ,

where s is defined by (3.7).

Proof The proof of this statement closely follows the proof of Theorem 7 in [16]. As
argued in the proof, for x→ 0 the maximum of |R(x+ iy)|, y ∈R has to lie inside the
order star close to the origin. We consider the following cases (for x→ 0):

1. p is odd.
As shown in the proof of Theorem 7 in [16], for z = x+ iy→ 0, the local extrema
of |R(x + iy)| for a fixed x lie asymptotically on the lines y = x tan(kπ/p), k =
0,1, · · · , p− 1. Since |R(z)| achieves extremum at z0, |z0| ≤ C|x0|, where C > 0
and depends on the Runge-Kutta method.
Proposition 3.1 gives an expression for x0 (using φ(x0) = r):

x0 = r−1+O((r−1)2).

Hence,

|z0| ≤ K|r−1|,

for some K > 0.
2. p is even.

(a) As proved in Theorem 7 in [16], for (−1)p/2Cp+1x0 < 0, |z0| is asymptotically
(z0 → 0) bounded: |z0| ≤ C|x0|, C > 0. The statement of the proposition is
obtained with the help of the same arguments as in the previous case and the
fact that sgnx0 = sgn(r−1).
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(b) For the last case, namely (−1)p/2Cp+1x > 0, in the proof of Theorem 7 in [16]
it was shown that the maximum of |R(x+ iy)|, for x→ 0, is achieved near the
imaginary axis and lies on the curve y2s−p = Dx, where D∈R and s is defined
by (3.7).
Then, for x0 being sufficiently small:

|z0|= |x0|1/(2s−p)
∣∣∣∣x1− 1

2s−p
0 + iD

∣∣∣∣
= |D||x0|1/(2s−p)

(
1+
|x0|2−2/(2s−p)

D2

)1/2

≤ |D||x0|1/(2s−p)

(
1+
|x0|2−2/(2s−p)

2D2 + · · ·
)

.

According to Proposition 3.4 in [17] 2s ≥ p + 1, therefore, for even p, 2s ≥
p+2. This implies that |x0|2−1/(2s−p) = o(|x0|) and

|z0| ≤ K|r−1| 1
2s−p ,

for some K > 0. ut

Now we have all the estimates necessary to prove the next proposition on the
decay of scaled convolution weights.

Proposition 3.3 Let R(z) be the stability function of an m-stage Runge-Kutta method
of order p satisfying Assumption 2.1 and (3.6).

Let s be defined by (3.7). Then there exist positive constants G, G′, C, C′ and
δ̄ ∈ (0, 1), such that for n≥ 1 and 0 < δ < δ̄ the following estimates hold:

1. p is odd

‖wn(d)‖ ≤ G(1−δ )n−d(1+Cδ p+1)d for d ≤ n,

‖wn(d)‖ ≤ G′(1+δ )n−d(1+C′δ p+1)d for d > n;
(3.8)

2. p is even
(a) Cp+1(−1)

p
2 > 0

‖wn(d)‖ ≤ G(1−δ )n−d(1+Cδ p+1)d for d ≤ n,

‖wn(d)‖ ≤ G′(1+δ )n−d(1+C′δ
p+1

2s−p )d for d > n;
(3.9)

(b) Cp+1(−1)
p
2 < 0

‖wn(d)‖ ≤ G(1−δ )n−d(1+Cδ
p+1

2s−p )d for d ≤ n,

‖wn(d)‖ ≤ G′(1+δ )n−d(1+C′δ p+1)d for d > n.
(3.10)
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The convolution weight w0(d) satisfies:

‖w0(d)‖ ≤ exp(−µd), (3.11)

for some µ > 0.
Constants G, G′, C, C′, δ̄ , µ depend only on the Runge-Kutta method and do not

depend on n and d.

Proof Let us start with the case w0(d). From the definition of scaled convolution
weights

exp(−∆(ζ )d) =
∞

∑
n=0

wn (d)ζ n,

∆(ζ ) = A−1−ζ A−1
1bT A−1,

it follows that w0(d) = exp(−A−1d). All the eigenvalues of A lie on the right from the
imaginary axis (due to A-stability of the Runge-Kutta method) and hence the same
hold for the eigenvalues of A−1. The bound on w0(d) can then be obtained from the
definition of the matrix exponential.

For a general case wn(d), n≥ 1, we use the bounds derived before, inserting (3.4)
into (3.3):

‖wn(d)‖ ≤ 1
2π

rn−1‖b‖√m|γr|max
z∈γr
|e−zd |max

z∈γr
‖QA(z)‖2

=
1

2π
rn−d−1|γr|max

z∈γr
‖QA(z)‖2‖b‖√m|1+ f (z0)e−z0 |d , (3.12)

where z0 is such that for all z′ ∈ γr Rez′ ≥ Rez0 and f (z) = R(z)− ez.
Let us first derive the bound for |1 + f (z0)e−z0 |. For |z| < 1

λ0
, where λ0 is the

spectral radius of A, we can expand R(z) = 1 + zbT (I − Az)−11 with the help of
Neumann series to obtain an explicit expression for f (z):

f (z) = R(z)− ez = z
∞

∑
l=p

bT Al
1zl−

∞

∑
l=p+1

zl

l!
.

For |z|< 1
‖A‖ , we can trivially bound

|1+ f (z)e−z|d ≤ (1+C|z|p+1)d
, (3.13)

where C depends on the Runge-Kutta method, but does not depend on z or d.
Now let n > d. We choose r < 1, r = 1− δ , 0 < δ < min

{
δ∗, 1

‖A‖
}

. Here δ∗ is
a constant from (3.2), which allows to choose the contour γr, s.t. |R(z)| = r for all
z ∈ γr.

Then the bound (3.12), using (3.13), can be rewritten as:

‖wn(d)‖ ≤ 1
2π

(1−δ )n−d−1|γ1−δ | max
z∈γ1−δ

‖QA(z)‖2‖b‖√m
(
1+C|z0|p+1)d

,
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where z0 is such that Rez0 < Rez for all z ∈ γ1−δ .
The length of the curve γ1−δ as well as maxz∈γ1−δ ‖QA(z)‖ can be bounded by

constants that depend on the Runge-Kutta method, see also Lemma 3.2 and Remarks
3.2 and 3.3. Applying Proposition 3.2 to estimate

(
1+C|z0|p+1

)d , we obtain the
required expressions for the case n > d.

The bound for n < d can be obtained similarly setting r = 1 + δ , with 0 < δ <

min
{

δ∗, 1
‖A‖
}

. ut

Remark 3.5 Note that for even p the above bounds imply that when 2s− p < p + 1
scaled convolution weights decay exponentially. However, 2s ≤ 2m (m is a number
of stages and the degree of the denominator in R(z) = P(z)

Q(z) ), and thus for exponential
decay it suffices that p≥ m.

Remark 3.6 From the proof it can be seen that the effect of dispersion of convolution
weights is due to the term |1 + f (z0)e−z0 | which was bounded by a constant greater
than 1. We have not observed in the numerical experiments any case when this term
is noticeably smaller than 1, which would force the norm of the convolution weights
wn(d) decay exponentially with increasing n≈ d.

We have shown that scaled convolution weights wn(d) exhibit exponential decay
outside of a neighborhood of n≈ d, which is an expression of Huygens principle and
finite speed of wave propagation.

Our estimates also reflect some other properties of scaled convolution weights
that are observed in numerical experiments. For example, inequalities (3.8) predict
that for Runge-Kutta methods of odd orders with increasing n the size of the support
of a convolution weight wn(d) increases, however, with the rate of increase smaller
for higher orders. An illustration of this effect is shown in Figure 3.2. We depicted
the norms of scaled convolution weights wn(d) on the semilogarithmic axis for three
methods: BDF1 (1-stage Radau IIA of 1st order), 2-stage Radau IIA of 3rd order and
3-stage Radau IIA of 5th order. Particularly, one can see that for BDF1 the width of
a convolution weight increases with n and is also quite large in comparison to the
width of a convolution weight for 3-stage Radau IIA method of 5th order. The rate at
which the width increases is also larger for BDF1, in agreement to what our estimates
predict.

For Runge-Kutta methods of even orders the obtained estimates predict that for
larger n and d the width of a convolution weight gets larger in a non-symmetric
manner: the part of the support of a convolution weight wn(d) corresponding to d < n
can get larger with increasing n faster than the part corresponding to n > d or vice
versa. For larger n, d the nonsymmetricity will become more and more visible. This
can be illustrated through an example of Lobatto IIIC method of 6th order. Numerical
experiments indicate that with increasing n the part of the support of the convolution
weight wn(d) of Lobatto IIIC method corresponding to d < n increases slower than
the part of the support d > n. This effect can be explained by estimates (3.9) as
follows. It is known that the stability function of 4-stage Lobatto IIIC method is the
(2,4)-Padé approximation to ez. For such approximants the sign of the error term
Cp+1 is negative (see, for example, [9]); then the sign of Cp+1(−1)

p
2 is positive.
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5 10 15
10−7

10−4

10−1

d

‖w10(d)‖ for the 3-stage Radau IIA
‖w10(d)‖ for the 2-stage Radau IIA
‖w10(d)‖ for the BDF1

35 40 45
10−7

10−4

10−1

d

‖w40(d)‖ for 3-stage Radau IIA
‖w40(d)‖ for 2-stage Radau IIA
‖w40(d)‖ for the BDF1
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10−10

10−5

100

d

‖w15(d)‖ for 3-stage Radau IIA
‖w15(d)‖ for Lobatto IIIC

90 95 100 105 110
10−10

10−5

100

d

‖w100(d)‖ for 3-stage Radau IIA
‖w100(d)‖ for Lobatto IIIC

Fig. 3.2 Scaled convolution weights wn(d) for BDF1, 2-stage and 3-stage Radau IIA methods and 4-stage
Lobatto IIIC method.

According to the estimates (3.9) for larger n the part of the support of the convolution
weights wn(d) of Lobatto IIIC method corresponding to d < n should increase slower
than the part of the support d > n. To demonstrate these effects we depicted w15(d)
and w100(d) for the Lobatto IIIC of 6th order and Radau IIA of 5th order in Figure
3.2.

The next proposition is a corollary of Proposition 3.3 and shows that (non-scaled)
convolution weights wh

n(d) also experience exponential decay away from d
h ≈ n.

Proposition 3.4 Let R(z) be the stability function of an m-stage Runge-Kutta method
of order p satisfying Assumptions 2.1 and (3.6).

Let s be defined by (3.7). Then there exist positive constants G, G′, C, C′ and
δ̄ ∈ (0, 1), such that for n≥ 1 and 0 < δ < δ̄ the following estimates hold:
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1. p is odd

‖wh
n(d)‖ ≤ G

h
(1−δ )n− d

h (1+Cδ p+1)
d
h for

d
h
≤ n,

‖wh
n(d)‖ ≤ G′

d
(1+δ )n− d

h (1+C′δ p+1)
d
h for

d
h

> n;
(3.14)

2. p is even
(a) Cp+1(−1)

p
2 > 0

‖wh
n(d)‖ ≤ G

h
(1−δ )n− d

h (1+Cδ p+1)
d
h for

d
h
≤ n,

‖wh
n(d)‖ ≤ G′

d
(1+δ )n− d

h (1+C′δ
p+1

2s−p )
d
h for

d
h

> n;
(3.15)

(b) Cp+1(−1)
p
2 < 0

‖wh
n(d)‖ ≤ G

h
(1−δ )n− d

h (1+Cδ
p+1

2s−p )
d
h for

d
h
≤ n,

‖wh
n(d)‖ ≤ G′

d
(1+δ )n− d

h (1+C′δ p+1)
d
h for

d
h

> n.

(3.16)

The convolution weight wh
0(d) satisfies:

‖wh
0(d)‖ ≤ exp(−µ d

h )
4πd

,

for some µ > 0.
Constants G, G′, C, C′, δ̄ , µ depend only on the Runge-Kutta method and do not

depend on n, d and h.

Proof Let us again start with the case wh
0(d). From the definition of scaled convolu-

tion weights it follows that wh
0(d) = w0( d

h )
4πd , and the required bound can be obtained

from (3.11). Note, however, that the convolution weight wh
0(d) has a singularity at

d = 0.
Bounds for the case d

h > n can be obtained straightforwardly from expressions

(3.8, 3.9, 3.10) applied to wh
n(d) = wn( d

h )
4πd .

The case d
h ≤ n has to be treated separately: we cannot directly apply Proposition

3.3 for bounding wh
n(d) = wn( d

h )
4πd , since for small d this bound would be far from opti-

mal. We will proceed as follows. First, we will show that a scaled convolution weight
wn(d) has a zero at d = 0 of multiplicity at least n. Next, this fact and ideas from the
proof of Proposition 3.3 will be used to demonstrate that away from n convolution
weights wh

n(d) decay exponentially.
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Let us first expand the generating function of scaled convolution weights e−∆(ζ )d ,
see (2.10), into Taylor series in ζ and then into series in d:

exp(−∆(ζ )d) =
∞

∑
n=0

wn(d)ζ n,

exp(−∆(ζ )d) =
∞

∑
n=0

(−∆(ζ ))n

n!
dn.

Matching the powers of ζ we obtain the following expansion for wn(d), n≥ 0:

wn(d) =
∞

∑
m=n

dm f n
m (A,b,h) ,

where f n
m (A,b,h) are matrix-valued functions of A, b and h.

Therefore, wn(0) = 0, n≥ 1. Let us recall the representation of scaled convolution
weights (3.1):

wn(d) =
1

2πi

∮
γ

R(z)n−1(I−Az)−1
1bT (I−Az)−1e−zddz, (3.17)

where γ is a contour that encloses all the eigenvalues of A−1, n ≥ 1. From this it
follows that

wn(0) =
1

2πi

∮
γ

R(z)n−1(I−Az)−1
1bT (I−Az)−1dz = 0. (3.18)

The above implies as well that convolution weights wh
n(d), n ≥ 1, have a zero at

d = 0 of order at least n−1.
Now let us prove the bounds (3.14, 3.15, 3.16) for d

h < n. Let d 6= 0. We express

e−z d
h in terms of an integral of a parameter 0≤ ρ ≤ 1:

e−z d
h = 1− zd

h

1∫
0

e−z d
h ρ dρ.

Then the definition (3.17) can be rewritten:

wh
n(d) =

1
2πid

∮
γ

R(z)n−1(I−Az)−1
1bT (I−Az)−1e−z d

h dz

=
1

2πid

∮
γ

R(z)n−1(I−Az)−1
1bT (I−Az)−1dz−

− 1
2πih

1∫
0

∮
γ

R(z)n−1(I−Az)−1
1bT (I−Az)−1ze−z d

h ρ dzdρ.
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The first term in the above sum equals 0, due to (3.18). The modulus of the second
term, namely,

1
2πih

1∫
0

∮
γ

R(z)n−1(I−Az)−1
1bT (I−Az)−1ze−z d

h ρ dzdρ,

can be estimated using the mean value theorem. We first bound the value of the inte-
gral

I(ρ,d) =
1

2πih

∮
γ

R(z)n−1(I−Az)−1
1bT (I−Az)−1ze−z d

h ρ dz

repeating the arguments of the proof of Proposition 3.3. Note that two changes have
to be made. First, d has to be substituted with d

h . And second, instead of bounding
‖(I−Az)−11bT (I−Az)−1‖ we now bound ‖(I−Az)−11bT (I−Az)−1z‖, for z lying
on a contour γ = γr, by a constant that does not depend neither on d, nor on h or n,
but only on the Runge-Kutta method.

It is not difficult to see that there exist positive constants G, C, δ̄ ∈ (0, 1), q > 0
such that for n≥ 1 and 0 < δ < δ̄ the following estimate holds:

|I(ρ,d)| ≤ 1
h

G(1−δ )n− d
h ρ(1+Cδ q)

d
h ρ ,

for d
h ρ ≤ n. In the above expression q is either p + 1 or p+1

2s−p , as in Proposition 3.3.
Clearly this estimate is valid for all d : d

h < n and ρ ∈ [0, 1].

Next, we bound
1∫
0

I(ρ,d)dρ as:

∣∣∣∣∣∣
1∫

0

I(ρ,d)dρ

∣∣∣∣∣∣≤ max
ρ∈[0, 1]

|I(ρ,d)|

≤ 1
h

G(1−δ )n max
ρ∈[0, 1]

(
1+Cδ q

1−δ

) d
h ρ

≤ 1
h

G(1−δ )n− d
h (1+Cδ q)

d
h .

This finishes the proof of the statement. ut

4 Computation of convolution weights

Let us write

Kd(ζ ) =
exp
(−∆(ζ ) d

h

)
4πd

.
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The expansion (2.9) shows that wh
n(d) is the the nth Taylor coefficient of Kd(ζ ).

Therefore, Cauchy integral formula gives another representation of wh
n(d),

wh
n(d) =

1
2πi

∮
C

Kd(ζ )ζ−n−1dζ .

Let us choose the contour C to be the circle centred at the origin with radius ρ < 1.
Discretizing this integral with the composite Trapezoid rule gives the approximation

wh
n(d) = ρ−n

N

∑
j=0

Kd

(
ρei j 2π

N+1

)
e−i jn 2π

N+1 +O(ρN+1), n = 0,1, . . . ,N. (4.1)

In practice, the parameter ρ > 0 cannot be chosen arbitrarily small in finite preci-
sion arithmetic. If eps denotes the machine precision the best accuracy that can be

achieved is
√

eps with the choice ρ = eps
1

2N , see [19]. Using FFT, wh
n(d) can be

computed in O(N logN) time for all n = 0,1, . . . ,N. However, if d is restricted, it is
possible to avoid the scaling parameter ρ as described in the next proposition.

Proposition 4.1 Given D = Ch > 0, the following holds true:

1. There exists a finite term approximation to the convolution kernel Kd(z)=
exp(−∆(z) d

h )
4πd .

Namely, given ε > 0 there exists L = L(log 1
εh ,C) ∈N such that∣∣∣∣∣Kd(z)−

L

∑
`=0

wh
`(d)z`

∣∣∣∣∣≤ ε

for all z ∈ C with |z| ≤ 1 and 0 < d ≤ D.
2. The convolution weights can be approximated with an arbitrary accuracy ε by

an L(log 1
εh , D

h ) + 1-term discrete Fourier transform of the convolution kernel.
Namely, given ε > 0 there exists L = L(log 1

εh , D
h ) ∈N such that:∣∣∣∣∣wh

n(d)− 1
L+1

L

∑
`=0

Kd(ei` 2π
L )e−i`n 2π

L+1

∣∣∣∣∣≤ ε

for all n≤ L and 0 < d ≤ D.
Here L = L(log 1

εh ,C) is the same as in the first statement and depends on log 1
εh

and C at most linearly.

Proof The proof of the first statement trivially follows from the bounds on convo-
lution weights derived in Proposition 3.4. The proof of the second statement can be
obtained by sampling Kd(z) in L(log 1

εh , D
h )+1 points on unit circle and applying the

inverse discrete Fourier transform to the resulting sequence. ut
Remark 4.1 Note that in the above statement the dependence of L on log 1

h cannot be
removed. To illustrate this fact, in Figure 4.1 we plot n∗ = sup{n ∈ N | ‖wh

` (d)‖ <
ε, for all `≥ n, d ≤ D} for different values of h and ε and fixed D

h = 10, for 3-stage
Radau IIA method of the fifth order.
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Fig. 4.1 Dependence of n∗ = sup{n ∈N | ‖wh
` (d)‖< ε, for all `≥ n, d ≤D} on 1

h , for ε = 1e−4, 1e−5
and fixed D

h = 10, for 3-stage Radau IIA method.

5 Applications

The idea of use of sparsity of convolution weights to speed up calculations is not new.
Most straightforward way of using the sparsity is to notice that for large enough n,
the weights W h

j , j > n, need not be computed but can be approximated by zero. In
order to describe more advanced algorithms we need to briefly introduce the Galerkin
boundary element discretization of convolution weights.

Let the boundary Γ be split into M disjoint panels τ1, . . . ,τM so that Γ = ∪iτ̄i.
The span of piecewise constant basis functions

bi(x) =

{
1 x ∈ τi

0 x /∈ τi
, i = 1,2, . . . ,M,

defines a finite dimensional subspace X ⊂ H−1/2(Γ ).
The corresponding Galerkin discretization of a convolution weight W h

n is given
by

(
Wh

n

)
i j

=
∫

Γ

(
W h

n bi

)
(x)b j(x)dΓx

=
∫

Γ

∫
Γ

wh
n(‖x− y‖)bi(y)b j(x)dΓydΓx

=
∫

τi

∫
τ j

wh
n(‖x− y‖)dΓydΓx.
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Remark 5.1 Convolution weights W h
n are m×m-matrices of operators bounded as

mappings from H−1/2(Γ ) to H1/2(Γ ). Therefore if

W h
n =

W 11
n · · · W 1m

n
... · · · ...

W m1
n · · · W mm

n

 ,

then Wh
n should be understood as a matrix of matrices (a tensor) and

(
Wh

n

)
i j

=


∫

Γ
(
W 11

n bi
)
(x)b j(x)dΓx · · ·

∫
Γ
(
W 1m

n bi
)
(x)b j(x)dΓx

... · · · ...∫
Γ
(
W m1

n bi
)
(x)b j(x)dΓx · · ·

∫
Γ (W mm

n bi)(x)b j(x)dΓx

 .

For the understanding of this section it is however sufficient to consider the scalar
case, m = 1.

The sparsity of convolution weights shows that many entries in the Galerkin ma-
trices need not be computed. This fact, though only for linear multistep based meth-
ods, has been used in [15] to construct and analyse an efficient algorithm.

5.1 FFT and sparsity

The use of FFT, as in (4.1), usually destroys any sparsity, but in [6] it has been shown
that both in this case advantage can be made of sparsity. Here we will just briefly
explain the main idea.

In (4.1) we have seen that the convolution kernels can be approximated by a
discrete Fourier transform and hence the same is true of the convolution weights

Wh
n ≈ ρ−n 1

N +1

N

∑
`=0

V(ρei` 2π
N+1 )e−i`n 2π

N+1 ,

for m = 0,1, . . . ,N. This shows that N convolution weights can be computed in
O(N logN) time. Recall that for a fixed time interval [0,T ], N = T/h.

From Proposition 3.4 we know that for a fixed n0 > 0

‖wh
n(d)‖ ≤ C

h
(1−δ )n− d

h ≤ C̃
h

(1−δ )n−n0 ,

for all d ∈ (0,n0h) and n > n0 with C and C̃ constants. Hence there exists n1 ∝

logε−1 + logh−1 such that

‖wh
n(d)‖ ≤ ε, for all 0 < d < n0h and n > n1.

Therefore for n > n1, the ”near-field” in matrices Wh
n can be approximated by zero:(

Wh
n

)
i j

=
∫

τi

∫
τ j

wh
n(‖x− y‖)dΓydΓx ≈ 0, if dist(τi,τ j) < n0h, n > n1.
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Unfortunately this is not true for the N +1 matrices V(ei` 2π
N+1 ), further problem being

that the near-field forms the part of the matrix which fast methods such as hierarchical
matrices and the fast multipole method cannot be applied to. To reduce considerably
the computational costs, we show next how to reduce the number of matrices for
which the near-field needs to be computed from O(N) to O(logN) and still make
effective use of FFT. First we compute the n1 weights Wh

n, n = 0,1, . . . ,n1 using

Wh
n ≈

ρ−n

n1 +1

n1

∑
`=0

V(ρei` 2π
n1+1 )e−i`n1

2π
N+1 , n = 0,1, . . . ,n1.

This is not an expensive operation since n1 depends only logarithmically on N. The
remaining weights are computed using a similar formula as before in O(N logN) time

Wh
n ≈

ρ−n

N +1

N

∑
`=0

Ṽ(ρei` 2π
N+1 )e−i`n 2π

N+1 , n = n1 +1, . . . ,N,

where

(Ṽ(s))i j =

{
0 if dist(τi,τ j) < n0h
(Ṽ(s))i j otherwise.

Thereby N convolution weights can still be computed in O(N logN) time, but only for
a O(logN) number of evaluations of V(s) is it necessary to compute the near-field.

For a more thorough explanation of how to use such ideas in a full algorithm for
solving the discretized equations see [6].

6 Conclusions

In the present work the behaviour of the convolution weights of Runge-Kutta convo-
lution quadrature has been analyzed. It was proved that convolution weights wh

n(d)
decay exponentially away from nh≈ d. The obtained estimates on convolution weights
explain the dependence of the size of approximate support of a convolution weight
on the order of the underlying Runge-Kutta method. The results of this work can be
used for design of the fast algorithms for solution of TDBIE for three-dimensional
wave equation.

A Proof of Lemma 3.1

Lemma A.1 (Lemma 3.1) There exist q,ν > 0, such that the domain

{(x,y) | |y|< νx
1
` , 0 < x < q} (A.1)

belongs to ϒ1 (and intersects all the order star fingers). Here

` =
{

p+1, p is odd,
2s, p is even,

where s is defined by

E(y) = |Q(iy)|2−|P(iy)|2 = e0y2s +O(y2s+2), e0 > 0.
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Proof We rewrite the stability function as

R(z) = ez +Cp+1zp+1 + r(z), Cp+1 6= 0,

where r(z) = O(zp+2).
Let us consider the following cases.

1. p is odd. For a fixed x→ 0,

|R(x+ iy)|2 = e2x +2Cp+1 Re
(
ex+iy(x− iy)p+1)+

+2Re
(
ex+iyr(x− iy)

)
+C2

p+1(x
2 + y2)p+1 + |r(x+ iy)|2

= 1+2x+2Cp+1(−1)
p+1

2 yp+1 +O(yp+2). (A.2)

Note that |R(iy)|< 1, hence it is necessary that

Cp+1(−1)
p+1

2 < 0.

From the above and (A.2) it follows that there exists q,ν > 0, s.t. |R(x+ iy)|> 1 for all{
(x, y) | 0 < x < q, |y|< νx

1
p+1
}

.

2. p is even. In this case we will make use of properties of an E-polynomial, see [17, Chapter IV]:

E(y) = |Q(iy)|2−|P(iy)|2 = e0y2s +O(y2s+2), (A.3)

where 2s≥ p+1. For the Runge-Kutta methods with |R(iy)| ≤ 1, y ∈ R,

E(y)≥ 0.

Clearly, E(y)≡ 0 implies that |R(iy)|= 1 for all y ∈ R; for Runge-Kutta methods satisfying assump-
tion (2.1), e0 > 0.
Let us define

ψy(x) = |R(x+ iy)|2.
For a fixed y we can expand the above expression into Taylor series in x:

ψy(x) = |R(iy)|2 + x
dψy

dx
(0)+O(x2).

Using (A.3), we can rewrite the first term:

|R(iy)|2 = 1− e0y2s +O(y2s+2).

For even p,

|R(x+ iy)|2 = e2x +2Cp+1(−1)
p
2 exxyp + r1(x,y)+ exr2(x,y)+ exxr3(x,y)+O(x2),

where r1(x,y) = O(x2), r2(x,y) = O(yp+2), r3(x,y) = O(yp+2).
Then,

ψy(x) = 1− e0y2s
(

1− x
e0y2s −2Cp+1(−1)

p
2

xyp

e0y2s −
x

e0y2s r2(x,y)
)

+O(x2).

From the above expression we can see that there exists q, ν > 0, s.t. |R(x+ iy)|> 1 for all{
(x, y) | 0 < x < q, |y|< νx

1
2s

}
.

Since the bounds derived are asymptotically optimal, the domain (A.1) indeed intersects all the order star
fingers. ut
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