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Abstract. In this paper we disprove a conjecture stated in [4] on the equality of
two notions of dimension for closed cones. Moreover, we answer in the negative
to the following question, raised in the same paper. Given a compact family C

of closed cones and a set S such that every blow-up of S at every point x ∈ S is
contained in some element of C, is it true that the dimension of S is smaller then
or equal to the largest dimension of a vector space contained is some element of
C?
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1. Introduction

In [4], White proves a generalization of Almgren’s stratification principle (see
[1]). To explain it, let us consider the simplified euclidean setting. A cone in
R
n is a set C such that λx ∈ C for every x ∈ C and every λ > 0. Given a set

S ⊂ R
n the difference set of S is the set

diff(S) := {x− y : x, y ∈ S}.

The building dimension bdim(C) of a cone C is the quantity

bdim(C) := sup{dimH(S) : S ⊂ R
n,diff(S) ⊂ C}.

Here and throughout the paper, dimH denotes the Hausdorff dimension of a
subset of Rn, with respect to the euclidean distance. Note that the building
dimension of a cone C is always less than or equal to dimH(C). Moreover, if
C is a vector subspace of Rn, then the building dimension and the Hausdorff
dimension of C are equal, because diff(C) ⊂ C. In [4] this notion is used to
prove a stratification principle. In particular the following statement is proved
(see Theorem 2.2 of [4]). We will give the definition of blow-up of a set in
Section 3.3.

t1 1.1. Theorem (White). Let C be a compact family of closed cones such that

at each point of a set S each blow-up of S is contained in some element of C.
Then the largest possible Hausdorff dimension d of the set S is smaller or equal

than the largest building dimension of the cones in C.

A natural question then becomes the estimate of the building dimension. In
the same paper the following characterization in terms of linear subspaces is
proved (see Theorem 2.1 and Proposition A.2 of [4]).
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t2 1.2. Theorem (White). The building dimension of a closed cone C is equal

to the supremum of the Hausdorff dimension of the vector subspaces contained

in C, in the following two cases:

• C is convex;

• C is a subset of R2.

Moreover, the author conjectures the following.

1.3. First Conjecture. The conclusion of Theorem 1.2 holds for any closed

cone C.

The validity of this conjecture would improve the conclusion of Theorem 1.1,
proving that d is exactly the largest dimension of a linear subspace that is a
subset of one of the cones in C. In fact, White conjectures also the following.

1.4. Second Conjecture. If the hypothesis of Theorem 1.1 is satisfied, then

the largest possible Hausdorff dimension d of the set S equals the largest dimen-

sion of a linear subspace that is a subset of one of the cones in C.

In our paper, we disprove both conjectures. In Section 2, we exhibit a closed
cone C ⊂ R

3 which does not contain planes, but whose building dimension is
strictly larger than 1. In Section 3, we exhibit a set S ⊂ R

3 with Hausdorff
dimension strictly larger than 1 and with the property that there exists a closed
cone which does not contain planes, but which contains every blow-up of S at
every point x ∈ S. Note that the counterexample given in Section 3, together
with Theorem 1.1, gives an indirect proof that the First Conjecture is not
valid. We give also the direct proof contained in Section 2, because we find the
construction of some interest. To our knowledge is not known whether or not
Theorem 1.1 gives the best possible estimate for the value of the dimension d.
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2. Construction of the counterexample to the First Conjecture

2.1. Strategy of the proof. We firstly construct a set E ⊂ [−1, 1] which is a
closed, self-similar fractal in the sense of Hutchinson (see [3], Section 8.3), with
dimH(E) > 1

3 . In our case it is easy to compute the Hausdorff dimension of the

Cartesian product S := E×E×E ⊂ R
3 and we have dimH(S) = 3dimH(E) > 1.

Then we construct a closed set F ⊂ [−2, 2] satisfying diff(E) ⊂ F and we ex-
hibit a line ℓ ⊂ R

2 which intersects the cone in R
2 over F × F only at the

origin. This is sufficient to prove that the cone C in R
3 over F × F × F does

not contain any plane π. In fact, if such a plane π exists, then its projection on
at least one of the coordinate planes should be the full coordinate plane, which
is not the case because of the existence of the line ℓ. On the other hand, C
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necessarily contains diff(S), therefore C disproves the conjecture.

2.2. Construction of E. Let A ⊂ [0, 1] be the self-similar set obtained as a
countable intersection of the sets Ai defined as follows:

• A0 = [0, 1]
• for every i = 1, 2, . . ., Ai is the union of 2i closed intervals Ii,0, . . . , Ii,2i−1,

where Ii,2j (respectively, Ii,2j+1) has length
1

8−ε
times the length of Ii−1,j

and it has the same left (respectively, right) extreme as Ii−1,j.

The set E is the union of A and −A. By Theorem 8.6 of [3] it is easy to
compute

dimH(E) = dimH(A) =
ln 2

ln(8− ε)
>

1

3
,

because A is the invariant set associated to 2 similitudes, each with ratio 1
8−ε

.
Analogously, denoting S := E × E × E, we can compute

dimH(S) = dimH(A×A×A) =
ln 8

ln(8− ε)
> 1,

because A × A × A is the invariant set associated to 8 similitudes, each with
ratio 1

8−ε
.

2.3. Construction of F . For i = 1, 2, . . ., we denote Fi :=diff(Ai ∪ −Ai)
and F =

⋂
i Fi. It follows immediately that diff(E) ⊂ F . Indeed in this case

there holds diff(E) = F , but the inclusion is sufficient to our aim. Moreover F
is closed, because each Fi is so, being Fi the image of the Cartesian product
(Ai ∪ −Ai)

2 under a continuous map (the sum of the coordinates). Note that
the difference set of a Borel set is not necessarily a Borel set (see [2]).

2.4. Final contradiction. The crucial part of the proof is the following claim.

2.5. Claim. There exists a line ℓ on R
2 which intersects the cone in R

2 over

F × F only at the origin.

To prove it, denote by F̃1 the set (F1 × F1) \G1, where G1 is the connected
component of (F1 × F1) containing the origin. For every i = 2, 3, . . ., denote

by F̃i the set ((Fi × Fi) \ F̃i−1) \ Gi, where Gi is the connected component of

(Fi × Fi) containing the origin. Note that for i = 2, 3, . . . we have F̃i ⊂ Gi−1.

Clearly the cone over (F × F ) is contained in the cone C̃ over the set
⋃

i F̃i,

which coincides with the union of the cones C̃i over F̃i. The key observation is
the following lemma.

2.6. Lemma. For every i = 1, 2, . . ., F̃i+1 is an homothetic copy of F̃i. More

precisely, F̃i+1 =
1

8−ε
F̃i.
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ℓ

p =
(

2
8−ε

; 1− 2
8−ε

)

(2; 0)(−2; 0)

(0;−2)

(0; 2)

F̃1

q =
(
1− 2

8−ε
; 2
)

Figure 1. A line ℓ intersects the cone over F̃1 only at the origin. f1

Proof. It is sufficient to prove the lemma in case i = 1. Every point z in

F̃2 is a difference of two points x and y in (A2 ∪ −A2)
2. Moreover x and y

necessarily belong to the same connected component of (A1 ∪ −A1)
2, because

for a and b in different components of (A1∪−A1), there holds |a−b| ≥ 1
2 , while

|z| < 1
2 . So we can assume that x and y belong to the connected component

D of (A1 ∪−A1)
2 which contains 0, because any other connected component is

contained in a translated copy ofD. Since the intersection ofD with (A2∪−A2)
2

is an homothetic copy of (A1 ∪ −A1)
2 of ratio 1

8−ε
, then the same is true for

their difference sets, and hence for F̃2 and F̃1. �

In particular, it follows that C̃ = C̃1. An easy computation shows that if ε
is sufficiently small, then a line ℓ with the claimed property exists (see Figure
1). For example the line

y =
2 + ε

1− 2
8−ε

x

has the claimed property, for ε sufficiently small.
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3. The Second Conjecture

3.1. Strategy of the proof. We consider the set A constructed in the previ-
ous section and we set S := A×A×A. We already proved that dimH(S) > 1.
Then we prove that for a certain open set of directions in the plane z = 0, any
line with such direction intersect A×A in at most one point. This is sufficient
to conclude that every blow-up of A×A at any point does not contain points in

such directions. Hence every blow-up of A×A is contained in a closed cone C̃xy

which does not contain points in such directions. Therefore every blow-up of

S is contained in the closed cone Cxy := C̃xy ×R. The same argument applied
to the coordinate planes x = 0 and y = 0, gives that every blow-up of S is
contained in the intersection C := Cxy ∩ Cxz ∩ Cyz, which does not contain
planes, because its projections on the coordinate planes never coincide with the
full coordinate plane itself.

3.2. Property of A×A. Consider the set A constructed in the previous sec-
tion. We can assume here ε = 1. The set A × A in the plane z = 0 has the
following property. Every line y = mx + q such that 7

5 < m < 5 intersects
the set A × A in at most one point. In fact it is easy to see that A1 × A1

has the property that such a line intersects at most one of its four connected
components (see Figure 2). Since the part of A2 × A2 which is contained in
one connected component of A1 ×A1 is homothetic to A1 ×A1 itself, the same
property holds for A2 ×A2 and, by induction, for Ai ×Ai, for every i.

bu

3.3. Blow-up of a set. Given a closed set S, a point x ∈ S and sequence
rj ց 0, there exists a subsequence rjk such that the sequence of sets

Sx,rjk
:= B(0, 1) ∩

S − x

rjk

converges in the Hausdorff distance to some closed set Sx. In this case we say
that Sx is a blow-up of the set S at the point x. Of course, choosing a different
sequence rj or a different subsequence rjk can lead to a different blow-up.

3.4. Blow-ups of A×A. Now we want to prove that at every point of A×A,
every blow-up of A × A intersects a line y = mx with 7

5 < m < 5 only

at the origin. Assume the contrary that there exist 7
5 < m0 < 5, a point

z0 = (x0, y0) ∈ A×A, a point p = (t,m0t) 6= (0, 0) and a sequence rn ց 0 such
that the point p belongs to the limit of the sequence (A×A)z0,rn . This means
that every arbitrarily small neighborhood of p intersects the set (A×A)z0,rn , for
every n sufficiently large. Take a neighborhood of p which does not contain 0
and it is sufficiently small to be contained in the cone made by all lines y = mx

with 7
5 < m < 5. Since this neighborhood intersects the set (A ×A)z0,rn , then

for some 7
5 < m′ < 5, the line y = m′x contains a point of (A × A)z0,rn which

is not 0. Or, in other words, the line y − y0 = m′(x − x0) contains a point of
(A × A) which is not z0. Therefore that line intersects the set (A × A) in at



6 Andrea Marchese

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

��
��
��

��
��
��

m = 5

m = 7
5

A1 × A1

(0; 0)

(0; 1)

(1; 0)

Figure 2. Every line y = mx + q with 7
5 < m < 5 intersects

the set A1 ×A1 in at most one point. f2

least two point, which is a contradiction.

We can conclude that at every point of A × A, every blow-up of A × A is
contained in the closed cone

C̃xy :=

{
(x, y) ∈ R

2 : y 6= mx, for every
7

5
< m < 5

}
∪ 0.

3.5. Blow-ups of S. Given a projection π, the projection of a blow-up of a
set S at a point z (i.e. the limit of Sz,rn , for some sequence rn) is contained in
the limit of π(S)π(z),rn : a blow-up of the projection π(S) at the point π(z). In
particular every blow-up of the set S := A × A × A at any point is contained
in the cone

Cxy := {(x, y, z) ∈ R
3 : (x, y) ∈ C̃xy}.

The same holds for the cones Cxz and Cyz defined analogously. Therefore every
blow-up of the set S at any point is contained in the cone

C := Cxy ∩ Cxz ∩Cyz.

As in the previous section, this cone cannot contain any plane, because, if so,
at least one of the projections of the cone on the coordinate planes should
be full, which is not the case. We deduce that the set S has the following
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property. Every blow-up of S at every point of S is contained in a closed cone
(which is in particular a trivial compact family of closed cones) which does not
contain planes. Nevertheless dimH(S) > 1. Therefore S disproves the second
conjecture.

This argument, together with Theorem 1.1, gives indirectly a counterexample
to the First Conjecture. In fact the cone C must have building dimension
strictly larger than 1, because it contains every blow-up at every point of the
set S (which has dimension strictly larger than 1).
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