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Abstract We investigate a Kac-type many particle model that allows a reference-free description
of plastic deformation. In the framework of the model a solid body is described by a set of particle
positions. A lattice is fitted to the particle configuration around each point on a mesoscopic scale.
The lattice parameters are used as an argument of a non-linear elasticity energy functional. There
are two main results in this paper. First, we prove an estimate for the difference between the
fitted lattice parameters of points of low energy density that are sufficiently close to each other.
Sequences of these points can be used for homotopy type arguments. In particular it is possible
to identify dislocations as topological defects in this framework. Furthermore, we use the fitted
lattice parameters as local Lagrangian coordinates and bound the energy from below with a
functional of these coordinates.

Keywords Many Body interactions - Kac-type potentials for crystal plasticity - Lattice free
description of dislocations

1 Introduction:

In this article we discuss a many particle Hamiltonian that allows a description of plastic defor-
mations without using a reference configuration. The model is closely related to the one presented
by L. Mugnai and S. Luckhaus in [6]. In the classical theory of elasticity the deformation of a solid
body is described with the help of a reference configuration, that is assumed be stress-free. The
actual configuration of the described body is given as the image of this reference configuration
by a differentiable map ¢. The energy of a configuration is then given by
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In this setting the deformed configuration is the minimizer of this energy functional under certain
boundary conditions. However, the local order is fixed by the reference configuration. Since plastic
deformations are changing the local order, they can not be described in this framework. Therefore
we are aiming to substitute the reference configuration in the framework with a quantity that
allows a change of the local order. If we imagine the reference configuration filled with the lattice
7%. These position are mapped on ¢(Z%). In the neighborhood of a points z it holds

$(zi) = ¢(2) + Vo(2) (2 — 2) (2)

Hence, the configuration is approximately a Bravais lattice in the neighborhood of each point.
The main idea of our model is to fit a Bravais lattice locally to a set of atom positions and use the
matrix that spans the Bravais lattice as an argument for an elastic energy functional. In this paper
will demonstrate that chains of theses fitted lattices can be used to define a generalized Burgers
vector that characterizes the topological defects of a crystal. Furthermore, we prove that the fitted
lattice parameters can be used as Lagrangian coordinates. And that we can bound the energy
density from below with a functional of this coordinates. In the form hy > F(V7) 4+ C||V27|]2.

L A AYS

Fig. 1 Multi-scale model with three different scales: Microscopic scale: |A’1| distance between atoms, macroscopic
scale L size of the body , mesoscopic scale: A the configuration looks like a lattice

Eventually we hope that a connection to non-equilibrium statistical mechanics can be estab-
lished. If at low temperatures a strong enough bound for our Hamiltonian can be derived for a
statistical mechanic particle system, then there is the hope to use the local fields described in
this paper as the thermodynamic quantities of the system.

2 Definition of the model:

In our model the actual state of the described body is given by a domain 2 C R? and a set of
atom positions x = {x; € By (2)|i = 1...N} , where X is the mesoscopic scale A << L. Here
d denotes the dimension. The set of atoms x consists of two subsets x = x1 U xs. The internal
atoms xy C {2 can move freely inside (2, but are not allowed to leave it. The boundary atoms
Xs C Bay (£2) /12 are fixed and serve as our boundary condition. We call the number of internal
atoms N; = #x; and the number of boundary atoms Ng = #xs. The energy in our model is given
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by an integral over an energy density and an hardcore particle interaction V' with radius sg.
By 0= [ o)+ SOV (- ) 3)
Bax(£2) i,j

The main part of the model is the energy density N (x,z) in Eulerian coordinates x. This
density is determined by fitting a Bravais lattice. x(4,,) + = = A=YZ4 — 1) + x locally to the
atom positions y, where A € Gl4(R) and 7 € RY. We denote: A = (A, 7). For every A one can
calculate a pre-energy density hy (A, x,z) at a given point. The energy density hy (x,z) is then
given by

B)\ (X?I) = lgf {h)\ (A5X7I)} . (4)
The pre-energy density hy (A, x.z) consists of three parts.
h)\ (A,X,.’L') :F(A)+J)\ (A,X,l’)—‘rl/)\ (A7X,£U) (5)

The first term F measures the elastic contribution to the energy and corresponds to the energy
density in the classical theory. The second part J, measures energy cost of deviations of the
configuration x from the fitted lattice . The last part v, assigns a cost to the vacancies. In the
following we will explain the properties of the different parts of the energy density in more detail.

F (A) is related to F' of the classical theory with the formula F(G) = F(G~')det(G~") for
the transformation between Eulerian and Lagrangian coordinates. We want to consider F' €
C5 (Glg(R)) with the following properties

1) F(A) = F(AR), VA € Gl4(R), VR € 504 (Frame indifference)
2) 3F € Gly(R) with F(E) =0 (Existence of minimizer)
3) F(A) > CFL(det(E) — det(A)))* + CEldist? (A, E SO,) (Coercivity)

for some CF!,CE! > 0. We use the Euclidean norm to define the distance for two matrices
dist(A4, F) = |[A— E|. Jx (A, x, z) uses the affine transformation A(xz) = Az +7 to map the atom
positions in the A-neighborhood of the position z into a periodic potential W with minima in
Z4. W is assumed to be locally convex around the minima. In this way Jy is approximately the
standard deviation of the configuration y from the fitted lattice x 4 + x.

AP
In(Axw) = ”mﬂ S WA (@ —2)+1)p (A fos —a) (6)

g

where p € C* (RT) is a smooth and monotone decreasing cut-off function and has the following
properties

1) p(z)=1forax <1
2) o(x) =0 for z > 2
3) dp <0

We use Cy, := [, ¢(]x|)dz as a normalization constant. We also use the notation ¢(x) := ¢(|z).
We assume that the periodic potential W € C* (Rd) fulfills

1) W(2) =W (z+ 2,) V2, € Z%, V2 € R? (Periodicity)
2) cy? < yVQW( )y < cyy? Vy € R4,z € Bo,, (Z4) (Local convexity)
3) CWdist?(z,2%) < W(z) < C}Vdist?(2,Z%) (Coercivity)
4) W(z) = W(—z) Vz € R? (Symmetry)
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where O, 2, ch, OV, CIV > 0 are constants. We define the local density of a configuration x
by

INCROF CMZ@ i — al) 7

Moreover, we define :

VX (A,X,$> ::ﬁ‘detA_p)\(vaﬂ (8)
Therefore, the energy per vacancies is . This part also ensures that a lattice that is finer
than necessary will not be fitted to the configuration because it would contain a big number of
vacancies. V : RT — {0, 00} is an hard core repulsion. It has the technical purpose, to prevent
several atoms from sitting at the same lattice side.

V() = 0 for T > 8o )
" oo for T < Sp.

The hard-core potential implies, that any configuration with finite energy has a particle density
smaller than p7® + O(A71).

2d
Pyt = —— +0(soA7") (10)
WdSgy

where wy is the volume of the d-dimensional unit sphere.

3 Notations and important definitions

We introduce the following sets:
Gla(R —{AeRdXd\detA>0} , Gla(Z) :={AeZ™det A=1},
B.(U) := {IGRd|3yEUWIth|y7I| <r}. (11)

For A = (A,7) € R™4 x R? we use the following norms:

IA)? = Z A7, |Al=sup{|4e|le € R |e| =1}
4,j=1
IAIR =A%+ ul? (12)

Definition 1 We call a pair B = (B, z) € Gl4(Z) x Z* a reparametrisation. For A = (A,7) €
Gl4(Z) x Z% we define the reparametrisation of A as

BA = (BA, Br +1) (13)

We note that x4 = xpa. Hence, Bravais-lattices are invariant under reparametrisations. Since,
we fit Bravais lattices to the atom configuration, the minimizing A may jump parametrisations
of the same lattice. These different parametrisations are connected by reparametrisations.

Definition 2 For a sequence of reparametrisations B; j+1 = (Bjj+1,t.j+1) € (Gla(Z), Z%), we
define the product reparametrisation By = (B,t) € Gly(Z) x Z¢ as composition of the affine
maps given by the reparametrisations

k—1

K K
B=Bo1..Bxk k= ][Bicr; » t=>|[[Bi-1j|te-1x - (14)
j=1 =1 \j=
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Definition 3 For an atom configuration x and lattice parameters A = (A4,7) € Glg(R) x R?,
and a position z and a distance 8 > 0, we define the (A, 5, x)-regular atoms and irregular atoms

Xahe = {xi € xl|dist(zi, xa +2) < B}, XZ,TB@ = {x; € x|dist(z;,xa+x) > B}, (15)

and the densities of regular atoms and irregular atoms

re re 1 _
pA,%(x) ::pA(XA7%7x7x) = C .\ Z ® ()\ ! |£L'Z — .’ED s
1z

€T EX:‘:‘%‘E

T irr 1 —
PA,ﬁ(af) 3:P/\(XA,,3,WCC) = O E ¥ (/\ ! |zs — $|) . (16)
]

i €X475 .
Next, we introduce the notion of regular pairs.

Definition 4 Let A = (A4,7) € Gl4(R) x R? and €,,€;,C4 € R and let x be the configuration,
then we say that the pair (z,.A) is (€,, €7, Ca)-regular, if the following conditions are fulfilled

LA Y <Ca
2. |pa(x,z) —det Al < e,det A

3. J)\(A,X7$) < GJ/OX(XVT) 5
4. |x; —xj| > s, for all 4,5

If the pair (x,.A) is regular this means that the configuration looks like the lattice x4 +  in the
Bay (). We say a point z is regular, if there exits an A €€ Gl4(R) x R? such that the pair (z,.4)
is regular. Theorem 1 explains the connection between regular pairs, reparametrisations and the
product reparametrisation. For regular pairs with e, = 1/8 we get

Al < AT et A JAT T s A < G A (1)

4 Main theorems

Theorem 1 says, that in case of a sequence of regular pairs (y;,.A;) fulfilling |y;_1 — y;| < 3X
the affine maps are connected by reparametrisations. The product of these reparametrisations
does not change, if one adds or leaves out points in the middle of a chain chain. Hence, the
reparametrisation product is a topological invariant, determined only by the homotopy class of

the chain.
Theorem 1 For all Cy > s, there exists A €ER and €; > 0 such that for all X > 5\, A =
(Aj,7;) € Gla(R) x R? and y; € Bax(2) with j = 1,...,N the following holds:

1. If (y;, Aj) is (ep,€5,Ca)-regular for j =0,..,N and |yj—1 — y;| < 3\ for j =1,..,N, then
there exists uniquely defined reparametrisations Bj_1; = (Bj_1,j,tj—1,;) € Gla(Z) x 7% such
that

A 92 a/2 /T 1
||Zd_A;le CJ ( A ) =1

—1545 < )
sl < e Bl — A

A 2 d/2
0T <—L=L NS 18
7514 det A (2>\—yj—1—yj|> 7= 18)
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where
B,_1 ;A +A_
0Tj15 =Bj1,7j + i1y — 71 — —L— ; = (w5~ i)
Ji—1; =max {N(Aj—1, X, y-1), IN(Aj 6 95)
1 1
3 ( 8dC, \? 10 \?
A ® ™
cy == , cy =\ = . 19
+=3 (cnar) = () (19

2. If additionally it holds |yr+1 — yr—1| < %)\ for some k then there exists a ék—l,k-ﬁ-l fulfilling
the estimates (18) for the point j + 1 instead of the point j and we have

N k—1 _ N
[18i-1i=]]8i-1 | B| [I Bi-1s (20)
j=1 j=1

j=k+2

We call regular (x, A;) and (z,Az) equivalent when the B € GI(Z) x Z* connecting them
as described by theorem 1 is B = (Id,0). Hence, we get for every regular = an set off P
equivalence classes [A] The group G = Gl4(Z) x Z¢ acts on this set of equivalence classes by the
action G x PA, — PA, : B[A] = [BA]. Furthermore, we know by theorem 1 that adding or
omitting a point in a sequence of regular pairs. does not change the reparametrisation product.
We call two chains equivalent, if they can be deformed into each other by this process. We denote
with Hom, the set of equivalence classes of this chains with starting point and endpoint z. We
use these like homotopy classes. Each S € Hom, induces an one to one map Bg : PA — PA

B([BAo]) = [BBo.Ag]. where Ay is an arbitrary selected so that (x,A) is regular and By is the

reparametrisation product of a chain of the equivalence class starting and ending with (Ao). We
call the map Bg the generalized Burgers vector. We note that if By would commute with B, the
generalized Burgers vector would be just given be a simple multiplication with By. Furthermore,
we note that the map from BHom, — I so(PA, PA) is an homomorphism of groups.

Compared to the description of the generalized Burgers vector in [6] our chains allows us to
extend the homotopy classes over thin barriers of irregular points.

Related descriptions of solid bodies can be found in Kondo [5] and Kréner [4](see also [2],[3],
1 [7)) )

Theorem 2 says that the local minimizers Ap of Jx(-, x,x) are differentiable functions of x
and that we can use them as Lagrangian coordinates. Moreover, we can bound the energy density
from below with an functional of the form F(V7p) + C||V? B||2

Theorem 2 There exists )\ € > 0 such that for A > A for all pomts x with ;L)\(X,y) < € and
Jor all reparametrisations B = (B,t) € Glg(Z) x Z* fulfilling |A=Y(z)B~Y| < 2| E~Y| where
A= (A,7) € Gla(R) x R? is the global minimizer of ha(-, x;x) there exits a open neighborhood
U around x and a two times differentiable function .ABU —> Gla(R) x R* with the following
properties

1. 1 e
< <2Ccon||z451||2;0)\) VI (Ao, x, ) (21)

2. Ap(y) is a local minimizer of Jx(-,x,y) for every y in U
3.

s (@) - BA@)|

A

(x.v) 2Fo (V7(y) + +0v (’;”)Hv-l WP NIV ()2 det (V75) . (22)
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where we denote
Fo(A) :=inf {U(A, A1, B, A3)|A1, As € Gl4(R), B € Gla(Z)}
1 _
U(A, Ay, B, As) :=F(As) + chonCr_e;H (BAs) ! ||2 det (A) A2 |1BAs — A1||2

1~ _112
105 <f;j:> AT det (4) X4 — Ay (23)
where we use the following constants

I9WIZ, JhP (1 e g
=64 0 Cron = — L A
ay maX{ C(‘)/V@%/Va C(()_) con C@ min 12, 4(9+d) w3_14d det A2 )

Crep =9 (Cgv)_14d710§,d det E? |
g/ 1 av2|VVE|IA
Cvl (X) ::Crep (CVQ(X) 1 + M) ’

con

(Coa(X) 7 =Y (19l + 192V Bl + 200]V /EI) 427X

con

1

+ \C{STV (2d||v\/$||§o)2 (16 ﬁX+x/871x/7() (24)

con

— The function ./ZlB(y(s)) can be extended along the curve of regular atoms as long as
|AB(y(s))| < Ca. If we start at [|A"'B~1|| < 3/2|[E~!||~", we can extend it as least for a
distance scaling like A? areas of low energy density.

— If we select € small enough, the local minimizer A can not leave the Ericson Piterie neighbor-
hood it started in without increasing the energy over this barrier. Therefore, in this case Ag
can be extended in any connected set of low energy points.

— Due to the coercivity conditions on F' it holds:

Fo (A) = min {F(BA)|B € Gla(ZY)} + O(A7?) . (25)

5 Ideas of the proofs

Proof of Theorem 1 If there are two (e,, €7, Ca)-regular pairs (z,.41) and (x,A2) for the same
point x, then As is a reparametrisation of Ajup to a small difference (Lemma 1). Furthermore,
the difference in A can be controlled by A~!,/e; and the difference in 7 can be controlled by
\/€7. Additionally, we prove in Lemma 2 that all points in a A-ball around a regular point are
regular with modified coefficients and a smaller A. If we combine these lemmata, we get similar
estimates for two (e,, €7, Ca)-regular pairs (y1,.41) and (y2,.A2) , provided that |y; —y2| < 1.5\
For sufficiently small €; the reparametrisation between them will be unique. Additionally, if we
have three regular pairs (y;.A;) with |y; — yx| < 1.5, the reparametrisations fulfills

B3 =B12B23 , ti3=DBiatas+tia . (26)

Therefore, for a sequence of sufficiently regular points satistying |y;4+1 —y;| < 1.5\ we get a
reparametrisation for every step. Furthermore, we can conclude from equation (26) that, if we
add an additional regular point somewhere in the middle of the sequence, the product of the
reparametrisations stays the same.
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Proof of Theorem 2 This proof is based on the local convexity of Jy (-, x, ) for regular z, that is
proved in Lemma 5. Using the local convexity we prove in Lemma 7 that close to every A with
(z,.A) there is a local minimizer Ap of Jy(-, x,z). Furthermore, we show with implicit function
theorem, that the local minimizer Ag are differentiable functions both of the position z and the
configuration y in regular areas of the configuration (Lemma 7). In Lemma 8 we use a more
careful application of implicit function theorem to get a lower bound on J )\(le (2),x,x) of the
form

I (AB,X,Q;) >CON2 (/\2||VAB||2 | Vig — ABHQ) ,
I (AB,X,J;) >0\ (A2||V2ABH2 4|V — vABH?)

Additionally, we prove in Lemma 4 that for all points z with low energy density there exists
a global minimizer A(x) of hi(-,x,z) and (zA(z) . If A(z) is regular, its reparametrisation
BA(z) is regular too according to Lemma 10 Furthermore, we can estimate Jy (Bfl,x,x) >

CJA(/l(x),X,x). We use Lemma 3 to prove that points are close enough to each other there
are reparametrisations that connect the different global minimizers A(x) for different = with
the same differentiable branch of local minimizers Ag. Due to the local convexity, we get the
estimate

. N 1 N1 L2
IBAX.2) 2 B + 5Ceon (11(B4) 12400 s[5~ A

Hence, for low energy points we can estimate J (A ( ), X, x) the gradient of the local minimizers.

If we put these estimates together and minimize over A(x), B(x) and Ap we get the estimate
(22).

6 Proof of Theorem 1

Lemma 1 For all Ca > s exists A € R and €p,€7 such that for all X > A= (A1, 7m), Ag =
(A2, 72) € Gla(Z%) x Z% and x € Box(£2), so that (x, A1) and (x, A2) are (€,, €7, Ca)-regular, we
have

. _ oo
|id — AT*BA,| < ( é)dc“‘ﬁ de tA2>

|B72+t—71|<||A1( T detA2> Vmas (27)

where
Jmaa: :maX{J)\(AbXaZ)?J)\(A%Xax)} . (28)

Proof We will proceed in two steps. The first step is basically taken from the proof of Theorem
5.12 from [6], where the same statement is proved for a related model. In the second step we
improve the estimate for the proportionality constant.

Step 1: Without lose of generality we will restrict ourselves to the case x = 0. We have
A5, HA_1|| < C4. We take some v > 0 and use Lemma (11) with

B8 = "YCW < min {s(,/Q7 2C’d e (p**) ™ } We get the estimate pfﬁﬁw < vpx. We denote by

Xreg the set of atoms that are regular for both A; and A;. We have that at least a density of
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PA(Xreg: ) (1—27)pr(x, ) atoms, that are regular for A; and As. Due to the regularity condition
on the density we know that (1 —¢,) det Ay < py. Hence, we get

PA(Xreg:0) 2 (1 = 27)(1 — €p) det Ay . (29)

Furthermore, if 3 < 210;,”1 (ppaey™t < 1)l A;]|7" a lattice point can not belong to two different

atoms. Therefore, there is a bijection between the atoms of x,.; and the lattice positions Xffzg
next to them in x4, + . Hence, we get:

- - Ve Vollef
o (0 ) — o (0 )| < V2o g < [V€ N (30)
If we combine this with the estimate on the density of Xfff from lemma 9, we obtain:
\Y
PA(X47,0) >((1 = 27)(1 — €,) det Ay — w det Ay (31)
re v o0
px(Xa. /X 47, 0) < (2’y+6p+detA2+W> det As (32)

We define Q) := 2|114422| [—X, A]4. Therefore, it holds @ C B, (0) and all y € Bx(0) fulfill ¢ (A~]y|) =

1. Hence, we get

# (Q al X.A2/XT_,:29) SC’V,)\d (2’y + € + 2ve, + W) det Ay

1V¢llp

#(QNXRT) 20N (27 +ep 276 + T

) det Ay . (33)

Finally, for all atoms in @ N ng holds that there is a atom of x"® in distance less of § from

each of them and a point of Xffzg in distance less of 8 from this atom. Due to triangle inequality
it holds for all x5 € Q N x/y!

28 > dist (22, ;) + dist (z;,Q N X:ff]) > dist (zi2, Q@ N X:flg) ,
2ﬂ ZdlSt (A;l(zl _TQ),AII(Zd_Tl)) s
20|/ A1|| >dist (A1 45 2 — A1 Ay o + 1, Z%) (34)

Therefore, Ay (Q N XTA? ) fulfills the conditions of Theorem 5.12 from [6] for sufficiently small €
and €, and sufficiently large €. Hence, there exists B € Gl4(Z) and t € Z? such that

Step B: Now, we improve the constant in the estimate

2Jmaa; ZJX (AthO) + Jk (AthO)

cy . . _
700)(1 Z (dist® (x4, xa,) + dist? (24, x.4,)) 9 (A1 24))
¥ TiE€Xreg
cy” 2 2 -1
o > (@i —zin)* + (i —2i2)”)e (A ail) (36)
©

Ti€Xreg
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Using a? + b? = $(a — b)* + 3(a + b)? one gets
4Jmaa: >ﬂ Z (.’[71‘1 — .Tig)ztp ()\_1 ‘.’EZD . (37)
Cyd

Ti€Xreg

We count the x;5 instead of the z; due to the bijection between them and change the argument of
o from ()\’1 |xl|) to ()\*1 |x12|) paying with an error term that we estimate with the inequality
(30). We get

CgV . 2 1 V 6J'3
4 max ZC@M Zrﬁy dist(wi2, x4, )20 (A7 |22]) + O h (38)
Ti2 6X_A2
We use the notation
2> dist? (@i, xa)e (A ail)
Ti2€XAq
Y .= sup dist? (22, X 4, ) (39)
Ti2€X.A,NB2x(0)
and estimate
4J maz >ﬂ Z distQ(:ri,XA ) ()\71 |x12|)
_CWAd c reg l !
Tri2€X

w
>X — o Z distQ(xi,XAl)go ()\_1 |:v22|)

Ti2€X Ay /Xy

CW
>X - 0 S e (A i) sup dist? (22, X, )

; NBa2x (0
Ti2EX Ay /Xreg Ti2€EX Ay 2x(0)

— (det As — pa(x47,0))y - (40)
Due to (35) for sufficiently small e it holds for all z; € Z¢ with A7 (z; — 1) < 2X

dist (acig,Al_lB(zi — 71+ t)) < dist (A (Zz ),Al_lB(Zi — 71+ t))

1
<[ A3 [ dist (A2 Ay 2 — Ap AT i+ — ) < O(Vey) < 5
(41)
Hence, we get
diStQ(ﬂfiz,XAl) =(zi0 — AT (2 — 71))?
Z(.Z'ig — AII(BAQ.ZEQ + B1o +t — 7'1))2
:((]_7AilBA2)fL'i2+A1_1(BT2+t77_1))2 . (42)

We set

oa=1—-A7'BAy , 6, =A7'Bra+t—m) , (43)
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and obtain
Y = sup  (Samio +0:)° < ([8all2X + [5,1)*8N([|6.al1)* + 26| (44)
2i2€X.A,NB2x(0)
Using the equation (42) we get
X = Co” Z (6azi2 4+ 6,:)%0 (A" |zi2]) (45)
O(PAd 1 T 1
Ti2€X Ay
Next, we estimate the sum in equation (45) by an integral using Lemma 9 and get
cy . . . d4||?
X > Ry / (647 +6-)%¢ (A1 [g]) det Axdf + O (W) (46)
We substitute y = ; and obtain
Co 194113
X > (647y + 6,)%0 (Jy|) det Asdy + O 2 (47)
Rd
The integral of an odd function over an even area is zero. Hence, the mixed term vanishes
cy d4|?
X > c, 0>\d / ((5Ay)2 + (57)2) e (A y|) dzdet Ay + O (”)\AQH)‘) (48)
The symmetric matrix (5;{5 4 has d eigenvalues a;..a4 In the eigensystem of (5X5 A) we get
/(5Ay)2 “Hyl) /Zakyw “Hyl) Z—Zak/yw “yl)d
=Tr(55a0 3N [ Xy (ol dz = %an (49)
We obtain
C 200 2 2 2 ||5A||§
X > ( ic, A0all® +1|0-1]° | det As + O 2 (50)
We apply our estimates for X and Y to (40), and get
cyo,
ar > (PR + Y 16 et A
— Cg" (det Ap — pa(x[aY, 0)) (8X*([[8.a])* + 2[5~ %) (51)
We resubstitute d4, and §,; with equation 43 and obtain
-1
C C 4Jmam
11— AT BA|? < | 2222 det Ay — 8CYY (det Ay — pa(x'57,0))
ac,
re -1
[AT (B +t — 7)1 < (Co" (2o2 (X 47+ 0)) — det A2)) 4T pmas (52)

From this follows the estimate (27) for sufficiently small €, .
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Lemma 2 For all C4 > 0 there exists A\ > 0 and é > 0 such that for all X > \, A = (A,7) €
Gly(R) x RY with |A7Y| < Ca, and all ,y € Box(£2) it holds, if (z,A) is (,,€5,Ca)-reqular
and |z —y| < X, then (y,A) = (y,= (A, 7+ A(y — x)) is (¢,,&s,Ca)-regular using the smaller
A=\ — |z —y| where

thwS< INTRS N

d/2 -1 d
C+O(\ A
+)(1 +ep)es + <;\) €

. (AN\"1+5,
€] — (X) EGJ . (53)

>l > > >
~ ~—
a

™
)
Il
7 N\

Proof We claim that for every atom z; € x it holds
e (Mo —yl) e (- ) (54)

If it holds ||z; — || < A, we have ¢ (;\_1 |; — y|) <1=¢ (A ']z —z|), since 1 is the maximum

of ¢. x; is outside By (z) and y is inside the ball. line segment between y and z; is intersecting

N\

Fig. 2 Geometric setting

with the surface of the ball in one point. We call this point x, (See picture 6). We get

|x—xp|§\;z:—y|+|y—:cp| )
ly —ap| 2|z —2p| =z —yl=A— [z —y[ =X . (55)

and

\xi—y|:\xi—xp|+|xp—y\2|xi—xp|+5\
|zi —zp| + A |z — 2

A > A (56)

A ~
>X|zi—xp|+>\z
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Since ¢ is monotone decreasing, we have

o (At ai—yl) <o (AN —al) (57)
It holds
i AT Al — Al — 2o (A=Y 1o —
T3 =y WA =)+ 7+ Aly D)p (A i v
At
L S g 07 -
)\d

Now, we calculate a lower bound on p;5(x,y). We start at a Bravais lattice x = x4 + 2 =
A=YZ4 — 7) + x as a configuration. This configuration has e; = 0 For this lattice we have
ps(x,y) = det A + O(A™2). There are different ways to reduce the density. On the one hand
one can take atoms away. This decreases p5(x,y) but because of equation (57) it also decreases
oxr(x, z) at least by
)\d

op506y) < 379 06) (59)
Another possibility is to move atoms to positions of lower ¢ ()\*1 |z; — x|) this does not have to
reduce px(x,z) at all but it will increase Jx(A, x, x). If we shift the i‘th atom for a distance dz;
we maximally reduce p5(x,y) by

- 1 —1 -1
0p; = \C, O Vol ( |x; — y|) ox; + O(N"oz;) (60)

we get a minimal cost per atom of

1
~d5x§<p (A —2|) + O(At6x?) . (61)

§J; <o
CpA

Furthermore, we have for x; € Bys(y)
lzi — x| <|zi —yl + |y — 2] S2A+ A=A <2) . (62)

Therefore, it holds ¢ (A~! |2; — z[) > 0. If we minimize Y, §J; with the constrain p) = det A +
> 0pi, we get

-1

N\ d
A 1 IVo|? (A (2 —y)) —1 25 2
> |- — + 0\ A6p°. 63

’ <)\> Osﬂ)‘d zieBZQ;(y) P (A i — ) ( ) ' o
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We estimate the sum over x4 by an integral using Lemma 9. The error is O(A~?) that means
negligible compared to the error we already made.

—1

~ 2
52 [ / Vo1 ) det Adz + 0 | A26p?
_ - € z )
A=A Cprd Jrs (A 71z — ) ’

d/2 2 2 —
op < <{\> le / MderO(/\*l) /detAM ,
A e o (12— al})

~ A d/2 7

5p <C, () V(A X, 7) (64)
A A

We can estimate the density px(x, ) from above with p(x,z) < (1 + €,) det A We summarize

the estimates (59) and (64) and we obtain

d/2 _1 d
det A —p5(x,y) < ((i) %()\)(1 +ep)es + (i) ep> det A . (65)

If we start with a Bravais lattice and increase the density p5(x,y) by changing the configuration
there are two different ways. On the one hand can shift atoms to positions of higher ¢. This leads
to the same increase of Jy as in the reduction case. On the other hand one can add more atoms.
This leads to the same increase of py(x,z) additionally it will increase Jy because new atoms
can not be placed in the minima because all minima are occupied. We get the same estimate for
the upper bound of p5(x,¥)

d/2 -1 d
det A — p5 (x, )| < ((2) %(/\)(1 +e€,)er+ (;) ep> det A . (66)

Finally, we estimate

A\ ¢ A\ ¢
J;(A,r,x,ws(x) I(A, 7 xx) < (A) eroa(oa)

A d A d1 ~
<+6) (3) et (§) P2t (67)

p

Lemma 3 For all C4 > s, there exists \ € R, ¢, > 0 and €5 > 0 such that for all X > 3\,
A; = (4;,7) € Gla(R) x R and y; € Bax(£2) with j = 1,2,3 the following holds. If (y;,A;) is
(€p, €1, Ca)-regular for j =1,2,3 and |y; — yx| < %)\ for g,k =1,2,3, then there exists uniquely
defined reparametrisations Bjy € Gly(Z), tjxr € Z%ch that

4 2 W2 STk
id— A71B; Ayl <——Z < ) ok
Vi =4 Bl < G \ o3 =y —wl)

. d
(97,4 <2141 ( 27 ) " (68)
' Vdet A \ 22X — |y; — yil ’
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where
B A+ A;
07y =By taug + tjx — 75 — =25 ; < (g —yj)
Jj gk r=max {In(Aj, X, ¥5)s In(Ars X uk) b
1 1
3 [ 8dC 2 10 \ 2
A © -
= 5 = —_— . 69
45 (gucr) = () )
Moreover, it holds
Bi3=DB12B23 |,
t1,3 =B1taz + 11,2 (70)

Proof We consider § = (y; + yx)/2 and get
lyi = 9l = lye — 9l = ly; —yxl /2 < 3/4X (71)
We apply Lemma 2 twice, one time with y; as  and ¥ as y and the other time with y; as x

and ¥ as y. (gj,/(j = (4,75 + Aj (x —z;) /2) and (7, A = (Ag, T + Ap (x; —xx) /2)) are
(€7,€p, Ca)-regular. Therefore, we get

o 2\ d )
JA(AmX’y):(ijM) Ji(@, AT+ Ay — x5))

N ( 2 )‘“2 C+ 0\

(I+e¢,) +< 2
€, = €,)€
P 2) — |y; — vl A pIeT

20 — |y; — il

)dep. (72)

Since we have two regular pairs, we can apply Lemma 1 and get Bj, € GL4(Z) and t;; € Vi
such that

A d/2
11— A By A <—Co ( 2A ) Vs

Vdet A \ 2\ — |y; — vl A
BinAp + A; |4, 21 d/2
B . ZDRETE T AR s t| <« =L T 1. 73
’ 3.k Tk TJ+ 9 (yk y]>+ ‘ \/M 2)\*‘yj*yk| Ji.k ( )

This proves the first part of the theorem. Since it holds \Aj_1| < CQy, the matrix derivative of
det A; is bounded. Additionally, it holds det A; < (1 — €,)"'p7**. Hence, the estimate (73)
implies that we can estimate

det A; =det A, + O <\/)'\]7’\> . (74)

Due to the regularity condition on the density we get pr(x,z;) < (1 +¢,)det A;. Therefore, we
get for small enough €;

ik =max {Jx(Aj, X, ¥5), In(Ar, xo uk) } < eymax {pa(x;¥5), PA(X yk) }

<ej(l1+e€,)max{det A,det Ay} < €;(1+¢,) (1 +0 (\/;\T)‘>> det A, . (75)

Hence, for sufficiently large A we have

llid — A7 ' Bj 1 Ag|| <2cf}2d+“/T67 : (76)
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We calculate for €; small enough
lid — AT B12Bs 3As| < |id — A" B12As + AT ' By 2 Ay (1 — Ay ' Ba 3 A4s) |
<|id — AT By g As| + |A7 By oAy |id — AT By 3 As|
€J

§60§2d—\/; . (77)
Due to the estimate (76) we know

. _ €

lid — A7* By 3A3) < 2c§2d\/T7 : (78)
We get for e; < A2(8CAC|4/C429)72
|Bi,s — B12Bas| <|A1| |AT! (B1s — B12Bajs) As| |A3

<CAC|a| |AT'B13As — AT "By 2Bs 3 A3
<CAC) 4 (|id — AT " B13As| + |id — AT' By 2By 343))

§8C?CAC|A|2d\/T€7 <1l . (79)

The distance between Bj 3 and Bj 2Bs 3 is smaller than one and they are both elements of the
discrete set Gl4(Z). Therefore, they have to be equal. By 3 = Bj 2B3 3 also implies the uniqueness
of By 3 and because B2 and B 3 are invertible also the uniqueness of B; 2 and B 3. Next, we
need prove t12 + B1 ota 3 = t1 3. If we apply estimate (72) on (73) for the first chain, we get

B, A, + A
%(yk_yj) ’

075 <2¢5C 412% /€5 . (80)
Due to the estimates (72) and (73) it holds for e; < A?(c42%)~2

5Tj7k IZBj’ka + tj,k —T; —

_ . €
|B12Az — Ay < |AT'Bip Ay —id||Ag] < 20‘A|092dg ,

. _ _ €
|B1,2A2 — B12B2 3A3| <|B; 24, |ld — A, 1BQ,BA3| < 2|A4] |A1 1Bl,2A2| 727 \/;]

<204, (1 + 2c§‘2d‘/;7) cf;‘Qd\/Ta < 4(J|A|cf}2‘“/T67 : (81)
We also get
|Bra| < [A1| [A7"Br2ads| |43 7] < CaCly (1 + 2c5‘2d“j7) <20aC1a - (82)

Hence, we can estimate

B 2By 3A3 + Ay

9 (y3 —v1)

Bi2Bo 373+ Biatog +t120— 71 —

BosAs + A Bi19BosAs + A
(yz—y1)+B1,2¥(y3—y2)— L2 2’32 2 l(ys—Zh)

2
+ |B1,207T2,3 + 071 9|

. ‘ Bi2As + A

1 1
<|B1,267T2,3| + 671 2| + 3 |(B1,2A2 — A1) (y3 — y2)| + 3 |(B1,242 — B1,2B2 3A2) (y2 — y1)|

3\ 3\
<|Bi2||6T2,3| + [6T1,2] + T |B12As — Ai| + T |B1,2As — B12Bg 3As| . (83)



Study of a model for reference-free plasticity 17

We use the estimates (80), (81) and (82).

Bi 9By 3As+ A
‘31,232,37'3 + Biptaz +ti2— 11 — L2 2’32 2 : (y3 — 1)
< ((4CAO|A| —|—2) C}+9/20§1) 2dC|A‘\/a . (84)

On the other hand, if we apply the estimate to the second chain, we get

B1 2By 3As + Ay
2

‘31,232,373 +tiz—T1— (ys —v1)| <2c5Cla2%Ves (85)

. By 2BasAs+A
Hence, if we denote X := By 2Bo3ms — 11 — %ﬁl

estimates (84) and (85)

(ys — y1), we finally get with the

|Biataz +t12 —t13] <|Biates +ti2+ X[+ |X —t13]
< ((4CAC)a| +2)c] +9/2¢7) 2°Clap/es (86)

For e¢; < (((40AC|A\ + 2)6} + 9/26‘}1) 2dC|A|)_2 the difference between Bitoz + 11,2 and g3 is
smaller than 1 and since both belong to the discrete set Z?, they have to be equal. As in the case
of B the equation Bj ots 3 + t1 2 = t1,3 implies the uniqueness of ¢; ;.

Proof of Theorem 1

Proof For sufficiently large A\ and small €; the conditions Lemma 3 are fulfilled for any j, if we
take y; as the first point in Lemma 3 y;41 as the second and the third point. Hence, we get
a sequence B; ;i1 fulfilling equation 18 for every j. Furthermore, we can apply Lemma 3 on
the three points yx_1, yr+1 and yi From the first part of Lemma 3 we get the existence of a
reparametrisation By_1 x+1 between yi_1 and yx41. Due to equation (70) Lemma 3 we get:

Bi—1 xBk k+1 =Br—1,k+1
th—1,k + Br—1,ktk k+1 =th—1k+1 - (87)

Therefore, we get equation (20).

7 Proof of Theorem 2

The next lemma shows that low energy points are regular.

Lemma 4 If H(x) < 0o and hy(x,z) < € < 1 min {CF" det(E)?, CY E|?, 9 det E}, then there
exists A € Glg(RY) xR? such that hy(x, ) = ha(A, X, z) and (z, A9 is (€p, €7, Ca)-regular; where

34|t € 4e

T 9i2qer 0 Y YaaE 0 YT detE

Ca (88)

Additionally det A < 3 det E
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Proof For a configuration of finite energy the hard core condition |z; — ;| > s, is fulfilled for all
atoms. Furthermore, for all A € GI(R) x R? satisfying

€2 hy (A xx) = F(A) + Jx (A x,2) +va (x; 4, 2) (89)
it holds due to the positivity of F', Jy and v
F(A)<e , L(Axz)<e , mx4z)<e (90)
Hence, we have
€ > F(A) > CF' (det(E) — det(A)))? + CFldist? (A, E SO,) . (91)

Therefore, for e < 1 min {CF' det(E)?, C¥'|E|*} we have

1
§detE < det(A) < gdetE )

1 3
SIEI <A< 5iE] (92)
Additionally we have
3d71|E|d71
A7 <AlF T det AT <
AT <A det AT < S e B
1
1 E| a=T1

A7V > (|A]det A1) T > (] :
|ATH > (Al det A7) <3detE (93)

Because hy (-, X, ) is periodic in 7, we can restrict 7 to the compact set [0,1]¢. Hence, Gl :=
{A € Gla(R)|hA(A, x,z) < €e,7 €[0,1]?} is a compact subset of Glg(R) x R Since it holds
ha(x,z) = infa {hx (A, x,2)} < €, the set Gl x [0,1]¢ is not empty. Hence, the continuous
function hy (-, x, ) attains a minimum A = (A, 7) on the compact set GI§ x [0,1]¢ that is per
definition the global minimizer of hy (-, x, ). Due to the estimates (90) A satisfies

dldet A — pa(x, z)| <wva (A, x,2) < 2d °_detA . (94)

et &
If we use the estimates (94) and (90), we obtain for € < 19 det E

4e

In(A, x,x) <e< ot E

pA(X T) (95)

€ <
2-1det A — ﬁ*lepA(X’ z) <
Jy is locally convex in A for regular pairs.

Lemma 5 For all C4 there exists 5\76,] such that for all X > 5\, for all (Ca,cep, er)-reqular
(z,A) = (z,(A,T)) €€ Bax(£2) x Glg(R) x R? and all test matrices M = (M, ) € R4 x R? 4t
holds

1112
B?AJA(Aa)OI)[M] ZCC'(m HA 1” PAHM”?\ ’ (96)
where Ceop 18 defined by

1 CO@C2 p2
Clron = c5min { — d A ) 97
‘6 mm{u’ 4(9 + d) w?_, 47 det A2 07)
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Proof The second derivative 9%.Jy tested by M = (M, ) € R4 x R is given by

aiJA(A,x,:E)[M] = HA_ H ZVQW(A (z; — ) + 7)[M(2; — x) + plo

C M
+2WZ(VW(A(J;i—ac)+7'),M(a:,»—x)+u>g0

0% |A—1
+ AHCJL ZW +T)p - (98)

The two last terms lower are of order O(A™1)||M||. Furthermore, we can split the first sum into

one sum over the regular atoms x',% . with 3 = min {|A|='Ow,s,/3} and one sum over the

irregular atoms, and get

CoAO% I (A x, )M = [|A7Y7 S0 VEW (A (2 — 2) +7)[M (2 — ) + o
AT ST VEW(A (i — @)+ )M (- @)+ ple

irr

:L’GXABI

—O(HIM]Z. (99)
On the one hand all the regular atoms satisfy

dist(zi, xa +x) <B
dist(A(z; — ) +7,2%) <B|A| < Ow
co(M(z; — ) + p)? <V*W(A (2; — ) +7)[M(z; —x) + 4] (100)

Since W is two times differentiable and periodic, there is an upper bound for its second derivative,
which we can use to bound the contribution of the irregular atoms. Hence, we get

AP
%IN(A, x, ) [M] >cd HC’ )\‘|1| Z (M(z; —z) + p)%e (A7 |z — )
T medl.
— 8[| ATY P IV W [loop s (@) IM3 — O DM (101)

We define the average particle position by

T= (pffgﬁ( ))71 C:Ad Z zip (Ao —al) (102)

reg

zGXABI

Using this definition we get

A7
@umAmnmwﬂ>%”CAﬂ > (Mﬂw—f»”+wﬂf—m+wf)w
o me{h.

AT IV W llopifs(2) + OO MU (103)
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Because (M(Z — x) + p)? is independent of 4, this sum can be expressed with the density of
regular atoms. If we denote by ej; the eigenvector the largest eigenvalue of M7 M, we get

A—l
6.»24‘]/\(-’47)(3 z)[M] 20((13 HC )\(U Z (em(mi — j))Q |M|2§0
T mexh.
+ e | A7Y]P (M(z - 2) + 1)l % ()
—8]la~t? VWl p 275 (2) [IMIZ + ON DM (104)
We concentrate on the calculation of

1 _ _

Xi=o—g > (emlai—2)’ e (Ao —al) . (105)
T mexi,

Due to 3 < s,/3 there can be only one regular atom in Bg(A~!(z; — ) +z) for any z; Therefore,
the regular atoms can not sit all on the plain P := {y € R%en(y — ) = 0}. We call h the
minimal distance to the plain P up to which we have to fill atoms to reach the density pijﬁ( x).
We define the cylinder

Zp = {yllear,y — )] <2} . (106)

The characteristic function 1z, of this set satisfies:
lz.(z) > ¢ ()\_1 |x; — J;D . (107)

Hence, it holds

C'g;)\dpf:gﬁ( ) = Z (AN —z]) < Z 1z, (2;) < 2wa_1(2\)4 " det Ah . (108)

ZEXU B, TEX A B

and we get
CoAply ()
B> PCPAB) 109
T wg_12¢det A (109)
Since for any valley with distance less then h from the plain P, that does not have a regular
atom, there needs to be an regular atom with larger distance to reach the same density. Filling

the whole cylinder gives us a lower bound for X
C? 3
ﬁAQ det A_2 (pfﬁ%) . (110)

1 h -
X>— / 2h2wa_1 (20)?~ 1 det Adh >
3wi_,

C,\e

We apply this on the estimate (104) and get

02
Y e e
+ g AT fw)m)zpff%m
— AT IV W e g5 () + O D IM]3 (111)

We treat two cases. In case one it holds |u| < 3A|M|. In case two holds |u| > 3A|M|. For case
one we calculate

O+ d)N|M* = dN M + |uf* = N|IM|* + [uf* = M5 (112)
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We apply this to the estimate (111) and get

2 C
OINA )M 25 i [ A7 dev 4™ CANIY
—8 AP IVEW s () + O HIMIR (113)

Since every atom contributing to the average Z is in Bgy(z), also Z itself has to be in Bay(x).
Therefore, we obtain for case two

(M(@ — @)+ p)* = (|| = [M]|z = a)* = (lu] = [M[2\)* = 5lul® . (114)

1
9
With estimate (111) we get

AT (A, . 1) M) 2 (A7 ]2 N det A7 (5) + "@ 1A 12075 )

©
3dw 2 4d

—[la)? ||V2W||oop”r( )+ ONTIMIZ (115)
We summarize the inequalities (113) and (115) to get

P2 N (A, X 2) M) < A7 % (@)l MIE — A7 VAW leepis s (@) + O IM]3
(116)

where « is defined by

2
reg
e (05)
= min{ - . 117
G 9 30+ d)w?_, 47 (det A)2 (117)

We know from Lemma 11 with 8 := min{|A|~10w, s,/3} that it holds

irr 1
pap(r) < =~ O min{|A|~10w, 5,/3}2
1
reg > —
Pap(®) Zpa(x; ) CY min{|A|~1Ow, s,/3}?

In( A x,x) (118)

(A x,z) . (119)

reg

"T and px — p 4. ﬂ( x) for sufficiently low €; and large A arriving at

Therefore, we can control p’j
7
D% (A, X, ) M] > SQC@}!A P oa@)IMIB (120

Lemma 6 For all configurations x and all A € Gl4(R) x R we have

InA, x,z) > ag! HA’IH2 cyia Z VWA (2 —z) + ) (A o —ai]) (121)
where
VW3 |C}~)I2}
ay = 64 max {OO, — . (122)
Cew
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Proof We bound W (A (z; — z) +7) from below with (VW)?(A (z; — z) + 7). We define for every
atom

6z = dist (A(z; —2) +7,2%) . (123)

Due to the bounds on the second derivative of W in the convex region we get for atoms with
0z; < Ow
2 1
(VW)2(52) < chloz]> < LW (52) . (124)
)
Due to the general bound ||W||o, we get for atoms with §z; > Oy

2| VW%,

VW)2(5z) < [[VW]2 < 2Ll
(VW)=(0z:) < || 5% < e,

(62) . (125)

vW 2 1
ch @H;" ; %9} we get for all atoms
o Cw ‘e

Hence, for the maximum ay := 64 max{
(VW)2(0z) <avW(6z)
Ia(A x,7) Zagh A7 O A ST VWP (A (i — 2) + 1) (126)

Lemma 7 For all Cy there exists \ > 0,€,>0,e5>0,04 >0 such that for all X > 5\, xg € 2
and Ay € Glg(R) x R? the following holds: If (zo.Ag) is (Ca, €p, €7)-regular , then holds

1) There exists a unique local minimizer of Jy
A = argmin{Jy(A, x,z)|4 € Gl3(R) x Rlwith | A — Ao|x <4} . (127)

2) The local minimizer fulfills

3 1 —1/2
HAO—AH/\§<2Ccon|Aol||2pA> Vo) (12)
_ 1 112
In(Ao,x,2) Z3(A 0 ) + 5Ccon (14T 1200 ) pa [0 — A (129)

3) For every differentiable curve (z(s),x(s)) with £(0) = x and x(0) = x there exists a neigh-
borhood of s = 0 such that inside this neighborhood U there is a differentiable function
AU = Gla(R) x R? that A(s) is a local minimizer of Jz(-,x(s),z(s)) for all s € U
and fulfills

dA(s)
ds

dz; dxr
|- d8<s>'«z>

|v¢|)> . (130)

Proof Since it holds ||Ay'|| < Ca and the expressions ||A~!||, |A| and det A are uniformly
continuous functions of A for regular points, we can find 4 > 0 independent of A and A such
that for A|A — Ag|| < d4 holds

§2\/§|A(8)| (||V2W||oo +O(/\71)) <Z

CConp)\

+0(\ (Z(

2

Wi -2
ds s ds

(s)

A7 <Ca+O(NTY)
lpa(x, ) —det A| < (e, + O(A™1)) det A . (131)
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Furthermore, we estimate

—1112
1457

Cond D AW (Ag (i — 2) +7), M(2; — o) + ) | +

%

J
D43 (Ao, xo2) [M]] < O() M|

(132)

We can use Cauchy-Schwarz inequality on the scalar product (X,Y), := >, (X;,Y;) to get

—112 % %
05 (Ao, xe2) ) <2 (Z (VIv)? <P> (Z (M(zi ) + ) s0>

¥ i i

+ O()\_l)HMH,\J)\ (Ao, x,x) . (133)
Due to Lemma 6 we obtain the bound:
1045 (Ao, X, ) [M]| < OV Jx (Ao, x; @) [M][x) - (134)

Therefore, if we choose €; fulfilling the conditions of Lemma 5, then for sufficiently small € exists
84 > 0 such that (z,.4) is (Ca + O(A"1), e, + O(A71), €5)-regular for || A — Ag||x < J.4. Hence,
for sufficiently small €; all the conditions of Lemma 5 are satisfied. Furthermore, Jy (Vzl7 X, ) is
for || A — Ap|la < d4 a strictly convex function of A

04N (A, X, 2)IM] = Coon AT PpAIMIIR (135)

Hence, for any A with Jy (A, x, ) < Jx(Ao, X, ) we consider A := A°+A as a starting point for
a Taylor expansion.

Ao+ A 1 Ao+ A
J)\(Aanr) >JA< 02 7X7x>+28A+J/\ <027X,.’E> [A_AO]
CConHA 2ol 4o — A3,

9
A +A Ao+ A
J)\(AOaX7 J)\< 0 >+ 8A+JA <07Xax> [AofA]
l
9

2
5 Cconll A 7oAl Ao — Al3. (136)

If we add these estimates and apply Jy (A°+A,X, z) >0 and Jy(A, x,z) < Jx(Ao, X, ), We get

9JA(A0,X7 )

4o — A|3 < R% =
A |45 1120

(137)

Hence, all A with Jy(A, x,z) < Jx(Ag, x,x) are in the ball Br ,(Ag) with R4 < 6.4. Therefore
the continous function Jy attains a minimum inside the ball Br ,(Ao) and therefore has a local
minimum A in Bg, (Ag). The local minimum fulfills 9 4Jx(A, x, ) = 0. Therefore, it holds

~ 1 ~
In(A X ) = I (A X o) + §CCOn||A61H2PA||«4 - Al3 (138)

Hence, the minimizer is unique and we get the estimate (128). Now we search as solution A(s)
for the equation

0= 0aJx(A x(s5),2(5)) - (139)
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According to implicit function theorem there is a differentiable solution /i(s) satisfying the
equation (139), if det 8J24J,\(fl, X(8),x(s) # 0. This is implied by the strict convexity given by the
estimate (135). Therefore, there exists a solution of the equation in this neighborhood and the
solution is a local minimizers of Jy. Since 0 = d4.Jx(A(s), x(s), z(s)), it is also zero tested with
any M = (M, ;1) € R¥? x R. In particular d4.J5(A, x(s), 2(s))[M] is constant and its derivative

is zero. We leave out the argument of J, for simplicity and get

dA

0 :%aAJ)\ [M] = 0.4 (04 [M]) [ds(s) da(s)

S

dx(S)

+ 0,045 [M] O 0ady M 20 (140)

If we test the estimate (140) with M = dA(s) and apply the local convexity from the inequality

ds
(135) we obtain

L Comll A ol ZAE 5 < — 0,0, (Als), x(5). () [d“;‘” i)
— 0,00 (Als),x(5) 2(5)) [d“;‘” H5) (1)

Furthermore, wo estimate

CoX'0,07 (Al) x(6),2(9)) M) P22 4010, 0,001 (Als), (), (5)) ) P42

__ Hﬁl‘le_: <V2W(M(mi — ) 4p), A (ij; _ f;)><p

A (e (%))

ronl[ 4 Fun 3 {vwa (- ) e

o e - (- £)

v (s (%) o
Hence, we get

CoX0,047 (As).x(5),(9)) M T 4 010,003 (AGs) x(6), () ) Do

dr; dx

ds ds

S@H;ﬁ‘f Al (IV?W oo + OA™Y) [IM]1x (Z

')
v¢|)> . (143)

dv; dx

ds ds

+00M I (Z(
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. ‘)
(Z ( |V¢|)> (144)

Next, we improve the estimate for the gradients of the local minimizers. The basic idea is that
V7 has to be very similar to A. Hence, if we do not estimate | V7| but ||V7 — A||, we can get a
much better estimate. The result is similar to the final estimate in Theorem 4.5 from [6]. However
we improve the estimate so that we can use the gradient of the local minimizers to bound J)
from below. Furthermore, we use the same technique to get an estimate for the second gradient
of the local minimizer A.

If we combine the estimates (141) and (143), we get

2

S\/§HA_1H2|A|HV2W|\OO dAGs)
A

dr; dx

ds ds

1 _ dA(s)
icConHAo ! ||2p>\ s

(&

i

dA(s)

+0(\™) I

dl’i _ dj
ds ds

A

Lemma 8 For all C4 and €, > 0 there exists A > 0, €5 >0, 04 > 0 such that for all X > 5\,
zo € 2 and Ay € Gl4(R) x R the following holds: If (zo, Ao) is (Ca, €p,€5)-regular, then the
gradients of the local minimizers A (see Theorem 7) satisfy

C2

con

N 2
A*IH 2
i Px y2 (2 A2 ~ T2
A, z) >———————2N (N||VA||" + |VT - A . 145

Furthermore, if W is three times differentiable, we get:
~ ~ 2 ~ ~
5 (o) = 0o (2 |47 paxt (V92412 4 1927 - 9A) L ao)

where

(CoaX)H =Y (19 VB, + [92V/Blle + 20011V /5]) aVEX

Ceon
+ g;TV (2d||v\/$||§o)% (16 28 X + \/@\/Y) . (147)

con

Proof Step 1: The first derivative: Since the same conditions as in Theorem 7 are fulfilled,
we get the minimizer A. The local minimizer fulfills 0 = 94Jx(A, x, ). On the one hand this
implies for the 7 derivative

0= ZVW(A (z; — )+ F)p (AN oy —2]) . (148)

On the other hand, the total derivative of 0 4J\(A(2), x, z) in every direction e; is zero, because

we know that 04Jy(A(z), x, x)[M] is constant. In particular for all test matrices M = (M, u) €
R4*4 x R? holds

L (0u(Aiw) x.2) M)

=03 (A(2), X, %) (M, V;A@) ) + V5 (043 (A(2), x 2)[M]) (149)

0
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We compare 0, (94 Jx[M)]) with V;04.Jx[M]. First, we calculate the 7-derivative and then use
equation (148).

CoA, D udn(A, X, 2)[M] = HA—l H2 > <vjVW(A (2s — @)+ 7), M(z; — ) + M> ¢ . (150)

Now, we calculate the partial derivative V;04Jx(A, x, z)[M] and get
CoX'V ;04N (A(2), X, ) [M]
~ 2 ~
. HA*H 3 (<V2W (M(z; — ) + p) ,Aej> + (YW, Mej>) 0

s H[rl”z [M] Z (<VW, Aej> o+ ij¢) n H!HHQ Z (YW, M (z; — ) + ) V;.
(151)

The second and the third term are zero due to equation (148). We compare the equations (150)
and (151) and see that the first term of V; (04Jx[M]) equals — <8m (O4IA[M]) ,/Iej>. We sum-

marize the last two terms into a linear map D : R¥*? x R? — R?,

V04T (A(@), x,2)[M] = = (0,047 (A(@), x, 2)[M], dej ) = DyIM], (152)

where D[M] is defined by

DIM] = — HA?IH <VW(21 (2; — ) + 7), M(z; — ) +u> Vg
)\Ccp)\d - 7 bl 7
B TeR T E W(A(x;, —z)+ 7))V . (153)

Using equation (152) we can reformulate equation (149) as follows
D;j[M] = 04\ (A(x), X, z) (M, (Vj/i, VT — Aej)) . (154)
We test this equation with M = (Vj[L VT — flej) and sum over j to obtain
>0 |(VA V7 - Aej )| = 303 (Aw@). v 2) | (V54,757 = Aej )| (155)
J J
Using the local convexity proofed in lemma 5, we get:

>0 (ViA, V7 = Aej) 2CompallA7P (NRIVA@)P + IVF@) - AI2) . (156)
J

We rewrite the left side of the last inequality

CoATS" D, [(V44, 957 = Aeg) | == A HZrle > (YW, VA - @) + V;7) V50
: s

]

A o HA*HQ VAWV, ¢. (157)
4,J
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Moreover, we have

27

V@(x) =2/3(@)VV/3(z)
~ ~ 2 ~ ~
(VJA(I'Z — .’E) + Vﬁ — Aej) §2|VJA|2|ZL'1 — .%‘2 + 2|Vj’7~' — A6j|2

<8NV A|2 4 2|V;7 — Aej> . (158)
Therefore, we use Cauchy-Schwarz inequality to estimate

C AN D, (vjA, V7 — Aej)
J

—2}" <H,41H2 (YW, VA — @) + V7 = Ag )+ 0a HA*HQ [vj;x]w) NN
4,J
ol 5 (S (v o ) ) (SivvEr)
J i i

() ()

+2

i

(159)
Since we have ¢(z) =1 for z < 1, we estimate
Z IVV@l? (A a — =) ZZ IVVEIE (A i — a]) o (20) " s — )
<Co NIV VAL poa(x2) (160)
We use W2(A (z; —x) + 7) < |[W]eW
and get

(A(x; — ) + 7) and Lemma 6 on the inequality (159)

>0, (VA V7 - 4) < ((av)*

oo

A+ 0 0) (U VER )

Nl

AWy (,Zt,x,x) (A2|v,21||2 | vF— A||2)

(161)
If we apply this on the estimate (155), we get
Coonp| A2 (W A@) |2 + | V7() - A]1?)
< ((av)? 47|+ 00 (2UVVElIZpor(o ) AV (A xe) . (162)
We solve this for Jy and obtain for large enough A
ez, |4 1H2
- 2
i con Px \2 (21w 4112 ~ 32
In(Ax,z) > —— —2 )\ (A4 VA Vi—A 163
s(Aor) 2 e g T (WA + V7 - A7) (163)

Step two: The second derivatives We start with equation (154):

9%J(A(z), v, 2) (M, (vj!x, V7 - Aej)) = D;[M]
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We apply the total derivative d%k on both sides , use the product rule and separate the second
derivatives in A direction from the first derivatives. We obtain

02T (A@), x,2) (M, (VaV;A4, 9497 — Vi e, ) )

_ 4 pm— (dikaiJA(A(x), X,w)) ([M], (vjfx, V7 — Aej)) . (164)

dz*

We test the equation with M = (Vkvjfl, ViV;T — kalej), use the local convexity to estimate
the left side and sum over all j and k to obtain

Coonp| A2 (A V2AI? + |V27 - VA|1?)
<-y (d;lkajJ) (Va4 V49,7 = Vide;)  (V54,9,7 - Aej ) )
7,k
+y d%cpj (VaViA, ViV,7 = Vide;) (165)
7,k

First, we calculate (d%@AJ(A(m),X,mD (M, M3). We start with

Csa)\daiJ)\(A7X,x)(M1,M2)
- H;rl ’ S (Ma(w; — @) + i, VW (My (25 — 2) + 1)) 0 + 0% HA*HQ (M1, Mz) S W
+04 [1*1H2 [M;] Z (VW, Ma(x; — ) + p2)

+Oa 121*1H2 (M) S (VW (My (i — 2) + ) . (166)

i

We remember that a minimizer A of J, satisfies GAJ(./Zl(:L‘), X,z) =0

oo 2 (WM (=) + ) o == 0a A7 [ 47| g Sowe
:—aAHA*HQ[M] H[HH_4 A x,7) . (167)

Therefore, equation (166) turns into

A
CoAd

D% TN (A, x, ) (My, My) = Z (My(z; — ) + po, VEW (M (z; — ) + 1)) ¢
A A M)
_9 HA*H*4 9 HA—1H2 [M1]04 HA—1H2 (Mo Ja(A, v, z) . (168)

Next, we calculate d%(?iJA(A, X, ) (M1, My). We realize that a derivative on one of the || A~1||
~o2
terms will produce an inner derivative VA = O(A~2y/J)). Furthermore, 04 HA‘lH [M] is
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OA™Y)||M|| . Hence, we get for the derivative of the second line

o (o i | i )

d
SO0 [Ma A Ma][x + OA2)[| My INIMEzllx | == T3 (A, X @) (169)
Since it holds d4Jy = 0, we get
O —JA (A x, o :—HA H Z(VWA@—&—Q)\ WVEYVE) (170)

According to equation (148) the first term is zero. We apply Cauchy-Schwarz inequality on the
second term, as we did in the estimate (159). We obtain |-&J, (A, x, x)‘ < O(A"1Jy). Therefore,

it holds

dz*
-1
_ 4 HA H Z<M (zi — @) + po, VW (M (z; — ) + 1))
_dxk CLPAd : 2 K3 /’l’27 1 1 lu’l LIO
+ O L) IMa[AMalx (171)

The z derivative can be applied on ||[A~!|| producing an inner derivative VA = O(A~2/J). A
total x-derivative of the W will have an inner derivative

%(A(% —r)+7) = (kai(xi —x) + ViT — Aek) =O0\"WI) . (172)

Hence, we get

Cg,)\d (d;lkai‘])\(f{,x,l‘)) (Ml,./\/lg)
=2\~ 1 Hfl_lHQ Z (Ms(z; — @) + po, VW (My(2; — ) + 1)) VOV @
— Hzi_lHZ Z <M26k, VQW(Ml (wi — .’1?) + N1)> (;7

- 2
A7 (e, VAW (M (i — @) + 12)) &+ O VIO MMl (173)
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We test with some Mjlk and MJL sum over j and k and use Cauchy Schwarz inequality to obtain

coxt A ‘Z (For0asntdon) ) (2 )
7.k

<op-1 (Z (V2W (Mg(l‘z — )+ ,u%))Q (V}c\/@)z) (Z (Mfk(xz — )+ Nji7k)2 95)

0,5,k i,5,k
+ (Z (VW (aser)) @) (Z (3"~ )+ ") @)
N 2,7,k
+ (Z ((Mg(a:l —x)+ /,L%) VQW)2 @) (Z(M{’kek)2§5>
4,7,k 4,7,k
+ O3 [IMafaMzlla (174)

Finally, it holds

> (dzkaiJ(A X x)) ((vkvjA, ViV, — vk/iej) , (vj;x, V7 — Aej))‘
7,k

ol

< (16v/27prpr +2V8dpy ) A1 HA*HQ VW] (VA2 + V27 - VA|=2)
X (A2||V/I\\2+ HV%—AHQ)% . (175)

Next, we consider

C A (diij> M] :)‘_ld%k <HA—1H2 Z <VW(,Z1 (2, — )+ 7), M(z; — 2) + u> V]-@)
- xl% (aA HZHHQ (M) Y W(A (@ o) +%)vj¢> . (176)

We know from our previous calculation that W (A (z; — x) + 7) gives a O(Jy)-contribution and
VW (A(z; —x) A+ T) gives an O(\/j,\)—contributjon. The inner derivative of the argument of
W is O(A~'V/Jy). Furthermore, a derivative on ||A~!|| will produce an inner derivative

~ - 2
VA = O(A2/75). Finally, 94 ‘A—l [M] is O(A~1)||M||x. We obtain

o[ () o
-7y <vk£1 (2 — @) + Va7 — VA, V2W (M(z; — 7) + /i)> VoVive
+ AT (WM (i = @) + 1) (VEVRV;VG + 2V /3V,1/3)

— AT (YW, Me) /EViE + O TP M|y (177)
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We use Viv/o(X)V;V/@(X) = 4V@(X)V,;Vo(X)Viv/@(X) and denote

Ujk = ViVjA(z; — x) + Vi V;7 — Vide; . (178)

We test the estimate (177) with M = (vkvjfl,vkvj% — kaleJ) and sum over j and k. Ap-
plying the Cauchy Schwarz inequality we get

d _ ) _
CLPAd Z (dka]> <VijA,VijT — VkAej)
Jik

<! HA‘1H2 V2| (Z (Vid (@i — o) + Vi - Aek>2 v, \@)2) 2 (Z Uj%k¢> 2

.3,k .5,k

o i (Z(VW@) 5 (Z (Vvider)” (7, mZ) %

i 3k i

AT H‘iil‘f (Z(VW)2¢) 2 (Z Uﬁk(vkvj\/@f) 2

1,5,k i,k
a2 (Zwv%) (Z U2V /BY; m) . (179)
.5,k i,5,k

We can use equation (126) to obtain

Z Z <(;;]€Dj> (Vkvj'/i, Vkvj% — kalej)
J k

<6 47| 19 W1 |9 VB e V22

x (RIVA? + V7 - A||2)% (VIV2A)2 + | 927 - VA=)

2007 [|A7Y av (I9V/Blloe + 1IV2VBlloe + IV /7 © V /3l ) V2020

1
2

x AW (A, x, z) (x*uv%fxu + V27— v;xn?) (180)
Finally, we combine the estimates (180), (175) and (165) to get
Coonpa| A7H 2 (W|V2A)2 + V27 - VA|?)
<2d|l A1 /aw (IVV/BI2 + IV VBl + 41V B ) V2TpaaA "2V Ty
~ 2 ~
+ (16327 papar + VBApa ) V2 W o[V V/BllocA || A7 |7 (29 A)2 + 197 - 4)1)

Nl

(181)
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We use the the upper bound (145) on A2||[VA|2 4 ||[V7 — A||? to finally arrive at

Coonpal A7 (X2 V2A)12 4 V27 - VA|12)”
A2A VI x2)00 ((IIV VIR + IV Vel + 200/ V V/B7) dv/27pan

1

+ o) (2d||v¢$||§o) : (162%;);%% + @m)) . (182)

7.1 Proof of Theorem 2

Proof Step 1: Following one minimizer According to lemma 4 for a x point of energy den-
sity ha(x,#) < e < 1 min {CF'det(E)?, CF|E|?,9det E} there exists A = (A,7) satisfying
h,\(fl,x,m) = fLA(X,x). Moreover ($7A) is (€p, €7, Ca)-regular, where

341 ppd-t € 4e
= —— €, = €7 =
2024t E ° ° “detE ' 7 detE

Ca (183)

According to Lemma 10 for every reparametrisation B(x) = (B(z),t(z)) € Glg(Z?) x Z* with
|(BA)~Y| < 2C4 it holds

- _ N 2 . 2 .
I (BA(@), x.w) <l (ci) ™ HBA(x)H H(BA(:E))*H I (A@)xe). (s

We obtain with the help of |A| < |A~|9"1det A and det A < 3 det £ from Lemma 4

R CfV N 2 . )% R .
I (BA@) o) < i (devBA@) - [BA@) T (A x.2) < Crops (Ao

(185)
where Cpep := 9 (C’(‘;V)f1 44-102%d det E2. Since the density py does not depend on A and it
holds det A = det BA, the position (z, BA(z)) is (3C.4, €,, Crepes)-regular. For large enough A
and sufficiently small e the conditions of Lemma 7 are fulfilled, and there exists a unique local

minimizer /:lB in a neighborhood of BA. Furthermore, we get the estimate (128) for the distance
between BA and Ap. Due to the estimate (185) we have for sufficiently small é

A . 1 —1/2 A
Bia) - Ap(o)], < (5CemllAg Pon ) VABA). .0

1 -z
< (20C0n||A0_1||2,0/\) €< g(SA . (186)

Additionally we have the estimate (145) from Lemma 8 for the gradients in this branch. Hence,
we get

I (A,Xﬁo) >Crona (AB»X7$O)

2

i1

>C,;§,AB~HP§A2 (A2||V,?13(:c)||2 + | VF(2)p — AB”Q) . (187)
av2?[ V@5 p2x

02

con
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We consider a second point y = y(s) € By sa(z) with A(x,y) < é and [ %dé < 4z sufficiently
small and obtain

Apy) — An(e)| OO0V (A xm0) < OO 250vE) < Lo

F5(y) — 7(z) — Ap(z)(y — :17)‘ <Oz — y)VTx (A, X, :z:o) < O\ "192VE) < 04

0| =

(188)

For é(x) and é(y) small enough the points  and y are regular according due to Lemma 4, and
we can use Lemma 3 to obtain B(x,y) = (B(z,y),7(z,y)) € Gla(Z) x Z¢ such that

CA N N
%Qd)\_l min {\/j)\(A((E)7 X LL'), \/j)\(A(y)> X5 y)}
det A(y)

<0 (A—lx/é) , (189)

[1d — A(z) "' B(z,y)A(y)| <

and

B(x,y)A(y) + A(z)
2

B(z,y)7(y) + t(z,y) — 7(z) — (y—x)

<#2d min {ﬁA(A(ﬂﬁ)axw)’ ﬁx(«‘i(y)%y)} <0 (\/E) (190)
det A(y)

For small enough ¢ and large enough A we can control the change of 7 and A, because we restricted
B to a compact set.

A|B@) (A) - Bl )Aw)| <goa
B() (B@,yﬁ(ynt@,w—ﬂx)—B<$»y>A;y>+A<y> <y—x>> <lou . (o

We introduce the notation B(y) := B(z)B(z,y). By comparing the estimates (186), (188) and
(191) we obtain

BWA() - An(y)|
< [BW)AW) - B@A@)|+ [B@A@) - As@)] +|As@) - As)] < Soa (192

For 7 we estimate

|B(x) (B(x,y)7(y) + t(x,y) = 7(y)) |

B(z) <B(x7y)f(y) +t(z,y) —7(z) -

<

B(z, y>A<2y> +A@) x)> ‘

+|BHw) +t = (@) + |Fp() + Ap(@)y — =) - 75 ()|

i B(z,y)Aly) + A(z)

+ |Ap(x) — B(x) 5

(y—x)

<2544 2AA(e) - BGIAW) + SN Ab(z) —~ Ba)A(@)] < 2o (193)
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We summarize

|BwAw) - Asw)||, <04 - (194)

Since B(y)A(y) fulfills the same conditions for y as B(z)A(z) for 2 we can apply Theorem 7.
Hence, there is one unique local minimizer satisfying

|Bw)Aw) - A <o (195)

Therefore, Ap(y) has to be this minimizer because of the estimate (194).
Step 2: The lower bound for the energy density: Due to estimate (128) from Lemma
7 we get for Ap(y)

I (Aw)x. )X@A(@N%m@

- —1]2 .2
>Cr b I (Ag, X, @) + cConcmp (BA) ’pAHm—ABHA . (196)

Applying Lemma 8, we get

. 2 L2
7 (A) v v) 25 CenCrb px |[Bw) A~ As|

(b4)

- 2 ] )
+0Cv <p::) HAJ_BlH PA <)\2||V7~'B —Ap|* + )\GHVzAB”z)

A

~ ~ 2 ~ ~
+Cy <’;2;) |45 oant (IVABI2 + 1275 = VAB)2) . (97)
We apply the estimates (197) to get a lower bound for the density
w06 ) =Ix (AWw),x.y) + v(AW), xov) + FAQ))

1 A - Al
_F(A)+§CConCre;}o ‘(BA> Px HBA*ABHA

+Co (m) HANF‘ 2PA (/\2||V%B — Ap|® + /\6||V21‘13||2)

+Cy (p”) |43 ‘ px (MIVA|2 + M|V275 — VAg|?) . (198)

Since we calculate a lower bound, we can skip the V2Ap term. We also estimate

~ ~ 12 R -2
HBA—ABHA 2/\2HBA_ABH . (199)
Due to 2(a? + b?) > (a + b)? we summarize
~ 1
ANVAp|]? + M|V 7p — VAp|* > MV (200)

o2
Due to the estimate 197 the difference between HAE,I H and HV7~'52H2 isO ()\_1\@). We estimate

for small €

pr =det A+ O(VE) = det Ap + O(VE) = det Vig + O(Ve) . (201)
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Hence, we get for small enough ¢ and large enough A.

. . 1. -2 ) . _
hax.y) 2F(A) + 50y (f;) |45 det(v7m)N2 IV 7S — Ap|?

1 02 . .2 )
+ 5CconCroy (BA) HBA—ABHAdet(vTB)
+ ;év (pp”) V75 ( )|\2A4||V2%B||2det(w3) . (202)

We summarize all but the ||V273||? term to U(75, Ap, B(y), A)

() 250 (22) 9757 X927 der(V7m)
+ U(T37 A37 B7 A) . (203)
Finally, we use

U7, Ap, B(y), A) > inf {U(7, A1, B, A3)| A1, Ay € Gl4(R), B € Gla(Z)} . (204)

A Basic calculations

Lemma 9 For all C4 exists X such that for all X > X al Ap € Gly(R), Tr € R? and © € Boy(2) and
W € Cf(RY) with (y) = 0 for |y| > 1 it holds

,\'1/ ¥ (y)dydet Ap = > 1/)(

T;EX A

2)+0 (h219) (205)
In particular it holds
px (xag,0) =det Ag +O(A72) (206)

Proof OBDA we can restrict ourselves to = 0. We denote Q; := x; + [—1/2,1/2)%. We calculate

M [ pea= [ w0ty =Y e exa, [ 6O dy

i

= > /¢(A*1xi)+w(x1xi) [%]Jr%v%(rlxi) {y;’“}dy

wi€xap ' Qi

=det Az'A > 40 (A% Vo) (207)
TiEXA

Lemma 10 For all A= (A,7) € Gl4(R) x R?, all positions x and configurations x it holds

C
Jx (A, x,x)> dZdISt :cz,XA—i-x)ap()\ le; —x])

<ch RIS

I (A, x,z) < Cd Zdistz(zi,XA +x)p ()\71 lz; —z|) . (208)
¥ i

In particular, for B = (B.t) € Glg(Z) x Z% it holds

oAl At

Ix (.A,X7$) < Cgv

Ja (BA, x,x) . (209)
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Proof On the one hand we have
C)\JA (A, x,z —||A 1” ZW (z; —x)+7)p ( :c—ac|)
<oy HA71|| Zdist2(A (z; —2) + 7, 2% (A2 — 2))

i

WA A2 S dist? (25, A2 — 1) + 2)p (A ay — ) - (210)
i
On the other hand we have
CpAlJx (A x2) = |47 ZW (@i — @) + ) (A |ai —2l)
SO AP 3 dist?(A (s — @) + 7, 20 (A | — )

>clv Z dist?(zs, A2 — 7) 4+ 2) (A e —2l) . (211)

Lemma 11 If x € By (2) and A € Gly(R) x R?, we have

1rT 1 e 1
pils(x) < CWBQJ/\(A 2607 Plp@) = a0 ) — CWBT]A(A X (212)

Proof We use equation (208) to get

C
A(A7XAR7$)ZC =Y dist? (s, xa + 7)o (A |2 — )
1EX

cw . _
>0 > dist? (s, x4+ 2)e (A |z — )
CoA

ziGXi’I’TB’E
CW 2 -1
_kad Z Bro (A |z — )

52p7/r'r . (213)

Because it holds py = pff{rﬁ + p;fgﬁ, we obtain equation (212)

B Estimate on the change of A in an sequence of regular points.

Lemma 12 For all Ca4 > 0 there exists \ €p €5 such that for all X > X the following holds: If there is a
exists (Aj,y;) € Gla(R) x R? x 2, z; is (€p, €5, Ca)-regular with Aj and Bj_1,; = (Bj_1,j,tj—1,;) denotes the
associated reparametrisation sequence given by Theorem 1 for j = 0...N , then it holds

cA N
-1 c J B
1= A5 BO,NAN‘ <& ij 1j exp (A ;b 1,]> , (214)
and
N
By, NnANn + Ao
> Bok—1tk + BonTn — 70 + — s (yn — o)
k=1

AN N N
<CACA|CJ+ZyJ+1y]) |Ao| > b1, exp <;‘Z ) ; (215)

Jj=1
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where
Ji =Ix(A5,x,95)

. 2\ d/2
bj_lJ:(m) (detA max{w i/ J i— 1}

Biyks = [ Bi-1j - (216)
j=k1+1

Proof the B-Product We use the notation
aj—1,j :*A BJ 145

bj—1,;=1— A7  Bj_1jA;j=1—aj_1; . (217)

J

Due to Theorem 3 and we have for every j = 1...N

-
Ibj—1,51 <lbj—1.51l < bj—1.5 (218)
Using this upper bound for |b;_1 ;| we derive an upper bound for general products of a;_1 ;
k2 k2 k2
[ w-wsf=] II G-t < I @+lbj-1D)
j=k1+1 j=k1+1 j=ki1+1
ko ko
< I et <exp| D> Ibj-ul| - (219)
j=k1+1 j=k1+1
Furthermore, we get
ko ko
I @-=11 (Ajillijl,jAj) A By ky Ak, (220)
j=ki1+1 k1+1

We derive a bound on 1 —JJaj_1,;
N k-1

1—Ha],1,] <lt—aon+ > [[aj-1500 —ar14)

k=2 j=1

N k—1
<—aoal+ > 1 —an—1l|[] aj-1.
k=2 =1
N k—1
<Pbrl 4+ > | (br—r,e)|exp | D Ibj—1,1
k=2 =1

M=

<

|(bk—1,1)| exp E bj_1,;
=

>
I

N
|
1 1
A
J

o4 o
Tij,Lj exp ( z:: > . (221)

L

j=1

The 7 product We denote

N
oT = Z Bo,j-1tj—1,j + BoNTN — T0 +
Jj=1

Bo,NAN + Ao

5 (yn — o)

Bj—1,45 + Aj—1

57']‘ =tj 1+ BjTj —Tj—1+ 5

Wi+1 —y5)
(222)
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Since z; is (2*3’251, €,Cy)-regular with A; we can use Theorem 3 and get for every j = 1...N
A
c7 .
I —aj—1ill <5bj-15
6751 <cFllAj-1llbj-1,5 - (223)

Hence, we have bounds for §7; and want a bound for §r

N

By, NAN + Ao
67| =|>_ Bo,j-1tj-1,; + Bo,;7i — Bo,j-17j-1 + —  Wi—yi-1)
j=1
N 1
=|>_ Bo,; 167 + 5 (Bo,NAn — Bo,jAj + Ao — Boj—14;-1) (Y5 — yj—1)
=1
N
<ch Y IBoj-1l 1 Ajallbi—1;
j=1
1 N
+3 (|Bo,nAN — Bo,jAj| + [Ao — Bo,j—14;-11) ly; — yj—1] - (224)

j=1

Due to the inequality (219) we can estimate

A N
— _ C ~
[Bo,j—1] <[Ao||Ag 1BO,j71Aj71‘ ‘Aj,ll‘ < CalAo|exp <)‘\] > bkl,k) . (225)
k=1

We calculate

i
.

|[Ao — Bon—14n—1] < |Bo,jAj — Bo,j—1A4;-1]

3 .
[
_

IN

|Bo,j—14;5-1] ’Aj__llBj—l,jAj - id‘

Il
- e

3 <

<> Aol ’Ao_lBo,j—lAj—l‘ )A]-__llBj—l,jAj - id‘
j=1

n—1 j—1
<> Ca |1 ar-1.k|laj—1,; —id|
j=1 k=1
n—1 CAA CA N R
<C|4 Z Tij,jfl exp <)‘\] Z bkl,k) . (226)
j=1 k=1

We estimate |B0,NAN - Bo,nAn| in the same way and obtain

N A A N

G- c .

|Bo,NAN — Bo,nAn| <C4 E “Lb; 1 exp | =L § br—1.k . (227)

A\ A
j=n+1 k=1

A combination of the estimates (226) and (227) leads to

N A A N
Cy A C ~
|Ao — Bon—1An—1| + |Bo,NAN — BonAn| < Cj4 E Tijfl,j exp (; E bkl,k) . (228)
=1 k=1
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Using the estimates (223), (225) and (228) results in

N A N
~ C ~
167 < ClajchCalAolbj—1,j exp (; > bkl,k>
=1 k=1
N CAA CA N R N
+Ca ZTijfl,j exp TJ D be—ik | D lyie1 — ysl
=1 k=1 j=1
cA N N on e
< | CaCacy + TJ > lyir —vsl | Clap D bj-1exp (A > blc—l,k)
i=1 j=1 k=1
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