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explicitly. It is shown how parameterizations of the dual spaces can be chosen to

obtain explicit Plancherel formulas. The Laplace operator ∆ arising from an arbitrary

left invariant Riemannian metric on the group is considered, and its spectrum and

eigenfunctions are given explicitly in terms of that metric. The spectral Fourier
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1. Introduction

In light of the apparent anisotropy of the cosmic background radiation map (CMB)

obtained by space missions, the investigation of anisotropic cosmological models seems

to gradually regain scientific interest almost forty years after its peak in seventies

[1],[2]. These models are described by a three dimensional homogeneity group and a

trivial or reduced isotropy group as compared with Friedman-Robertson-Walker (FRW)

models. Of particular interest are different scenarios of the early epoch of the universe

including also quantum effects. One theoretical paradigm that is adequate for describing

such situations is quantum field theory in curved spacetimes (QFT in CST). This

theory pertains mainly to mathematical physics and aims at a rigorous description

of physical phenomena starting from an axiomatic basis. The way from the axioms

to explicit results readily applicable at the observational level usually requires a rich

supply of mathematical methods. In the context of (anisotropic) cosmological models,

harmonic analysis, and related, Fourier analysis with respect to the isometry group of

the spacetime under consideration are powerful tools for obtaining explicit results.

There is a prevalent tendency among different scientific disciplines to specialize to

their own aims and perspectives and thus diverge from each other. This results in an

isolation of scientific results inside a limited community without a wide access from

outside. Perhaps one of such fields is the mathematical theory of harmonic analysis.

The Levi decomposition effectively breaks apart the general harmonic analysis to those

for solvable and semisimple groups separately. Both branches have been investigated

in great generality. The Kirillov orbit theory for solvable groups, along with such

developments as the Currey theory for exponential solvable Lie groups, has given

methods for obtaining explicit results for arbitrary dimensions. On the other hand the

theory developed by Harish-Chandra, Helgason and others provides a very deep insight

into general semisimple homogeneous spaces and related structures. At the same time,

abstract harmonic analysis for locally compact groups, and the Mackey machine based

upon it, yielded remarkably in describing general principles and phenomena. However,

when a theoretical cosmologist wants to perform a mode decomposition of some physical

field on a homogeneous spacetime it is almost of no use to him to know that, for instance,

a Borel measure exists, or that it can be computed up to equivalence for N dimensions.

What a cosmologist really needs is an explicit description with formulas which can be

used without expert knowledge in harmonic analysis, as it is available for the traditional

Abelian group Rn. But as far as we were able to see, results of that kind do not seem

to be available in the literature; possibly because they are usually not in the focus of

interest of mathematicians. It may be regarded as one of the duties of mathematical

physics to provide bridges between the increasingly diverging interests of mathematics

and physics. With this in mind we take to the task of giving an explicit description of

harmonic analysis of a number of groups of cosmological interest.

As stated above, in quantum field theory on cosmological spacetimes one is often

interested in Fourier analysis with respect to the symmetries of the underlying geometry.
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In the framework of homogeneous cosmologies, M = I ×Σ where I is an open interval,

and Σ is a smooth three dimensional manifold with a Riemannian metric h on it. The

spacetime metric g on M takes the line element form

ds2g = dt2 − aij(t)ds
i
hds

j
h

with a positive definite matrix aij(t) depending smoothly on the ”time coordinate”

t ∈ I. (Σ, h) is a homogeneous space with respect to a Lie group of isometries G.

The variety of all such homogeneous spaces which arise in cosmology can be found in

several works including [3],[4],[5]. We have analyzed the geometrical setup of general

linear hyperbolic fields on cosmological spacetimes in [6]. In particular we have seen

that in nearly all cases one deals with a semidirect product group G = Σ ⋊ O where

O is either of SO(3), SO(2), {1}, and the role of Σ is played by Bianchi I-IX groups

Bi(N) (N = I, II, ..., IX) and their quotients Bi(N)/Γ by discrete normal subgroups

Γ. Such structures are called semidirect homogeneous spaces, and a few important

results have been obtained in [6] in this generality using abstract harmonic analysis.

We moreover have seen how tightly harmonic and spectral analysis is related to mode

decomposition. The next step towards physics will be to describe harmonic analysis

of all those possible semidirect homogeneous spaces explicitly. The spaces of maximal

symmetry with O = SO(3) are the FRW spaces, which are described by isometry groups

SO(4), E(3) or SO+(1, 3). The spaces with one rotational symmetry are described by

O = SO(2) and are called LRS (locally rotationally symmetric) spaces. And finally the

purely homogeneous spaces are given by trivial isotropy groups O = {1}. The isometry

groups of FRW spaces are classical groups and their harmonic analysis is also a classical

subject. For purely homogeneous spaces (otherwise called Bianchi spaces) this is known

partially. The Bianchi I group is the additive group R3 of which harmonic analysis is

textbook standard. The Bianchi II group is the famous Heisenberg group of dimension

2 + 1, which is well studied, and its harmonic analysis can be found in [7],[8],[9]. The

Bianchi III group is the ax+b group in 2+1 dimensions whose harmonic analysis is known

as well [9]. The Bianchi VIII group is the universal covering group ˜SL(2,R), which is a

notorious non-linear group. Its harmonic analysis can be found in [10]. The last group,

Bianchi IX, is simply SU(2) which is again classical. Little is known about the Bianchi

IV-VII groups beyond the structure of their Lie algebras which are semidirect products

of Abelian algebras R2 and R. In fact, although there are principally no obstacles on the

way of their investigation, we were not able to locate any explicit description of their

harmonic analysis in the literature; we also asked some prominent experts in the field,

and none was able to point to such references. Even less is known about the semidirect

products of Bianchi groups with SO(2) describing LRS models. We stress again that

there is no obstacle to applying the Mackey machine and perform all calculations, but

it seems that this has not been done so far. Because the discrete subgroups Γ can be

readily found from the group structure [11], once having control over harmonic analysis

of the group G it is not hard to reduce it to the quotient G/Γ, but it again needs to

be done somewhere. We have chosen to start with harmonic analysis of the solvable
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Bianchi I-VII groups in a uniform manner deferring the remaining structures to the

future. One could argue that this might be done straightforwardly by the exponential

solvable methods of [12], but if one actually starts to do that (what we indeed did) one

needs to construct an enormous amount of spaces, dual spaces and intersections, which

are designed to handle arbitrary groups, and seem to be too bulky to be performed by

hand. Therefore we preferred the original Mackey construction.

The harmonic analytical Fourier transform is only half the way to applications. In

fact what is really useful in concrete computations is the spectral Fourier transform

given by the eigenfunction expansion of a left invariant Laplace operator ∆ acting

on the sections in the subbundle of T over Σ. In [6] we have seen how the mode

decomposition of linear fields can be performed knowing the eigenfunction expansion of

∆. We moreover have seen how in principle one can identify the harmonic analytical

Fourier transform with the spectral Fourier transform of ∆ to translate the general

results on semidirect spaces into the language of concrete calculations. For this purpose

one needs to find the spectral theory of ∆ explicitly for all possible Σ and invariant

Riemannian metrics on them. This is again something that can hardly be found in

the literature, although spectral analysis in Riemannian spaces is huge and very well

developed a subject in mathematics. In particular, one needs to know the spectrum

and a complete system of eigenfunctions of ∆ explicitly. In general, the eigenfunction

problem of ∆ is a vector valued elliptic partial differential equation on a manifold

without boundary, which is difficult to compute even numerically. If this equation

admits separation of variables so that the eigenfunctions are given by combinations of

functions of one variable subject to ordinary differential equations then we can consider

these eigenfunctions as given explicitly in terms of special functions. In this work we

will give such an explicit description of the spectrum and eigenfunctions of ∆ in terms

of an arbitrary left invariant Riemannian metric on Σ for the line bundle over Bianchi

I-VII groups. For arbitrary bundle dimension this is much more complicated. There

is a bit of hope to obtain explicit solutions by transforming the original vector valued

eigenfunction equation on the manifold to a scalar elliptic eigenfunction equation with

constraints on the holonomy bundle of the linear connection associated with the given

fiber metric. This is a non-trivial task to which we hope to return in the future.

We summarize the content of the current exposition as follows. First the Bianchi

I-VII groups are realized as semidirect products of R2 and R and the main group

properties are explicitly computed, such as the multiplication laws, exponential maps,

modular functions and adjoint representations. Then the dual spaces of the groups are

constructed, i.e., the equivalence classes of unitary irreducible representations. This is

done by means of the Mackey machine. Next a look is given at the co-adjoint orbits

of the groups in the sense of the Kirillov theory, and it is described explicitly how the

cross sections can be chosen to parameterize the dual space. Afterwards an explicit

Plancherel formula is given for all these groups. Thereafter we turn to spectral analysis.

The spectra and the eigenfunctions of ∆ are found explicitly in terms of the chosen

arbitrary left invariant Riemannian metric. Then it is shown that these eigenfunctions
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are complete in L2 and give rise to a conventional Fourier transform in sense of [6]. In

the final part the applications in quantum field theory are discussed. First it is shown

that Bianchi spacetimes are ideally adapted for the mode decomposition as given in

[6]. Then this mode decomposition is demonstrated in the example of the Klein-Gordon

field on Bianchi I-VII spacetimes. A number of interesting consequences are indicated

including those for the quantum Klein-Gordon field, where results from [13] are used as

well.

2. Semidirect structure of Bianchi I-VII groups

As a first step we will try to explicitly realize the solvable Bianchi II-VII groups (I is

Abelian and will serve as a starting point in the analysis of others) as semidirect products

of Abelian subgroups. A classification of solvable real Lie algebras with respect to such

products can be inferred from [14].

Semidirect products of Lie algebras and Lie groups. We start by recalling

some definitions. Let a and b be Lie algebras, and let D(a) be the Lie algebra of

derivations on a. Let further f : b 7→ D(a) be a Lie algebra homomorphism. The

semidirect product Lie algebra a ×f b is the algebra modelled on a ⊕ b with the Lie

bracket

[(a, b), (a′, b′)] = ([a, a′] + f(b)a′ − f(b′)a, [b, b′]), (a, b), (a′, b′) ∈ a⊕ b.

Let, on the other hand, A and B be Lie groups, and F : B 7→ Aut(A) a Lie group

homomorphism (Aut(A) embedded into GL(A)). The semidirect product A ×F B of

groups A and B is defined as the Lie group modelled on the product manifold A × B

with the multiplication

(a, b)(a′, b′) = (aF (b)a′, bb′), (a, b), (a′, b′) ∈ A×B.

Following the notation of [15], denote by F ◦ : B 7→ Aut(a) the map B ∋ b 7→ d[F (b)] ∈
Aut(a), where a is the Lie algebra of A. Then the derivative of this map, f = dF ◦, will

be a Lie algebra homomorphism f : b 7→ D(a) (b the Lie algebra of B), and the Lie

algebra of the direct product Lie group A×F B is the direct product Lie algebra a×f b

[15].

Bianchi I-VII groups as semidirect products. With this in mind, let us start

with realizing Bianchi I-VII algebras as semidirect product algebras g = R2 ×f R with

some Lie algebra homomorphism f : R 7→ D(R2). This correspondence between Bianchi

algebras and homomorphisms f can be obtained by combination of [16] and [14]. (Those

uncomfortable with Russian may simply perform the semidirect product construction

and check the commutation relations.) Namely, in each case f(r) = r ·M , r ∈ R, in a

suitable basis, where M is a 2 × 2 matrix. The matrix M for each algebra is given in

Table 1 below.

The corresponding integral homomorphisms F ◦ will be the exponentials F ◦(r) =

erM (note that the exponential map on the group R is given by the identity map). If a
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I II III IV V VI VIII

0

(
0 0

1 0

) (
1 0

0 0

) (
1 0

1 1

) (
1 0

0 1

) (
1 0

0 −q

) (
p −1

1 p

)

−1 < q ≤ 1 p ≥ 0

Table 1. The matrices M for Bianchi I-VII groups

I II III IV V VI VIII

1

(
1 0

r 1

) (
er 0

0 1

) (
er 0

rer er

) (
er 0

0 er

) (
er 0

0 e−qr

) (
epr cos(r) −epr sin(r)
epr sin(r) epr cos(r)

)

−1 < q ≤ 1 p ≥ 0

Table 2. The matrices F (r) for Bianchi I-VII groups

diffeomorphism is given locally by a linear coordinate map, x′i = Aj
ixj with the matrix

A, then its differential will be given by the same matrix A. Now that F ◦(r) = d[F (r)]

and that F (r) are linear automorphisms, it follows that F (r) = erM . Thus all Bianchi

groups I-VII are given by semidirect products G = R2 ×F R, where for each class the

group homomorphism F : R 7→ Aut(R2) is given as in Table 2 above.

We appoint to use capital symbols X, Y, Z for Lie algebra coordinates and small

symbols x, y, z for Lie group coordinates, but these may interfere in some calculations

involving exponential maps. It follows that the group multiplication is

(x, y, z)(x′, y′, z′) = ((x, y) + F (z)(x′, y′), z + z′), (x, y, z), (x′, y′, z′) ∈ G = R2 ×F R.

The exponential map. Finally we note that all 7 groups are exponential, and

the exponential map is given as follows. Let (X, Y, Z) ∈ g = R2 ×f R with (X, Y ) ∈ R2

and Z ∈ R. We use the Zassenhaus formula

exp(A+B) = exp(A) exp(B) exp(C2) exp(C3)...,

where the coefficients Cm are homogeneous Lie algebra elements composed of nested

commutators of orderm. We will use the convenient method of obtaining Cm recursively

as given in [17]. If we set A = (X, Y, 0) and B = (0, 0, Z), we obtain

[A,B] = −f(Z)A.

Now equating the homogeneous summands of any order of (4.7) and (4.8) of [17], we

obtain recursion formulas for Cm which are bulky in general. However, trying an ansatz

Cm = αm(−f)m−1(Z)A, αm ∈ R, and checking directly for m = 2, one can easily prove

it inductively, and find

αm =
1−m

m!
.

It remains to calculate

exp(C2) exp(C3)... = exp

(
∞∑

m=1

1−m

m!
(−f)m−1(Z)A

)
.
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If f(Z) is invertible for all Z then we write

1−m

m!
(−f)m−1(Z) = (−f)−1(Z)

(−f)m(Z)
m!

− (−f)m−1(Z)

(m− 1)!
,

and obtain

D(Z)
.
=

∞∑

m=1

1−m

m!
(−f)m−1(Z) = (−f)−1(Z)

(
e−f(Z) − 1

)
− e−f(Z) =

= f−1(Z) (1− F (−Z))− F (−Z). (1)

It is only for Bianchi II and III that f(Z) is degenerate, and for these two we can

compute directly

D(Z) =

∞∑

m=1

1−m

m!
(−f)m−1(Z) =

1

2
f(Z) for Bianchi II

and

D(Z) =

∞∑

m=1

1−m

m!
(−f)m−1(Z) = (1− 2e−1)f(Z) for Bianchi III.

Thus we arrive at

exp((X, Y, 0) + (0, 0, Z)) = exp((X, Y, 0)) exp((0, 0, Z)) exp(D(Z)(X, Y ), 0).

The exponential maps of R2 and R are the identity maps, therefore

(x, y, z) = exp((X, Y, Z)) = (X, Y, Z)(D(Z)(X, Y ), 0) = ([1 + F (Z)D(Z)](X, Y ), Z),

where F (Z) should be understood as F (exp(Z)). The matrices D(Z) appear somewhat

bulky so we refrain from presenting them in a table.

The adjoint representations Ad and ad. Let (gx, gy, gz), (x, y, z) ∈ G. Their

conjugation (x′, y′, z′) = (gx, gy, gz)(x, y, z)(gx, gy, gz)
−1 is given by

(x′, y′, z′) = ((1− F (z))(gx, gy) + F (gz)(x, y), Z).

The adjoint representation Ad is the differential of this map at the identity element

(x, y, z) = (0, 0, 0), and so it is given by the matrix field Adg,

Adg =



F (gz) −F ′(0)(gx, gy)

⊤

0 0 1


 .

The adjoint representation of the Lie algebra is given by the matrix‡

ad(X,Y,Z) =



f(Z) −f ′(0)(X, Y )⊤

0 0 0


 .

‡ We use the general relation adXY=[X,Y] for elements X, Y in a general Lie algebra.
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The Haar measure and the modular function. The Haar measure on the Lie

group is given by

d(exp(X, Y, Z)) = j(X, Y, Z)dXdY dZ,

where

j(X, Y, Z) = h det
1− e−ad(X,Y,Z)

ad(X,Y,Z)

, (X, Y, Z) ∈ g,

and 0 < h ∈ R is an arbitrary constant. In group coordinates one can check that it is

given by

dg = h detF (−gz)dgzdgydgz, (gx, gy, gz) ∈ G.

The groups are all non-compact, so there is no preferred normalization for the constant h.

Later it will be determined as related to the chosen left invariant Riemannian metric on

G. The modular function ∆(g) = detAd−1
g can be readily seen to be ∆(g) = detF (−gz).

This temporarily completes our task of analyzing the Bianchi I-VII groups as

semidirect products. In the next section we will concentrate on their dual spaces.

3. The irreducible representations of Bianchi I-VII groups

In this section we will try to find the dual spaces of Bianchi I-VII groups using the

Mackey procedure. Let us start with Bianchi I, which is simply the additive group R3.

Its dual group R̂3 is homeomorphic to itself, R̂3 = R3, and the irreducible 1-dimensional

representations are given by

ξ~k(~x) = ei{
~k,~x}, ~x ∈ R3, ~k ∈ R̂3 = R3,

where we appoint to denote by {~a,~b} the usual Euclidean product of three-vectors

~a,~b ∈ R3. These scalar functions ξ~k can be viewed as unitary operator valued functions

acting on the one complex dimensional Hilbert space C.

The Mackey procedure for normal Abelian subgroups. We cite here the

setup of the Mackey theory for groups with a normal Abelian subgroup as given in [9].

Let G be a locally compact group and N an Abelian normal subgroup. Then G acts on

N by conjugation, and this induces an action of G on the dual group N̂ defined by

gν(n) = ν(g−1ng), g ∈ G, ν ∈ N̂ , n ∈ N.

For each ν ∈ N̂ , we denote by Gν the stabilizer of ν,

Gν = {g ∈ G: gν = ν},

which is a closed subgroup of G, and we denote by Oν the orbit of ν:

Oν = {gν: g ∈ G}.

The action of G on N̂ is said to be regular if some conditions are satisfied. To avoid

presenting excessive information we only mention that if G is second countable (which is
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true for a Lie group), then the condition for a regular action is equivalent to the following:

for each ν ∈ N̂ , the natural map gGν 7→ gν from G/Gν to Oν is a homeomorphism. In

our case N̂ is a smooth manifold, and the group actions are all smooth, hence this map

is not only a homeomorphism but even a diffeomorphism. The constructions become

simpler under the assumption that G is a semidirect product of N and the factor group

H = G/N . We define the little group Hν of ν ∈ N̂ to be Hν = Gν ∩ H . Now we cite

a beautiful theorem which appears as Theorem 6.42 in [9] and expresses the essence

of the Mackey procedure. The functor Ind and the inducing construction are briefly

introduced in the Appendix A.

Theorem 1 (Folland,[9]) Suppose G = N ⋉ H, where N is Abelian and G acts

regularly on N̂ . If ν ∈ N̂ and ρ is an irreducible representation of Hν, then IndG
Gν
(νρ) is

an irreducible representation of G, and every irreducible representation of G is equivalent

to one of this form. Moreover, IndG
Gν
(νρ) and IndG

Gν
(ν ′ρ′) are equivalent if and only if

ν and ν ′ belong to the same orbit, say ν ′ = gν, and h 7→ ρ(h) and h 7→ ρ′(g−1hg) are

equivalent representations of Hν.

Application to the Bianchi groups. It is easy to see that Bianchi groups II-VII

satisfy the assumptions of the theorem. In this case N = R2 and H = R, the dual of N

is N̂ = R2 and is given by

N̂ = {ei{k̆,x̆}: x̆, k̆ ∈ R2},

where we overload the notation by brackets {ă, b̆} to denote the two dimensional

Euclidean product of ă, b̆ ∈ R2. Let ıN : R2 7→ G be the natural inclusion. The

action of G on N̂ is given by

gξk̆(x̆) = ξk̆(ı
−1
N (g−1ıN (x̆)g)).

All Bianchi solvable groups are homeomorphic to R3, and we may choose a global chart

on them. In particular we choose one adapted to the semidirect structure R2 ×F R

presented in the previous section. Then the multiplication law in G is given by

(x, y, z)(x′, y′, z′) = ((x, y) + F (z)(x′, y′), z + z′).

The unit e ∈ G is given by e = (0, 0, 0), and the inverse map by

(x, y, z)−1 = (−F−1(z)(x, y),−z).

In particular, if (x̆, 0) = (x, y, 0) ∈ ıN(R
2) and (gx, gy, gz) ∈ G, then

(gx, gy, gz)
−1(x, y, 0)(gx, gy, gz) = (F−1(gz)(x, y), 0),

that is, the conjugation map n 7→ g−1ng is given by (x, y) 7→ F−1(gz)(x, y). Thus the

action of G on N̂ is

gξk̆(x̆) = ξk̆(F
−1(gz)x̆) = ei{k̆,F

−1(gz)x̆} = ei{F
⊥(gz)k̆,x̆},
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where F⊥(gz) is the inverse transpose of the matrix F (gz). This means that this action

can be described by

gk̆ = F⊥(gz)k̆, g ∈ G, k̆ ∈ R2.

Denote by V 0 ⊂ R2 the eigenspace of M⊤ corresponding to the eigenvalue 0 (the null

space). Then it will be also the joint eigenspace of the matrices F⊥(gz) = e−gzM
⊤

corresponding to the eigenvalue 1 simultaneously for all gz ∈ R. Let us write the

stabilizer condition,

e−gzM
⊤

k̆ = k̆.

Then the stabilizer Gk̆ and the little group Hk̆ will be

Gk̆ = ıN(R
2) ·Hk̆

and

Hk̆ =

{
R if k̆ ∈ V 0,

{0} else.

Define the following space of irreducible representations of G:

Ĵ = (V 0 × R) ∪ (R2 \ V 0).

For each µ ∈ Ĵ the corresponding irreducible representation is given by

Tµ(g) = ei{k̆,ğ}eik3g3, µ = (k̆, k3) = (k1, k2, k3)

if µ ∈ V 0 × R, and

Tµ = Tk̆ = IndG
R2(ei{k̆,.}), µ = k̆,

if µ ∈ R2 \ V 0. The orbit Ok̆ is {k̆} if k̆ ∈ V 0 and F⊥(R)k̆ otherwise. As mentioned in

the theorem, two representations µ, µ′ ∈ Ĵ are equivalent if and only if k̆ and k̆′ are on

the same orbit, k̆ = F⊥(z)k̆′, and the corresponding representations of Hk̆ and Hk̆′ are

equivalent when intertwined with the action of z. The first condition can be satisfied

non-trivially if k̆, k̆′ ∈ R2 \ V 0, but then Hk̆ = Hk̆′ = {0}, and thus there exists only

the trivial representation ρ = 1. Thus representations µ, µ′ ∈ R2 \ V 0 are equivalent if

and only if they are on the same orbit. On the other hand, let µ, µ′ ∈ V 0 ×R such that

k̆ = k̆′, and the first condition is satisfied trivially. Then Gk̆ = G, and G/Gk̆ = {1},
so the action of 1 cannot intertwine inequivalent representations of Hk̆. Thus µ ∼ µ′

means µ = µ′. Therefore the dual space Ĝ of G will be

Ĝ = (V 0 × R) ∪ (R2 \ V 0)/F⊥(R).

The null spaces V 0. Finally let us find the eigenspaces V 0 for different Bianchi

groups. By a calculation of eigenvectors and eigenvalues of M we obtain

V 0
I = R2, V 0

II = R⊕ {0}, V 0
III = {0} ⊕ R,

V 0
IV = {0}, V 0

V = {0}, VV II = {0},
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and

VV I =

{
{0} ⊕ R if q = 0,

{0} else.

Note that as always with solvable groups, the irreducible representations are either

1-dimensional or infinite dimensional.

To obtain explicit descriptions of the dual groups Ĝ for each Bianchi class we have

to calculate the orbits Ok̆ = F⊥(R)k̆ explicitly, which is done in the next section.

Note that the entire construction could have been performed through the machinery of

exponential solvable Lie groups developed in [18] and [12], where the problem is treated

exhaustively. In particular, it was shown that (as adapted to our terminology) there

exists a cross section K̃, an algebraic submanifold of R2 which crosses each generic orbit

(i.e., an orbit of maximal dimension) exactly once, and thus parameterizes the infinite

dimensional representations. Having explicitly calculated K̃ we find Ĝ = (V 0×R)∪ K̃.

But the methods of [18] are extremely general and involve simple but lengthy algebraic

calculations; this is why we have preferred the original topological Mackey constructions.

4. Co-adjoint orbits of Bianchi II-VII groups

The term co-adjoint orbits would probably suit better to the solvable Lie theoretical

method of orbits as established by Kirillov and accomplished by Currey. At this point

we deviate to present a little digression demonstrating the equivalence of that approach

with that we have adopted.

The Kirillov approach. The Lie algebra g = R2 ×f R of G is modelled on the

vector space R3, and as such its dual space g′ is again isomorphic to R3. We will fix

this isomorphism by choosing the basis in g′ dual to our adapted basis of g. With

this identification the co-adjoint action of G on g′ = R3 is given by the matrix field

Ad∗g = Ad⊥g ,

Ad∗g =




F⊥(gz) 0

0

(gx, gy)F
⊥(gz)M

⊤ 1


 .

For any l = (X∗, Y ∗, Z∗) ∈ g′ its orbit Ol is given by

Ol = (F⊥(R)(X∗, Y ∗), (R,R)F⊥(R)M⊤(X∗, Y ∗) + Z∗),

and the space of orbits {Ol} with the quotient topology induced from g′ is homeomorphic

to Ĝ with the Fell topology [9]. One can easily see that the orbits are of two types:

those of (X∗, Y ∗, Z∗) with (X∗, Y ∗) ∈ V 0 or (X∗, Y ∗) /∈ V 0. The former are the so

called degenerate orbits with dimension 0 (singletons), and the latter are the generic

orbits with maximal dimension 3. This is exactly the same result we obtained above by

Mackey machine.

The generic orbits and the cross sections. We will denote the range of a

parameterized quantity Q(p) of a parameter p ∈ P by Q(P ). For instance, F⊥(R) will
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denote the range of the quantity F⊥(r) when r runs over R. Here we will try to find

the generic orbits F⊥(R)k̆0 ∈ Ĝ mentioned in the previous section and corresponding

cross-sections K̃ ∈ R2. The latter will be algebraic manifolds composed of one or more

connected components. In all cases V 0 is a subset of Lebesgue measure 0 in R2. By

the definition of the cross section K̃, the submanifold R2 \ V 0 can be parameterized

by a global chart k̆ = k̆(k, r), (k, r) ∈ K × R, such that k̆(k, r) = F⊥(r)k̆0(k) and

k̆0(k) = k̆(k, 0) ∈ K̃. Under this diffeomorphism the Lebesgue measure dk̆ becomes

ρ(k, r)dkdr, where ρ(k, r) = | det ∂(k̆)/∂(k, r)|.
Now let us proceed to the determination of the orbits and the cross sections case

by case. Figure 1 in Appendix B illustrates them qualitatively.

II. We have

F⊥(r)(kx, ky) = (kx − rky, ky),

hence the orbit through k̆ ∈ R2 \ V 0 is F⊥(R)(kx, ky) = (R, ky). The cross section can

be chosen to be K̃ = k̆0(K), K = R \ {0}, k̆0(k) = (0, k). Indeed, any orbit (R, ky) meets

K̃ exactly once at k̆0(ky). Then

ρ(k, r) =

∣∣∣∣∣det
(
F⊥(r)

∂k̆0(k)

∂k
,
∂F⊥(r)

∂r
k̆0(k)

)∣∣∣∣∣ = |k|.

III. In this case

F⊥(r)(kx, ky) = (e−rkx, ky),

and the orbit through k̆ ∈ R2 \ V 0 is F⊥(R)(kx, ky) = (sgn(kx)R+, ky). Let K =

R × {−1, 1}, k = (k1, k2). The cross section is the image (−1,R) ∪ (1,R) of the map

k̆0(k) = (k2, k1). We find

ρ(k, r) = e−r.

IV. For this group

F⊥(r)(kx, ky) = (e−rkx − re−1ky, e
−rky),

and the orbits are complicated. We set K = R+0 × {−1, 1}, k = (k1, k2) and

k̆0(k) = (k2, k2k1). That this is a cross section can be checked immediately. The

measure density ρ is

ρ(k, r) = e−2r(1 + k1).

V. Now

F⊥(r)(kx, ky) = e−r(kx, ky),

and the orbits are simply the incoming radial rays. Set K = R/2πZ and k̆0(k) =

(cos(k), sin(k)). It follows that

ρ(k, r) = e−2r.

VI. For this group we consider only the case q 6= 0 as q = 0 is just the group III.

F⊥(r)(kx, ky) = (e−rkx, e
qrky),
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and the orbits are incoming polynomial curves if q < 0 and hyperbolic curves if q > 0.

For q < 0 set K = R/2πZ and k̆0(k) = (cos(k), sin(k)). Then

ρ(k, r) = e−(1−q)r(cos2(k)− q sin2(k)).

For q > 0 set K = R+0 × {0, 1, 2, 3}, k = (k1, k2) and

k̆0(k) =

(
0 −1

1 0

)k2
(
1

k1

)
.

Thus

ρ(k, r) = qk2 mod 2e−(1−q)r.

VII. The co-adjoint action in this group is given by

F⊥(r)(kx, ky) = e−pr(kx cos r − ky sin r, kx sin r + ky cos r),

and the orbits are incoming or outgoing spirals depending on whether p < 0 or p > 0.

We take K = (−eπp;−1] ∪ [1, eπp) and k̆0(k) = (k, 0). Each orbit clearly intersects K̃

exactly once. Finally

ρ(k, r) = e−2pr|k|.
Note that in all cases we have chosen K̃ such that it possesses an involution

k̆0(−k) = −k̆0(k), which will be useful in later constructions. Of course, these choices

of cross sections are not unique, neither need they correspond to those suggested by

Currey theory. In fact, one may make any other choice for convenience and calculate

the corresponding measure density ρ precisely as we did.

5. The explicit Plancherel formula for Bianchi II-VII groups

We will obtain the Plancherel measure by extending the idea suggested in [9] for

Heisenberg groups to all solvable Bianchi groups. Namely, we will exploit the Euclidean

Parseval equality on the homeomorphic space R3.

Introductory material. Before going to the solvable groups II-VII let us recall

the well-known form of the Plancherel formula for the Abelian group R3. The Fourier

transform of a function f ∈ C∞
0 (R3) is defined by

f̂(~k) =

∫

R3

d~xe−i{~k,~x}f(~x),

and the Plancherel formula is
∫

R3

d~x|f(~x)|2 = (2π)3
∫

R3

d~k|f̂(~k)|2.

The Plancherel measure is simply dν(~k) = (2π)3d~k, proportional to the Lebesgue

measure on R3.



Harmonic analysis in Bianchi I-VII 14

We start by noting that, being an algebraic (matrix) group, G is necessarily type

I (Theorem 7.8 or 7.10 [9]), and the normal subgroup N is unimodular and therefore

in the kernel of the modular function ∆. It follows from Theorem 7.6 in [9] that

the Mackey Borel structure on Ĝ is standard, and thereby due to Lemma 7.39 in

[9] we have a measurable field of representations πp on p ∈ Ĝ, such that πp ∈ p (or

equivalently, we have a measurable choice of representatives of each equivalence class

[π] ∈ Ĝ). Henceforth we will speak of a representation π ∈ Ĝ meaning the value of this

field at a given point [π] ∈ Ĝ. As can be inferred from [12] in the language of solvable Lie

groups, only those irreducible representations corresponding to the generic orbits (i.e.,

orbits of maximal dimension) admit a non-zero Plancherel measure. Therefore only Tµ
with µ ∈ R2 \V 0 (generic representations) will play a role in the Fourier transform. We

proceed to their construction as Tk̆ = IndG
R2(ei{k̆,.}) following §6.1 in [9].

The Fourier transform at generic representations. For each k̆ ∈ R2 \ V 0

the representation Hilbert space Hk̆ of νk̆ = ei{k̆,.} is Hk̆ = C. The homogeneous space

G/N = R has a natural G-invariant measure, which is the Lebesgue measure dz. The

representation space of Tµ is then the completion L2(R,C) of the space of compactly

supported continuous sections in the homogeneous Hermitian line bundle R × C, and

the action of G on it is given by

Tk̆(g)f [z] = e−i{k̆,(g−1z)N}f [(g−1z)H ] = ei{k̆,F (−z)ğ}f [z−gz ], g = (ğ, gz) ∈ G, f ∈ C0(R,C),

where for any g ∈ G we write g = gNgH , gN ∈ N , gH ∈ H . For f ∈ C0(G) define the

(harmonic analytical) Fourier transform by

f̂(π) = π(f)Dπ =

∫

G

f(g)π(g)Dπdg,

where the operator Dπ is defined on φ ∈ C0(R,C) by

Dπφ[z] = ∆(z)+
1
2φ[z] = (detF (z))−

1
2φ[z].

(Note that there is a misprint in the formula (7.49) of [9], and the sign ”−” in the

power of ∆ should be replaced by ”+”. The author of [9] confirmed this in a private

communication.) By Theorem 7.50 in [9], the operator fields f̂(π) are measurable

fields of Hilbert-Schmidt operators, and if we identify the space of Hilbert-Schmidt

operators on Hπ with the tensor product space Hπ ⊗ H∗
π, then the Fourier transform

gives an isomorphism

L2(G) ∼
∫ ⊕

Ĝ

dν(π)Hπ ⊗H∗
π.

To find the Plancherel measure dν(π) we calculate the Fourier transforms f̂(Tk̆) directly.

For φ ∈ C0(R,C) we have

f̂(Tk̆)φ[r] =

∫

G

f(g)Tk̆(g)Dπφ[r]dg =
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= h

∫

R3

dgxdgydgzf(gx, gy, gz)e
i{k̆,F (−r)ğ}(detF (gz))

−1(detF (r − gz))
− 1

2φ[r − gz] =

by a substitution g′z = r − gz

= h

∫

R3

dgxdgydg
′
zf(gx, gy, r − g′z)e

i{k̆,F (−r)ğ}(detF (r − g′z))
−1(detF (g′z))

− 1
2φ[g′z] =

= h

∫

R3

dgxdgydg
′
zf(gx, gy, r − g′z)e

i{F⊥(r)k̆,ğ}(detF (r − g′z))
−1(detF (g′z))

− 1
2φ[g′z].

Thus f̂(Tk̆) is an integral operator with a smooth kernel

Kf

k̆
(r, g′z) = hF̄R2 [f(., ., r − g′z)](F

⊥(r)k̆)(detF (r − g′z))
−1(detF (g′z))

− 1
2 ,

where

F̄R2[ψ(., .)](k̆) =

∫

R2

dxdyψ(x, y)ei{k̆,x̆}.

The Hilbert-Schmidt norm |‖f̂(Tk̆)‖| is given by

|‖f̂(Tk̆)‖|2 = h2
∫

R2

drdg′z|Kf

k̆
(r, g′z)|2.

Coming back to the original variable gz = r − g′z, we have

|‖f̂(Tk̆)‖|2 = h2
∫

R2

drdgz

∣∣∣F̄R2 [f(., ., gz)](F
⊥(r)k̆)

∣∣∣
2

(detF (gz))
−2(detF (r − gz))

−1 =

= h2
∫

R2

drdgz

∣∣∣F̄R2 [f(., ., gz)](F
⊥(r)k̆)

∣∣∣
2

(detF (gz))
−1(detF (r))−1 =

(by Fubini’s theorem)

= h2
∫

R

dgz(detF (gz))
−1

∫

R

dr
∣∣∣F̄R2[f(., ., gz)](F

⊥(r)k̆)
∣∣∣
2

(detF (r))−1.

The Plancherel formula. Now we refer to the previous section about the co-

adjoint orbits, and note that in all cases ρ(k, r) = ν̇(k)(detF (r))−1 with some continuous

non-negative function ν̇(k) on K̃. We will shortly see that

dν(k) = h−1ν̇(k)dk (2)

is exactly the Plancherel measure desired. Indeed,
∫

K̃

dkh−1ν̇(k)|‖f̂(Tk̆0(k))‖|
2 = h

∫

K̃

dkν̇(k)

∫

R

dgz(detF (gz))
−1×

×
∫

R

dr
∣∣∣F̄R2 [f(., ., gz)](F

⊥(r)k̆0(k))
∣∣∣
2

(detF (r))−1 =

by another application of Fubini’s theorem (see [19],chapter XIII),

= h

∫

R

dgz(detF (gz))
−1

∫

K̃

dk

∫

R

drρ(k, r)
∣∣∣F̄R2 [f(., ., gz)](F

⊥(r)k̆0(k))
∣∣∣
2

=
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by definition of ρ(k, r),

= h

∫

R

dgz(detF (gz))
−1

∫

R2

dk̆
∣∣∣F̄R2 [f(., ., gz)](k̆)

∣∣∣
2

=

by the Euclidean Parseval formula,

= h

∫

R

dgz(detF (gz))
−1

∫

R2

dgxdgy |f(gx, gy, gz)|2 =
∫

G

dg|f(g)|2,

thus we arrive at an explicit Plancherel forumla,
∫

K̃

dν(k)|‖f̂(Tk̆0(k))‖|
2 =

∫

G

dg|f(g)|2.

The Plancherel measures for groups II-VII are thus given by

ν̇II(k) = |k|, ν̇III(k) = 1, ν̇IV (k) = 1 + k1, ν̇V (k) = 1, ν̇V I−(k) = cos2(k)− q sin2(k)

ν̇V I+(q) = qk2 mod 2, ν̇V II(k) = |k|.
Note that we could have chosen the cross section for V I, q < 0 in the same way as for

V I, q > 0 to get a uniform Plancherel measure ν̇V I = ν̇V I+ for all Bianchi VI groups,

but we preferred the more conventional circle to the quartet of rays in Figure 1 when it

was possible. This can be altered for any technical purposes when needed.

6. Scalar spectral analysis on Bianchi I-VII groups

Here the term scalar spectral analysis is understood as the spectral theory of the scalar

Laplacian. Of course, there is no distinguished Laplacian on these groups. We will

consider any Laplacian which arises as the metric operator with respect to any conserved

metric on the group.

Let G be one of these groups, and let L(G) be its Lie algebra generated by three

right invariant vector fields ξ1, ξ2, ξ3. Let further X1, X2, X3 be a basis of left invariant

vector fields on G, and dω1, dω2, dω3 the dual basis. Any left invariant metric hab on G

can be written as

hab =
3∑

i,j=1

ȟijdω
i
adω

j
b ,

where ȟij is any symmetric positive definite 3× 3 matrix, and the corresponding metric

Laplacian will be

∆h =
3∑

i,j=1

ȟijXiXj, (3)

with ȟij = (ȟij)
−1. To see this first note that

3∑

i,j=1

ȟijXiXjf =
3∑

i,j=1

ȟij
3∑

l,m=1

[X l
iX

m
j ∂l∂m +X l

i(∂lX
m
j )∂m]f.
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On the other hand the connection Laplacian related to the Levi-Civita connection is

given by

∆h =
3∑

i,j=1

ȟij
3∑

l,m=1

[X l
iX

m
j ∂l∂m −

3∑

k=1

X l
iX

m
j Γk

lm∂k],

where the Γk
lm are the Christoffel symbols. This together with the observation

3∑

l,m=1

X l
iX

m
j Γk

lm = −1

2
(X l

i∂lX
m
j +X l

j∂lX
m
i ),

which follows from ∇Xi
Xj = 1

2
[Xi, Xj], gives (3). Our aim will be to find the

eigenfunctions and the spectrum of ∆h. If ξ1 and ξ2 commute and also commute

with all Xi, then ξ1, ξ2,∆h are a triple of commuting operators, and have common

eigenfunctions. We will find those eigenfunctions and show that they are complete in

the sense we desire. For the ease of notation let us denote

ȟ2×2 = ȟij|i,j<3,

ȟ•3 = ȟij |i<j=3, ȟ3• = ȟij |j<i=3. (4)

First let us describe the spectrum Spec(∆h) of the Laplacian ∆h. We note that

∆h is a negative semidefinite operator, as (∆hf, f)L2(G) = −(dhf, dhf)L2(G) ≤ 0, where

dh is the exterior derivative with respect to the metric hab. Thus ∆h is a semibounded

and real symmetric operator on L2(G). There are several ways of extending ∆h to a

self-adjoint operator on L2(G). A real symmetric operator has a self-adjoint extension

by von Neumann’s theorem [20]. A semibounded symmetric operator has a self-adjoint

by Friedrich’s extension theorem [20]. But we have something stronger. The Lie group

G with its left invariant Riemannian metric hab is a complete Riemannian manifold

[21]. Then following [22] ∆h is essentially self-adjoint on C∞
0 (G). Being a negative

self-adjoint operator ∆h has a real non-positive spectrum, Spec(∆h) ⊂ (−∞; 0]. The

semidirect structure of our groups satisfies the conditions of Lemma 5.6 of [21], and we

have for the scalar curvature Rh the following formula,

Rh = −Tr[S2]− (Tr[S])2,

where we took into account that the normal Lie subgroup R2 with the induced metric

is flat. The matrix S is given by

S =
1

2
(ad(0,0,1)|R2 + ad(0,0,1)|∗R2) =

1

2
(f(1) + f(1)∗),

where the adjoint ∗ is understood as

h(Af, g) = h(f, A∗g), ∀f, g ∈ L(G), A ∈ Aut(L(G)).

Here h(f, g) for f, g ∈ L(G) means the evaluation of the Riemannian metric h on the

vector fields f ,g. Thus all our groups endowed with any left invariant Riemannian metric
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are spaces of constant negative curvature equal to Rh, which is given explicitly in terms of

the matrices f(1) =M and ȟ2×2 with S = 1
2
(M+(ȟ2×2)−1Mȟ2×2). This in turn implies,

following [23], that the essential spectrum of ∆h is precisely EssSpec(∆h) = (−∞;Rh].

Recall that the essential spectrum of a self adjoint operator consists of eigenvalues of

infinite multiplicity (see [20]). For the group Bianchi I, all irreps are 1-dimensional, and

as we will see later in the section, each eigenspace representation includes an infinite

number of them, thus there is no discrete spectrum. For the remaining groups, we

have seen in the previous section that no finite dimensional representation enters the

Plancherel formula. On the other hand, in the next section we will see that the infinite

dimensional eigenspaces exhaust L2(G), hence no finite dimensional eigenspace exists,

i.e., the discrete spectrum is empty, and therefore Spec(∆h) = EssSpec(∆h).

To find the generators ξi for Bianchi I-VII groups we differentiate the left translation

map ~x 7→ g~x,

g(x, y, z) = ((gx, gy) + F (gz)(x, y), gz + z),

and obtain 

ξ1
ξ2
ξ3


 =




1 0 0

0 1 0

(x, y)Ḟ⊤(0) 1






∂x
∂y
∂z


 .

We see that ξ1 = ∂x and ξ2 = ∂y do indeed commute. To find the left invariant vectors

Xi (which are the generators of right translations) we differentiate the right translation

map ~x 7→ ~xg,

(x, y, z)g = ((x, y) + F (z)(gx, gy), z + gz),

and get


X1

X2

X3


 =



F⊤(z) 0

0

0 0 1






∂x
∂y
∂z


 . (5)

Thus ξ1, ξ2 do commute with all Xi. Now let ζ(~x) ∈ C∞(G) be a joint eigenfunction for

{ξ1, ξ2,∆h}. Then it is necessarily of the form

ζ(~x) = ei{k̆C,x̆}P (z),

where k̆C ∈ C2, x̆ = (x, y), and satisfies

∆hζ(~x) = λζ(~x),

for some λ ∈ C. A matrix representation of equation (3) and a bit of manipulation

yields the following equation

ȟ33P̈ (z) + i(k̆⊤CF (z)[ȟ
•3 + (ȟ3•)⊤])Ṗ (z)−

−(λ+ k̆⊤CF (z)ȟ
2×2F⊤(z)k̆C − iȟ3•F⊤(z)M⊤k̆C)P (z) = 0,
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where Ḟ⊤(z) = ∂ze
zM⊤

= F⊤(z)M⊤ was used. This is a generalized time-dependent

harmonic oscillator equation, which always have solutions, and those solutions comprise

a two complex dimensional space. For given λ and k̆C let us choose two linearly

independent solutions Pλ,kC(z) and Qλ,kC(z) (the choice of initial data may be arbitrary).

First we consider the group Bianchi I. Here M = 0, F (z) = 1 and the equation

becomes

ȟ33P̈ (z) + i(k̆⊤C [ȟ
•3 + (ȟ3•)⊤])Ṗ (z)− (λ+ k̆⊤C ȟ

2×2k̆C)P (z) = 0.

One can easily check that P (z) = eikz ·z is a solution if

λ = −~k⊤C ȟij~kC,

where ~kC = (k̆C, kz). This is a consequence of the fact that for this group ξ3 also

commutes with all ξi and Xi, so that there exist joint eigenfunctions of the commuting

operators ξ1, ξ2, ξ3,∆h of the form

ζ(~x) = ei{
~kC,~x},

corresponding to the eigenvalues

λ = −~k⊤C ȟij~kC.

In particular, when we restrict ourselves to the irreducibles ~kC = ~k ∈ R3, we obtain

ζ~k(~x) = ei{
~k,~x},

and we observe immediately that each eigenspace corresponding to the eigenvalue λ

includes infinitely many ~k which satisfy

λ = −~k⊤ȟij~k.

Of course, eikz ·z do not exhaust all solutions P (z). But it turns out that the ζ~k
constructed in this way are already complete in L2(G). Indeed, that is the essence

of the Euclidean Parseval equality. To be more precise, we need to take dν(~k) = 1
h
d~k as

the Plancherel measure for the Euclidean Plancherel formula to hold. Equivalently we

can renormalize ζ~k by taking

ζ~k(~x) =
1√
h
ei{

~k,~x}

so that the Plancherel measure is independent of the metric. But this ease of

construction is a peculiarity which the remaining groups Bianchi II-VII do not share,

and we proceed to determine their eigenfunctions.

For the groups II-VII let us now restrict to 0 > λ ∈ R and k̆C = F⊥(r)k0(−k) ∈
R2 \ V 0, k ∈ K, r ∈ R (minus sign for convenience). The equation now becomes

ȟ33P̈ (z) + i(k̆0(−k)⊤F (z − r)[ȟ•3 + (ȟ3•)⊤])Ṗ (z)−
(λ+ k̆0(−k)⊤F (z − r)ȟ2×2F⊤(z − r)k̆0(−k)
−iȟ3•F⊤(z − r)M⊤k̆0(−k))P (z) = 0, (6)
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and the two independent solutions will be denoted by Pλ,k,r(z) and Qλ,k,r(z). If we set

Pλ,k,0(z) = Pλ,k(z), Qλ,k,0(z) = Qλ,k(z), then a variable substitution z − r 7→ z shows

that we can choose Pλ,k,r(z) = Pλ,k(z − r), Qλ,k,r(z) = Qλ,k(z − r). Another point that

can be noticed in equation (6) by taking the complex conjugate is that we can choose

Pλ,−k(z) = P̄λ,k(z), Qλ,−k(z) = Q̄λ,k(z). Finally we construct the eigenfunctions

ζk,λ,r,s(~x) = (detF (−r))ei{F⊥(r)k̆0(−k),x̆}Pλ,k,s(z − r), (7)

where to s = 1 (−1) corresponds Pλ,k,s = Pλ,k (Qλ,k). Note that each ζk,λ,r,s enters

with its conjugate, ζ̄k,λ,r,s = ζ−k,λ,r,s. As we will see in the next section, Pλ,k,s are

orthogonal with respect to the weight detF (−z), which shows that ζk,λ,r,s just defined

are orthogonal with respect to the same weight. Again, instead of using the Plancherel

measure (2) we can use dν(k) = ν̇(k)dk and renormalize according to

ζk,λ,r,s(~x) =
1√
h
(detF (−r))ei{F⊥(r)k̆0(−k),x̆}Pλ,k,s(z − r).

Note that by (5) the number h is just
√

det ȟij .

7. Fourier transform on Bianchi II-VII groups

As a first step on the way of establishing the completeness of {ζk,λ,r,s} we prove a simple

proposition. Consider the differential operator

Dk̆ = ȟ33
d2

dz2
+ i(k̆⊤F (z)[ȟ•3 + (ȟ3•)⊤])

d

dz
− (k̆⊤F (z)ȟ2×2F⊤(z)k̆ − iȟ3•F⊤(z)M⊤k̆),

k̆ ∈ R2 \ V 0,

which by definition satisfies

Dk̆f(z) = e−i{k̆,x̆}∆h

[
ei{k̆,x̆}f(z)

]
, f ∈ C∞

0 (R).

Proposition 1 The operatorDk̆ with domain C∞
0 (R) is symmetric in L2(R, detF (−z)dz),

for any k̆ ∈ R2 \ V 0.

Proof: Let us first write Green’s identity for the operator ∆h on the infinite tube

D1 × R ⊂ G where D1 is the unit disk in the x̆-plane,

∫

D1×R

d~x
(
e−i{k̆,x̆}ḡ(z)∆h

[
ei{k̆,x̆}f(z)

]
−∆h

[
e−i{k̆,x̆}ḡ(z)

]
ei{k̆,x̆}f(z)

)
=

=

∫

S1×R

dzdl(x̆)

(
e−i{k̆,x̆}ḡ(z)(x̆,

∂

∂x̆
)
[
ei{k̆,x̆}f(z)

]
− (x̆,

∂

∂x̆
)
[
e−i{k̆,x̆}ḡ(z)

]
ei{k̆,x̆}f(z)

)
=

=

∫

S1×R

dzdl(x̆)2iḡ(z)f(z)(x̆, k̆) = 0.
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Next we note that
∫

D1×R

d~x
(
e−i{k̆,x̆}ḡ(z)∆h

[
ei{k̆,x̆}f(z)

]
−∆h

[
e−i{k̆,x̆}ḡ(z)

]
ei{k̆,x̆}f(z)

)
=

=

∫

D1×R

dxdydz(detF (−z))
(
ḡ(z)Dk̆f(z)− D̄k̆[ḡ(z)]f(z)

)
=

= π

∫

R

dz(detF (−z))
(
ḡ(z)Dk̆f(z)− D̄k̆[ḡ(z)]f(z)

)
= 0,

which holds on the dense subset of all f, g in C∞
0 (R) inside L2(R, detF (−z)dz), and

symmetry is thus proven.�

Now from the definition it is clear that Dk̆ is a negative definite operator (because

∆h is such), and is hence upper semibounded, and has a self-adjoint extension in

L2(R, detF (−z)dz) by Friedrichs extension theorem [20]. In particular, for k̆ = k̆0(−k),
k ∈ K, the generalized eigenfunctions {Pλ,k,s}λ∈Sp(∆h),s=±1 are complete and give rise to

a Fourier transform Fk̆0(−k) on L
2(R, detF (−z)dz) by means of an abstract eigenfunction

expansion. Fk̆0(−k) is given by

(Fk̆0(−k)f)(λ, s) =

∫

R

dz(detF (−z))P̄λ,k,s(z)f(z).

Define now the linear isomorphism V : L2(R) → L2(R, detF (−z)dz) by

f(z) = [Vφ](z) = φ(−z)(detF (z)) 1
2 .

This induces a Fourier transform Fk = Fk̆0(−k)V which acts as

(Fkφ)(λ, s) =

∫

R

dz(detF (z))
1
2Pλ,k,s(−z)φ(z) .

= φ̃(λ, k, s).

The inversion formula is given by

φ(z) = (detF (z))
1
2

∑

s=±1

∫

Sp(∆h)

dλφ̃(λ, k, s)P̄λ,k,s(−z).

Now we are in the position to show how ζk,λ,r,s are related to the irreducible

representations Tk̆0(k). Consider the following transformation on f ∈ C∞
0 (G),

f̃(k, λ, r, s) =

∫

G

dgζ̄k,λ,r,s(g)f(g),

with eigenfunctions ζk,λ,r,s defined in Section 6. We will see that f̃(k, λ, r, s) are in

some sense proportional to the matrix columns of the operators f̂(Tk̆0(k)). First we see

that

f̃(k, λ, r, s) = h(detF (−r))
∫

R3

dxdydz(detF (−z))×
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×f(x, y, z)ei(F⊥(r)k̆0(k),x̆)P̄λ,k,s(−(r − z)) =

= h(detF (−r))
∫

R3

dxdydz(detF (−z))(detF (r − z))−
1
2f(x, y, z)ei(F

⊥(r)k̆0(k),x̆)×

×(detF (r − z))
1
2 P̄λ,k,s(−(r − z)).

Next we recognize that this is related to the extension of the operator f̂(Tk̆0(k)) from

L2(R) to C∞(R),

f̃(k, λ, r, s) = (detF (−r))f̂(Tk̆0(k))
[
(detF (r))

1
2 P̄λ,k,s(−r)

]
.

Integrating we obtain
∑

s=±1

∫

Sp(∆h)

dλf̃(k, λ, r, s)φ̃(λ, k, s) = (detF (−r))f̂(Tk̆0(k))φ[r]. (8)

Recall now the Fourier inversion formula as given in [12] (notation there is different,

and we have adapted them to ours adopted from [9]),

f(1) =

∫

K

dν(k)Tr
[
Dπf̂(Tk̆0(k))

]
. (9)

Formally a matrix element of Dπf̂(Tk̆0(k)) would be an expression

(
(detF (z))

1
2 P̄λ′,k,s′(−z), Dπf̂(Tk̆0(k))(detF (z))

1
2 P̄λ,k,s(−z)

)

L2(R)
=

=

∫

R

dz(detF (z))Pλ′,k,s′(−z)f̃(k, λ, z, s),

which does not make sense in precise terms. However, the trace of such elements,

∑

s=±1

∫

Sp(∆h)

dλ

∫

R

dz(detF (z))Pλ,k,s(−z)f̃ (k, λ, z, s),

can be given an exact sense if we change the order of integration,

∫

R

dz
∑

s=±1

∫

Sp(∆h)

dλ(detF (z))Pλ,k,s(−z)f̃ (k, λ, z, s).

Indeed, let {pn(z)} be an orthonormal system in L2(R). Consider the Fourier

transforms p̃n(λ, k, s), and consider the following bi-distribution in the Fourier space,∑∞
n=1 p̃n(λ, k, s)p̃n(λ

′, k, s′). Let f̃ , g̃ be the Fourier transforms of arbitrary f, g ∈ L2(R).

We have

∞∑

n=1

∑

s=±1

∑

s′=±1

∫

Sp(∆h)

dλ

∫

Sp(∆h)

dλ′p̃n(λ, k, s)p̃n(λ
′, k, s′)f̃(λ, k, s)¯̃g(λ′, k, s′) =

=

∞∑

n=1

(
∑

s=±1

∫

Sp(∆h)

dλp̃n(λ, k, s)f̃(λ, k, s)

)(
∑

s′=±1

∫

Sp(∆h)

dλ′p̃n(λ
′, k, s′)¯̃g(λ′, k, s′)

)
=
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=

∞∑

n=1

(pn, f)L2(R)(g, pn)L2(R) = (g, f)L2(R) =
∑

s=±1

∫

Sp(∆h)

dλf̃(λ, k, s)¯̃g(λ, k, s),

thus
∑∞

n=1 p̃n(λ, k, s)p̃n(λ
′, k, s′) = δ(λ− λ′)δss′ . Now

∫

R

dz
∑

s=±1

∫

Sp(∆h)

dλ(detF (z))Pλ,k,s(−z)f̃ (k, λ, z, s) =

=

∫

R

dz(detF (z))

∞∑

n=1

∑

s,s′

∫ ∫

Sp(∆h)2

dλdλ′p̃n(λ, k, s)p̃n(λ
′, k, s′)Pλ,k,s(−z)f̃ (k, λ′, z, s′) =

=

∫

R

dz(detF (z))

∞∑

n=1



∑

s=±1

∫

Sp(∆h)

dλp̃n(λ, k, s)P̄λ,k,s(−z)


×

×



∑

s′=±1

∫

Sp(∆h)

dλ′f̃(k, λ′, z, s′)p̃n(λ
′, k, s′)


 =

using (8),

=

∫

R

dz(detF (z))

∞∑

n=1

(detF (z))−
1
2pn(z)(detF (−z))f̂ (Tk̆0(k))pn(z) =

as both the sum and the integral converge in L2,

=

∞∑

n=1

∫

R

dzpn(z)(detF (z))
− 1

2 f̂(Tk̆0(k))pn(z) =

∞∑

n=1

∫

R

dzpn(z)Dπ f̂(Tk̆0(k))pn(z) =

=
∞∑

n=1

(pn, Dπf̂(Tk̆0(k))pn)L2(R) = Tr
[
Dπf̂(Tk̆0(k))

]
.

Hence from (9) we have

f(1) =

∫

K

dν(k)

∫

R

dz
∑

s=±1

∫

Sp(∆h)

dλ(detF (z))Pλ,k,s(−z)f̃ (k, λ, z, s).

To find an inversion formula at an arbitrary point g ∈ G we apply this to the left

translated function [Lg−1f ](x) = f(gx),

f(g) = [Lg−1f ](1) =

∫

K

dν(k)

∫

R

dz
∑

s=±1

∫

Sp(∆h)

dλ(detF (z))Pλ,k,s(−z) ˜[Lg−1f ](λ, k, z, s).

But from the definition

˜[Lg−1f ](λ, k, r, s) =

∫

G

dhζ̄k,λ,r,s(h)[Lg−1f ](h) =

∫

G

dh′ζ̄k,λ,r,s(g
−1h′)f(h′).
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From the definition of ζk,λ,r,s we find

ζ̄k,λ,r,s(g
−1h′) = e−i(F⊥(r+gz)k̆0(k),ğ)(detF (gz))ζ̄λ,k,r+gz,s(h

′),

thus
∫

G

dh′ζ̄k,λ,r,s(g
−1h′)f(h′) = e−i(F⊥(r+gz)k̆0(k),ğ)(detF (gz))f̃(k, λ, r + gz, s).

Therefore

f(g) =

∫

K

dν(k)

∫

R

dz
∑

s=±1

∫

Sp(∆h)

dλ(detF (z))Pλ,k,s(−z)×

×e−i(F⊥(z+gz)k̆0(k),ğ)(detF (gz))f̃(k, λ, z + gz, s) =

by substitution r = z + gz

=

∫

K

dν(k)

∫

R

dr
∑

s=±1

∫

Sp(∆h)

dλ(detF (r))f̃(k, λ, r, s)×

×e−i(F⊥(r)k̆0(k),ğ)Pλ,k,s(gz − r) =

=

∫

K

dν(k)

∫

R

dr
∑

s=±1

∫

Sp(∆h)

dλ(detF (r))f̃(k, λ, r, s)ζk,λ,r,s(g),

which is our final inversion formula.

It remains to note that by denoting α = (k, λ, r, s) we have satisfied all conditions

for the eigenfunction expansion ζ̄α(f) to give a conventional Fourier transform in sense

of [6].

8. Automorphism groups of Bianchi I-VII groups

In this section we consider the automorphism groups Aut(G) of Bianchi I-VII groups.

After performing the calculations we discovered that these automorphisms have been

obtained earlier in [24]. However we give here also the dual actions of these

automorphisms on Ĝ which is new. This may become important when analyzing the

transformation in the Fourier space induced by automorphisms. We start by noting that

Bianchi I-VII groups are matrix groups, and their matrix realization can be given by


x

y

z


 7→ G(x, y, z) =



F (z)

x

y

0 0 1


 .

It can be easily seen that in this realization the group multiplication indeed corresponds

to the matrix multiplication. The respective Lie algebra realization will be


x

y

z


 7→ g(x, y, z) =



zM

x

y

0 0 0


 ,
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which again can be checked to intertwine the matrix commutation with the Lie

bracket. Moreover, we could have obtained immediately the exponential map by setting

exp(x, y, z) = exp(g(x, y, z)) instead of referring to the Zassenhaus formula, but the

latter is a more Lie theoretical approach. Now that all Bianchi groups are connected

and simply connected by Theorem 1 of III.6.1 in [25] it follows that Aut(G) = Aut(g) in

the sense of a topological group isomorphism (see also [15]). An algebra homomorphism

of matrix algebras is necessarily linear in the matrix elements. It follows that any

α̌ ∈ Aut(g) depends linearly on x, y, z, and is therefore given by an affine transformation

in R3, which is actually a linear transformation because it preserves 0. Therefore we

first determine Aut(g). Let the linear map α̌ : R3 → R3 be given by



x

y

z


 =

(
α̌2×2 α̌•3

α̌3• α̌33

)

q

r

s


 ,

where we use notation similar to (4). Then α̌ ∈ Aut(g) if and only if α̌[~x, ~y] = [α̌~x, α̌~y],

where [, ] is the Lie bracket. Expanding this condition we get the system of requirements

α̌2×2M − α̌33Mα̌2×2 +Mα̌•3α̌3• = 0, (10)

α̌2×2Mσα̌⊤
3• = 0,

α̌3•M = 0,

where σ is the unit antisymmetric matrix. The patterns of admissible matrices α̌

satisfying this system have to be computed for each group independently. For Bianchi

I we have M = 0 and all three conditions are satisfied trivially. For Bianchi IV-VII the

matrix M is invertible hence the third requirement means α̌3• = 0, so that the second

becomes trivial, and the first reduces to α̌2×2M − α̌33Mα̌2×2 = 0. The cases of groups

Bianchi II and III are a bit more involved, but the calculations are straightforward. We

present the results in the Table 8. Note that whenever α̌3• = 0 the invertibility of α̌

requires α̌33 6= 0. As it can be seen from the table some algebras allow for reflective

automorphisms and their automorphism groups consist of two components (this is what

the union symbol
⋃

in Table 8 refers to). Matrices of these pattern forms exhaust the

groups Aut(g). One can compare this pattern of automorphisms to those available in

the literature, for instance, of the Heisenberg algebra in [26].

Now the corresponding group homomorphisms Ǎ ∈ Aut(G) can be found by

composing α̌ ∈ Aut(g) with the exponential map, Ǎ exp((x, y, z)) = exp(α̌(x, y, z)).

Recall that the exponential map is given by

exp((x, y, z)) = ([1 + F (z)D(z)](x, y), z),

(where D(z) is defined in (1))and because this map is bijective we know that the matrix

[1 + F (z)D(z)] is invertible for all z. The logarithmic map can be written as

log((x, y, z)) = ([1 + F (z)D(z)]−1(x, y), z),
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I II III IV V VI, q 6= 1

a b c

d e f

g h j






a 0 c

d a · j − c · g f

g 0 j






a 0 c

0 e f

0 0 1






a 0 c

d a f

0 0 1






a b c

d e f

0 0 1






a 0 c

0 e f

0 0 1




VI, q = 1 VII, p 6= 0 VII, p = 0

a 0 c

0 e f

0 0 1



⋃


0 b c

d 0 f

0 0 −1






a b c

−b a f

0 0 1






a b c

−b a f

0 0 1



⋃


a b c

b −a f

0 0 −1




Table 3. Patterns of permissible matrices α̌ for Bianchi I-VII algebras

and the action of the group homomorphism Ǎ related to the algebra homomorphism α̌

becomes

Ǎ

(
x̆

z

)
=

(
[1 + F (z′)D(z′)] (α̌2×2[1 + F (z)D(z)]−1x̆+ α̌•3z)

z′

)

z′ = α̌3•[1 + F (z)D(z)]−1x̆+ α̌33z,

for Bianchi II-VII groups and

Ǎ

(
x̆

z

)
= α̌

(
x̆

z

)

for the Bianchi I group. From α̌3•M = 0 it follows that α̌3•[1 + F (z)D(z)]−1 = α̌3•.

Thus the formula for Bianchi II-VII simplifies to

Ǎ

(
x̆

z

)
=

(
[1 + F (α̌3•x̆+ α̌33z)D(α̌3•x̆+ α̌33z)] (α̌2×2[1 + F (z)D(z)]−1x̆+ α̌•3z)

α̌3•x̆+ α̌33z

)
.

One more step can be done in this generality. From formula (10) and α̌3•M = 0 it

follows that

α̌2×2M
m = (α̌33M)mα̌2×2

for m ≥ 2 and therefore for any sequence of complex numbers {fm}∞m=0

α̌2×2

∞∑

m=0

fmM
m =

∞∑

m=0

fm(α̌33M)mα̌2×2 + f1Mα̌•3α̌3•

whenever the left hand side exists. This can be used to establish that

[1 + F (α̌3•x̆+ α̌33z)D(α̌3•x̆+ α̌33z)]α̌2×2 = α̌2×2[1 + F (
α̌3•x̆

α̌33
+ z)D(

α̌3•x̆

α̌33
+ z)].

This far on the explicit form of the group automorphisms.

Now let us look at the dual spaces Ĝ. If Ǎ ∈ Aut(G) and π ∈ Ĝ then π ◦ Ǎ = π′ for

some π′ ∈ Ĝ. Thus Ǎ induces a pullback map Ǎ∗ : Ĝ → Ĝ. Because dim π = dim π′ it
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follows that Ǎ∗ maps generic representations into generic representations and singletons

into singletons. The representations π ∈ Ĝ are in a bijective correspondence with the

derived representations dπ which are irreducible representations of the Lie algebra g.

In a similar fashion, any α̌ ∈ Aut(g) induces a pullback map α∗ : dĜ → dĜ between

derived representations. This pullback map is easier to study than that for the group

representations. Consider first the Bianchi I group. The irreducibles are given by

T~k(~g) = ei{
~k,~g}),

and the derived representations are

dT~k(~x) = i{~k, ~x}.

An automorphism ~x = α̌~q induces the pullback map α̌∗(~k) = α̌⊤~k. Consider now the

singletons of a Bianchi II-VII group. They are given for ~k ∈ V 0 ⊕ R by

T~k(~g) = ei{
~k,~g} = ei{k̆,ğ}eik3gz ,

and the derived singletons are

dT~k(~x) = i{~k, ~x},

and again, an automorphism ~x = α̌~q induces the pullback map α̌∗(~k) = α̌⊤~k. This in

particular means that k̆′ = α̌⊤
2×2k̆ + k3α̌

⊤
3•, and if k̆ ∈ V 0 then

M⊤k̆′ =M⊤α̌⊤
2×2k̆ + k3M

⊤α̌⊤
3• = 0,

where (10) and α̌3•M = 0 were used. We explicitly observe that the automorphisms map

singletons into singletons, as expected. Finally we turn to the generic representations.

Let Tk̆ be a generic representation of G. Then it acts on L2(R) by

Tk̆(~g)f [w] = ei{k̆,F (−w)ğ}f [w − gz], ~g = (ğ, gz) ∈ G.

Its derived representation will be

dTk̆(~x)f [w] = i{k̆, F (−w)x̆}f [w]− z∂wf [w].

Under the automorphism ~x = α̌~q it will turn into

dTk̆(~q)f [w] = i{k̆, F (−w)[α̌2×2q̆ + α̌•3s]}f [w]− [α̌3•q̆ + α̌33s]∂wf [w].

For simplicity we will consider only the automorphisms with α̌3• = 0. Thus we omit

only some automorphisms of the Heisenberg group, but this group is a central subject

in harmonic analysis, and the missing results can be found in the literature. Define the

isometric isomorphism T : L2(R) → L2(R) by

T(f)[w] =
1√
α̌33

ei{k̆,
∫
−w

0 F (α̌33ξ)dξα̌•3}f(α̌33w).
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Consider the representation dTk̆′ with k̆
′ = α̌⊤

2×2k̆. Note that because α̌3• = 0 we have

that α̌⊤
2×2 is invertible, and from (10) we assure that it maps k̆ /∈ V 0 to k̆′ /∈ V 0. Thus

dTk̆′ is generic. Its action on the image T(f)[w] is given by

dTk̆′(~q)T(f)[w] = i{k̆′, F (−w)q̆}T(f)[w]− s∂wT(f)[w] =

= T(i{k̆′, F (− •
α̌33

)q̆}f)[w] + T(is{k̆, F (−•)α̌•3}f)[w]− T(sα̌33∂f).

Recall that we have seen that from (10) and α̌3• = 0 it follows α̌2×2F (z) = F (α̌33z)α̌2×2,

hence

i{k̆′, F (− •
α̌33

)q̆} = i{α̌⊤
2×2k̆, F (−

•
α̌33

)q̆} = i{k̆, F (−•)α̌2×2q̆}.

We finally see that

dTk̆′(~q)T(f)[w] = T
(
[i{k̆, F (−•)α̌2×2q̆}+ is{k̆, F (−•)α̌•3}]f − sα̌33∂f

)
= T (dTk̆(~q)f) ,

which means that T intertwines the irreducible representations dTk̆◦α̌ and dTα̌⊤
2×2k̆

. Thus

these two representations are unitarily equivalent, α̌∗(k̆) = α̌⊤
2×2k̆. If the cross sections

are chosen explicitly (for instance, as we did) then it is a straightforward calculation

to find the action of α̌∗ on K̃ and K. We omit these calculations here because, first,

they depend on the preferred choice of the cross sections, and second, they involve

transcendental functions (e.g., the solution of the equation ey + ay = x) and are not

transparent visually, and do not provide a better insight into the matter.

9. Separation of time variable in homogeneous universes

We want to see to which extent the technique of mode decomposition developed in [6] is

applicable to hyperbolic fields on Bianchi type and FRW cosmological models. For this

aim we have to check whether the conditions of Proposition 2.3 are satisfied. Recall

that the metric g of a homogeneous spacetime M = I ×Σ, where I is an open interval

and Σ is a Bianchi type homogeneous space, is given by

ds2g = dt2 −
3∑

α,β=1

ȟαβ(t)dω
α(~x)dωβ(~x),

where ȟij(t) (t ∈ I) is a smooth positive definite symmetric matrix function, and dωi

are the left invariant 1-forms on Σ. Condition (i) of Proposition 2.3 is automatically

satisfied because g00 = 1. For condition (ii) note that

3∑

i,j=1

gij(x)
∂gij
∂t

(x) =
3∑

i,j=1

3∑

α,β=1

3∑

γ,δ=1

ȟαβ(t) ˙̌hγδ(t)X
i
α(~x)X

j
β(~x)(dω

γ)i(~x)(dω
δ)j(~x) =

=
3∑

α,β=1

3∑

γ,δ=1

ȟαβ(t) ˙̌hγδ(t)〈Xα, dω
γ〉h〈Xβ, dω

δ〉h =
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=
3∑

α,β=1

3∑

γ,δ=1

ȟαβ(t) ˙̌hγδ(t)δ
γ
αδ

δ
β = Tr[ȟ−1(t) ˙̌h(t)].

This shows that the condition (ii) is also satisfied. We see that the homogeneous

spacetimes are an ideal playground for mode decomposition. Note that FRW spacetimes

correspond to the choice ȟαβ(t) = a2(t)δαβ .

If conditions (iii) and (iv) are also satisfied depends on the chosen connection ∇.

For the scalar field (iii) is automatically satisfied with Γ = 0. In [6] we defined the field

operator D = �+m2(x), and the instantaneous field operator DΣt
= −∆+m2(x). The

eigenfunction equation of the latter operator was written as DΣt
ζα = λt(α)ζα. Condition

(iv) of Proposition 2.3 in [6] can be obviously satisfied if ȟαβ(t) = a2(t)ȟ0αβ as in this

case the time evolution amounts only to a rescaling of λ(α) in DΣt
ζα = λt(α)ζα. Note

that because DΣt
is G-invariant, the term m2 is a function of t only. This is the situation

where the dynamics of the universe consists of merely an isotropic rescaling. Thus, for

instance, in case of FRW spacetimes condition (iv) is satisfied automatically.

But the condition (iv) can be also satisfied non-trivially with an anistropic rescaling

and even some shears and rotations. This is clearly possible for Bianchi I group, because

the eigenfunctions do not depend on the matrix ȟ. For Bianchi II-VII groups one has

to look at the equation (6) to see to which extent the solution P (z) depends on the

matrix ȟ. Suppose ȟ and ǰ are two matrices for which there exist two common linearly

independent solutions P (z) and Q(z). Because we have already seen that an isotropic

rescaling is always possible, without loss of generality we assume ȟ33 = ǰ33 (we again

use the notations 4). Fix k̆ ∈ R2 \ V 0 and 0 < λ ∈ R. Now the condition that the two

equations have the same solution spaces can be cast into the following pair of equations,

ȟ3•F⊤(z)k̆ = ǰ3•F⊤(z)q̆,

λ+ k̆⊤F (z)ȟ2×2F⊤(z)k̆ = λ′ + q̆⊤F (z)ǰ2×2F⊤(z)q̆

for some q̆ ∈ R2 \ V 0, 0 < λ ∈ R and for all z ∈ R. That non-trivial possibilities exist is

clear visually, but we will not go into details here. Once these conditions are satisfied

at all t ∈ I for the 1-parameter family of matrices ȟ(t) describing the evolution of the

spatial metric then condition (iv) is satisfied, and we have an explicit formula for the

time dependent eigenvalue λt(α).

As electromagnetism is of primary importance for us, let us finally show that

the assumption ȟαβ(t) = a2(t)ȟ0αβ is sufficient to satisfy condition (iii) for the 1-form

field. Indeed, the 1-form field is given by the Levi-Civita connection, for which the

connection forms are (Γi)
a
b = −Γa

ib. Let us compute the symbol Γa
0b. It is easy to see

that Γ0
0b = Γa

00 = 0. For a, b > 0 we have

Γa
0b =

1

2

3∑

m=1

gam
∂gmb

∂t
=

3∑

α,β,γ=1

ȟαβ(t) ˙̌hβγ(t)X
a
α(~x)dω

γ
b (~x).
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If ȟαβ(t) = a2(t)ȟ0αβ then ∂tȟαβ(t) = 2H(t)ȟαβ(t) with H(t) = ȧ(t)
a(t)

being the Hubble

constant, and we get

Γa
0b = 2H(t)

3∑

α,β,γ=1

ȟαβ(t)ȟβγ(t)X
a
α(~x)dω

γ
b (~x) = 2H(t)δab .

Thus Γ0 = −2H(t)0⊕13 is not only a function of t, but also commutes with any matrix,

hence (iii) is trivially satisfied.

10. The mode decomposition of the Klein-Gordon field

The investigation of classical and quantum fields in anisotropic cosmological models has

been carried out by different authors since decades (see, e.g., [27],[28],[29],[30]). However

these works mainly concentrate on Bianchi I models where the harmonic analysis and

mode decomposition are obvious. With the background developed above we can extend

this to all Bianch I-VII models.

In [6] we have described how the mode decomposition can be performed explicitly

for an arbitrary vector valued field given the explicit spectral theory of the model spatial

sections Σ. As we have already explicitly constructed the spectral theory of the line

bundle over Bianchi I-VII spacetimes, we can apply the mode decomposition to the

Klein-Gordon field and see what can be gained by this technique.

Let M be Bianchi I-VII type spacetime, i.e., a 4-dimensional smooth globally

hyperbolic Lorentzian manifold with a smooth global time function chosen [31], and

with the isometry group G which is one of the groups Bianchi I-VII, so that G acts

simply transitively on the equal time hypersurfaces Σt (for all missing details see [6]).

Or to put it in simpler words, let topologically M = R×G where G is a Bianchi I-VII

group, and let the metric be given by ds2 = dt2 − hij(t, ~x)dx
idxj , ~x = (x1, x2, x3) ∈ Σt,

so that for any t ∈ R the Riemannian metric hij(t, .) is left invariant under the action of

the underlying Lie group G. In [6] we cosnidered the field operator D = �+m2, where

� is the d’Alembert operator related to the Levi-Civita connection, and m2 ∈ R+ is a

positive constant. The Klein-Gordon field is described by the equation

Dφ = (�+m2)φ = 0.

As we have seen in the previous section for each Bianchi type there are certain

restrictions on the dynamics of the spatial metric h(t) for the mode decomposition

to be applicable. Recall that h(t) is described by the positive definite matrix ȟ(t). For

simplicity let us consider only an isotropic rescaling,

ȟ(t) = a2(t)ȟ(0).

We further wrote in [6] D = Dt + DΣt
, where Dt is a differential operator in variable

t, and DΣt
is the instantaneous field operator DΣt

= −∆t + m2. Its eigenfunctions

satisfying DΣt
ζα = λα(t)ζα will be the eigenfunctions of the Laplace operator, −∆tζα =
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(λα(t) − m2)ζα. Because the time dependent Fourier transform is normalized at time

t = 0, we have λα(0) = −λ +m2 where α = (k, λ, r, s). Using ȟij(t) = a−2(t)ȟij(0) it

follows that ∆t = a−2(t)∆0 and hence

λα(t) =
−λ
a2(t)

+m2.

As we have demanded that the spacetime M = I ×Σ is globally hyperbolic, the Klein-

Gordon field operatorD = �+m2 has unique advanced(+) and retarded(-) fundamental

solutions E± : C∞
0 (M) 7→ C∞

0 (M) with the properties

(i) (�+m2)E±f = f = E±(�+m2)f

(ii) supp{E±f} ⊂ J±(suppf)

for all f ∈ C∞
0 (M). Here, J±(N) denotes the causal future(+) and past(-) of a

subset N ⊂ M . We refer to [32] for full discussion and further references. Then

E = E+ − E− is called the causal propagator of the Klein-Gordon operator � + m2

on (M, g). Any φ = Ef , f ∈ C∞
0 (M) is a solution of the homogeneous Klein-Gordon

equation (� +m2)φ = 0, and the restriction of φ to any Cauchy surface is compactly

supported. We define Sol0(M) = EC∞
0 (M). We also write E(f, h) = 〈f, Eh〉L2(M)

where

〈f, h〉L2(M) =

∫

M

f(x)h(x)dvolg(x);

dvolg is the volume form on M induced by the metric g. Moreover, we set K =

C∞
0 (M)/ kerE. Then (the real part of) K becomes a symplectic space with symplectic

form

σ([f ], [h]) = E(f, h), [f ] = f + kerE, [h] = h+ kerE.

The map K 7→ Sol0(M), [f ] 7→ Ef is a symplectomorphism upon endowing Sol0(M)

with the symplectic form

σ(φ, ψ) =

∫

C

(φna∇aψ − ψna∇aφ) dηC

for any Cauchy surface C in M having future-pointing unit normal field na and metric-

induced hypersurface measure dηC. Again, we refer to [32] for a complete discussion and

full proofs.

Now by Proposition 2.3 in [6] any φ ∈ Sol0(M) can be written as

φ(t, ~x) =

∫

Σ̃

dµ(α)
[
aφ(α)Tα(t)ζα(~x) + bφ(α)T̄α(t)ζα(~x)

]
,

where α = (k, λ, r, s) and dµ(α) = dν(k)dλF (r)dr. The modes Tα are to this point

arbitrary µ-measurable solutions of the mode equation

T̈α(t) + F (t)Ṫα(t) +Gα(t)Tα(t) = 0
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such that Tα and T̄α are linearly independent solutions. As found in [6] for the scalar

field on an isotropically expanding universe,

F (t) = P (t) = 3H(t) = 3
ȧ(t)

a(t)
, Gα(t) = λα(t), I(t) = a3(t).

The propagator E[f ] is obviously a weak solution of the Klein-Gordon equation. If we

want to mode decompose it we have to satisfy (2.19) of [6]. By Proposition 2.6 of

[6] we can do it if M is an analytic manifold. But the spatial metric h is analytic in

the spatial variable x because it is expressed in left invariant fields of the Lie group

G. Thus we only need to choose a(t) a real analytic function. The spectrum of DΣt
is

strictly uniform with the prescription ω(α) = −λ. Now if we restrict the initial data

Tα(0) = p(λ) and Ṫα(0) = q(λ) where p, q ∈ A(H0) and pq̄ − p̄q = i then Proposition

2.9 is applicable. Suppose this is done, now from the Section 2.6 of [6] we find that

(for the line bundle obviously s(α) = 1)

E[f ](x) = i

∫

Σ̃

dµ(α)
[
〈T̄αζ̄α, f〉MTα(t)ζα(~x)− 〈Tαζ̄α, f〉M T̄α(t)ζα(~x)

]
.

Now we proceed to the quantization. The mode decomposition of arbitrary CCR

quantum fields is discussed in [13] which provides a generalization of the works by [33],

[34], [35]. Here we summarize some results applied to the quantized Klein-Gordon field.

The latter is given by the field algebra A generated by the unit 1 and the elements φ(f)

satisfying

(i) φ(af + h) = aφ(f) + φ(h),

(ii) φ(f̄) = φ∗,

(iii) [φ(f), φ(h)] = −i · E(f, h)1,
(iv) φ((�+m2)f) = 0, ∀f, h ∈ D(M), a ∈ C.

A state ω of the field is a linear functional ω ∈ A′ such that ω(1) = 1 and

ω(A∗A) ≥ 0 for all A ∈ A. The 2-point function ω2 of a state ω is the bilinear form

ω2(f, h) = ω(φ(f)φ(h)). It follows that ω2((� + m2)f, h) = ω2(f, (� + m2)h) = 0,

ω2(f̄ , f) ≥ 0 and ω2(f, h)− ω2(h, f) = −iE(f, h). Moreover,

ω2(f̄ , h̄) = ω(φ(f)∗φ(h)∗) = ω([φ(h)φ(f)]∗) = ω(φ(h)φ(f)) = ω2(h, f),

ω2 is hermitian. A quasifree state ω is a state which is completely determined by its 2-

point function ω2 (for precise definitions see, e.g., [36],[37]). Being a weak bi-solution of

the field equation ω2 can be mode decomposed and that is done by Proposition 4.1 of

[13]. (For earlier results using mode decomposition of 2-point functions see [33],[38],[39].)

If we denote for convenience

f̃u(α) = 〈Tαζα, f〉M , f̃ v(α) = 〈T̄αζα, f〉M ,

where

〈f, h〉M =

∫

M

dxf(x)h(x),
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then a 2-point function can be written as

ω2(f, h) = aω(f̃u, h̃u) + aω(˜̄f
u

, ˜̄h
u

) + bω(f̃u, h̃v) + bω(˜̄f
u

, ˜̄h
v

) + δ(f̃u, h̃v),

where aω and bω are bi-distributions satisfying certain symmetry and positivity

conditions, and δ is the bi-distribution given by the integral kernel of the usual delta

function. But it differs from the delta function because we identify kernels with bi-

distribution using the pairing

a(f̃ , h̃) =

∫

Σ̃

∫

Σ̃

dµ(α)dµ(β)a(α, β)f̃(α)h̃(−β).

This strange convention is chosen only for calculational purposes and can be transformed

to the usual form if needed. In particular, the δ term in the formula for the 2-point

function is

δ(f̃u, h̃v) =

∫

Σ̃

dµ(α)f̃(α)h̃(−β).

This term by itself represents a quasifree pure state, and the remaining part of the

generic 2-point function is symmetric. This state depends on the choice of the modes

Tα. Choosing different modes Sα we will find a rich supply of such pure states. Then

we can transform these states back to our original Tα as follows. Let the old and new

modes be related by Sα = µαTα + ναT̄α with |µα|2 − |να|2 = 1. The pure state given

by the δ term in modes Sα is determined by the choice aω = bω = 0. As described in

[13] in the original modes these components will become aω(α, β) = δ(α, β)µαν̄α and

bω(α, β) = δ(α, β)|να|2. But such states do not exhaust all pure quasifree states. By

Corollary 4.1 of [13] any pure quasifree state is given by aω(α, β) = −δ(α, β) ◦ S̃v,u

and bω(α, β) = −δ(α, β) ◦ S̃v,v, where the linear maps S̃v,u, S̃v,v are subject to certain

conditions. In fact, the pure states given by δ terms are special in that they are

homogeneous states, i.e., they are invariant under the isometry group G. More generally,

by Proposition 4.3 of [13] any homogeneous quasifree state is given by coefficients aω,

bω which are of the form

aω(f̃ , h̃) = aω
(∫

R

drf̃(−k, λ, r, s)h̃(k, λ′, r, s′)
)
,

bω(f̃ , h̃) = bω
(∫

R

drf̃(−k, λ, r, s)h̃(k, λ′, r, s′)
)
,

with distributions aω(k, λ, λ′, s, s′) and bω(k, λ, λ′, s, s′).

Another important notion is the notion of Hadamard states. A quasifree state ω is

said to be Hadamard if its 2-point function ω2 satisfies the microlocal spectral condition

(µSC) (see [40]). Hadamard states are believed to be the states of physical importance

for several reasons discussed in the literature ([36],[41],[34],[42]). One way of checking

whether a given ω2 satisfies the µSC is to try to compute its wave front set directly [40].

The mode decomposition suggests another way of doing this. By Proposition 4.6 of

[13] there exists a wide variety of modes Tα such that the homogeneous pure states given
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by δ terms in these modes are Hadamard. Such modes can be computed easily. For some

conceptually related approaches (however emphasizing somewhat different aspects), see

also [33],[43],[44],[38],[39]. For convenience we switch to the variable

s(t) =

∫ t

0

dτ

a3(τ)

as described in [13], then the mode equations become

T̈α(s) + Λα(s)Tα(s) = 0,

where

Λα(s) = a6(t(s))(
λ

a2(t(s))
+m2),

and t(s) is the inverse function of s(t). Now choose an arbitrary non-negative function

η ∈ C∞
0 [−1, 0] and let η̃(s) =

∫ s

0
dση(σ). Denote

Λ′
α(s) = (1− η̃(s))Λα(−1) + η̃(s)Λα(s),

and let

T̈ ′
α(s) + Λ′

α(s)T
′
α(s) = 0.

Choose the initial data T ′
α(−1) = p(Λα(−1)) and T ′

α(0) = q(Λα(−1)) with corresponding

functions p, q as before with the additional constraint that

p(Λ)− 1
4
√
4Λ

= o(Λ−∞), q(Λ)− i
4

√
Λ

4
= o(Λ−∞),

where = o(Λ−∞) means of rapid decay at Λ → +∞. Then the choice Tα(0) = T ′
α(0) and

Ṫα(0) = Ṫ ′
α(0) yields modes Tα such that the homogeneous pure state given by the δ

term is Hadamard. This is basically the essence of Proposition 4.6. Some relations of

the rapid decay in the Fourier space with the Hadamard property can be found in [38].

It follows that if such modes Tα are chosen, then a generic quasifree state is Hadamard if

and only if the remaining symmetric part of ω2 given by coefficients aω and bω is smooth.

A general criterion for smoothness of a distribution in terms of it Fourier transform is

unfortunately not known in harmonic analysis. In principle Proposition 4.4 of [6]

could give at least sufficient conditions, but this is still a work in progress.

Acknowledgments

The first named author thanks the Max Planck Institute for Mathematics in the Sciences

and the International Max Planck Research School for hosting and financially supporting

his PhD project which this work is a part of. The authors are further indebted to

Professor Gerald Folland for very helpful remarks and discussions.



Harmonic analysis in Bianchi I-VII 35

Appendix A. Induced representations

Although the generalities of induced representations can be found in any standard

textbook on group representations, for consistency we will very briefly give an overview

of them in this appendix. We will follow the Chapter 6 of [9] in our treatment.

The inducing procedure produces unitary representations of a locally compact

topological group G from a unitary representation of its closed subgroup H . In this work

we will be interested only in Lie groups, so that the majority of functional analytical

issues are automatically settled. If ρ is a unitary representation of H , and ν the unitary

representation of G induced from H (described below), we will write ν = IndG
Hρ. In

particular the restriction of ν to H is unitarily equivalent to ρ, ν|H ∼ ρ. Unless the

homogeneous space G/H is a finite set, ν is infinite dimensional.

Denote M = G/H . We present the construction of the induced representation

under assumptions which hold in cases of our interest. Namely, we suppose that there

exists a G-invariant measure dxM on M . Any x ∈ G can be uniquely written as

x = xMxH with xM ∈ M and xH ∈ H . If Hρ is the representation Hilbert space of

ρ, then the representation Hilbert space Hν of the induced representation is taken to

be Hν = L2(M,Hρ, dxM), i.e., Hρ-valued dxM -square integrable functions on M . The

action of the representation ν on Hν is given by

ν(x)f(y) = ρ((x−1y)H)
−1f((x−1y)M), ∀x ∈ G, y ∈M , f ∈ Hν .

That this is a natural construction can be seen by the following nice properties. If

ρ and ρ′ are unitarily equivalent unitary representations of H , then ν = IndG
Hρ and

ν ′ = IndG
Hρ

′ are unitarily equivalent unitary representations of G. Moreover, it can

be shown that if {ρi} is a family of unitary representations of H then IndG
H

⊕
ρi is

unitarily equivalent to
⊕

IndG
Hρi.
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Appendix B. An illustration of co-adjoint orbits
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