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Abstract

The ability of a large variety of eukaryotic cells to actively move along
different substrates plays a vital role in many biological processes. A key
player in these processes is the cytoskeleton.

In [7] we introduced a minimal hyperbolic-parabolic model for the re-
organization of the actin cytoskeleton of a generic cell resting on a flat
substrate and turning into a polarized state upon some external cue. In
this paper we derive moving boundary conditions for the same cytoskele-
ton model and by this allow for the description of actual motion. For the
free boundary problem we prove short time well-posedness for a wide class
of initial conditions and analyze the emergence of Dirac measures in the
densities of actin filament tips. These have a direct biophysical interpre-
tation as sharp polymerization fronts which are experimentally observed
in [19], for example.

Further, numerical results will illustrate both, the motion of an initially
symmetric resting cell and the emergence of sharp fronts of actin filaments
from initially smooth distributions.

1 Introduction

Actin-driven motility is observed and plays a crucial role for eukaryotic cells as
different as hunting amebae [10], human fibroblasts controlling wound healing
[1], growing axons of neurons in vertebrates’ central nervous systems [15], and
cancer cells spreading out for metastasis [20]. The mechanism underlying these
different types of motion is the constant remodeling of the cytoskeleton which
essentially is comprised of actin filaments, myosin motors, and dozens of regu-
latory and cross-linking proteins. Whereas the latter differ from cell to cell, the
polymerization and depolymerization of actin filaments and their displacement
by myosin motors are features all these different cell types have in common.

For this reason in [7] we proposed a minimal model for the dynamics of the
cytoskeleton which describes the densities of left and right oriented barbed and
pointed ends of filaments, and the concentration of actin monomers. Together a
system of four hyperbolic conservation laws for the filament tips and a reaction
diffusion equation for the monomers on a fixed spatial domain resulted.
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In [7] the polarization of the initially symmetric cytoskeleton upon some
external stimulus leading to an asymmetry in the coefficient functions which
describes the polymerization dynamics of actin monomers at the different types
of filament tips was investigated. Here, we formulate moving boundary condi-
tions for this hyperbolic-parabolic model. This allows the cell membrane to be
actually displaced and motion to be initiated.

Moreover, the free boundary is compatible with the hyperbolic structure of
the equations for the filament tips and we thus can show local in time well
posedness for a much wider class of initial conditions than before. This is
achieved by a contraction mapping argument. The required estimates rely on
the particular shape of the coupling between the hyperbolic equations and the
boundary conditions on the one hand and the parabolic equation on the other
hand.

Rather than proving global existence of smooth solutions we can explicitely
construct measure valued solutions for the end densities. These Dirac measures
can be interpreted as sharp fronts of polymerizing actin filaments which are
observed in live cell experiments as in [19].

It is very hard to show the emergence of such concentrated measures from
smooth data analytically but numerical results provide good evidence for this
phenomenon. Our simulations also show examples of cells which are driven into
directed motion from an initially symmetric resting state.

2 Derivation of the free boundary problem

We first recall the model in [7] for the kinetics of the cytoskeleton of a cell on a
flat substrate which may receive a cue to move into a particular direction – say
to the right. Let B denote the density of fast growing (barbed) filament ends
and P that of slowly growing (pointed) ones. Then

∂tBr = −∂x (vB(a)Br) ≡ ∂x ((vR − δ κB(a− aB))Br) (2.1a)

∂tBl = ∂x (vB(a)Bl) (2.1b)

∂tPr = −∂x (vP (a)Pr) ≡ ∂x ((vR + δ κP (a− aP ))Pr) (2.1c)

∂tPl = ∂x (vP (a)Pl) (2.1d)

where the subscripts r and l denote the tips of filaments whose barbed ends are
pointing to the right and left, respectively. Here, vR denotes the myosin-driven
retrograde flow velocity, κB/P are the polymerization rate constants and aB/P

the critical monomer concentrations for polymerization at barbed and pointed
ends, respectively, accounting for the polymerization speed of these ends.

For the monomer concentration a we have

∂ta−D∂xxa+ δ κB(a− aB)(Br +Bl) + δ κP (a− aP )(Pr + Pl) = 0.

The linear reaction terms seem at first glance oversimplified since for actin
dynamics at barbed ends two regimes are reported with significantly larger κB

in case the actual actin concentration lies below aB (see figure 2b in [2]). This
is however not problematic as we will see that the monomer concentration does
not drop below the critical concentration aB whenever it initially lies above this
value.
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In order to write the system in a more concise form we define

u = (u1, u2, u3, u4)
T
:= (Bl, Pr, Pl, Br)

T
,

Λ = diag(λ1, λ2, λ3, λ4) := diag(−vB , vP ,−vP , vB).

Using these notations we can reduce the equations to

∂tu+ ∂x(Λu) = 0 (2.2)

∂ta−D∂xxa = R(a, u) ≡ −c·u a+ c̃·u, where (2.3)

c = δ(κB , κP , κP , κB) and c̃ = δ(κBaB , κPaP , κPaP , κBaB)

The most basic interaction between the filament ends and the boundary
is an infinitely soft membrane that exerts no forces on the filaments and is
therefore supported by the outermost tips that move at their free velocity λα

(α = 1, . . . , 4). Since the hyperbolic part is diagonal we can directly read off
the characteristic velocities of the respective end densities and write for the left
and right boundary curves

l(t) = min
α=1,...,4

lα(t) and r(t) = max
α=1,...,4

rα(t), (2.4)

respectively. Here, for α = 1, . . . , 4 the boundary curves of the αth characteristic
family are given by the initial value problems

l̇α(t) = λα(a(t, lα(t))), lα(0) := lα0 ≡ min suppuα
0

ṙα(t) = λα(a(t, rα(t))), rα(0) := rα0 ≡ max suppuα
0

with initial values given by the outer points of the support of the initial data
uα
0 of the respective end density.
For the characteristic families which are not the leading ones we prescribe

zero boundary conditions since no filaments enter the cell from outside. For
the leading characteristic families which are the end densities supporting the
membrane, we have a characteristic boundary and therefore the boundary values
are given by the evolution of the respective equation itself.

On the resulting space-time domain

QT =
{
(t, x) ∈ R2 | 0 < t < T, l(t) < x < r(t)

}
(2.5)

we impose no-flux conditions for the actin monomers which are assumed to be
reflected at the membrane. We therefore have

D∂xa(t, l(t)) + a(t, l(t)) l̇(t) = 0 for 0 < t < T
D∂xa(t, r(t)) + a(t, r(t)) ṙ(t) = 0 for 0 < t < T.

(2.6)

Let the initial data satisfy

u(0, x) = u0(x) ≥ 0, a(0, x) = a0(x) ≥ 0 for x ∈ [0, L] (2.7)

For obvious physical reasons we also assume the initial end densities to be such
that the barbed ends of the right oriented filaments are located further to the
right than the corresponding pointed ends,∫ x

0

u2
0(y)dy >

∫ x

0

u4
0(y)dy for each x ∈ (0, L),
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and likewise for the left oriented filaments. Since we do not consider filament
branching here, the total amount of barbed ends of either orientation equals the
total amount of corresponding pointed ends.

Moreover, we assume aB ≤ a0 ≤ aP . This bound will be shown to be
preserved for any sufficiently smooth solution of the free boundary problem.

3 Short time well posedness

In this section we show the existence of a unique solution to the problem (2.2),
(2.3), (2.4), (2.6), (2.7), denoted by (FBP ), for small times T .

First, we derive some general bounds being necessarily satisfied by any suf-
ficiently smooth solution of the problem. Physical considerations lead us to
the following conditions on the model parameters which shall be assumed to be
satisfied throughout the text.

Condition 3.1. (i) vR and δ are positive constants

(ii) κB , κP , aB , and aP belong to C0,1([0, T ]; C∞(R)) and satisfy

inf
t,x

aB(t, x) =: aB > 0 and sup
t,x

aP (t, x) =: aP <∞.

(iii) At barbed ends, the affinity for monomers is higher and the reaction ki-
netics are faster than at pointed ends:

sup
t,x

aB(t, x) =: aB < aP := inf
t,x

aP (t, x)

sup
t,x

κP (t, x) < inf
t,x

κB(t, x).

(iv) To allow for positive values of vB we assume

sup
t,x

(κB(t, x)(aP (t, x)− aB(t, x))) >
vR
δ
.

Now we can define what we mean by a physical solution for problem (FBP ).

Definition 3.1. A smooth solution of problem (FBP ) is a pair

(u, a) ∈ C1
b

(
QT ; [0,∞)

n)× (C2x,1t
b (QT ; (0,∞)) ∩ C1x,0t(QT ; (0,∞))

)
such that u satisfies (FBP ) on QT given by 2.5.

Such a solution is called a physical smooth solution if the end densities in
addition satisfy

αl(t) ∩ {1, 2} 6= ∅, αr(t) ∩ {3, 4} 6= ∅ for each t ∈ [0, T ] (3.1)

where αl/r(t) denote the leading characteristic families, i.e. α ∈ αl(t) if

lα(t) ≤ lα
′
(t) for all α′ ∈ {1, . . . , 4}\{α}

and in case of equality for some α′ in addition λα(t, l(t)) ≤ λα′
(t, l(t)) holds.

The leading characteristic families on the right boundary curve are defined sim-
ilarly.
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In the following we will only deal with such physical solutions since the
membrane on the left can only be supported by pointed ends of right oriented
filaments or by barbed ends of left oriented ones, and similarly for the right
boundary.

The first observation is that for any u ∈ [0,∞)
4
:

R(aP (t, x), u) = −δ κB(t, x)(aP (t, x)− aB(t, x))(u
1 + u4) ≤ 0

R(aB(t, x), u) = δ κP (t, x)(aP (t, x)− aB(t, x))(u
2 + u3) ≥ 0.

These inequalities are strict whenever one of the involved end densities is posi-
tive. As a consequence we obtain the following bound on a.

Lemma 3.1. Assume, the parameters satisfy

vR
δ

< min

{
inf
t,x

κB(t, x)(aP − aB), inf
t,x

κP (t, x)(aP − aB)

}
. (3.2)

Then, any smooth physical solution of (FBP ) with

aB ≤ a(0, x) ≤ aP for each x ∈ [0, L]

satisfies
aB ≤ a(t, x) ≤ aP for each (t, x) ∈ QT .

Proof. If a takes the value aB at some point (t0, x0) in the interior of QT without
having reached it before then it has a local minimum at this point and the signs
of both, the diffusion term and the reaction term, yield ∂ta(t0, x0) ≥ 0, and a
cannot decrease anymore. Likewise, a will not grow once it attains the value aP
in the interior of the domain.

If the value aB is reached at the left boundary, say at (t0, l(t0)), then the hy-
potheses yield strictly positive velocities λ1 and λ2 at this point. The boundary
conditions then lead to

∂xa(t0, l(t0)) < 0

which implies a < aB in some neighborhood lying inside QT which contradicts
the above. Similarly, a cannot attain aP at the left boundary and neither of aB
or aP at the right boundary.

Corollary 3.2. Under the hypotheses of Lemma 3.1, the reaction term in (2.3)
satisfies

−2δ sup
t,x

κB(aP − aB)‖u‖C0 ≤ R(a(t, x), u(t, x)) ≤ 2δ sup
t,x

κP (aP − aB)‖u‖C0

where
‖u‖C0 = sup

(t,x)∈QT

max
α=1,...,4

|uα(t, x)|.

Since

λ1(t, x) = vB(a(t, x)) = λ4(t, x) , λ2(t, x) = vP (a(t, x)) = −λ3(t, x)

we immediately deduce from the bound on a that for α = 1, . . . , 4:

|λα(t, x)| ≤ vmax := max

{
vR, δ sup

t,x
κB(t, x)(aP − aB)− vR

}
(3.3)

Plugged into the boundary conditions (2.6) this leads to the following estimate.
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Corollary 3.3. For any smooth physical solution (u, a) of (FBP ) we have

|∂xa(t, x)| ≤
vmaxaP

D
for each (t, x) ∈ LQT

where LQT is the lateral boundary of QT .

If we know which characteristic families of the hyperbolic part are the leading
ones it is possible to write the boundary velocities in terms of the monomer
density only. We therefore start with the strictly hyperbolic case where the
initial conditions for a at the boundary points are such that the velocities of
the filament tips at the membrane are mutually distinct. The equations for the
boundary velocities then read

l̇(t) = λαl(a(t, l(t))), ṙ(t) = λαr (a(t, r(t))) for t ∈ (0, T ).

3.1 The strictly hyperbolic case with constant coefficients

Besides the assumption of strict hyperbolicity at the boundary we assume for
the moment that all reaction parameters are constant and satisfy Cond. 3.1.
Moreover, we assume the initial conditions to be such that at the initial bound-
ary points all characteristic velocities λα are mutually different, and we denote
the leading characteristic families by αl and αr.

For appropriate initial data, the unique solution results as a fixed point from
the linearized system

∂tu+ ∂x(ΛAu) = 0 in (0, T )×QT (A) (3.4)

∂ta−D∂xxa+ c·Ua = c̃·U in QT (a) (3.5)

with U and A being prescribed functions. For the parabolic equation we assume
boundary conditions (2.6) and solve it on QT with boundary curves determined
by λαr/l(a). The hyperbolic equation is solved on the domain determined by
plugging A into the equations for the boundary curves.

Now, the hyperbolic part is just a linear characteristic boundary value prob-
lem with diagonal velocity matrix and can be solved directly. The parabolic
free boundary problem is more involved and is solved by again decoupling the
unknown functions, the density a and the boundary curves r and l, from each
other. First we note

Proposition 3.4. Let β ∈ (0, 1), assume given boundary curves l, r belong-

ing to C1+ 1+β
2 ([0.T ]) such that r(t)− l(t) ≥ d > 0 for all t ∈ [0, T ]. Let U ∈

C0+β,P (QT ; R4) be given (for definition and properties of parabolic Hölder spa-
ces see the appendix). Then, for any initial data a0∈C2+β([0, L]) satisfying the
compatibility conditions

aB ≤ a0(x) ≤ aP for each x ∈ [0, L] (3.6a)

D
d

dx
a0(0) + l̇(0)a0(0) = 0, D

d

dx
a0(L) + ṙ(0)a0(L) = 0 (3.6b)

problem (3.5), (2.6) has a unique solution a ∈ C2+β,P (QT ), and there exists
C > 0, depending only on l, r, D, β, ‖c·U‖C0+β,P such that

‖a‖C2+β,P ≤ C (‖c̃·U‖C0+β,P + ‖a0‖C2+β ) .
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The proof of this theorem relies on Schauder estimates for parabolic problems
solved in Hölder spaces. It is a special case of Thm. 5.18 in [14] with slight
modifications of the notation as discussed in [8]. We therefore omit the proof
here.

If on the other hand a∈C1([0, T ]×R), bounded with bounded derivatives, is
given then the boundary curves described by initial value problems of the form

ġ(t) = c1a(t, g(t)) + c2, g(0) = x0

are continuously differentiable with uniformly Lipschitz continuous derivatives.
If the given monomer density a is of class C2+β,P then these curves are of class

C2+ β
2 and bounded in this space.
The parabolic free boundary problem is now transformed to a fixed domain

Q̃T = (0, T )× (0, L) by the coordinate transformation

τ = t, ξ =
L

r(t)− l(t)
(x− l(t)).

In these coordinates the equation for the rescaled monomer density ã(τ, ξ) =
a(t(τ, ξ), x(τ, ξ)) reads

∂τ ã−
L2D

(r − l)
2 ∂ξξã−

L

r − l

(
ξ

L
(ṙ − l̇) + l̇

)
∂ξã+ ϕ̃ã = f̃ (3.7)

where ϕ̃(τ, ξ) = ϕ(t(τ, ξ), x(τ, ξ)) and f̃(τ, ξ) = f(t(τ, ξ), x(τ, ξ)) are the rescaled
versions of ϕ := c ·U and f := c̃ ·U , respectively, and l and r are now merely
virtual boundary curves given by

l̇(τ) = λαl(ã(τ, 0)), l(0) = 0 (3.8)

ṙ(τ) = λαr (ã(τ, L)), r(0) = L (3.9)

and only act as coefficients in this equation.
The boundary conditions for the parabolic equation are turned into

DL∂ξã(τ, 0) + l̇(τ)ã(τ, 0) = 0 = DL∂ξã(τ, L) + ṙ(τ)ã(τ, L), τ ∈ (0, T ). (3.10)

By inserting (3.8) and (3.9) into (3.10) we obtain effectively nonlinear boundary
conditions for ã. We denote the initial data by a0 and emphasize that at τ = 0,
the rescaled and the physical coordinates coincide.

Analogously to Prop. 3.4 we find

Proposition 3.5. Given β ∈ (0, 1), ϕ, f ∈ C0+β,P (QT ), and l, r of class

C1+ 1+β
2 ([0, T ]) such that r(τ)− l(τ) ≥ d > 0, for any initial conditions a0 ∈

C2+β([0, L]), problem (3.7), (3.10) has a unique solution ã∈C2+β,P (Q̃T ), and
there exists a constant C > 0, depending only on

T, β, ‖l‖
C1+

1+β
2

, ‖r − L‖
C1+

1+β
2

, ‖ϕ‖C0+β,P , L, and D,

such that
‖ã‖

C2+β,P (Q̃T )
≤ C

(
‖f‖C0+β,P (QT ) + ‖a0‖C2+β

)
. (3.11)
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Moreover, the boundary gradient obeys the uniform estimates

|∂ξã(τ, ξ)| ≤
V (L+ 2V T )

LD
aP for τ ∈ [0, T ], ξ = 0, L

where
V := max

{
‖l̇‖C0 , ‖ṙ‖C0

}
is the maximal velocity of the virtual boundary curves.

To apply Thm. 5.18 in [14] a little caution is necessary. One has to show the
sufficient regularity of the coefficient functions of the transformed problem, in
particular those in the diffusion and the drift term in (3.10) and in the boundary
conditions. For finite times they indeed satisfy all the requirements of Thm. 5.18
in [14] which can be shown by explicite calculations given in detail in [8].

Remark 3.6. The proposition remains valid also for boundary conditions

DL∂ξã(τ, 0) + l̇(τ)ã(τ, 0) = g(τ, 0), τ ∈ (0, T )

DL∂ξã(τ, L) + ṙ(τ)ã(τ, L) = g(τ, L), τ ∈ (0, T ).

where g is of class C1+β,P . Upon, if necessary, adapting the compatibility con-
ditions for the initial and boundary values at the corner points, we obtain the
same assertion with (3.11) being replaced by

‖ã‖
C2+β,P (Q̃T )

≤ C
(
‖f‖C0+β,P (QT ) + ‖a0‖C2+β + ‖g‖C1+β,P

)
.

So in summary:

1. given boundary curves of class C1+ 1+β
2 (and end densities of class C0+β,P )

we find a unique solution ã to the parabolic boundary value problem on
the transformed domain which is of class C2+β,P , and

2. conversely, given a solution ã to the parabolic equation having regularity
C2x,1t we obtain boundary curves which are of class C1,1.

This allows us for sufficiently small times T to construct a contraction in the
space

XT = C2x,1t([0, T ]× [0, L])×
(
C1+ 1+β

2 ([0, T ])
)2

,

‖(ã, l, r)‖XT
:= ‖ã‖C2x,1t + ‖l‖

C1+
1+β
2

+ ‖r − L‖
C1+

1+β
2

mapping the prescribed functions ã, l and r to the solution ã′ of the parabolic
boundary value problem (3.7), (3.10) with boundary curves l, r and the solu-
tions l′, r′ of the boundary curve equations (3.8), (3.9) with right hand sides
determined by ã, respectively.

To do so, let a0 and U be given. Then, the boundary curves have initially
the same velocity (determined by the values of a0 at the corner points).

Consider now two sets of prescribed functions (ã1, l1, r1) and (ã2, l2, r2) sat-
isfying the same initial data. Then, the difference

(w, σ, ρ) := (ã′1, l
′
1, r

′
1)− (ã′2, l

′
2, r

′
2)
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of the solutions has the initial conditions (0, 0, 0) and in addition σ̇(0) = ρ̇(0) =
0. Moreover,

∂τw =
L2D

(r2 − l2)
2 ∂ξξw +

L

r2 − l2

(
ξ

L
(ṙ2 − l̇2) + l̇2

)
∂ξw − ϕ̃w

+ L2DΘ∂ξξã
′
1 + (Σ2 − Σ1)∂ξã

′
1 (3.13)

where

Θ(τ) :=
(r1(τ)− l1(τ))

2 − (r2(τ)− l2(τ))
2

(r1(τ)− l1(τ))
2
(r2(τ)− l2(τ))

2 (3.14)

Σi(τ) :=
L

ri(τ)− li(τ)

(
ξ

L
(ṙi(τ)− l̇i(τ)) + l̇i(τ)

)
, i = 1, 2. (3.15)

The boundary conditions for w read

DL∂ξw(τ, 0) + l̇2(r2 − l2)w(τ, 0) =
(
l̇2(r2 − l2)− l̇1(r1 − l1)

)
ã′1(τ, 0)

=: g(τ, 0) (3.16a)

DL∂ξw(τ, L) + ṙ2(r2 − l2)w(τ, L) = (ṙ2(r2 − l2)− ṙ1(r1 − l1)) ã
′
1(τ, L)

=: g(τ, L). (3.16b)

Finally, the difference of the virtual boundary curves are determined by

σ̇(τ) = κ0(ã2(τ, 0)− ã1(τ, 0)), ρ̇(τ) = κL(ã2(τ, L)− ã1(τ, L)) (3.17)

where κ0 and κL are constants of the form ±δ κB/P .
Using the bounds on the solutions, we conclude that

‖w‖C2x,1t ≤ T
β
2 T

2+β
2

0 ‖w‖C2+β,P

≤ CT
β
2

(
‖l1 − l2‖

C1+
1+β
2

+ ‖r1 − r2‖
C1+

1+β
2

)
≤ CT

β
2 ‖(ã1, l1, r1)− (ã2, l2, r2)‖XT

where the constant C can be taken from (3.11) for some fixed time T0. In that
case, the above estimate holds for all times T ≤ T0.

Similarly, we find for the difference of the boundary curve solutions

‖σ‖
C1+

1+β
2

= ‖σ‖C0 + ‖σ̇‖C0 +Höl 1+β
2
(σ̇) ≤ (T 2 + T + 1)T

1−β
2 Lip(σ̇)

≤ δ κB(T
2 + T + 1)T

1−β
2 ‖ã1 − ã2‖C2x,1t

≤ C T
1−β
2 ‖(ã1, l1, r1)− (ã2, l2, r2)‖XT

,

and literally the same estimate applies to ρ.
By choosing T sufficiently small, we therefore obtain that the solution oper-

ator is a contraction from the closed bounded subset

BT =
{
(ã, l, r) ∈ XT

∣∣∣ ‖r − L‖C0 ≤ ε1, ‖ṙ − vr0‖C0 ≤ ε2,Höl 1+β
2
(ṙ) ≤ Λ1,

‖l‖C0 ≤ ε1, ‖l̇ − vl0‖C0 ≤ ε2,Höl 1+β
2
(l̇) ≤ Λ1,

aB ≤ ã(τ, ξ) ≤ aP , ‖ã‖C2x,1t ≤ Υ1,

(ã(0, ·), l(0), r(0)) = (a0, 0, L), l̇(0) = vl0, ṙ(0) = vr0

}
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of XT into itself, more precisely, even into the precompact set BT ∩ YT where

YT = C2+β,P (Q̃T )×
(
C1+1([0, T ])

)2
↪→↪→ XT

is a compact subspace of XT if equipped with the natural norm

‖(ã, l, r)‖YT
:= ‖ã‖C2+β,P + ‖l‖C1,1 + ‖r − L‖C1,1 .

The unique fixed point of this contraction is our solution (ã, l, r) of the
parabolic free boundary problem for given end densities U . This solution is
bounded in YT . The transformation back to the physical domain QT does not
lower the regularity of the solution.

So far we have not yet dealt with the hyperbolic equations besides hav-
ing inserted a given solution U as coefficient function into the parabolic free
boundary problem. We required U to be of class C0+β,P in order to find a
C2+β,P -solution a. Conversely, given a monomer density A of class C2x,1t and
thereby C2x,1t-velocity fields

λα(t, x) = καA(t, x) + kα,

the hyperbolic equations possess unique C1-solutions uα. These can be shown
to satisfy

‖uα‖C1 ≤ Mα
0 (1 + κα‖∂xA‖C0) Eα(2T )

+ [Mα
1 +Mα

0 κ
α‖∂xxA‖C0TEα(2T )] (1 + vmax)Eα(2T )

where vmax is given by (3.3),

Mα
0 := max

x∈[0,L]
|uα(0, x)|, Mα

1 := max
x∈[0,L]

|∂xuα(0, x)|,

and where Eα(t) := exp [κα‖∂xA‖C0t]

provides an upper bound for the growth of end densities according to the inho-
mogeneities of the velocity field.

Now we have constructed a solution (ã, l, r)∈XT for the transformed para-
bolic free boundary problem for given end densities Uα ∈ C0+β,P and conversely
found a C1-solution to the hyperbolic Cauchy problem for prescribed monomer
density A ∈ C2x,1t .

Using the above estimates for the solutions we can now assert the existence
of a unique solution to the full problem as fixed point of a contraction operator

assigning to given (Ã, l, r) ∈ XT and U ∈ (C0+β,P )
4
the respective solutions

(ã, l′, r′) ∈ YT and u ∈ (C1)
4
of the linearized problem. So this operator maps

VT := XT × (C0+β,P
b (ET ))

4
→ YT × (C1([0, T ]× R))4 =: WT ↪→↪→ VT .

where C0+β,P
b (ET ) denotes the space of bounded C0+β,P functions with uni-

formly bounded Hölder constants on the strip ET := [0, T ]× R.
The estimates assure that for sufficiently small T , this operator maps

CT =
{
(ã, l, r̃, u) ∈ BT ×

(
C0+β,P

b (ET )
)4 ∣∣∣ aBP ≤ ã ≤ aP , ‖∂ξã‖C0 ≤ Υ0,

l̇(τ) = c11ã(τ, 0) + c12, ṙ(τ) = c41ã(τ, L) + c42 for τ ∈ [0, T ],

max
α=1,...,4

‖uα‖C0+β,P ≤ Υ2,

suppu ⊂ [0, T ]×
[
−L

4
,
5

4
L

]
, u(0, ·) = u0, a(0, ·) = a0

}
10



into CT ∩WT if the constants in the definition of CT are appropriately chosen.
Again we assume to be given two quadruples

(ãi, li, ri, ui) ∈ CT , (i = 1, 2)

corresponding to the same (compatible) initial data. Then

(w, σ, ρ, ω) := (ã′2, l
′
2, r

′
2, u

′
2)− (ã′1, l

′
1, r

′
1, u

′
1)

satisfies

∂τw =
L2D

(r2 − l2)
2 ∂ξξw +

L

r2 − l2

(
ξ

L
(ṙ2 − l̇2) + l̇2

)
∂ξw − ϕ̃2w

+ L2DΘ∂ξξã
′
1 + (Σ2 − Σ1)∂ξã

′
1 − (ϕ̃2 − ϕ̃1)ã

′
1 + (f̃2 − f̃1), (3.18)

where Θ and Σi are defined by (3.14) and (3.15), respectively.
The boundary conditions for w are given by (3.16a,b), and the virtual bound-

ary curves are again determined from (3.17).
For the components ωα of the difference in the end densities we obtain

ωα(t, x) = uα
0 (y

α
2 (0; t, x)) exp

[
−
∫ t

0

∂xλ
α
2 (s, y

α
2 (s; t, x))ds

]
+ uα

0 (y
α
1 (0; t, x)) exp

[
−
∫ t

0

∂xλ
α
2 (s, y

α
2 (s; t, x))ds

]
. (3.19)

Here, yα(s; t, x) denotes the spatial position at time s of the αth characteristic
curve passing through (t, x) and the subscripts i = 1, 2 refer to the characteristic
curves and velocity fields according to the given scaled monomer densities ãi
and the corresponding boundary curves li and ri, respectively.

Of course, again all initial conditions for the differences and the initial ve-
locity differences σ̇(0) and ρ̇(0) are identically zero.

By choosing the time T sufficiently small we can again use the estimates
on the solution of the rescaled parabolic problem for given end densities on
the one hand and the explicite integral representation of the solution to the
hyperbolic part for given velocity fields on the other hand to assure that our
solution operator is indeed a contraction on CT . The detailed calculations are
carried out in [8].

We thus arrive at the main result of this section

Theorem 3.7. Given β ∈ (0, 1) and L > 0, let the initial conditions

u0 ∈ C2([0, L]) and a0 ∈ C2+β([0, L]) (3.20)

satisfy the compatibility conditions (3.6) and aB ≤ a0 ≤ aP . Assume further
the conditions (3.1) on the end densities and for some ε > 0 that:

|λ1(a0(0))− λ2(a0(0))| ≥ ε or u2 = 0 on [0, ε) or u1 = 0 on [0, ε)

|λ3(a0(L))− λ4(a0(L))| ≥ ε or u3 = 0 on (L−ε, L] or u4 = 0 on (L−ε, L].

Then, there exists a time T ∗ > 0, depending only on

β, L, D, κB/P , aB/P , vR, δ, ‖u0‖C0 , ‖u′
0‖C0 , ‖u′′

0‖C0 , ‖a0‖C2+β , and ε

such that for each T ∈ (0, T ∗) the problem (FBP ) has a unique solution.
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3.2 Notes on some relaxed assumptions

Next we want to consider the case of variable coefficients. All the theorems
on the unique solvability and the estimates for the linearized problems remain
valid if the reaction parameters are allowed to vary smoothly within the range
specified by Cond. 3.1. In general, the time T ∗ in Thm. 3.7 will then be
smaller than in the constant coefficient case. Moreover, the conditions on the
initial data have to be adapted to the non-uniform nature of the parameters in
order to ensure compatibility at the corners, initial strict hyperbolicity, and the
monomer concentration to be in the physiological range. For example, condition
aB ≤ a0 ≤ aP has to be understood pointwise and in the hypotheses of Thm.
3.7, the velocities λα do not only depend on a but also explicitely on x and t.

All calculations leading to the contraction argument for the decoupled prob-
lems remain basically the same. The additional terms entering the hyperbolic
equations due to nontrivial derivatives of the parameters simply lead to some
additional constants in the estimates, depending only on the norms of κB/P and
aB/P in the space C2x,1t([0, T ]× R).

Second we want to relax the assumption of strict hyperbolicity at the bound-
ary. If the leading characteristic family remains the same, there will be no
changes for the solvability of the problem.

v

a

v

-v

R

max

aBP

-v
R

Figure 1: Possible boundary velocities
for the left boundary depending on a; red :
−vB(a), blue: vP (a). The slopes and the
position of the endpoints on the abscissa
may vary if the coefficients are variable.

If however, the outer characteristic curves of two different end densities cross
at the boundary, the boundary curves will in general have a kink at this point
and are therefore merely Lipschitz continuous. This does heavily affect the pos-
sible regularity of a which cannot be expected to be continuously differentiable
up to the boundary if the boundary velocities l̇ and ṙ are not assumed to be
continuous.

Since we are only concerned with physical solutions we have to consider just
two possible switches of the leading characteristic families per side. For the left
boundary these are the following cases.

1. The characteristic family u2 takes over the lead from u1 at t = t0. Then

λ1 > λ2 thus a(t, x) < aBP

on some parabolic cylinder Cylr(t0, l(t0)) ∩QT where

aBP =
2vR

δ + κBaB − κPaP

κB − κP

is the value of the monomer density at which vB = −vP . We may w.l.o.g.
assume the strict inequality also to be satisfied in the limit

lim
t↗t0

a(t, l(t)) < aBP (t0, l(t0))

12



since otherwise the velocity would not exhibit a jump. Fig. 1 shows that
in this case, both characteristic velocities are positive.

2. If u2 ceases to be the leading characteristic family and is replaced by u1

at t = t0 we have a > aBP in some parabolic cylinder below (t0, l(t0)).
We now have three generic cases for the signs of the limit values of the
velocities at (t0, l(t0)):

(i) 0 < λ1 < λ2 or (ii) λ1 < 0 < λ2 or (iii) λ1 < λ2 < 0

as sketched in Fig. 2.

Figure 2: Possible behavior of the left boundary curve (thick line) around a point
(t0, l(t0)) where the outer characteristics of u1 and u2 cross. Blue codes for l1(t),
red for l2(t). The grey circles show a zoom into the vicinity of the crossing points.
Picture a) corresponds to case 1. Note that case 2.(i) has a similar shape with colors
being exchanged. Pictures b) and c) sketch the situation of cases 2.(ii) and 2.(iii),
respectively.

We now have a free boundary problem as above with t0 as initial time but
with data not being compatible at the corner points. For prescribed boundary
curves and end densities, the solution of the parabolic equation is only uniformly
continuous with bounded first spatial derivative ∂ξã for t ≥ t0. This derivative
however has a discontinuity at the corner points, and the second spatial and
first temporal derivatives of a have discontinuities of the order

sup
ξ
(|∂τ ã|, |∂ξξa|) ∼

1√
τ − t0

as τ ↘ t0

at these points. In particular, ∂τ ã and ∂ξξã belong to Lp(t0, t0 + T ; L∞(0, L))
for any p ∈ [1, 2).

So for piecewise differentiable prescribed virtual boundary curves with de-
rivatives l̇ and ṙ being piecewise Hölder continuous of exponent (1+β)/2 with
discontinuities at times t∗ we obtain a rescaled monomer density ã that is even of
class C2+β,P on each open subset of QT not containing lines {t = t∗}. Extending
this density suitably to some function ā on [0, T ]× R we obtain

ā ∈ C0([0, T ]× R) ∩ C1((0, T )\N ;C2(R)) (3.21)

where N is the discrete set of points t∗ where the boundary velocities jump. In
case the assumption of N being discrete is dropped we still obtain

ā ∈ C0([0, T ]× R) ∩ L∞(0, T ;C0+1(R)). (3.22)

13



If such a monomer density is prescribed we can solve (3.8) and (3.9) in the
sense of Carathéodory (cf. Chapter 2 in [3]) and obtain absolutely continu-
ous solutions l and r which are unique due to the spatially uniform Lipschitz
bounds of the velocity fields. These solutions are uniformly Lipschitz continu-
ous and apart from the points of discontinuity of the coefficient functions are
continuously differentiable.

Finally, by the theory developed in [4], specifically Prop. II.1 and Corollary
II.1 therein, the hyperbolic equations have unique solutions uα in the space of
signed Radon measures for given velocity fields

λα ∈ L1(0, T ;W
1,loc
∞ )←↩ L∞(0, T ;C0+1(R))

the latter being the space to which ā belongs. For our particular situation with
λα ∈ L∞(0, T ;W 1,loc

∞ (R)) ∩ Lp(0, T ;W
2,loc
∞ (R)) these u are differentiable with

bounded derivatives if the initial conditions are continuously differentiable with
compact support.

With these preliminaries we can again construct a contraction. We assume
that the outer characteristics on at least one boundary cross at t = t0 = 0.
Replace VT from Subsection 3.1 by

ṼT :=
(
C0([0, T ]× [l−, r+]) ∩ L∞(0, T ;W 1

∞(l−, r+)) ∩ Lp0(0, T ;W
2
∞(l−, r+))

)
×
(
C1+β0([0, T ])

)2 × (C0+β0,P ([0, T ]× [l−, r+])
)4
,

where T is chosen sufficiently small to prevent the outer characteristic curves
from crossing again for 0 < t ≤ T and where p0 ∈ [1, 2), β0 ∈ ( 12 , 1) are
freely chosen. Moreover, let l− be sufficiently small and r+ sufficiently large
to guarantee QT ⊂ (0, T ) × (l−, r+). The monomer density lying in the above
spaces therefore means, that some suitable (spatial) extension ā of a belongs to
these spaces. Again, u can trivially be extended to the whole real line.

WT from Subsection 3.1 is replaced by

W̃T :=
(
C0([0, T ]× [l−, r+]) ∩ L∞(0, T ;W 1

∞(l−, r+)) ∩ Lp1(0, T ;W
2
∞(l−, r+))

)
×
(
C1+β1([0, T ])

)2 × (W 1
∞([0, T ]× [l−, r+])

)
with β1p0 < 1, p0 < p1 < 2 and β1 > β0.

These choices together with the Lebesgue- and Hölder scales guarantee the
contractivity of the solution operator on some closed bounded subset of ṼT for
sufficiently small times T and therefore the existence of a unique solution.

3.3 Simulation of the free boundary problem

Having shown the well-posedness of the free boundary problem (FBP ) for small
times we are now interested in the behavior of the cell boundaries and the
displacement of the cytoskeleton upon certain deviations of the parameters from
the symmetric setting which led to the steady state solutions introduced in [7]
and describing a resting cell.

We will change the critical concentrations aB/P and the reaction rate con-
stants κB/P . Varying aB/P accounts for changes in the affinity of actin mon-
omers to the respective filament ends which may be mediated by sequestering
agents such as ADF/cofilin ([12]), profilin or thymosin-β4 (cf. [16]). An al-
teration of κB/P reflects a catalytic activity of enzymes like membrane bound
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Figure 3: Typical spatial variations of
κB , κP and aB and aP in units of their
respective steady state values. In this
example, barbed end polymerization is
strongly enhanced close to the right cell
boundary whereas boosted pointed end
depolymerization in the center of the
cell provides additional monomers. For
the simulations, different combinations
of these variations were examined.

formins (cf. [9]). The basis parameters we use as reference values are taken
from the in-vitro measurements conducted in [18].

Many of these actin binding proteins are regulated by GTPases of the Rho-
family (reviewed in [11]), a process we do not explicitely model here. Instead
we take plausible variations of the reaction parameters as shown in Fig. 3.

Another possible way of driving the cell out of its symmetric resting state
is the localized supply of additional monomers which we also investigate in the
simulations. Moreover, the effect of the monomer diffusion coefficient D, which
varies between about 2µm2s−1 in dense actin gels and about 30µm2s−1 in pure
cytosol (cf. [17]), is discussed.

0

space [µm]0 5 10 15 20
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Figure 4: Simulations of an initially resting cell turning into motion upon some exter-
nal stimulus (variations of reaction rate κB and critical concentration aP as sketched
in Fig. 3, κP and aB being kept at their default values). Left : typical initial conditions
for the monomer density (black), the filament end densities (red, blue) and the total
F-actin density (green). Middle: temporal evolution of the F-actin density, right : fil-
ament end distributions after t = 60 s. The Dirac-δ like peaks are not artefacts but
resemble actin polymerization fronts as will be discussed in Sec. 4.

We start with symmetric initial conditions corresponding to a resting cell
as depicted in Fig. 4, left. Any of the above mentioned variations let the right
boundary move forward, thus mimicking the establishment of a lamellipodium.
This is not surprising since the perturbations have been constructed such that
barbed end polymerization is enhanced at the right boundary.

Nevertheless, there are striking differences in the dynamics of filamentous
actin depending on the type of parameter variation.

The main differences lie in the initial velocities and the persistence of the
boundary movement. Increased κB or the release of monomers close to the right
boundary yield high initial velocities but after about ten seconds the velocity
significantly drops due to monomer depletion.
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Changing the critical concentrations aB,P leads to initially slower velocities
but the motion is much more persistent as there is a permanent monomer sup-
ply by pointed end depolymerization and diffusion of monomers to the moving
boundary.

The most pronounced effect results from combining the different pertur-
bations. Of course, we only examine the initial stage of polarization of the
cytoskeleton. Establishing a real lamellipodium would require in addition fila-
ment branching, nucleation of new and total depolymerization of old filaments,
filament alignment, and mechanical forces.

Figure 5: Simulation results for different types of parameter variations (according to
Fig. 3) for D = 30µm2s−1. Varied parameters are indicated in the legends (ac stands
for both, aB and aP ). Left : F-actin concentration after t = 60 s, except for variations
of all parameters (black, t = 23 s) and variation of κP , aP (yellow, t = 29 s). The
zoom shows the F-actin distributions in the expanding part of the cell. Further the
temporal evolution of r (middle) and the boundary velocity ṙ (right ; dotted green line:
variation of κB and aP at D = 3µm2s−1) are shown.

In case some filament depolymerizes faster at its pointed end than it grows
at the barbed end for a long time, the filament vanishes as soon as it is fully de-
polymerized. Since our model does not explicitely contain the filament lengths,
we account for this situation by considering only times in the simulations before
any of the F-actin concentrations drops below zero. This happens e.g. after
about 30 s in case of varied κP and aP with κB and aB being held constant. As
depolymerization at the pointed ends is strongly enhanced without enhancing
growth at the barbed ends, the filaments quickly shrink.

Related to our conjectures in [7], in case of additional monomer release close
to the boundary, faster diffusion leads to a faster decrease of the local monomer
concentration and thereby a quick drop of the boundary velocity. A sustained
boundary movement is only observed upon changes in the reaction parameters
which account for constantly increased barbed end polymerization in case of
variations of κB and aB or a permanent supply of additional monomers by
depolymerization of pointed ends in case of increased κP and aP .

As shown in Fig. 5 the strongest effect on the initial boundary velocity stems
from variations of κB or aB , and of course, this effect is most prominent if both
are combined. Changes in κP or aP yield a delayed effect since the production
of monomers and their diffusion to the front takes some time. Here, a lower
diffusion coefficient leads to a slower increase of the velocity. After some 60
seconds, this effect is however not significant anymore as a slightly shorter front
region evolves which allows for the monomers to diffuse at a similar rate as is
the case for high diffusion coefficients (Fig. 5, right).

The strongest effect of F-actin displacement to the right results from chang-
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ing all parameters (black curves in Fig. 5). Only changing κB and aB also yields
a fast displacement of the right boundary. But in that case the filament density
in the expanding portion of the cell (which is supposed to become the lamella)
is rather small so we suspect that the velocity significantly drops as soon as
the membrane is stretched and exerts a non-negligible force onto the growing
barbed ends.

A very effective parameter variation proves to be a decreased affinity for
monomers at the pointed ends resulting in larger aP together with increased
κB . Simply providing additional monomers for barbed end polymerization by
increasing depolymerization at the pointed ends (changing κP and/or aP ) alone
only yields a very slow movement of the boundary indicating that it is not likely
to be sufficient to generate a quick polarization of the cytoskeleton.

4 Formation of polymerization fronts

Besides the fact that the crossing of characteristic curves at the boundary may
reduce the regularity of solutions there may be other mechanisms preventing the
solutions found in Sec. 3 from existing for large times. Simulations of the full
system indicated the emergence of sharp peaks in the end densities accompanied
by steep gradients in the monomer concentration. Together with the findings
about traveling wave solutions for a related system analyzed in [6] this leads to
the question whether some kind of shock solutions exist and, if so, how these
might look like.

4.1 Dirac peaks with continuous monomer concentration

We consider the full system (2.2), (2.3) and an actin filament density as indicated
in Fig. 6. An equal number of right and left oriented filaments is distributed
symmetrically around the center of the cell located the origin. The barbed
ends of either orientation are concentrated at the membrane which is located at
±(x0 + l0). The corresponding pointed ends concentrate at ∓x0.

For the monomers, we assume

a0P := aP −
vR
δ κP

(4.1)

in the center of the cell. This is just the monomer density at which the pointed
end velocity vP (a) vanishes. So the pointed ends do not move but constantly
produce monomers by depolymerization. At the boundary points we now have
a finite number of barbed ends and we assume

a0B := aB +
vR
δ κB

(4.2)

at the boundary meaning that the barbed end velocity vB(a) is zero at the
boundary. Our no-flux conditions for a have to be changed since the presence of
a finite number filament tips directly at the membrane leads to a non-vanishing
polymerization flux.

The velocities of the filament tips have to vanish at ±x0 and ±(x0 + l0)
which leads to a necessary balance between monomer production by pointed
and consumption by barbed ends:

δ κP (aP − a0P )p0 = δ κB(a
0
B − aB)b0 (4.3)
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Figure 6: Cartoon of a measure
valued steady state with actin fil-
aments (red) and myosins (green)
between them. The black line de-
notes the monomer density (outside
the filaments extended as constant),
bars denote the Dirac measures for
the pointed (blue) and barbed (red)
ends.

where p0 and b0 denote the masses of pointed and barbed ends concentrated in
the Dirac peaks. If p0 = b0 we can compute the distance l0 between the peaks
since the diffusive flux −D∂xa has to balance the polymerization flux. From

−D∂xa ≡
D

l0

(
a0P − a0B

)
on (x0, x0 + l0)

we deduce

l0 =
D

b0vR

(
a0P − a0B

)
=

D

b0vR
(aP − aB)−

D

b0δ

κB + κP

κBκP
. (4.4)

v
R

-v
R

a1 a3

a2 a4

v

Figure 7: Barbed (±vB , red) and
pointed (±vP , blue) end velocities
depending on a and resulting values
for aα for a given positive velocity
v of the profile. For v lying outside
the range indicated by the yellow
stripe there is no admissible value of
a2. The sides of the dashed rectangle
depict the values aB and aP and
±vmax, respectively.

Let us now look for solutions having a fixed shape moving at a constant
velocity. That is, we look for solutions of the form

uα = uα
0 δxα+vt

where v is the velocity at which the profile moves and we choose x1 < x2 <
x3 < x4. Further assume

a(xα + vt) =: aα(v) such that λα(aα) = v for α = 1, . . . , 4

and interpolate according to the diffusion equation in between by solving the two
point boundary value problem for the profile A between xα + vt and xα+1 + vt
(α = 1, 2, 3). This profile has an unchanging shape and we can introduce

ξ := x− vt− xα and A(ξ) = A(x− vt− xα) := a(t, x).
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l
0

Figure 8: Sketch of a moving steady
state profile with positive velocity v. The
monomer concentration is drawn in black ;
the positions and masses of the Dirac
peaks for right oriented barbed ends (red)
and left oriented pointed ends (blue) are
shown as well. The distance l0 here is
given by (4.6).

Then, the shape A satisfies the problem

vA′(ξ) +DA′′(ξ) = 0 , with BC A(0) = aα(v), A(xα+1 − xα) = aα+1(v).

The general solution of this problem is

A(ξ) = C2 exp
[
− v

D
ξ
]
+

C1

v

with constants of integration C1 and C2 given by the boundary values. More-
over, the distances lα := xα+1 − xα (α = 1, 2, 3) and the velocity v are free
parameters to be determined from the flux conditions relating the diffusive flux
±DA′(xα± 0) to or from the shock positions to the production or consumption
of monomers in the shocks due to (de)polymerization.

To avoid overly tedious calculations and notation we shall focus on the two
rightmost peaks in Fig. 6, i.e. the right oriented barbed and left oriented point-
ed ends. Moreover, we assume both peaks to lie in the interior of the cell to
avoid boundary effects.

Again denote the mass concentrated in the pointed and barbed end peaks
by p0 and b0. Given a velocity v, from the boundary conditions for a we obtain
the solution for the profile A of the monomer density between the peaks as

A(ξ) = a3(v)− a3(v)− a4(v)

1− exp
[
− v

D l3
] (1− exp

[
− v

D
ξ
])

.

With θ := v/vR, the flux conditions lead to

θ(a3(v)− a4(v)) = (1− θ)p0 − (1 + θ)b0 (4.5)

l3 =
D

v
log

[
1 +

a3(v)− a4(v)

b0

θ

1 + θ

]
. (4.6)

Here, (4.5) relates the velocity to the ratio of the numbers b0 and p0 of ends
in the respective peaks, and (4.6) determines the distance between the peaks
depending on the velocity and the absolute number of filament tips in the peaks.
Fig. 8 shows a typical example of such a solution for positive velocities.
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4.2 Shocks in the hyperbolic limit system

Formally letting D = 0 in (2.3) we obtain a hyperbolic system

∂t


u1

u2

u3

u4

a

+


λ1 0 0 0 −κ1u1

0 λ2 0 0 −κ2u2

0 0 λ3 0 −κ3u3

0 0 0 λ4 −κ4u4

0 0 0 0 0

 ∂x


u1

u2

u3

u4

a

+


∂xκ

1au1

∂xκ
2au2

∂xκ
3au3

∂xκ
4au4

R(a, u)

 = 0 (4.7)

where λα denote the characteristic velocities depending on a and the κα are
reaction rates of the form ±δ κB/P , possibly variable in space and time.

Given sufficiently smooth initial data and smooth coefficients, the Cauchy
problem for this system possesses a unique smooth solution for small times but
the formation of discontinuities from smooth data cannot be excluded for large
times. To get a feeling how these shocks look like we solve a specific Riemann
problem for this system with constant reaction parameters so that ∂xκ

α ≡ 0.
Let us consider a situation as sketched in Fig. 9 where

u3
l = pl, u4

l = 0 and u3
r = 0, u4

r = br. (4.8)

The monomer densities on the left and right of the shock in this simplest possible
example should be given by aP and aB , leading to characteristic velocities

λ3
l = −vP (aP ) = vR and λ4

r = vB(aB) = −vR (4.9)

and ensuring that no monomers are produced or consumed outside the shock.

Figure 9: Cartoon of filament dis-
tributions and monomer density for
the examplary shock solution with
two end densities in the hyperbolic
limit system. The filament ends
move into the shock and accumulate
there. The left tips of all filaments
are assumed to be far to the left.

Inside the shock, the filament tips lead to a constant production and con-
sumption of monomers which has to be balanced by the flux of monomers into
or out of the shock by its movement. Starting with the discontinuity at x = 0
and denoting the shock position by S(t) and its velocity by s(t), we obtain

0 = (vR − s)(vRt− S)pl − (vR + s)(vRt+ S)br − (aP − aB)s (4.10)

where the first two terms account for the production and consumption of mon-
omers by filament tips, and the last term is the net flux of monomers to the
shock due to its motion. Here (vRt− S)pl and (vRt+ S)br are the numbers of
pointed and barbed ends accumulated in the shock up to time t. This translates
into an equation for the shock curve,

0 = (dS − vRΣt)Ṡ − (aP − aB)Ṡ − vRΣS + dv2Rt (4.11)
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where we introduced Σ := pl + br and d := pl − br.
For the symmetric situation d = 0 with initial condition S(0) = 0, the unique

solution is a standing shock S(t) ≡ 0. If however pl > br, the initial velocity
of the shock is positive and remains so as time proceeds. As the δ-peaks at the
shock position grow, we have

Ṡ(t)→ s∞ =

(
Σ

d
−
√

Σ2

d2
− 1

)
vR as t→∞. (4.12)

In fact, s∞↘0 for d↘0 and s∞↗vR for d↗Σ which corresponds to pl � br. The
dependence of the asymptotic velocity on µ := br/pl is sketched in Fig. 10.

Figure 10: Asymptotic shock speed
in units of vR, depending on the ra-
tio µ = u4

r/u
3
l . red line: calculated

by (4.12), blue bullets: obtained from
simulations of the ordinary differen-
tial equation (4.11).

Now we consider a more complicated situation with finite densities u3 and
u4 on both sides of the shock. Then al and ar can be different from aP and aB ,
and the conditions for them to be constant read

κPu
3
i (aP − ai) = κBu

4
i (ai − aB) for i = r, l. (4.13)

Moreover we have to require

λ3(al)u
3
l + λ3(ar)u

3
r > 0 and λ4(al)u

4
l + λ4(ar)u

4
r > 0

to ensure a net gain of filament tips to the shock. Otherwise we would deal with
a kind of rarefaction wave.

After some tedious calculations which can be found in [8] we obtain condi-
tions for such shocks under our natural assumptions on the parameters. We
found positive end densities u3

l/r and u4
l/r such that the Riemann problem with

these data exhibits a δ-shock solution as described above whenever either

al, ar ∈ (a−, a+) or al, ar ∈ (aB , aP )\[a−, a+] (4.14)

where a± are the roots of

2δ κPκB(aP − a)(a− aB)− (κB(a− aB) + κP (aP − a))vR = 0 (4.15)

solved for a. These roots are real and satisfy aB < a− < a+ < aP whenever
Cond. 3.1 holds, in particular δ κP (aP − aB) > vR.

Given such monomer densities al/r and having fixed one of the end densities,
say u3

r, we can also compute the other end densities from the Rankine-Hugoniot
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conditions and the conditions (4.13) (for details cf. [8]):

u4
r =

κP (aP − ar)

κB(ar − aB)
u3
r (4.16)

u4
l =

vR

(
1 + κP (aP−ar)

κB(ar−aB)

)
− 2δ κP (aP − ar)

vR

(
1 + κB(al−aB)

κP (aP−al)

)
− 2δ κB(al − aB)

u3
r (4.17)

u3
l =

vR

(
1 + κP (aP−ar)

κB(ar−aB)

)
− 2δ κP (aP − ar)

vR

(
1 + κP (aP−al)

κB(al−aB)

)
− 2δ κP (aP − al)

u3
r. (4.18)

4.3 Numerical results involving shock like patterns

So far we showed that there exist weak solutions to the full problem consisting
of isolated δ-peaks for the end densities and a continuous, piecewise smooth
monomer distribution. Moreover, we found shock solutions with δ-peaks and
plateaus for the end densities and discontinuous monomer concentration for the
hyperbolic limit system without monomer diffusion. It remains open whether
the first type of shocks can be expected to emerge from smooth data, and
whether the latter type exists for D > 0.

These questions are difficult to tackle analytically, so we will start with
simulations here. Focusing on the first type of shocks we will use initial data
consisting of smooth but concentrated end densities and a smoothly varying
monomer concentration as indicated in Fig. 11, left.

Figure 11: An example for smooth peaks of end densities as initial conditions (left)
with different numbers of barbed and pointed ends. red : Br, blue: Pl, black : a. The
units of the ordinate are arbitrary. Center : typical steady state pattern evolving from
symmetric initial conditions with equally many barbed as pointed ends. Notice the
linearly interpolated monomer density between the peaks. Right : typical evolution
of a standing profile emerging from a symmetric initial end distribution. The peaks
choose their distance according to (4.4) rather than maintaining their initial distance.
The (left) pointed end peak achieves its δ shape more slowly than the barbed end peak
due to the slower reaction kinetics.

We observe profiles with sharp, δ-like peaks for the end densities and a
continuous, piecewise smooth monomer concentration emerge from this type of
initial conditions.

Depending on the relative sizes of the initial peaks of barbed and pointed
ends we find either a standing profile in case of equal masses in both peaks (cf.
Fig. 11) or a moving profile for different numbers of barbed and pointed ends.
Both, the distance between the peaks and for moving profiles also the velocity at
which the profile moves, nicely match the predicted values from the calculations
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above. Moreover, the monomer profile between the peaks indeed appears to be
linear in the symmetric, non-moving case and has an exponential shape in the
asymmetric, moving setting.

We now discuss the more delicate shock like solutions of the second type
with discontinuous monomer density. We are again interested in the emergence
of shocks from smooth data. So we consider initial distributions as sketched in
Fig. 12 where the plateaus of the end densities have smooth flanks.

Figure 12: Simulations for shocks of the second type. Left : typical initial conditions
with asymmetric end densities. Center : typical evolution of a moving shock with
asymmetric end densities and constantly growing peaks (shown as log[Br + Pl]). The
plateau to the left consists of pointed ends, the one to the right of barbed ends. Initially
the peaks form at a finite distance from one another with a gap practically void of
filament tips between them. Right : typical pattern evolving from symmetric plateau
values br = pl. The monomer density is smoothed by monomer diffusion. We used the
logarithmic scale in the last two graphs to make both, the peaks and plateaus visible.

The resulting profiles are very similar to those predicted by the analysis of
the fully hyperbolic system with D = 0, i.e. they soon develop very sharp Dirac
peaks in the end densities. These peaks are constantly growing as filament tips
are transported into them, and the positions of the barbed and the pointed end
peak coincide after a brief initial phase. Moreover, for different heights of the
barbed and pointed end plateaus we observe the expected moving profiles.

The finite monomer diffusion introduces though a few remarkable deviations
from the predictions of the hyperbolic theory. First, the jump in the monomer
distribution is not reproduced by the simulations with D > 0. We observe
a sharp but yet smooth drop of the monomer concentration across the peak
position which is already significantly non-constant in the vicinity of the shock.

By this variation in the monomer concentration the end densities are affected
as well, and they exhibit smooth tails where the peaks are blended into the pla-
teaus. Thus, the diffusion seems to blur the sharp Dirac peaks predicted for the
hyperbolic system.

So the sharp accumulation of filament tips in a kind of polymerization front
remains intact even for D > 0 with some minor changes in the precise shape of
the peaks whereas the monomer gradient is kept bounded by the diffusion and
gradient blow-up does apparently not occur.

5 Conclusion and discussion

We analyzed a minimal model for the polymerization dynamics of the actin
cytoskeleton of a motile cell with moving boundary conditions accounting for

23



the motion of the cell membrane pushed by actin filament tips. Given smooth
initial data and parameters we can guarantee the existence of classical smooth
solutions for small times but have to expect the emergence of shocks in the long
run.

The shocks we showed to exist as non-classical solutions, consist of Dirac
peaks of filament tips accompanied by strong spatial variations of the monomer
density. Basic versions of these peaks were seen to emerge in simulations from
simple, yet smooth, initial data. More complex variants of these peaks were
observed in simulations of the whole cytoskeleton model where they can be
interpreted as actin polymerization fronts. We would like to emphasize that
these peaks do not mean an explosion of the F-actin concentration but rather
account for jump discontinuities in the filament densities.

For the fully hyperbolic system without monomer diffusion (D = 0) we also
find solutions with discontinuous monomer concentration. Simulations indicate
that these jumps are smoothed in case D > 0.

Finally, we ran some simulations of the full cytoskeleton model with sym-
metric initial conditions which indicate a resting cell in order to invesigate the
polarization of the cell upon spatial variations of the reaction parameters which
account for the polymerization and depolymerization of actin monomers at fil-
ament tips. In order to obtain a fast and significant displacement of F-actin we
need changes in reaction dynamics at both, barbed and pointed ends.

Remarkably, the most effective variation proved to be a simultaneous change
of the pointed end critical concentration aP and the reaction rate constant κB at
barbed ends. The former accounts for an easier dissociation of monomers from
pointed ends by decreasing there binding affinity, an effect which is reported to
be induced by ADF/cofilin. The enhanced reaction rate at barbed ends may be
mediated by the action of formins together with sequestering actin monomers
by profilin under the presence of ATP which we assumed to be available in
abundance. Any other combination of only two parameters changes produced
far weaker effects on the polarization of the cytoskeleton.

For the initiation of a shift of F-actin to the right and thus the emergence
of a pre-lamellipodium we did not need to account for filament branching and
nucleation, barbed end capping or additional control mechanisms. This is in
accordance with our earlier results for the problem with fixed boundary in [7].
However, we cannot make any assertions about the relevance of these effects for
the emergence of a dense actin meshwork which is necessary for the lamellipodial
movement in vivo.

In the future we would like to include mechanical forces at the membrane and
between the cytoskeleton and the substrate into the model in order to explain the
displacement of the whole cell at later stages of motion. Further generalizations
to be considered are a two dimensional formulation of the model to account for
more complex movement of individual filaments and the incorporation of the
filament length as a structure parameter in order to allow for nucleation and
total depolymerization of filaments as done in [5].

6 Appendix - Parabolic Hölder spaces

Here we briefly discuss the notions of parabolic distance, space-time domains
and parabolic Hölder spaces we used before. We will only present the case of one
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space dimension but generalization to the n-dimensional case is straightforward.
Let us consider a space-time domain QT ∈ R× R1 given by

QT = {(t, x) | 0 < t < T, l(t) < x < r(t)} (6.1)

where l, r : (0, T ) → R1 are continuous functions such that l(t) < r(t) for each
t ∈ (0, T ). If r and l are also continuous on [0, T ], the closure of QT is given by
{(t, x) | 0 ≤ t ≤ T, l(t) ≤ x ≤ r(t)} . This is assumed in the following.

Definition 6.1. 1. Given (t, x), (s, y) ∈ R × R1 we define the parabolic
distance between (t, x) and (s, y) to be

|(t, x)− (s, y)|P := max{|x− y|,
√
|s− t|}. (6.2)

2. Given (t, x) ∈ R×R1 and r > 0 we define the parabolic cylinder of radius
r below (t, x) by

Cylr(t, x) :=
{
(s, y) ∈ R× R1 | s < t, |(t, x)− (s, y)|P < r

}
(6.3)

3. For a space-time domain QT given by (6.1) we define its

• parabolic boundary to be

PQT :=
{
(t, x) ∈ ∂QT | ∀r > 0 : Cylr(t, x) ∩

(
(R× R1)\QT

)
6= 0
}

• top or open boundary by T QT := ∂QT \PQT

• bottom or base by

BQT :=
{
(t, x) ∈ PQT | Cylr(t+ r2, x) ⊂ QT for some r > 0

}
• lateral boundary by LQT := PQT \BQT

• corner points by CQT := (PQT ∩ BQT )\BQT .

4. The spatial diameter of the domain QT is given by

diamQT := sup
(t,x),(s,y)∈QT

{|x− y|} (6.4)

5. For t ∈ R define the (closed) temporal section through QT at t by

Σt :=
{
x ∈ R1 | (t, x) ∈ QT

}
. (6.5)

Note that PQT is that part of the boundary of QT through which a parabolic
equation can transport information into the domain via boundary or initial
conditions. More precisely, the bottom BQT is that part of the boundary where
information can only enter the domain, the lateral boundary LQT is the part
which can receive information from outside as well as from inside the domain,
whereas to the top T QT information can only be transported from within the
domain. We therefore have to provide initial conditions on BQT , boundary
conditions on LQT and cannot impose any conditions at T QT .
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Figure 13: Sketch of a typ-
ical space-time domain QT

with the respective parts of
the boundary, and a parabolic
cylinder of radius r being
sketched for three bound-
ary points. Note that beneath
(T, y) there is some parabolic
cylinder which has no point
in common with the exterior
of QT whereas any parabolic
cylinder beneath (t, x) reaches
beyond the boundary of QT .

Furthermore, in our particular setting, we can write these parts of the bound-
ary in simpler terms as

BQT = {(0, x) | l(0) < x < r(0)}
T QT = {(T, x) | l(T ) < x < r(T )}
LQT = {(t, l(t)) | 0 < t < T} ∪ {(t, r(t)) | 0 < t < T}
CQT = {(0, l(0)), (0, r(0))}.

With this set of notation we can now define the parabolic Hölder spaces.

Definition 6.2. Given a space-time domain QT ∈ R × R1, for any function
f ∈ C∞(QT ) and any numbers k ∈ N0 and β ∈ (0, 1) define

‖f‖Ck+β,P :=
∑

m+2j≤k

‖∂m
x ∂j

t f‖C0 + [f ]k+β + 〈f〉k+β (6.6)

where

[f ]k+β =
∑

m+2j=k

sup
(t, x), (s, y) ∈ QT

(t, x) 6= (s, y)

|∂m
x ∂j

t f(t, x)− ∂m
x ∂j

t f(s, y)|
|(t, x)− (s, y)|βP

≡
∑

m+2j=k

HölP,β(∂
m
x ∂j

t f)

(6.7)

and

〈f〉k+β =
∑

m+2j=k−1

sup
(t, x), (s, x) ∈ QT

s 6= t

|∂m
x ∂j

t f(t, x)− ∂m
x ∂j

t f(s, x)|

|t− t0|
1+β
2

≡
∑

m+2j=k−1

Hölt, 1+β
2
(∂m

x ∂j
t f)

(6.8)

are the parabolic and the temporal Hölder constants of the highest relevant com-
binations of derivatives of f , respectively.
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A function f ∈ C0(QT ) is called parabolically Hölder continuous with ex-
ponent β if ‖f‖C0+β,P <∞, and f is of class Ck+β,P if ‖f‖Ck+β,P <∞.

The definitions in [13] lead to precisely the same spaces with equivalent
norms. The first difference is the restriction to finite distances in the definition of
the Hölder constants which does no harm if QT is bounded in space. The second
change consists of splitting up the parabolic Hölder constant into a spatial and
a temporal component, roughly corresponding to a replacement of our parabolic
distance by |x−y|+

√
|s− t| which is of course equivalent. This second alteration

can be accounted for by a factor of 2 in the definition of the norms.
Below we give the explicite expressions of the most widely used parabolic

Hölder norms for functions f defined on QT .

‖f‖C0+β,P = ‖f‖C0 +HölP,β(f),

‖f‖C2+β,P = ‖f‖C2x,1t +HölP,β(∂xxf) +HölP,β(∂tf) +Hölt, 1+β
2
(∂xf).

Remark 6.1. (Hölder scale) As is the case with conventional Hölder spaces,
we have the compact embedding

Ck+β1,P (QT ) ↪→↪→ Cl+β2,P (QT )

for integers 0 ≤ l ≤ k and exponents 0 < β2 < β1 ≤ 1. For the solution
operators in Sec. 3 to be contractions we need the embedding constants for the
case k = l = 0. It is easily seen that

HölP,β1(f) = sup
(t, x), (s, y) ∈ QT

(t, x) 6= (s, y)

|(t, x)− (s, y)|β2−β1

P

|f(t, x)− f(s, y)|
|(t, x)− (s, y)|β2

P

≤
(
max

{
diamQT ,

√
T
})β2−β1

HölP,β2(f) (6.9)

so that the embedding constant only depends on β1, β2, and the size of QT .
The particular Hölder scale for functions g : [0, T ] → R of one real variable

is also useful as it applies to the boundary curves. For these we simply have

Hölβ1(g) ≤ T β2−β1Hölβ2(g) (6.10)

and the embedding constant obviously tends to zero as T does.
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[13] Ladyženskaja O A, Solonnikov V A, Ural’ceva N N, Linear and quasilinear
equations of parabolic type (corrected reprint), Translations of Mathemati-
cal Monographs, American Mathematical Society, Providence, R.I. (1988)

[14] Lieberman G M, Second order parabolic differential equations, World Sci-
entific Publishing, Singapore (1996)

[15] Okabe S, Hirokawa N, Actin dynamics in growth cones, J Neurosc 11.7
(1991), 1918–1929

[16] Pantaloni D, Carlier M-F, How profilin promotes actin filament assembly
in the presence of thymosin-β4, Cell 75.5 (1993), 1007–1014

[17] Plastino J, Lelidis I, Prost J, Sykes C, The Effect of Diffusion, Depoly-
merization and Nucleation Promoting Factors on Actin Gel Growth, Eur
Biophys J 33 (2004), 310–320

[18] Pollard T D, Rate constants for the reactions of ATP- and ADP-actin with
the ends of actin filaments, J Cell Biol 103 (1986), 2747–2754

[19] Ponti A , Machacek M, Gupton S L, Waterman-Storer C M, Danuser
G, Two Distinct Actin Networks Drive the Protrusion of Migrating Cells,
Science 305.5691 (2004), 1782–1786

[20] Yamaguchi H, Condeelis J, Regulation of the actin cytoskeleton in cancer
cell migration and invasion, Biochim Biophys Acta 1773 (2007), 642–652

28


