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The reconstruction of many biological networks has allowed detailed studies of their structural properties. 
Several features exhibited by these networks have been interpreted to be the result of evolutionary 
dynamics. For instance the degree distributions may follow from a preferential attachment of new genes 
to older ones during evolution. Here we argue that even in the absence of any evolutionary dynamics, the 
presence of atypical features may follow from the fact that the network implements certain functions. To 
examine this network function shapes network structure scenario, we focus on the Arabidopsis genetic 
network controlling early flower organogenesis in which gene expression dynamics has been modelled 
using a Boolean framework. Specifically, for a system with 15 master genes, the phenotype consists of 10 
experimentally determined steady-state expression patterns, considered here as the functional constraints 
on the network. The space of genetic networks satisfying these constraints is sometimes referred to as the 
neutral or genotype network. We sample this space using Markov Chain Monte Carlo which allows us to 
exhibit how the functional (phenotypic) constraints shape the gene network structure. We find that this 
shaping is strongest for the edge (interaction) usage, with effects that are functionally interpretable. In 
contrast, higher order features such as degree assortativity and network motifs are hardly shaped by the 
phenotypic constraints. 

Introduction 
The large regulatory networks reconstructed for E. coli and S. 
cerevisiae have revealed special structural features including (1) 
broad distributions of out-degrees, the out-degree being the 
number of interactions or edges outgoing from a given gene; and 
(2) the presence of motifs, that is repeated occurrences of small 
sub-graphs, the most emblematic ones being feed-forward 
loops1,2,3,4,5,6. Such genetic interaction networks provide a static 
genome-wide picture but tell us little about the way regulation 
works as a dynamical machinery. To understand better regulatory 
mechanisms, it is necessary to tackle time dependence of gene 
expression levels. This task has been undertaken on a number of 
small regulatory sub-systems controlling developmental 
processes7,8,9, apoptosis10, cell cycling11,12,13 and circadian 
oscillations14. The inference of the regulatory rules in this kind of 
system requires detailed information on gene expression 
dynamics, in particular when perturbations are present (RNA 
interference, mutants etc.). Properties unveiled within the 
genome-scale networks such as the degree distributions are not 
easily addressed here because of the very small size of the 
networks. Furthermore, it is difficult to extract any regulatory 
principles because each system is a special case. Nevertheless, it 
is clear that the dynamical properties of these small networks 

must shape to some extent their wiring. Revealing such an effect 
requires more than a few network reconstructions. Here we 
propose to go beyond individual networks by considering in 
silico all wirings that satisfy the constraint of reproducing 
observed gene expression patterns. By comparing such networks 
to the case where the constraint is not imposed, we can see how 
network function shapes network structure. 
 
To implement this program, we focus on the regulatory network 
controlling early flower organ specification (FOS) in the plant 
Arabidopsis. Its inferred gene regulatory network (GRN) consists 
of 15 genes, nearly all of which code for transcription factors. In 
this system as well as in many others controlling organism 
development, the gene expression levels of the different cell types 
are typically approximated as being either on or off. Based on 
such a Boolean framework, the group of Alvarez-Buylla 
provided9,15,16,17 one of the most detailed reconstructions of a 
dynamical GRN (cf. Fig.1-A). In their model, for each gene a 
Boolean input to output function specifies that gene’s expression 
level in terms of its inputs from the other genes. Clearly this is a 
crude representation of reality since it ignores the distinction 
between RNA and protein expression levels, pre/post 
transcriptional and translational mechanisms of regulation, etc. 
but such limitations are commonplace in GRN modelling. The 
Alvarez-Buylla GRN allows for 10 different steady states (Fig.1-
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B) of the dynamics, associated with 10 different cell types in the 
early developmental stages of the Arabidopsis flower organs. For 

our study, we shall use the same Boolean framework and shall 
take those 10 steady states to be the phenotypic viability  

 
Fig.1 The gene regulatory network constructed in the Avarez-Buylla Boolean modelling framework9. (A) represents the interaction graph between the 15 
genes present in the GRN. The 3 external genes, having no input, are called leaves (orange) whereas the 12 other genes, forced to have at least one input, 

are non-leaf  nodes (grey). (B) The 10 steady-states corresponding to the different organs. 

constraint on our in silico GRNs. To test how network function 
shapes network structure, we consider all possible wirings and all 
possible Boolean rules for each gene, subject or not to the 
phenotypic constraint. The corresponding spaces or ensembles of 
GRNs have to be sampled rather than enumerated because of 
their huge size, and we do so by Markov Chain Monte Carlo18. In 
our main ensemble, referred to as CP, the 10 steady state 
constraints or phenotypes are imposed. In contrast, in our 
ensemble referred to as C, these constraints are not imposed. By 
comparing the structural features of networks in these two 
ensembles, we determine how the FOS function shapes the 
network wiring properties. We also repeat the comparison using 
the ensembles CD and CDP obtained from C and CP by 
restricting the in- and out-degrees of each gene to be those of the 
Alvarez-Buylla network. One of the strongest effects found in 
these comparisons concerns the frequency with which an 
interaction is present. Hereafter, we refer to these frequencies as 
the edge usage because each interaction is an edge in the graph 
representation of the network. The interpretation of a strong edge 
usage effect is that the imposition of the 10 steady states on 
GRNs forces certain interactions to be frequently or always 
present. Interestingly, network structures at higher levels, that is 
including more genes or edges, such as network motifs, are 
hardly affected by functional constraints: the few effects we do 
see can be understood as consequences of the edge usage 
structuring. 

Results 
The phenotypic viability constraint is severe 

In the network reconstructed by Alvarez-Buylla et al.9,15,16,17 
shown in Figure 1-A, there are 15 genes. Three of these have no 
inputs, corresponding to what are called leaves in graph theory 
terminology. (We shall use the terms node and gene 

interchangeably in what follows.) In reality these genes must 
have some inputs but they probably come from outside of the list 
of 15 master genes included in the model. For our framework, we 
maintain this leaf status for the same 3 genes, and in fact we also 
maintain their property of having a single target (out-degree of 1). 
The other 12 genes are taken to be non-leaf nodes; specifically, 
we force them to have at least one input from one of the other 
genes (we thus forbid having only a self-input). The set of all 
networks incorporating these features is what we call the 
ensemble C. Lastly, we shall fix the number of interactions in the 
network. Based on the inferred network of Alvarez-Buylla et al., 
the number of interactions will generally be 46, but all values 
between 12 and 147 can be considered. The size of C is quite 
astronomical; in particular, for the biological case in which the 
total number of edges is 46, we find (using Mathematica as 
described in the Supplementary Information) that C contains 1.4 
1040 networks.  
 
Next, we consider the ensemble CP obtained from C by further 
imposing what we call the phenotypic viability constraint: the 10 
expression patterns of the FOS model must be steady states of the 
GRN dynamics. By construction, CP is contained in C. We find 
that it too is very large; for instance, for a total of 46 edges, CP 
contains 5.2×1037 elements. Not surprisingly, its size is 
substantially smaller than that of C. Indeed, each steady state 
leads to a non trivial constraint, so in practice the constraint of 
phenotypic viability is quite severe: for 46 edges, CP represents 
only a fraction 0.0036 of C, that is less than 0.4%. The sizes of 
these sets can be computed for any number of edges E. The 
associated numbers are displayed on a log scale in Fig.S1. From 
these numbers, we have calculated what we call the CP/C ratio, 
that is the fraction of networks in C that also belong to CP. We 
find that below E=16 the ratio is 0, that is one cannot satisfy the 
phenotypic viability constraint with any network if it has 15 or 



 
less edges. The CP/C ratio is still small for E=46, but then rises 
rapidly. Finally one enters a regime that holds until E approaches 

its maximal value of 147, regime in which the CP/C ratio is very 
close to being linear in the number of edges, ending at E=147  

 
Fig.2 Comparison of each gene’s in- and out-degree in the C and CP ensembles with the Arabidopsis reference network. (A) Ensemble mean and 

standard deviation of the in-degree for each non-leaf node. (B) Ensemble mean and standard deviation of the out-degree for each non-leaf node. 

where CP=C. These results are displayed graphically in Fig.S2. 
Roughly, the condition of satisfying the 10 steady states becomes 
an easy to satisfy constraint beyond a number of edges (that is 
interactions) E=100.  
 
In the case of CD and CDP, our mathematical tools are inefficient 
and so the exact sizes of these sets cannot be determined in 
practice. Nevertheless, the ratio CDP/CD can be estimated from 
the MCMC sampling of CD by simply computing the probability 
that a network chosen at random in CD will be phenotypically 
viable. With this approach, for E=46 interactions which will be 
the value imposed in most of our work, we find that the CDP/CD 
ratio is 0.13%. From these results we conclude that whether or 
not one imposes the in- and out-degrees at each node, the 
phenotypic viability constraint is severe.  

Degree distributions are affected by phenotypic viability  

The in-degree (respectively out-degree) of a node is the number 
of interactions (edges in graph terminology) that are incoming to 
it (respectively outgoing from it) In our framework, the leaf 
nodes have in-degree of 0 and out-degree of 1, while the non-leaf 
nodes have variable in- and out-degrees. We will thus focus here 
on the non-leaf nodes only. In the C ensemble, phenotypes are 
ignored, making all non-leaf genes equivalent. Thus the ensemble 
mean in- and out-degree for each gene can be computed 
straightforwardly. Specifically, using E=46, the two means are 
46/12=3.83 and 43/12=3.58. However the distribution of in- and 
out-degrees is non-trivial because the self-edges have a special 
status. In practice, the in-degree distribution is close to a shifted 
Poisson having one (obligatory) edge plus a number of extra ones 
that are distributed according to a Poisson law of mean 
34/12=2.83. The out-degree has no particular constraint so its 
distribution is very close to a Poisson law of mean 43/12=3.58.  
 
In the case of CP, the non-leaf nodes are no longer equivalent 

because of the phenotypic constraint. Thus the mean and variance 
of a gene's in- and out-degree will vary from gene to gene. By 
comparing to what is obtained without the phenotypic constraint, 
we find that the out-degree variances in CP and C are very 
similar while the in-degree variances are about 10% lower in CP 
than in C. In Fig.2 we display the means and standard deviations 
for each gene; one sees specificities for each gene, with modest 
gene to gene variations, these being on the order of 10 to 20%. 
That figure also displays the degrees for the Arabidopsis 
network17 which we refer to as the reference network. Very 
clearly, this reference network has degrees that fall outside of the 
standard deviations produced in CP so it is fair to say that it is 
atypical for that ensemble. This result also follows by comparing 
the degree distribution of the Arabidopsis network and that of 
networks in CP as displayed in Fig.S3. Such a difference could 
be due to insufficient realism of the modelling framework as 
mentioned in the introduction, to uncertainties in the reference 
network itself17, or to evolutionary forces outside of our scenario 
such as genome duplications that are known19 to shape GRNs. No 
matter what, to come closer to the biologically observed 
properties it is appropriate to apply the standard approach20,2 in 
which one fixes the in- and out-degree of each gene to the value 
arising in the reference network. Imposing this constraint on 
networks of C leads to the networks in the ensemble CD. 
Superposing the phenotypic viability constraints on CD produces 
the CDP ensemble. Comparing the networks of these two 
ensembles allows us to isolate the consequences of the 
phenotypic constraint in the same spirit as when going from C to 
CP while keeping structural features that follow solely from the 
values of the degrees. 

Phenotypic viability drives specific edge usage 

When imposing the phenotypic constraint, a gene must use its 
input signals to provide the proper output expression level for 
each of the 10 steady states. Since each gene has its own gene 



 
expression profile, the choice of input edges can be important. 
We thus examine which edges are used and at what frequency for 

each gene. This information is represented via a heat map in 
Fig.S4-A,B for the networks in the C and CP ensemble. For the  

 
Fig.3 Change in edge usage when imposing the phenotypic constraint. Each interaction (from column number to line number) is realized at a frequency 
that depends on the ensemble. The natural logarithms of ratios of frequencies are shown as a heat map. (A) Log ratio of frequencies when going from C to 

CP. (B) Log ratio of frequencies when going from CD to CDP. 

three leaf genes, no inputs are allowed, and since they each have 
a single output, the other genes receive their signal with an 
average frequency of 1/12; interestingly, in both the C and CP 
heat maps there are no visible deviations from this average.  
 
Consider now the edge usage from non-leaf to non-leaf nodes. In 
the C ensemble, all non-leaf nodes are equivalent so individual 
genes i receive inputs from other genes j with no preferences 
amongst these as long as j is different from i. The result is a 
uniform heat map for the off diagonal elements. On the diagonal, 
the frequency is a bit lower because self-interactions do not count 
for the obligatory input to each non-leaf node. Now, for networks 
in CP, the previous section (cf. Fig.2) showed that the mean in- 
(respectively out-) degree varies slightly from gene to gene. As a 
consequence, the average frequency in a row (respectively 
column) of the CP heat map will depend on the gene. 
Interestingly, these differences in means are modest, yet, as 
shown in Fig.S4-B, the CP heat map is quite heterogeneous. First 
of all, the frequency of the self-edges of genes WUS and AP3 is 
100%. That this has to be the case can be seen from the steady 
states: the expression of WUS is the only signal differentiating 
the steady states Inflorescence1 and Inflorescence3, while the 
expression of AP3 is the only signal differentiating the steady 
states Stamen2 and Carpel. Secondly, only two genes 
differentiate the steady states Sepal and Petal2: these are PI and 
AP3. If the gene PI has a self-edge, no other input is preferred, 
but if it doesn't, it must have AP3 as input. These restrictions lead 
to a high frequency of the edges PI → PI and AP3 → PI, as seen 
in the heat map. Lastly, we see in Fig.S4-B a clear pattern 
whereby AG, FUL and AP1 preferentially connect to one 
another. This pattern can be explained by observing that these 3 
genes are the only ones distinguishing Petal1 from Stamen1 and 
Petal2 from Stamen2; they thus must receive inputs from one 
another or have self-interactions, leading precisely to the 

symmetric pattern seen in the CP heat map. Overall, the 
conclusion is that every heat map feature arising when going 
from C to CP can be traced to a property of the 10 expression 
profiles imposed for phenotypic viability. The corresponding 
changes of edge usage frequencies are illustrated in Fig.4-A, 
again via a heat map, but here based on the natural logarithms of 
the ratios of frequencies. 
 
One could compare the heat map of CP to the actual connections 
in the reference network. However as seen in the previous 
section, the reference network has in- and out-degrees that are not 
typical of CP and so a different approach is necessary. Instead, 
and to refine the analysis, we will use the ensembles CD and 
CDP that force the number of in and out interactions for each 
gene to be the same as in the reference network. The heat maps 
for these two ensembles are shown in Fig.S4-C,D. We saw when 
going from C to CP that the genes WUS and AP3 necessarily had 
self-edges; this of course is also true and for the same reasons 
when going from CD to CDP. Furthermore, it turns out that the 
main increases in frequencies when going from C to CP simply 
carry over to those when going from CD to CDP (cf. Fig.4-A and 
Fig.4-B). Other differences arise, the largest one being that the 
frequency of presence of the LFY → SEP interaction increases 
when going from CD to CDP but not when going from C and CP. 
A plausible explanation for this fact is that the in-degree of SEP 
is 1, rendering it rather sensitive to the phenotypic constraint in 
CDP but not in CP where the individual degrees are not 
constrained.  
 
Finally, one can ask whether the reference network is an out-lier 
for the CDP ensemble based on its edge usage. Looking at the 
inputs of each gene on its own, there are no cases of edge usage 
that seem highly unlikely for CDP. To quantify this, we have 
performed a test of the hypothesis H0 that the reference network 



 
belongs to the ensemble CDP using as summary statistic the likelihood L of the interactions used. For any network (actually  

Table 1 Comparison of 4 directed assortativity coefficients in the Arabidopsis network with ensembles C, CP, CD and CDP. The table lists 
the mean and standard deviation of the 4 directed assortativity coefficients in each ensemble. The table gives the   Z-scores for the 4 
assortativity coefficients in the Arabidopsis network when benchmarked against the ensembles C, CP, CD and CDP. 

 

 

an directed graph) G, L(G) is defined as the product over all 
ordered pairs (i,j) of the factor p(i←j) if the interaction i←j is 
present in G and (1-p(i←j)) if it is not, where p(i←j) is the 
probability of presence of that interaction as given by the heat 
map.  
Thus we have: 

 

Within CDP, we compute the distribution of L and then 
determine a p-value for H0 based on L(G*), the value of L for the 
Arabidopsis reference network. We find a p-value of 0.19 which 
does not allow us to reject H0. 

Assortativity is hardly affected by phenotypic viability 

Assortativity21 in networks can be defined for any feature but in 
practice it is mostly used for the degree of nodes. A positive 
(degree) assortativity means that the degrees of neighbouring 
nodes are correlated positively. Investigations of numerous 
biological networks show that assortativity tends to be negative, 
i.e., high degree nodes tend to connect less to other high degree 
nodes than in random networks. In a directed network, it is 
appropriate to distinguish the in- and out-degrees, leading one 
rather naturally to four correlation coefficients22 for in-in, in-out, 
out-in and out-out degrees. We have computed these four 
measures of assortativity in the ensembles C, CP, CD, and CDP, 
and also in the reference network; the results are given in Table 1. 
For the four ensembles, we provide the mean and standard 
deviation of the assortativities, while for the reference network 
we provide the values and the corresponding Z-scores. The Z-
score is a measure of the deviation from the mean, defined as (x – 
μ)/σ where x is the observed value while μ and σ are the mean 
and standard deviation in the ensemble. An absolute Z-score 
greater than 1.96 corresponds to an event that is outside the 95% 
confidence interval and thus can be considered to be an outlier. 
 
Comparing the ensembles C and CP, we see that the phenotypic 
viability constraint leads to only small changes in the different 
assortativities (cf. Table 1). Nevertheless, these changes are real 
so phenotypic viability does affect assortativity. (Noting that each 
value in Table 1 is an average over 105 networks, the standard 
error on each means is of the order of one percent of the standard 
deviation in Table 1.) Now, using these ensembles to benchmark 
the Arabidopsis reference network, one finds that three of the 
eight Z-scores have an absolute value larger than 1 and that they 
are all negative, suggesting that the reference network is nearly an 

outlier for these two benchmark ensembles. Consider now the 
ensembles CD and CDP. Their assortativities are definitely lower 
than the ones of C and CP, and as expected both go in the 
direction of the assortivity of the reference network. Furthermore, 
the Z-scores of the reference network when using either CD or 
CDP are all less than 1 in absolute value and now take on both 
positive and negative values. The reference network thus seems 
typical for these two ensembles. 
 
The main points brought out by these measurements are (1) 
phenotypic viability has negligible effects on assortativities, be-it 
for C → CP or CD → CDP; (2) imposing the node (gene) 
degrees to their values in the reference network leads to 
assortativities close to the ones found in the Arabidopsis network. 

Network motifs are insensitive to phenotypic viability 

In contrast to degrees that are defined for individual nodes, or 
edge usage and assortativity that are defined from pairs of nodes, 
network motifs1,2 are defined from potentially many nodes. A 
motif can be thought of as a small graph with a number of nodes 
and edges connecting them according to a given pattern. For 
instance, a simple pattern of non-directed connections using four 
nodes is the square where each node connects to exactly two 
other nodes. Here we shall take into account the fact that the 
edges in our networks are directed. When defining a motif, the 
labels of the nodes are omitted so that only the pattern of 
(directed) connections matters. At a more formal graph 
theoretical level, motifs are subgraph topologies. From a 
biological perspective, if a particular motif is over-represented, 
that is arises in a network far more often than might be expected 
at random, then one is tempted to think that its presence is not 
coincidental and results from a selection mechanism. 
 
Since a subgraph can contain smaller subgraphs, the frequencies 
of small motifs will influence the frequencies of larger ones just 
like degree distributions can influence assortativities. Let us thus 
begin with the simplest possible motif, a node with a self-edge, 
corresponding to a gene with a self-interaction. When going from 
C to CP, or from CD to CDP, we saw that self-interactions were 
obligatory for the genes WUS and AP3. We may then expect that 
the number of self-interactions will increase by about 2 units 
when enforcing the phenotypic viability constraint. As shown in 
Table S1, this trend occurs for both C→CP and CD→CDP. We 
also saw that the other major effect of phenotypic viability on the 
heat maps was to increase the frequencies of interactions between  



 
 

 
Fig.4 Motif usage in the reference network benchmarked against what arises in the four ensembles, C, CP, CD, and CDP 

the three genes, AG, FUL and AP1. One may then expect 
phenotypic viability to increase the occurrence of the two-node 
motif corresponding to a mutual interaction between two genes. 
From Table S1, we see that the opposite happens: this motif 
decreases for both C→CP and CD→CDP. To understand this 
paradoxical result, recall that lower order motifs affect higher 
order ones. Here we know that the networks in CP (respectively 
CDP) have a few more self-interactions than those in C 
(respectively CD). Since the total number of interactions is fixed, 
that leaves fewer interactions to form mutual interactions, thereby 
lowering the expected frequency of this two-node motif. We can 
put this on a quantitative footing as follows. In the ensemble C, 
the distribution of the out-degree of the 12 genes that are not leaf 
nodes is very close to a Poisson law of mean 43/12. Taking these 
degrees to be independent which is an excellent approximation 
because only their total number is constrained, the average 
number of times the mutual interaction motif should appear is 
approximately 12×11×(43/12)2/(2×12×12)=5.88. This is 
extremely close to the actual value measured in the ensemble C, 
namely 5.81 (cf. Table S1). The same reasoning can now be 
applied to CP simply by taking into account the fact that some 
edges have to be reserved for the self-interactions. Looking at the 
heat map for CP, we see that there are typically three additional 
self interactions compared to what happens in C. Thus we will 
assume that there are 43-3=40 interactions available for 
contributing to the mutual interaction motif. Repeating the 
arithmetic, the average number of times the mutual interaction 

motif should appear is 12×11×(40/12)2/(2×12×12)=5.09. This is a 
bit lower than 5.25, the actual value measured in the ensemble 
(cf. Table S1). Thus phenotypic viability leads to a slight 
enhancement of the mutual interaction motif when using the 
proper background expectation. Nevertheless, it is important to 
keep in mind that this effect is both subtle and small. 
 
Going on to motifs with three nodes, there are a total of 13 
possible connected wirings when taking into account edge 
directions. Again Table S1 gives the mean and standard deviation 
of the occurrences of these motifs in all four ensembles. 
Comparing C and CP, we see that phenotypic viability reduces 
slightly the frequencies of all 3-node motifs, but by an amount 
that is only a fraction of the standard deviation, so just as for the 
two-node motif, the effects are small. Note that to a large extent, 
the decrease in the motif frequencies follows from the argument 
already given above: there are fewer edges able to participate in 
motif formation in CP than in C because of the increased number 
of self-interactions imposed by phenotypic viability. In the case 
of CDP vs. CD, 10 out the 13 motifs follow this rule of 
decreasing frequency. The same is true for the clustering 
coefficient23 as shown in Table S2. The clustering coefficient 
measures the frequency of triangles ignoring the direction of the 
edges, and we find that when enforcing phenotypic viability, the 
frequency of the triangle motif decreases. Thus for all ensembles, 
the constraint of phenotypic viability seems to generate no more 
structuring of 3-node motifs than expected given the changes in 



 
frequencies of the lower order motifs.  
 
Now we will compare the number of occurrences of motifs in the 
Arabidopsis reference network to what is expected in each 
ensemble. Table S1 provides these numbers as well as the 
associated Z-scores in each case. Let us start with the single node 
motif: it is under-represented when comparing to the 
phenotypically viable ensembles, suggesting that there may be an 
artefact of our modelling that encourages self-interactions. This is 
quite plausible since self-interactions provide no contextual 
information and thus do not actually guide the system towards a 
good expression profile, whereas it is clearly advantageous within 
our modelling where we simply impose 10 steady states. Indeed, 
having a self-interaction for a gene guarantees that it will satisfy 
the steady-state constraints. Moving on to the two-node motif, we 
see that Arabidopsis has an extremely strong over-representation 
of mutual interactions. The presence of such interactions is 
standard lore in developmental systems: mutually inhibitory 
interactions allow for sharp boundaries between domains while 
mutually activating interactions allow for stable expression 
patterns within domains. However our ensembles do not exhibit 
as many mutual interactions as the Arabidopsis reference 
network. Just as for the case of the degrees, this discrepancy may 
be due to limitations of our modelling framework or may indicate 
that other factors (beyond the phenotypic constraint) affect 
network structure. 
 
Finally, consider the 3-node motifs (Table S1 and Fig.4). A 
significant number of their Z-scores have an absolute value larger 
than 1.96, making Arabidopsis an outlier: 4 for C, 6 for CP, but 0 
for both CD and CDP. This shows that it is not the phenotypic 
viability constraint that is responsible for Arabidopsis being an 
outlier in CP but rather its degree sequence. This conclusion 
holds also for the triangle motif (cf. Table S2).  

Role of phenotypic robustness 

So far we have considered that the phenotypic viability was the 
only feature to impose on GRNs to test our scenario. But even if 
selection acts only on phenotypic viability, as a side effect it is 
known that it will enhance mutational robustness in steady-state 
populations. We have thus investigated the consequences of 
mutational robustness in our GRNs on the network structural 
features. Since mutations break interactions, we define the 
mutational robustness of a GRN as the probability that it still 
satisfies phenotypic viability after a random edge deletion. 
Deleting an edge from j to i means that the Boolean value of gene 
j as seen by i is 0, from which we then test the phenotypic 
viability. Fig.S5 gives the mean robustness as a function of the 
number of edges for GRNs in the ensemble CP, showing that a 
maximum arises not far from 46 edges (the number in the 
reference network), Also shown in that figure is the average 
fraction of steady states that are unaffected by deleting a random 
edge. We then inquired whether level of robustness correlated 
with structural features. To do so, we divided our 105 networks of 
CP (respectively CDP) into four quartiles so that Q1 has the 
lowest robustness and Q4 the highest. For CP and CDP 
separately, these two subsets were then analysed for structural 
features as shown in Table S3 and S4. For the assortativities, we 
see that robustness changes their averages but by an amount 

much smaller than the width of the distributions. For the motifs, 
the main effect of robustness is to increase the frequency of self 
edges. It does not help reduce the discrepancy between our 
ensembles and the reference network, in particular regarding the 
over-representation of the mutual interaction motif. 

Discussion and conclusions 
The 15 master genes controlling flower organ specification (FOS) 
in Arabidopsis allow for 10 different expression profiles. By 
integrating results from numerous articles on physical 
interactions as well as on phenotypes of mutants, the group of 
Alvarez-Buylla was able to propose a putative interaction 
network with 46 edges which we call the reference network, 
along with Boolean rules reproducing the FOS expression 
profiles9,15,16,17. The 10 steady states of this network can be 
considered as part of the function of this genetic system. We have 
tackled the problem of how such a function can be implemented 
by more general networks and what common network structural 
features will thereby emerge. To quantify this network function 
shapes network structure scenario, we considered ensembles of 
gene regulatory networks (GRNs) using Boolean control rules 
and examined which structural features appeared as a result of 
imposing the FOS function. If a Boolean network implements the 
10 FOS expression profiles as steady states, we say that it is 
phenotypically viable. In our first pair of ensembles, C and CP, C 
mainly constrains the number of genes and interactions while CP 
is the subset of phenotypically viable networks in C. In our 
second pair of ensembles, CD and CDP, CD is the restriction of 
C to networks having the same in- and out-degree sequence as the 
reference network, while CDP is obtained by imposing in 
addition phenotypic viability. 
 
We first set out to count the number of networks before and after 
imposing the FOS functional constraint (Fig.1-B). For 46 
interactions as in the reference network, CP contains more than 
1037 networks so there is an astronomical number of ways to 
satisfy the phenotypic viability constraint. Nevertheless, this 
number represents less than a fraction 0.004 of all networks in C. 
Taking a network at random, the chance that it is phenotypically 
viable is tiny, and thus the phenotypic viability constraint is 
severe. The severity is worse when the number of interactions 
allowed in the networks is decreased, and in fact for less than 16 
interactions it is simply not possible to reproduce the constraints 
of having all 10 steady states. 
 
We then asked how the phenotypic viability constraint shapes 
structural features to test the network function shapes network 
structure scenario. The strategy used compares properties of 
networks in C and CP or of networks in CD and CDP. Given the 
huge sizes of these ensembles, we used Markov Chain Monte 
Carlo18 to sample them. Thanks to this highly versatile 
computational tool, we generated 105 networks in each ensemble, 
allowing precise quantifications of the associated network 
structural properties. Starting with the simplest structural 
features, namely the in- and out-degrees, we found that imposing 
phenotypic viability had only very small effects: the distribution 
of degrees stayed close to Poisson, while the mean in- and out-
degrees merely varied by about 5% from gene to gene (Fig.2). 



 
This result can be qualitatively understood from the fact that the 
mean degree is high (non-leaf nodes have an average of 3.8 
inputs): the more inputs a gene has, the more steady-state 
constraints it can satisfy. Imposing phenotypic viability will 
mainly affect the frequencies of having just one or two inputs, 
changing these frequencies from low to very low values. In 
contrast, imposing phenotypic viability had a very clear effect on 
the edge usage (Fig.S4): (1) self-interactions for both WUS and 
AP3 became obligatory, (2) PI had to have a self-interaction or an 
input from AP3, and (3) AG, FUL and AP1 preferentially 
connected to one-another. All these effects were interpretable 
using the 10 steady state expression patterns. In a more general 
context, one may expect such edge usage shaping to be all the 
more visible that there are many constraints (here steady states) to 
satisfy and few edges to work with.  
 
We also studied higher order structural features of networks in 
our ensembles: assortativity, motifs and clustering (which is 
associated with the triangle motif ignoring edge direction). In all 
these cases, the changes due to imposing phenotypic viability 
were generally understood through the shaping of the lower order 
features, here node degree and edge usage; for instance the self-
interactions drove down slightly all higher order motifs. Our 
conclusion is thus that phenotypic viability here has hardly any 
direct consequences on higher order structures (cf. Fig.4 and all 
Tables), a result that had also been seen in another in silico 
system24. In contrast, there were quite large changes when going 
from C to CD or from CP to CDP simply because structural 
features depend significantly on the in- and out-degree sequence. 
In a similar vein, we also asked whether the phenotypic 
robustness of networks shapes their structural features. The 
answer is yes, although in the system studied here the effects are 
small (cf. Tables S3 and S4). Perhaps the main consequence of 
robustness is to act on the number of interactions; as shown in 
Fig.S5, robustness is maximized when the number of interactions 
is close to that found in the reference network. 
 
Finally, the network function shapes network structure scenario 
was used to compare the Arabidopsis network proposed by 
Alvarez-Buylla et al. to the networks in our ensembles. Not 
surprisingly we recovered some of the features of the edge usage 
that are interpretable in terms of the steady-state constraints, just 
as when going from C to CP or CD to CDP (cf. Fig.3). Beyond 
that, it transpired that for the in- and out-degree sequences, the 
Arabidopsis network was a clear outlier, having many more genes 
than expected with very low or very high degree (cf. Fig.2 and 
Fig.S3). Such a property may be due to limitations of the Boolean 
GRN modelling framework that ignores the detailed molecular 
nature of interactions. In particular, all interactions are counted in 
the same way, be-they transcriptional or translational, thereby 
probably biasing the use of interactions in our ensembles. It is 
also possible that evolutionary history has played a role in 
addition to the functional constraints we focused on in this work. 
In particular, there have been studies modelling the effects of 
genome duplications on regulatory motifs19; in the Arabidopsis 
network some of the genes are believed to be distant paralogs, a 
property that would lead to an enhancement of particular motifs 
such as the 2-node mutual interaction. In spite of these possible 

limitations, it should be clear that this system has exhibited 
certain network structures that are consequences of network 
function, even if it is mainly at the level of edge usage rather than 
the more appealing level of motif over-representation.  

Model and Methods  
Boolean Gene Regulatory Networks  

Boolean gene regulatory networks25,26,27 are simplified models of 
gene regulation that take the state of each gene to be either on or 
off. The associated expression levels are typically represented by 
the binary values 1 and 0. In a GRN there are nodes representing 
genes as well as directed edges representing genetic interactions 
that specify which genes serve as input to which. For a given 
gene, the input to output relation is necessarily Boolean, and can 
be represented by a truth table in which the output (0 or 1) is 
specified for all possible 2k input patterns if there are k inputs. 
The set of interactions and the Boolean functions for each gene 
can be considered to define the genotype of the network. 
 
The phenotype of a GRN depends on the expression patterns 
generated by the network under its expression dynamics. These 
depend on the Boolean functions for each gene but also on the 
order in which gene expression values are updated. The group of 
Alvarez-Buylla9,15,16,17 as well as many other authors use discrete 
time steps with synchronous updating, that is all genes are 
updated at the same time at each step. Given the specification of 
the dynamics, the genotype completely defines the phenotype so 
we have a genotype to phenotype map. In the present work, for 
the phenotype we focus only on the steady states of the dynamics, 
and therefore the order of the updating does not matter. 

The Arabidopsis FOS GRN 

By integrating results from a large number of publications, the 
group of Alvarez-Bullya was able to propose a list of 15 genes 
and 46 interactions that drive flower organ specification (FOS) in 
Arabidopsis thaliana. Of these 15 genes, 3 are leaves, i.e., are 
nodes with no inputs. Thus, in the context of the model, their 
expression levels are externally determined, independently of the 
rest of the network; these leaf nodes each connect to the non-leaf 
nodes with one edge, and have no inputs. The 12 other genes 
have inputs from at least one gene other than themselves.  
 
Going beyond a static description, Alvarez-Buylla's group 
furthermore constructed a discrete time dynamical Boolean GRN 
that has the property of reproducing the 10 known expression 
patterns in the different parts of the flower primordium. These 
patterns are provided in Fig.1. The Boolean rules for the different 
genes have been validated both using the Arabidopsis thaliana 
wild type and various mutants9,15,16,17. 

The Ensembles C, CP, CD and CDP  

To understand the consequences of phenotypic viability (the 
phenotypic constraint) on the structure of gene regulatory 
networks, we constructed 4 ensembles of networks that are 
subject to different sets of constraints. For the ensemble “C”, 
each leaf node has one unique output connection to a non-leaf 
node and no incoming edge; furthermore, non-leaf nodes must 
always have at least one incoming interaction and when there is 



 
in fact only one, it may not be a self-input. These constraints are 
motivated by the interactions observed in the Arabidopsis 
reference network. Finally, we also take the total number of edges 
to be fixed; for most of the results shown, this number is set to 
46, the number of edges in the reference network. 
 
For the next ensemble, referred to as “CP”, we begin with the C 
ensemble and impose in addition the phenotypic constraint, thus 
the “P” in this nomenclature. Explicitly, given a network of 
interactions satisfying the constraints of C, membership in CP 
requires that it be possible to find Boolean input-output rules such 
that the 10 Arabidopsis expression profiles are all steady states of 
the dynamics. If that is the case, we call the network 
phenotypically viable. Clearly, comparing CP to C directly brings 
out the consequences of satisfying the Arabidopsis phenotypic 
constraint. 
 
The ensemble “CD” is the subset of C where each gene has the 
same in-degree and out-degree as in the reference network. CD 
corresponds in effect to the set of networks obtained by applying 
the edge exchange algorithm20,2 to the Arabidopsis reference 
network. 
 
Lastly, the ensemble “CDP” is the subset of CD consisting of all 
of its phenotypically viable networks. Just as for the passage from 
C to CP, going from CD to CDP exhibits the consequences of the 
Arabidopsis phenotypic constraint, but where possible effects of 
the degrees have been already been taken into account. 

MCMC sampling of each ensemble  

It is not possible to consider all networks in any of our ensembles 
because they are far too many. The next best thing to do is to 
sample each ensemble sufficiently to obtain its properties to 
whatever precision is necessary. Markov Chain Monte Carlo 
(MCMC) makes this possible even in the ensembles where the 
networks are highly constrained (for instance by the phenotypic 
constraint). The principle is completely general: one sequentially 
constructs a succession of networks N1, N2, … , Nn, all belonging 
to the ensemble under consideration. Each network is constructed 
from the preceeding one using a Markov Chain: a proposed 
change is stochastically generated and then it is either accepted or 
rejected according to the so called Metropolis rule18. In practice, 
the proposed change consists in removing one edge and replacing 
it by another. The Markov Chain must allow an exploration of the 
whole space, and then the Metropolis rule ensures that the 
sampling is asymptotically uniform18. In practice, the MCMC 
runs must be long enough to be in that asymptotic regime, and 
this can be checked self-consistently by measuring the auto-
correlation time of the Markov chain. For the present ensembles, 
the auto-correlation times are short (corresponding to a few 
proposed changes per gene) and so the MCMC is both reliable 
and efficient. 

Network structural features 

Structural features of networks range from local properties (such 
as node degrees) to global properties (such as connectivity). In 
the present framework, the network considered is the directed 
graph of interactions embedded in the gene regulatory network of 
interest. The most local structural feature is the in-degree and out-

degree of a node (specifying a gene). For an ensemble of 
networks, one can consider the distribution of these quantities at a 
given node; we focus on the mean and standard deviations for 
each gene separately. On can also study the edge usage in the 
ensemble, given by the probability of occurrence of each edge 
(from gene j to gene i for all ordered pairs of genes). For 
convenience, we represent these probabilities by a heat map as in 
Fig.S4.  
 
The local clustering coefficient Ci at node i focuses on that node 
and its immediate neighbors23. Ci is defined as the number of 
edges connecting any pair of these nodes divided by the 
maximum number that could be present. It thus measures the 
overlap between the sub-graph containing these nodes and the 
clique in which all of these nodes are pairwise connected. 
Averaging Ci over all nodes of the graph gives the network's 
average clustering coefficient C. In an ensemble of networks, C 
will have a distribution that can be used to benchmark whether a 
given network is outlying or not for clustering. 
 
A closely related index is the so called assortativity coefficient for 
degrees21. It quantifies the correlation of the degrees between 
neighboring nodes. For directed graphs, one can define 4 
different measures of assortativity, obtained by calculating in-in, 
in-out, out-in, and out-out degree correlations over all nodes22. 
Again, in an ensemble of networks, the assortativity coefficient 
will have a distribution from which one can perform a test of 
whether a given network is outlying or not for assortativity. 
 
Network motifs1,2 are even less local structural features of 
biological networks. Each corresponds to a pattern of connected 
nodes such as a triangle or a square. In a more mathematical 
definition, motifs are sub-graphs in which nodes have no labels. 
In the present work, we deal with directed graphs so the motifs 
have directions on their edges. Most studies on network motifs 
involve proper graphs in which there are no self-interactions, and 
generally one forces the motif to form a connected sub-graph. 
Then there are two motifs containing two nodes and 13 
containing three nodes as drawn at the bottom of Figure 4. For 
any network motif, one can compute the number of its 
occurrences in a given graph, and if desired compare to what is 
expected in an ensemble.  
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