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Unraveling the structure of complex biological networks and relating it to their functional role is
an important task in systems biology. Here we attempt to characterize the functional organization
of the large-scale metabolic networks of three microorganisms. We apply flux balance analysis to
study the optimal growth states of these organisms in different environments. By investigating the
differential usage of reactions across flux patterns for different environments, we observe a striking
bimodal distribution in the activity of reactions. Motivated by this, we propose a simple algorithm
to decompose the metabolic network into three sub-networks. It turns out that our reaction classifier
which is blind to the biochemical role of pathways leads to three functionally relevant sub-networks
that correspond to input, output and intermediate parts of the metabolic network with distinct
structural characteristics. Our decomposition method unveils a functional bow-tie organization
of metabolic networks that is different from the bow-tie structure determined by graph-theoretic
methods that do not incorporate functionality.

PACS numbers: 82.39.Rt 87.18.Vf 87.18.-h

I. INTRODUCTION

Biological systems provide many examples of the intri-
cate relationship between the structure and functional-
ity of complex networks [1–7]. Cellular metabolism is a
complex biochemical network of several hundred metabo-
lites that are processed and interconverted by enzyme-
catalyzed reactions [8–13]. Metabolic networks have a
dynamic flexibility that enables organisms to survive un-
der diverse environmental conditions. A key goal of
systems biology is to unveil the functional organization
of metabolic networks explaining their system-level re-
sponse to different environments. To this end, we have
attempted to decompose metabolic networks into func-
tionally relevant sub-networks. Flux balance analysis
(FBA) has been widely used to harness the knowledge of
large-scale metabolic networks and investigate genotype-
phenotype relationships [14–16]. FBA has been success-
ful in predicting the growth and deletion phenotypes of
organisms [17–19]. Reaction fluxes carry information
about the flows on metabolic networks and, as such, de-
scribe the functional use of the network by the organism.
In this paper, we have used this information to decom-
pose the network into functionally relevant sub-networks.
The paper is organized as follows: In section II we

describe the modelling framework in which we study
metabolic networks. In section III we discuss the clas-
sification of active reactions in metabolic networks into
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three categories by an algorithm that is blind to their
biochemical roles. Section IV shows that the three cate-
gories are functionally relevant for the organism. In sec-
tion V we compare the bow-tie architecture obtained by
our functional classification of reactions with that ob-
tained by graph-theoretic methods that do not employ
functional information. In the last section we conclude
with a summary.

II. THE MODELLING FRAMEWORK

A. Flux balance analysis (FBA)

Flux balance analysis (FBA) is a computational ap-
proach widely used to analyze the capabilities of genome-
scale metabolic networks [14–16]. The stoichiometric ma-
trix S encapsulates the stoichiometric coefficients of dif-
ferent metabolites involved in various reactions of the
metabolic network. The stoichiometric matrix S = (Spj)
has dimensions P × N , where P denotes the number of
metabolites and N denotes the number of reactions in
the metabolic network. Spj is the number of molecules
of the metabolite p produced in reaction j (if metabolite
p is consumed in reaction j, Spj is negative). The stoi-
chiometric matrix for a hypothetical reaction network is
shown in Fig. 1. FBA primarily uses structural infor-
mation of the metabolic network contained in the ma-
trix S to predict the possible steady state flux distribu-
tion of all reactions and the maximum growth rate of an
organism. In any metabolic steady state, the metabo-
lites achieve a dynamic mass balance wherein the vector
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TABLE I. Comparison of the three metabolic networks: E. coli, S. cerevisiae and S. aureus.

Property E. coli S. cerevisiae S. aureus

Number of metabolites 761 1061 648

Number of reactions in the model 931 1149 641

Number of one-sided reactions in the equivalent network 1167 1576 863

Number of external metabolites 143 116 84

Number of organic external metabolites (carbon sources) 131 107 68

Number of biomass metabolites 49 42 56

Number of feasible minimal environments 89 43 27

Number of active reactions 585 482 418

Number of reactions in category I 185 89 84

Number of reactions in category IIa 147 117 194

Number of reactions in category IIb 42 46 28

Number of reactions in category III 211 230 112

v of fluxes through the reactions satisfies the following
equation representing the stoichiometric and mass bal-
ance constraints:

S.v = 0. (1)

Equation 1 is an under-determined linear system of equa-
tions relating various reaction fluxes in genome-scale
metabolic networks leading to a large solution space of
allowable fluxes. The space of allowable solutions can
be reduced by incorporating thermodynamic and enzyme
capacity constraints. To obtain a particular solution, lin-
ear programming is used to find a set of flux values - a
particular flux vector v - that maximizes a biologically
relevant linear objective function Z. The linear program-
ming formulation of the FBA problem can be written as:

max Z = max {cTv|S.v = 0,a ≤ v ≤ b}, (2)

where vectors a and b contain the lower and upper
bounds of different fluxes in v and the vector c corre-
sponds to the coefficients of the objective function Z.
In FBA, the objective function Z is usually taken to be
the growth rate of the organism. The environment, or
medium, is defined in this approach by the components of
a and b corresponding to the transport reactions, which
determine, in particular, the set of metabolites whose
uptake is allowed.

B. Large-scale metabolic networks

In this work, we have analyzed the large-scale
metabolic networks of three microorganisms: Escherichia
coli (version iJR904 [20]), Saccharomyces cerevisiae (ver-
sion iND750 [21]) and Staphylococcus aureus (version
iSB619 [22]). Table I gives the number of metabolites
and reactions in the metabolic networks of these three
organisms. The metabolic networks contain internal and
transport reactions. Internal reactions occur within the
cell boundary. Transport reactions represent processes
involving import or export of metabolites across the cell

boundary. Each model also contains a pseudo biomass
reaction that simulates the drain of various biomass pre-
cursor metabolites for growth in the specific organism.
Starting from the published metabolic network, we ob-
tain an equivalent reaction network as follows: Every re-
versible reaction in the network is converted into two one-
sided (irreversible) reactions so that all reaction fluxes in
the equivalent system are non-negative. A few reactions
appear in duplicate in these networks, and only a single
copy of each reaction is kept in the equivalent network.
The equivalent metabolic network is a reaction set con-
sisting of N unique one-sided reactions where N is 1167,
1576 and 863 for E. coli, S. cerevisiae and S. aureus,
respectively (cf. Table I).

C. Feasible minimal environments and associated
flux vectors

In this work, we have considered ‘minimal’ aerobic en-
vironments – minimal in the sense that each environment
contains a single organic external metabolite that is the
sole source of carbon, and single inorganic sources for
each of the elements nitrogen, phosphorus, sulphur, oxy-
gen, sodium, potassium and iron, apart from hydrogen
ions and water. Aerobic means that molecular oxygen is
available in the external medium. Furthermore the min-
imal environments differ from each other solely in their
organic carbon source; the set of inorganic sources is the
same for all the minimal environments considered here
for any given organism. Thus the number of environ-
ments we consider for each organism coincides with the
number of organic external metabolites (carbon sources)
in its metabolic network (cf. Table I). We further assume
that each environment contains a limited amount of the
organic carbon source and unlimited amounts of the inor-
ganic metabolites, namely, ammonia (source of nitrogen),
pyrophosphate (source of phosphorus), sulphate (source
of sulphur), molecular oxygen, ions of sodium, potas-
sium, iron and hydrogen, and water molecules. From this
set of minimal environments, we used FBA to determine
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Reaction Network

R1: 2A + B C + 3D

R2: A + 3B C + E

R6: C + 4E 3B + D

R3: A 2B + D + E

R5: D + 2B C + 2E

R4: 4B D + A

-420110E

1-11103D

-110011C

3-2-42-3-1B

001-1-1-2A

R6R5R4R3R2R1

Stoichiometric Matrix

FIG. 1. Example of stoichiometric matrix for a hypothetical reaction network. The hypothetical reaction network
has 6 reactions involving 5 metabolites. The rows of the stoichiometric matrix correspond to various metabolites and the
columns correspond to various reactions in the metabolic network.

the subset of minimal environments supporting growth
in the metabolic networks of E. coli, S. cerevisiae and
S. aureus. A minimal environment was termed as feasi-
ble if the growth rate predicted by FBA was found to be
nonzero for that environment. The number M of feasible
minimal environments in E. coli, S. cerevisiae and S. au-
reus was obtained to be 89, 43 and 27, respectively (cf.
Table I) [23]. For each organism, and for each feasible
minimal environment for that organism, we obtained an
N -dimensional optimal flux vector v using FBA whose
component vj gives the flux of reaction j. For every or-
ganism this led to a set of M flux vectors correspond-
ing to the M feasible minimal environments, which were
stored in the form of a matrix V=(vαj ) of dimensions
N×M where the rows (j=1,2,. . .,N) correspond to dif-
ferent reactions in network and columns (α=1,2,. . .,M)
to different feasible minimal environments. vαj is defined
as the flux of reaction j in the optimal flux vector v ob-
tained for environment α.

D. Active reactions

A given reaction j is termed as active in an environ-
ment α if vαj >0. The activity m of a reaction denotes
the number of minimal environments in which the reac-
tion is active. The activity m for a reaction ranges from
0 to M with M equal to 89, 43 and 27 for E. coli, S.
cerevisiae and S. aureus, respectively. A reaction j is
termed as active in an organism if m≥1 (i.e., if it is ac-
tive in at least one feasible minimal environment for that
organism). The number of active reactions in E. coli,
S. cerevisiae and S. aureus was obtained to be 585, 482
and 418, respectively (cf. Table I). This paper primarily
focuses on decomposing this set of active reactions into
functionally relevant sub-networks.

III. CLASSIFICATION OF ACTIVE
REACTIONS

We ask the question: How does the activity of a re-
action vary across different environments? To address
this question, we determine the frequency distribution of
the activity of reactions in an organism. Fig. 2 shows
the histogram of the activity of reactions in the E. coli
metabolic network. The distribution is bimodal. Most
reactions in E. coli are either once-active (m=1) or al-
ways active (m=89); the number of reactions for any
given intermediate activity m in the range 1<m<89 is
small. Thus, the largest number of active reactions in the
metabolic network are used in either one environment or
in all environments. The histograms of activity of reac-
tions in S. cerevisiae and S. aureus also have a pattern
similar to that in E. coli (cf. Fig. 2). The frequency dis-
tribution of activity of reactions in the three organisms
suggests a natural classification of active reactions into
three categories:

(a) Category I reactions or once-active reactions
(m=1)

(b) Category II reactions or always active reactions
(m=M)

(c) Category III reactions with intermediate activity
(1<m<M)

A. Sub-classification based on correlation of
reaction fluxes

Clustering of gene expression data using the correla-
tion coefficient has been successful in predicting regula-
tory modules associated with a biological function across
diverse conditions [24]. We used the correlation coeffi-
cient to identify sets of reactions whose fluxes are cor-
related across different environments. We used the set
of M flux vectors corresponding to M feasible minimal



4

FIG. 2. (Color online) The histogram of activity of reactions in the E. coli metabolic network. The bars show the
number of reactions that have an activity m where m ranges from 1 to 89 feasible minimal environments in the E. coli metabolic
network. The green bar represents 185 category I reactions which are once-active. The pink bar represents 147 category IIa
reactions (a subset of 189 always active category II reactions) that have fluxes perfectly correlated across environments. The
deep blue bar represents 42 category IIb reactions that account for the remaining category II reactions. The light blue bars
account for 211 category III reactions with intermediate activity. Insets: Histograms of activity of reactions in S. cerevisiae
and S. aureus. The three categories of reactions in S. cerevisiae and S. aureus were defined in a manner similar to E. coli.

environments contained in the matrix V = (vαj ) to ob-
tain the matrix C = (Cjk) where Cjk is the correlation
coefficient between two active reactions j and k and is
given by:

Cjk =
1

M

M∑
α=1

vαj v
α
k

ϕjϕk
, (3)

where ϕj =

√√√√ 1

M

M∑
α=1

vαj
2.

If Cjk = 1 then reactions j and k are perfectly corre-
lated with each other in the given set of environments.
Perfect clusters in metabolic networks are maximal sets
of reactions that are perfectly correlated to each other
pairwise. Perfect clusters are similar to enzyme subsets
[25, 26], correlated reaction sets [27, 28] or fully cou-
pled sets [29] which have been used to detect modules in
metabolic networks.
We use Eq. 3 to identify perfect clusters in metabolic

networks of E. coli, S. cerevisiae and S. aureus. In par-
ticular, a large perfect cluster of 147 reactions was found
in E. coli that is a subset of category II reactions. We re-
fer to this subset of perfectly correlated reactions within
category II as category IIa reactions. The remaining 42
category II reactions that are always active but not per-
fectly clustered with category IIa reactions are part of
category IIb. Similarly, large perfect clusters of sizes 117
and 194 were found in category II reactions of S. cere-
visiae and S. aureus, respectively. In Fig. 2, category IIa
and IIb reactions are shown in pink and blue colours, re-
spectively. We have shown elsewhere that perfect clusters

are metabolic modules that can be explained by studying
the connectivity of their constituent metabolites [23].

As mentioned earlier we obtained the flux vectors by
maximizing the objective function Z that corresponds to
the growth rate of the cell. In FBA cell growth stands for
the production of all the ‘biomass metabolites’ in spec-
ified ratios that correspond to the composition of the
average cell under consideration. The role of growth
maximization is to obtain an explicit flux vector for each
medium. While the magnitudes of the components of
v obtained by maximization of the growth rate depend
upon the precise ratios, the activity of a reaction, as de-
fined above, depends not on the actual magnitude of the
corresponding component of v, but only on whether the
magnitude is zero or nonzero. The latter does not de-
pend upon the precise ratios of the biomass metabolites
in the objective function, but only on the set of metabo-
lites that are present in the objective function. Thus our
classification results are quite robust to the perturbation
of the ratios in the objective function, as long as the set
of biomass metabolites is held fixed (details not shown).

Note that we have used a single optimal flux vector v
obtained using FBA for each of the M feasible minimal
environments to determine the activity of a reaction and
the set of active reactions in the metabolic network of an
organism. However, it is well known that there exist mul-
tiple flux vectors or alternate optimal solutions in most
large-scale metabolic networks that maximize growth in
a given environment [28, 30–32]. In principle, due to the
presence of alternate optima, the set of active reactions
can change depending on the choice of the flux vectors.
In Appendix A, we show the robustness of our reaction
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FIG. 3. (Color online) Standard deviation versus mean flux of active reactions in the E. coli metabolic network.
The plot shows standard deviation σ versus mean flux ⟨v⟩ of the 585 active reactions in E. coli metabolic network across
M = 89 feasible minimal environments on a logarithmic scale. The green, pink, dark blue and cyan dots represent category
I, IIa, IIb and III reactions, respectively. The three categories of reactions show up quite distinctly (upper line, category I;
lower line, category IIa; with category IIb and category III in between the two lines). The upper line is the expected curve

σ = (M − 1)1/2⟨v⟩ for category I reactions. The lower line is the expected curve σ = b⟨v⟩ for perfectly correlated category IIa
reactions with b = 0.98 ± 0.1 obtained via best fit to the data. Insets: Scatter plots of σ versus ⟨v⟩ of active reactions in S.
cerevisiae and S. aureus metabolic networks.

categories to the presence of alternate optima.

B. Scatter plot of standard deviation versus mean
flux of reactions across environments discriminates

between the three categories

For each active reaction, following Almaas et al [33],
we have calculated the mean flux ⟨v⟩ and the standard
deviation σ around this mean by averaging the flux of the
reaction over M feasible minimal environments. Fig. 3
shows the scatter plot of σ versus ⟨v⟩ for active reactions
in E. coli. It is evident that the distribution of points
is different for the various categories we have defined.
All category I points lie on the upper line, all category
IIa points lie on the lower line, while category IIb and
category III points lie largely in between the two lines.
The upper line in Fig. 3 is the expected curve σ = (M −
1)1/2⟨v⟩ for category I reactions and the lower line is the
curve σ = b⟨v⟩, where b is obtained via best fit of data for
category IIa reactions. Appendix B gives the derivation
of the relation between σ and ⟨v⟩ for category I and IIa

reactions. Our classification of reactions into the three
categories did not use the actual values of the fluxes of
the reactions, but only the information about whether
the flux was zero or nonzero in a particular medium. Fig.
3 uses information about the actual flux values. It shows
that the different categories of reactions are distinct from
each other by virtue of the statistical properties of their
magnitudes as well.

IV. FUNCTIONAL RELEVANCE OF THE
THREE CATEGORIES OF REACTIONS

Until now our classification of active reactions into the
three categories was solely motivated by the activity of
reactions in E. coli, S. cerevisiae and S. aureus with two
very prominent peaks for once-active and always active
reactions (cf. Fig. 2). However, we now show that our
three categories I, II, and III obtained using a computa-
tional algorithm blind to the biochemical nature of path-
ways correspond to the input, output and intermediate
sub-networks, respectively. Thus, each category of reac-
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FIG. 4. (Color online) Category I reactions in E. coli. This figure shows the bipartite graph of 185 category I reactions in E.
coli. Rectangles represent reactions and ovals metabolites. External nutrient metabolites (organic carbon sources) are depicted
in green and biomass metabolites in pink. For convenience, we have chosen to omit the high degree currency metabolites (such
as ATP) from the figure in order to reduce clutter and focus on the biochemically relevant transformation in each reaction.
Abbreviation of metabolites and reactions are as in iJR904 model [20]. The figure was drawn using Graphviz software [34]. The
high resolution electronic version of this figure can be zoomed in to read node labels and biochemical categories of boxes. We
have classified the external metabolites and grouped together their input pathways in boxes based on biochemical similarity.
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tions is a sub-network with a distinct functional role in
metabolism.

A. Category I: Fan-in of input pathways

Fig. 4 shows the sub-network of all 185 category I
reactions in E. coli. The figure shows a number of essen-
tially linear paths of one to about five reactions starting
from an external nutrient metabolite, often converging
to some other metabolite. These are the input pathways
of those metabolites, typically starting from their trans-
port reaction that brings them into the cell, and sub-
sequent catabolic reactions that break them down into
other metabolites. Input pathways of 86 out of the 89 ex-
ternal nutrient metabolites (carbon sources) characteriz-
ing different feasible minimal environments are contained

in category I, thereby implying that category I essentially
covers all the input pathways of metabolism. Similarly,
we find that category I reactions in S. cerevisiae and S.
aureus contain input pathways for most external nutri-
ent metabolites characterizing different feasible minimal
environments. Thus, category I essentially corresponds
to input part of the metabolic network.

Fig. 5 shows a portion of category I reactions belong-
ing to sugar input pathways in E. coli where several ex-
ternal sugar metabolites converge downstream into a few
intermediate metabolites. Thus, the input pathways in
category I exhibit the fan-in property whereby diverse
external nutrient metabolites are first catabolized into
a smaller set of intermediate metabolites before being
drawn into the interior of the metabolic network. Usually
the external nutrients whose input pathways converge to
a common metabolite belong to the same biochemical
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class (cf. Figures 4 and 5). Fig. 4 contains a num-
ber of disconnected subgraphs each describing the input
pathways of one or more biochemically similar metabo-
lites; these disconnected paths get connected to the larger
metabolic network via further downstream reactions that
belong to other categories and are not shown in Fig. 4.

B. Category II: Output biosynthetic pathways

A key biological function of the metabolic network
is to convert nutrient metabolites in the environment
into biomass metabolites required for growth and main-
tenance of the cell. The biomass metabolites, which in-
clude all the amino acids, nucleotides, lipids and certain
cofactors, may be considered to be the output of the
metabolic network. Category II reactions are always-
active and have a nonzero flux for any feasible minimal
environment. We found that the category II sub-network
has biosynthetic pathways for 30 out of the 49 biomass
metabolites in E. coli. These pathways are typically the
sole production pathways of those biomass metabolites
in E. coli [23]. Thus, this sub-network is at the output
end of the metabolism.
Of the 189 category II reactions in E. coli, 147 reactions

belong to category IIa, whose fluxes are perfectly corre-
lated across the different minimal environments. Fig. 6
shows the graph of the category IIa sub-network in E.
coli, which is the single largest perfect cluster of reac-
tions. The remaining 42 reactions in category II consti-
tute the category IIb; these are always active but not
perfectly correlated with category IIa reactions and with
each other. Thus, the fluxes of category IIb reactions
vary in a more complicated manner across minimal en-
vironments. Categories IIa and IIb exist with similar
properties in the metabolic networks of the other two or-
ganisms (cf. Table I). In our previous work, we have
shown that most of the category II reactions are essen-
tial for growth irrespective of the environment [23]. The
set of category II reactions is a superset of reactions in
the activity core found earlier by Almaas et al [35] which
are reactions always used across minimal as well as rich
environments.

C. Category III: Intermediate pathways between
input and output

Fig. 7 shows the sub-network of category III reactions
in E. coli, which are neither once-active nor always active;
the activity of these reactions depends on the availability
of nutrients in a more complicated manner. Category III
reactions may be considered to constitute the intermedi-
ate part of the network. By comparing the structures of
the three categories, it is evident that category III has a
highly reticulate and complex architecture compared to
categories I and II. There is a functional reason for the ob-
served complexity in the category III sub-network. The
biomass metabolites collectively contain several different

types of chemical structures (moieties), and the E. coli
metabolic network is capable of producing these biomass
metabolites from different minimal environments, each
containing a different (and single) carbon source. A typ-
ical external carbon source has one or a few moieties with
different nutrients containing different subsets of moi-
eties. Category I reactions transport the carbon sources
into the cell and break it down into a small set of moi-
eties. The function of category III reactions is to start
with a small set of moieties and produce all the moieties
required for biomass production. This requires a complex
set of internal transformations and the exact set of trans-
formations required depends on the nature of the input
moieties. Thus, the activity of category III transforming
reactions depends upon the biochemical nature of avail-
able nutrients in different minimal environments. We find
that category III contains most of the reactions in cen-
tral metabolism such as the citric acid cycle. A similar
architecture of the category III sub-network was found
in the metabolic networks of the other two organisms as
well. Some of the biomass metabolites are produced in
category III itself. For the other biomass metabolites cat-
egory III produces precursors which are then taken up in
the biosynthetic pathways of category II to produce the
biomass metabolites.

V. COMPARISON OF FUNCTIONAL BOW-TIE
DECOMPOSITION WITH GRAPH-THEORETIC

BOW-TIE DECOMPOSITION

Ma and Zeng [11, 36] have used graph-theoretic mea-
sures to reveal a bow-tie architecture of metabolic net-
works similar to that seen in World Wide Web (WWW)
[37], wherein the network can be decomposed into an
in-component, out-component and a giant strong com-
ponent. Given a directed graph, a strong component is
a maximal subgraph such that for any pair of nodes i
and j in the subgraph there exists a directed path from
i to j and from j to i within the subgraph. In general,
a directed graph can have many strong components, and
the strong component with the largest number of nodes
is designated as the giant strong component (GSC). The
associated in-component consists of nodes which have ac-
cess to GSC nodes via some directed path, but cannot be
reached from any GSC node via a directed path. The out-
component consists of nodes which can be reached from
the GSC nodes via some directed path, but lack access
to any GSC node via a directed path. A picture of the
ideal graph-theoretic bow tie is shown in Fig. 8.

In this work, we have decomposed the metabolic net-
work into three categories using a simple algorithm based
on activity patterns of reactions across different minimal
environments. Our categorization reveals a functional
bow-tie architecture wherein the input pathways (cate-
gory I reactions) fan into intermediate metabolism (cate-
gory III reactions) which forms the knot of a bow-tie and
from where the output pathways (category II reactions)
for various biomass components fan out.
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FIG. 6. (Color online) Category IIa reactions in E. coli. This figure shows the graph of 147 category IIa reactions in
E. coli whose reaction fluxes are perfectly correlated across minimal environments. Conventions are the same as in Figure 4.
The preponderance of biomass metabolites (pink ovals) in this figure signifies that these reactions are at the output end of the
metabolic network. The reactions have been grouped together into boxes based on common biosynthetic pathways.

In our functional bow-tie decomposition, the three cat-
egories I, II and III of reactions discussed above broadly
correspond to the in-component, out-component and
GSC, respectively, of the graph-theoretic bow-tie decom-
position by Ma and Zeng [11, 36]. However, the cor-
responding sets of reactions in the two decompositions
differ in detail. For example, we find that the end prod-
ucts of several (and often long) chains of reactions in the
category II sub-network are re-cycled resulting in feed-
back loops. Such feedback loops in the category II sub-
network presumably minimize wastage and could be in-
strumental in producing the biomass metabolites in the
desired ratios. An example of such a feedback loop in
category II sub-network is the one involving metabolite
5mdr1p (which can be seen in the electronic version of
Fig. 6 upon zooming). The biosynthetic pathways in-
volved in such feedback loops appropriately belong to the
output part of metabolism because they connect the pre-
cursor metabolites to the outputs. However, the graph-
theoretic bow-tie decomposition would classify such cat-
egory II reactions in feedback loops into the GSC. Thus,
our functional bow-tie decomposition based on fluxes of
reactions across different environments gives a better in-
sight and is biochemically more realistic. The picture of
the metabolic network our decomposition reveals is sim-
ilar in spirit to the one envisioned by Csete and Doyle
[12].

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have performed flux balance analy-
sis (FBA) for the metabolic networks of three microor-
ganisms: E. coli, S. cerevisiae and S. aureus to obtain
fluxes of reactions in the network under diverse envi-
ronmental conditions. We have followed a purely algo-
rithmic approach leveraging on the predicted fluxes of
reactions across different minimal environments to de-
compose the metabolic network into functionally relevant
sub-networks. We find that the activity of a reaction
given by the number of minimal environments for which
it has a nonzero flux is an important indicator of the func-
tional role of a reaction. We have classified the reactions
into three functional categories based on their activity.
Category I contains once-active reactions which are used
in only one minimal environment. Most reactions belong-
ing to the category I sub-network are uptake pathways
for external nutrients in feasible minimal environments,
and the primary function of these reactions is to catab-
olize external nutrients into simpler metabolites which
can be further processed by intermediary metabolism.
Category II contains always active reactions which are
used in all minimal environments. The category II sub-
network is critical for the survival of the organism and
accounts for the majority of the biosynthetic pathways
for the production of the biomass metabolites at the out-
put end of metabolic network. Category III contains re-
actions which are used in an intermediate number of min-
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FIG. 7. (Color online) Category III reactions in E. coli. This figure shows the network of reactions that are active in two or
more minimal environments considered, but not in all the environments. Conventions are the same as in Figure 3. Comparing
this graph of category III reactions with category I and IIa reactions (cf. Figures 4 and 5), it is evident that category III
sub-network has a highly reticulate structure with many loops.
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FIG. 8. (Color online) The ideal graph-theoretic bow-tie for a directed bipartite graph. The figure depicts the ideal
bow-tie decomposition of a directed bipartite graph into three components: in, out and giant strong component corresponding
to shaded regions green, pink and blue, respectively. Ovals represent objects (e.g., metabolites in the metabolic network) and
rectangles processes (e.g., chemical reactions) that modify or combine objects to produce other objects. The figure shows
pathways starting from the input nodes in the in component (green ovals in green region) and converging to an irreducible
subgraph representing the giant strong component (blue region). Output paths fan out from the giant strong component and
terminate in the output nodes in the out component (red ovals in pink region).

imal environments, and is responsible for generating the
‘precursor’ molecules that are eventually converted into
biomass metabolites by Category II reactions. We find
that while category I and II sub-networks are dominated
by simple linear pathways, the structure of the category
III sub-network is highly reticulate. In summary, our de-
composition method for large-scale metabolic networks
based on activity of reactions captures the proposed func-
tional bow-tie organization by Csete and Doyle: the in-
put pathways (category I reactions) for nutrients in the
environment fan into intermediate metabolism (category
III reactions) which forms the knot of bow-tie from where
the output biosynthetic pathways (category II reactions)
for biomass components fan out. Our results are valid
for metabolic networks of three phylogenetically differ-
ent organisms (two distinct prokaryotes and a eukaryote),
which suggests that the observed functional bow-tie or-
ganization could be quite common in living systems.
Our functional classification of reactions uses an im-

portant additional piece of information that the purely
graph-theoretic classification does not, namely, the list
of the biomass metabolites that are the outputs of
metabolism. The question arises as to whether the classi-
fication predicted by the graph-theoretic approach could
be significantly improved by including this information
(say, by somehow tagging the biomass metabolites in the
graph). We think that this is unlikely. There does not
seem to be any obvious method of utilizing this informa-

tion in a purely topological analysis of the network. One
might consider declaring these tagged metabolites to be
present only at the output end of the network and thus
exclude them (by hand) from the intermediate pathways.
However, we note that while biosynthetic pathways of 30
of the biomass metabolites were found in category II re-
actions, several of the biomass metabolites were synthe-
sized in the category III reactions. The latter metabolites
such as alanine and valine are thus not only the outputs
of metabolism, they also play an important role in the
intermediate pathways required for the interconversion
and synthesis of other metabolites. Thus a declaration
such as the above would not be appropriate.

We remark that in the present work we have classified
only the reactions of the metabolic network into three
broad categories: input, output and intermediate. The
classification of metabolites is more subtle and we in-
tend to report on this in another contribution. While
some metabolites participate in reactions belonging to
only one of the three categories, several participate in
reactions belonging to more than one category. The lat-
ter includes the currency metabolites such as ATP, ADP,
NADP, NADPH, etc. It is important to note that our
flux-based categorization of reactions does not involve the
a priori exclusion of the high degree currency metabolites
as was needed in the graph-theoretic bow-tie decomposi-
tion of the metabolic network [11, 36].

Cellular metabolism is only one of a large class of func-
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tional systems where inputs are transformed into out-
puts through ‘reactions’ or processes involving disinte-
grations, conversions, recombinations, etc. Other exam-
ples include any complex manufacturing facility, or even
a production economy as a whole. Communication sys-
tems also share some of the features. The patterns of
flows across the network as captured by the fluxes of the
reactions carry important information about network ar-
chitecture and functionality. The methods presented here
could be useful in studying these patterns in fields other
than cellular metabolism.

Appendix A: Robustness of categorization of
reactions to alternate optimal solutions

In this work, flux balance analysis (FBA) was used to
obtain a particular flux vector v or optimal solution that
maximizes the objective function taken as the growth
rate in a given minimal environment. However, for large-
scale metabolic networks, there exist multiple flux vectors
v or alternate optimal solutions that maximize growth
in a given minimal environment, i.e., there are many flux
vectors v with exactly the same value of the objective
function but use different alternate pathways in the net-
work [28, 30–32]. FBA finds one of many possible alter-
nate optima for a given minimal environment that max-
imizes growth. In the main text, we have used a single
optimal flux vector v for each of the M feasible minimal
environments to determine the activity of a reaction and
the set of active reactions in the metabolic network of an
organism. Since, in principle, the activity of a reaction
can change depending on the particular flux vector con-
sidered, we study the robustness of our categorization of
reactions to the presence of alternate optima.
Flux variability analysis (FVA) [31] can be used to de-

termine the set of reactions whose fluxes vary across al-
ternate optima for a given minimal environment. Specif-
ically, FVA determines the maximum and minimum flux
value that each reaction can take across alternate optima
for a given minimal environment. FVA involves the fol-
lowing steps:

(a) Determine using FBA the maximum value of the
objective function Z or growth rate vαbiomass in a
given minimal environment α.

(b) Fix the flux of the biomass reaction equal to
vαbiomass.

(c) Change the objective function Z to be the flux of
a reaction j.

(d) Using linear programming determine the maximum
flux value vαj,max of reaction j in the minimal en-
vironment α, constraining the biomass reaction to
have a flux equal to vαbiomass.

(e) Using linear programming determine the minimum
flux value vαj,min of reaction j in the minimal en-
vironment α, constraining the biomass reaction to
have a flux equal to vαbiomass.

(f) The range vαj,min to vαj,max gives the variability of
flux of reaction j across different alternate optima.

(g) The above steps c, d, e and f can be repeated for
every reaction j in the metabolic network to de-
termine the flux variability of each reaction across
alternate optima for a given minimal environment
α.

We have used FVA to determine vαj,max and vαj,min for
each reaction j and for each feasible minimal environ-
ment α in the E. coli metabolic network. A reaction
j is designated as blocked if vαj,max=0 for all M feasible
minimal environments [29, 38]. We found 329 blocked re-
actions in the E. coli metabolic network. The remaining
838 reactions, for which vαj,max>0 for at least some envi-
ronment α are designated as potentially active reactions.
This set includes the 585 active reactions considered in
the main text. We define a reaction j as essential for
a given minimal environment α if vαj,min>0. 484 reac-
tions were found to be essential for some α in the E. coli
metabolic network which are a subset of the 585 active
reactions considered in the main text. We now classify
these 484 reactions into the following three categories:

(a) Essential category I: Reactions which satisfy
vαj,min>0 for exactly one minimal environment. We
found 162 reactions in the E. coli metabolic net-
work to be in Essential category I. Of these, 153
reactions belong to category I of the main text.

(b) Essential category II: Reactions which satisfy
vαj,min>0 for all M minimal environments. We
found 171 reactions in the E. coli metabolic net-
work to be in Essential category II. All of these
belong to category II of the main text.

(c) Essential category III: Reactions which satisfy
vαj,min>0 for m minimal environments where
1<m<M . We found 151 reactions in the E. coli
metabolic network to be in Essential category III.
Of these, 145 belong to category III of the main
text.

Thus we find that the classification discussed in the main
text which uses a particular flux vector correctly predicts
the essential category I, II or III of 469 out of the 484
essential reactions.

Appendix B: Relation between standard deviation σ
and mean flux ⟨v⟩ for category I and category IIa

reactions

In Fig. 3, we plot the standard deviation σ versus the
mean flux ⟨v⟩ for active reactions in a metabolic network
across its M feasible minimal environments. Here, we
derive the relation between mean flux ⟨v⟩ and standard
deviation σ for reactions in category I and category IIa
shown as upper and lower lines, respectively, in Fig. 3.
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1. Category I reactions

In a given organism any reaction belonging to category
I has activity m=1, and is active for a single environment
(say α0). The mean flux ⟨vj⟩ of a category I reaction j
across M feasible environments is given by:

⟨vj⟩ =
1

M

M∑
α=1

vαj

=
vα0
j

M
, (B1)

where vαj is the flux of reaction j in the environment α
(α = 1, 2, . . . ,M). vα0

j is the flux of reaction j in the only
feasible minimal environment α0 where the reaction has
nonzero value and in all other feasible minimal environ-
ments the flux of reaction j is 0.
Thus, the standard deviation σj for a category I reac-

tion j is given by:

σj =

√√√√ 1

M

M∑
α=1

(vαj − ⟨vj⟩)2

=

√
1

M
[(M − 1)⟨vj⟩2 + (vα0

j − ⟨vj⟩)2]

=
√
M − 1⟨vj⟩, (B2)

where we have used the result in Eq. B1.

2. Category IIa reactions

The fluxes of reactions in category IIa are perfectly
correlated with each other. This means that the fluxes
of category IIa reactions are proportional to each other
having the same proportionality constant for all minimal
environments. Thus, for a minimal environment α, we
can write the flux of category IIa reaction j as:

vαj = cαv0j , (B3)

where cα is a constant for the minimal environment α
and v0j is some number. For any two reactions j and

k in category IIa with fluxes correlated across minimal
environments, we have:

vαj
vαk

=
cαv0j
cαv0k

=
vα

′

j

vα
′

k

, (B4)

where α and α′ are two different feasible minimal envi-
ronments for the organism.

The mean flux of reaction j is:

⟨vj⟩ =
1

M

M∑
α=1

vαj

= v0j
1

M

M∑
α=1

cα

= v0j ⟨c⟩, (B5)
where ⟨c⟩ is the mean of cα across the set of feasible
minimal environments.

The standard deviation σj for category IIa reaction j
is given by:

σj =

√√√√ 1

M

M∑
α=1

(vαj − ⟨vj⟩)2

= v0j

√√√√ 1

M

M∑
α=1

(cα − ⟨c⟩)2

= v0jσc

=
σc⟨vj⟩
⟨c⟩

= b⟨vj⟩, (B6)

where we have used the result in Eq. B5.
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