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Abstract
Spatial localization of speech and other natural sounds with
rich spectro-temporal structure is a computationally challeng-
ing task. It requires extraction of features which are informative
about speaker’s position and yet invariant to sound level and
spectral modulation present in the signal. This paper demon-
strates that this can be achieved with Independent Component
Analysis (ICA) applied to binaural speech spectrograms. A
small subset of learned Independent Components (ICs) captures
signal structure imposed by outer ears. A Gaussian Classifier
trained on those features, performs accurate localization on the
azimuthal plane. The remaining majority of ICs have position
invariant distributions, and can be used to reconstruct the spec-
trogram of the original sound source.
Index Terms: speech localization, spectrogram, binaural

1. Introduction
Binaural hearing mechanisms exploit between-ear disparities to
infer spatial position of the sound source. According to the well
known Duplex Theory [1], interaural time differences (ITDs)
constitute a major cue for low frequency sound localization and
sounds of high frequency (> 1500 Hz) are localized with in-
teraural level differences (ILDs). However in natural hearing
conditions, spectro-temporal properties of sounds vary continu-
ously, hence combinations of cues available to the listener also
change. The auditory system must extract position invariant in-
formation regardless of sound quality, separating ”what” and
”where” information.

Even though temporal differences on the order of microsec-
onds are of substantial importance for sound localization, bin-
aural neurons in the higher areas of the auditory pathway
can be characterized with Spectro Temporal Receptive Fields
(STRFS), where the temporal resolution is much more coarse
- of the order of milliseconds. Despite such loss of temporal
accuracy, many of those neurons reveal sharp position selectiv-
ity [2]. Inspired by their properties, present work uses speech
sounds represented as log-spectrograms similarly as during re-
ceptive field estimation of auditory neurons [3]

As its main result, this paper demonstrates that speech
localization can be accomplished with a Gaussian Classifier
trained on features learned with Independent Component Anal-
ysis (ICA). ICA can be viewed as a generative model, which
maximizes independence between latent variables within the
limits of the linear transformation. In consequence, features
(or basis functions) learned with ICA capture correlations be-
tween all data dimensions and in this way identify ”causes” i.e.
coherent structures present in the dataset. The algorithm learns
spectral interaural differences , resulting from convolution with
Head Related Impulse Responses (HRIR), filters characteriz-
ing sound distortion in outer ears. Features learned with ICA
capture variability present in the data due to sound’s identity

and spatial position into two separate feature subsets. It maybe
therefore thought of as a simple model of ”what” and ”where”
information separation in the real auditory system.

2. Data and algorithms
The overview of the data generation process, feature learning
and classification is presented on Figure 1. The dataset con-
sisting of binaural spectrograms of randomly sampled speech
segments convolved with HRIRs was preprocessed with PCA.
Independent components were learned from the PCA whitened
data and a Gaussian classifier was trained with activations of a
subset of selected components.

Figure 1: Data generation and learning architecture

2.0.1. Speech sounds

A speech corpus from Handbook of International Phonetic As-
sociation [4] was used. It includes human narratives in 27 lan-
guages sampled at 20 kHz. All sounds were down-sampled to
16 kHz and bandpass-filtered between 200 Hz and 6 kHz.

2.0.2. Head Related Impulse Responses

The binaural signal was obtained by convolving speech sounds
with HRIRs from the LISTEN database [5]. The database con-
tains HRIRs from 51 human subjects measured with 15 deg az-
imuthal resolution. Filters of a randomly selected subject were
used for simulating binaural sounds.

2.0.3. Training data generation

Training dataset was created by sampling 50000 speech seg-
ments 216 ms long each. Every segment was convolved with
an HRIR corresponding to a position on the azimuthal plane,
randomly drawn from the set of 24 availible ones. In this way,
speech quality and its spatial position were independent factors
in the data. A spectrogram was computed on resulting left and
right ear sounds. The waveforms were divided into 25 overlap-
ping 16 ms intervals. A squared Fourier Transform was per-
formed on each interval, at 256 frequencies spaced logarithmi-
cally between 200 and 4000 Hz using Goertzel algorithm. Re-
sulting spectrogram was transformed with a logarithmic func-
tion. A similar signal representation was used by Carlson et al.
in their recent work [6] in attempt to model early stages of pro-



cessing in the auditory system. Left and right ear spectrograms
were concatenated and subjected to further processing (see Sec-
tion 3).

3. Independent Component Analysis
Independent Component Analysis (ICA) is a family of linear
data transformations, which attempt to minimize statistical de-
pendence between the learned features [7]. Removing depen-
dencies between data dimensions or ”redundancy reduction” is
a hypothesized general principle of nervous system function-
ing [8]. A number of studies have investigated redundancy
reduction in the auditory system using experimental [9] and
computational [6, 10, 11, 12] approaches. In [6, 10, 11],
the authors learned representations of natural sounds with ICA
or a similar learning algorithm to show that learned features
resemble receptive fields in the mammalian auditory system.
In a more functional study [12], the authors demonstrate that
non-redundant, overcomplete representation of natural sounds
learned with Non-negative Matrix Factorization (an ICA-like
algorithm) may be used to perform monaural sound localiza-
tion.

Let us assume that X is a data matrix with columns x(t)
corresponding to data samples of dimensionality equal to the
number of rows n. ICA seeks a linear transformation of the
data i.e. matrix W (called the filter matrix) which minimizes
dependence between data dimensions in the transformed space.
The ICA transformation can be therefore formulated as:

WX = S (1)

where S is a matrix of independent component activations.
Rows of S correspond to data dimensions and its columns
s(t) to data samples represented in the independent component
space. ICA can be also viewed as a linear generative model of
the data, as defined by equations 2 3

p(s(t)) =

n∏
i

p(si(t)) (2)

p(x(t)|s(t), A) = δ(x(t)−As(t)) (3)

In the equations above x(t) denotes the t− th data sample, s(t)
a representation of that sample in the independent component
space, and A = W−1 is a matrix, columns of which constitute
independent components (ICs) (interchangeably named also ba-
sis functions or features through the rest of the paper). Marginal
distributions of latent coefficients are usually assumed to be
sparse i.e. of positive kurtosis. Typically, a logistic distribution
is chosen [7] and this distribution was also used in the present
work. ICs were learned with a gradient ascent on the data log-
likelihood function [7]. The data dimensionality for each ear
was equal to the number of time intervals times number of fre-
quencies hence total dimensionality was 25×256×2 = 12800.
Prior to the IC learning, the dimensionality of the data was
reduced with PCA from 12800 to 324 dimensions which pre-
served 99.4% of variance.

4. Feature selection and position
classification

The primary goal of this study was to find a low-dimensional
representation of speech-spectrograms allowing for an accurate

speaker localization. Since a discrete set of 24 spatial positions
was used in the simulation, the localization task can be posed
as a classification problem. Given representation of a binaural
speech spectrogram in a learned feature basis, the task is to as-
sign the sample with a class label Cest representing the spatial
position. In order to perform classification a Gaussian classi-
fier (GC) was trained on the learned features. GC models the
marginal distribution of latent coefficients used for classifica-
tionas a mixture of Gaussian distributions sg such that:

p(sg) =
∑
C

p(sg|C)p(C) (4)

p(sg|C) = N (µC , DC) (5)

where µC , DC are class-specific mean vector and covariance
matrix. Since the prior on class labels is uniform, classification
can be formulated as a maximum-likelihood estimation.

Cest = argmax
C

p(sg|C) (6)

The resulting procedure iterates over all class labels and returns
the one maximizing the probability of observed data sample.
Learned independent components were sorted according to cor-
relation between their monaural parts (see section 5.2). The
classifier was trained firstly on the first feature from that list,
then on first and second and so on. Position-informative fea-
tures were selected from the entire feature set as those, which
influenced the classifier performance and decreased the classi-
fication error measured as an average difference in degrees be-
tween the decoded position Cest and the actual position Cact

(see sections 5.2, 5.3).

5. Results
Since position-related head filtering and speech content were
drawn independently, the initial hypothesis was that ICA would
learn separate basis functions capturing spatial information and
speech structure separately. A linear transformation should be
sufficient to do so, since convolution becomes equivalent to ad-
dition of filter and the signal in the log-spectrogram domain.
The following sections demonstrate that it was indeed, the case
by analyzing structure of learned basis functions, properties of
coefficient distributions and showing classification results.

5.1. Properties of learned features

The entire set of learned basis functions was sorted according
to the similarity between their left and right ear parts, measured
with a correlation coefficient. In the next step, the entire IC pop-
ulation was divided into two subsets - those with binaural cor-
relation smaller than and equal to 1. The first subset consisted
of 10 ICs with different monaural parts, depicted on Figure 2
A − they are called ”binaural features” through the remaining
part of the paper. They captured mostly patterns of interauraly
negatively correlated signal i.e. if signal in the one ear had a
positive value, it was negative in the other ear. Most binaural
features were temporally stable, and revealed no temporal mod-
ulation, except for features numbered 5 and 6 in Figure 2 A.
Because sound segments had stable spatial positions, the tem-
poral stability of binaural features suggests that they represent
position-specific spectral information resulting from HRIR fil-
tering. It is important to notice, that binaural features were not
exactly deconvolved HRIRs. Remaining, binaurally correlated



Figure 2: Examples of Independent components learned on bin-
aural speech spectrograms. Left and right ear parts are sep-
arated with a short black line. A) A subset of ten components
with dissimilar left and right ear parts. B) Twenty out of 314
components with the same left and right ear parts.

Figure 3: Dependencies between component coefficients. Scat-
ter plots of component coefficients inferred for 5000 different
speech samples. A) Two binaurally dissimilar components (IC 1
and IC 3) - a clear clustering pattern is visible. B) Two monau-
ral components (IC 11 and IC 12), coefficient distributions do
not vary depending on sound position.

ICs formed a much larger set. An example of 20 out of 314
is depicted in Figure 2 B. They were called ”monaural”, since
the left and right ear parts were essentially the same, and no in-
teraural differences were present. Monaural features captured
the spectrotemporal structure of the speech signal, such as on-
set, offsets, harmonics stacks and many others. They resemble
a sparse code of speech spectrograms used in a recent study
[6] which argued that receptive fields of neurons in the Inferior
Colliculus are adapted to the statistics of natural sounds.

5.2. Position specific coefficient distributions

Marginal histograms of linear coefficients conformed to the
model assumptions, i.e. they fit a logistic distribution well and
revealed no obvious dependencies. Conditioning on a speaker
position though, uncovered additional, useful structure in the
data. Figure 3 A depicts a scatter plot of activations of two
binaural features − number 1 and 3. Each point corresponds
to a single speech sample, and its color to a spatial position it
was played from. Coefficients remain close to zero for most of
the time (which results from the sparsity assumption), and the
global shape of the point cloud approximates a two-dimensional
logistic distribution. Most importantly however, a strong clus-

tering is visible − sounds originating from the same position,
were represented with very similar feature values. Such prop-
erty characterized all temporally stable binaural features (i.e.
numbered from 1− 4 and from 7− 10).

Figure 3 B presents a scatter plot of signal projections on
two monaural features. The global structure is similar as in the
Figure 3 A. The substantial difference is that coefficient dis-
tributions are stationary that is they do not change, depending
on the sound position. Visually, one can not differentiate any
clusters, which indicates that monaural features do not carry
position-specific information.

5.3. Classification and reconstruction

To quantify contributions of each learned feature to position
identification, a Gaussian Classifier was used. It was trained
on a progressive number of features added consecutively from
a population sorted by binaural correlation. For training, 50 per
cent (25000) of the data samples was used and the remaining
50 per cent was used for cross-validation.

Figure 4: Classification and reconstruction performance. A)
Average classification error as a function of a number of used
features (ICs). B) Average reconstruction quality of an original
sound spectrogram using monaural features only.

Classification error was measured in degrees, as an aver-
age circular distance between the classifier output and the actual
sound position. The classification results as a function of num-
ber of used features are presented in Figure 4 A (please note
that feature numbers are on a log-scale). It is clearly visible that
first 10 features i.e. all binaural ones saturate the classifiers per-
formance by decreasing the classification error to zero. Further
adding of monaural features does not influence the error. Inter-
estingly, temporally modulated binaural basis functions− num-



bers 5, 6 do not contribute to the localization accuracy, which is
visible as a small plateau on the plot.

The remaining part of the feature set represents the speech
structure. It can be therefore used for the reconstruction of the
original, single channel sound spectrogram, prior to the convo-
lution with an HRIR. Since left and right ear parts of monaural
components are the same, and therefore redundant, a single one
of them can be used to perform such reconstruction. Quality
of reconstruction was measured in dB as signal to noise ratio
(SNR). Figure 4 B presents SNR as a function of sound posi-
tion. Gray and black lines represent reconstruction using right
and left ear parts of independent components respectively.

The SNR varies very weakly with sound position remaining
mostly at a constant level of 10 dB and does not seem to depend
on the ear used. This position invariant reconstruction quality
indicates that learned representation indeed separates features
imposed by ear filtering from the sound itself.

6. Discussion and conclusions
This paper shows that linear features of binaural spectrograms
learned with ICA suffice to reliably decode the azimuthal posi-
tion of the speaker. The binaural, position-discriminative fea-
tures are essentially complex combinations of level differences
across different channels. This result can be interesting from a
neuroscientific point of view, showing a possible mechanism,
by which a biological auditory system can achieve sound iden-
tity invariance and extract spatial information from a binau-
ral signal. From a machine learning perspective, the dictio-
nary learned with ICA is particularly interesting since it con-
tains both: discriminative and reconstructive features, and it is
known that learning of both at the same time requires applica-
tion of different learning algorithms in a general case [13,14].
Further work is needed to explore applications of the presented
system to online speaker localization and extraction of other,
more complex spatial aspects, such as sound source motion or
features useful in solving the cocktail-party problem.
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