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Abstract. We model networks of identical, all-to-all pulse-coupled phase oscillators with white noise, in
the limit of infinite network size and Dirac pulses, using a Fokker-Planck equation for the phase probability
density. We give analytical, constructive existence and uniqueness results for stationary states (i.e. time-
independent densities), and derive and study a one-dimensional eigenvalue equation for their linear stability.
Our results are supplemented by numerical methods, which are applied to two classes of oscillator response
functions. We find that the stationary network activity depends for some response functions monotonically
and for others non-monotonically on the coupling and noise strength. In all cases we find that a sufficiently
strong noise locally stabilizes the stationary state, and simulations suggest this stability to be global.
For most response functions the stationary state undergoes a supercritical Hopf bifurcation as noise is
decreased, and a locally stable limit cycle emerges in its proximity. On that limit cycle, the network splits
into groups of approximately synchronized oscillators, while the network’s (mean) activity oscillates at
frequencies often much higher than the intrinsic oscillator frequency.

Key words. Winfree model, coupled oscillators, Fokker-Planck equation, stationary state, noise,
stability
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1. Introduction. We study networks of all-to-all pulse-coupled, identical phase os-
cillators with additive white noise in the limit where the size of the network tends to
infinity and the pulses tend to Dirac distributions (the so-called spikes). Specifically, we
examine the non-linear Fokker-Planck equation [17]

∂tρ(t, ϑ) = −∂ϑ
[
ρ(t, ϑ) · [ω + ψ(ϑ)ρ(t, 0)]

]
+D∂2

ϑρ(t, ϑ) (1.1)

in the time-dependent probability density ρ(t, ϑ) for oscillator phases ϑ ∈ S1 ∼= R/Z, where
ψ : S1 → R. Here, ω > 0 is the intrinsic oscillator frequency and D ≥ 0 the diffusion
coefficient as a measure for the intensity of the noise which each oscillator is subject to.
Equation (1.1) can be seen as a limit of the Fokker-Planck equation

∂tρ(t, ϑ) = −∂ϑ
[
ρ(t, ϑ) ·

[
ω + ψ(ϑ)

∫
S1

dϕ ρ(t, ϕ)P (ϕ)
]]

+D∂2
ϑρ(t, ϑ) (1.2)

as the pulse P : S1 → R+ tends to the Dirac distribution at phase zero, the so-called firing
point. The noise-free version of (1.2) has been extensively used as a thermodynamic limit
(i.e. as N →∞) of the Winfree model [6, 52]

dθi(t)

dt
= ω +

ψ(θi)

N

N∑
j=1

P (θj), i = 1, . . . , N (1.3)
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for N all-to-all pulse-coupled phase oscillators with phases θi [5, 6, 7, 20], which has
originally been introduced in [52] for the modelling of interacting biological oscillators
that are coupled so weakly that after any coupling-induced perturbation they return to
their attractor, albeit with a certain phase shift. The response function (or response,
for short) ψ mediates the influence of the stimulus N−1

∑
j P (θj) on the phase of the

oscillators and can be seen as a direct analogue of the infinitesimal phase response curve
used in neural network theory [22, 15, 45]. References [26, §3.2 & §5.2] give a derivation
of such dynamics using a perturbation analysis around stable limit cycles, where they
assume a short stimulus distorting the oscillator dynamics as an additive term in the full
equations of motion. We note that it is not always clear what form such a stimulus should
have, as a result of overall network activity. The mean field form, used for the stimulus
in (1.3), is justified by the assumption of weak interactions and is thus an additive effect
of simultaneous perturbations.

The density ρ(t, ·) in (1.2) has two interpretations. On the one hand it can be seen as
the probability density of oscillator phases on S1 as their number grows to infinity. On the
other hand it is the probability density of a stochastic process θ̂ satisfying the Langevin
equation [41, §4.4]

dθ̂(t) =
[
ω + ψ(θ̂(t))S(t)

]
dt+

√
2DdW (t),

with W as Wiener process and S(t) :=
∫
S1 dϕ ρ(t, ϕ)P (ϕ) as time-dependent stimulus.

Drawing upon the equivalence of oscillators in the finite Winfree model, we shall identify
the network state with the single probability density ρ(t, ·). Note that behind such a
mean-field description lies the assumption that the oscillator states are identically and
independently distributed at all times, provided they are so initially. It has recently
been shown that this so-called propagation of chaos [24, 13] is satisfied for even more
general networks, in the limit as N → ∞ [48]. Continuum models similar to (1.2) have
been considered in the past for the famous Kuramoto model of coupled phase oscillators
[26, 42, 47, 46, 2]. The propagation of chaos in the Kuramoto model is well established
[9, 10, 2].

The approximation of oscillator pulses P by Dirac distributions may be particularly
meaningful for certain neuronal oscillators, as action potentials of periodically firing neu-
rons can be of significantly shorter duration than the firing periods themselves. For ex-
ample, the inhalation of odour molecules has been found to trigger oscillations of the local
field potential of mitral cells in the olfactory bulb of rats, within the frequency range 20–80
Hz and with spikes lasting just about 2 ms [14, 27]. Note that to arrive at (1.1), the limit
of Dirac pulses is taken after the limit of an infinite network size. The case where oscillator
phases in finite networks discontinuously jump due to other spiking oscillators, has been
extensively studied in the literature (see for example [21] and the references therein). By
taking the limit of Dirac pulses after the limit N →∞, one obtains a well-behaved partial
differential equation instead of a discontinuous ordinary one.

1.1. Article content. We study the existence, uniqueness, and local as well as
global stability of stationary probability densities, that is, time-independent solutions to
the Fokker-Planck equation (1.1). As it turns out, the local dynamics related to these
stationary states are strongly linked to the attractors and long term dynamics of the net-
work. In view of possible applications to neural networks, special interest is devoted to
the network stimulus (or activity) ρ(t, 0). The latter can be seen as an analogue of the
synaptic or firing rate activity in populations of neurons. We study its time evolution and
its dependence on the network parameters in case of stationarity. Throughout the article
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the main parameters of interest will be the so-called coupling strength ‖ψ‖∞ /ω and noise
strength D/ω. Our analytical findings are supplemented by numerical results.

In §2 we give existence and uniqueness results for stationary states in networks with
responses ψ ∈ C2(S1,R). Throughout this article, we shall mainly for simplicity assume
ψ(0) = 0, though most of our analytical results can be extended to more general responses.
Many response functions derived from biophysical neuron models or determined through
experiments on real neurons satisfy this assumption (see [15, 34, 40] for examples). We
show that determining stationary states is equivalent to solving certain one-dimensional
fixed point equations. These stationary state equations are integral equations in the sta-
tionary stimulus and are derived using a self-consistency argument. Furthermore, we look
at the transition of stationary states in the limits D → 0 and D →∞.

In §3 we perform a local stability analysis of stationarity. For the noise-free case, we
derive a one-dimensional integral eigenvalue equation for the linear dynamics at stationary
states.

In §4 we present numerical methods for the evaluation of the stationary state equa-
tions and the spectral stability analysis of stationary states in noise-free as well as noisy
networks. We furthermore present an explicit numerical integration scheme for the Fokker-
Planck equation (1.1), based on a spectral method introduced by [36] for the Kuramoto
model. Many technical details of the numerical analysis are given in appendix B.

We then apply our analytical results and numerical methods to two concrete response
families, namely type I responses of the form

ψ(ϑ) =
ψo
2

[
1− cos

(
2π · ξ(ϑ;ϑo)

)]
, (1.4)

and type II responses of the form

ψ(ϑ) = −ψo sin(2π · ξ(ϑ;ϑo)), (1.5)

where

ξ(ϑ;ϑo) := ϑ+
1

2
(1− 2ϑo)

1− cos
(
2πϑ

)
1− cos

(
2πϑo

) .
The amplitude ψ0 and the turning point ϑo ∈ (0, 1) are parameters of the response func-
tions. We call the response symmetric if ϑo = 0.5. See Figure 1.1.

The two-type classification of responses follows the ideas of [15] and [22], who linked the
type of phase response curves [45] to the bifurcation types of excitable neuron membranes.
We shall call a type I response accelerating or delaying if ψo > 0 or ψo < 0, respectively.
We shall call a type II response attracting or repulsing if ψo > 0 or ψo < 0, respectively,
due to the way oscillators near the firing point react to incoming stimuli from other, firing
oscillators. We chose to study these two response families because they generalize their
symmetric versions, which have already drawn attention in the literature (see [5] and [15,
Eq. (2.8)]). Furthermore, they qualitatively resemble several infinitesimal phase response
curves measured on real neurons [33, 34, 40].

Type I and type II responses are considered in §5 and §6 respectively. We show
how stationary states and their stability vary with the response parameters and the noise
strength. We restrict our attention to the ranges ϑo ∈ [0.3, 0.7], |ψo| /ω ∈ [0, 0.5] and
D/ω ∈ [0, 1]. Our linear stability analysis shows that, for almost all responses, stationarity
is unstable for sufficiently weak noise. In that realm, numerical integration of the Fokker-
Planck equation (1.1) reveals the existence of a stable limit cycle, on which the network
splits into multiple groups of approximately synchronized oscillators. By synchrony we
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(a) (b)

Fig. 1.1. Illustration of accelerating type I (a) and attracting type II (b) responses for ψo/ω = 1.
Note that for type I responses with ϑo ≈ 0.5, ϑo corresponds to the local extremum other than the origin,
whereas for type II responses it corresponds to the point of sign change other than the origin.

mean the persistence of a common time-dependent phase among oscillators within each
group. The number of groups equals, at least in most of the cases, the order of the leading
eigenperturbation of stationarity. The limit cycle, the stationary state, and the orbits
connecting the two, constitute an attractor of the system. Above a certain noise threshold
the limit cycle merges with the stationary state, which then becomes locally stable, and
apparently, also globally stable. We note that contrary to the better understood Kuramoto
model, the dynamics studied here are not rotational invariant, which makes the analytical
description of non-trivial invariant manifolds somewhat more difficult. Particularly, the
ansatz of Ott & Antonsen [35] for a low dimensional solution fails to work.

We finish with a short comparison of the predictions of the Fokker-Planck equation
(1.1) to the finite Winfree model (1.3) with continuous pulses P ∈ C(S1,R+) and additive
white noise. For that purpose we numerically integrate the Langevin equation

dθ̂i(t) =

[
ω + ψ(θ̂i(t))

1

N

N∑
j=1

P (θ̂j(t))

]
dt+

√
2DdWi(t) (1.6)

for the stochastic processes θ̂1, . . . , θ̂N on S1, with W1, . . . ,WN being independent Wiener
processes. We consider both type I and type II responses. We are particularly interested
in a comparison of the long term network behaviour in the two models for large N and
narrow pulses P (with

∫
S1 dϕ P (ϕ) = 1). The results are presented in §7 and indicate

a good agreement of the two models for large N and small pulse widths. We mention
that similar comparisons have been made in the past for the Kuramoto model and have
also shown a strong agreement between finite networks and their thermodynamic limit,
for sufficiently large N [37, 12, 23].

1.2. Notation. We denote R+ := [0,∞) and N0 := N ∪ {0}. For any smooth mani-
fold M we write Ck(M,R+) for the class of k-times continuously differentiable functions
mapping M to R+. We denote by ‖·‖∞ the supremum norm. For h ∈ C(S1,C), we denote
by Fn(h) :=

∫
S1 dϕh(ϕ) · e−in2π·ϕ its n-th Fourier component, n ∈ Z. By Ckzm(S1) we

denote the class of complex-valued Ck functions on S1 with zero mean, that is,

Ckzm(S1) :=

{
f ∈ Ck(S1,C) :

∫
S1

dϕ f(ϕ) = 0

}
.
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For λ ∈ C we write λ∗ for its complex conjugate. Let Πc : R→ S1 = R/Z be the canonical
projection of reals to angles. For f : S1 → C and ϑ ∈ R, we will abbreviate f(Πc(ϑ)) as
f(ϑ), whenever the meaning is clear from the context.

2. Existence and uniqueness of stationary states. In this section we present
analytical results for the existence and uniqueness of stationary states. We assume ω > 0,
ψ ∈ C2(S1,R), ψ(0) = 0, and D ≥ 0.

2.1. Existence and uniqueness in noise-free networks. In the noise-free case
(D = 0), stationary probability densities ρs ∈ C1(S1,R+) are non-negative normalized L1

solutions to the differential equation

d

dϑ

[
ρs(ϑ) · [ω + ψ(ϑ)ρs(0)]

]
= 0. (2.1)

Condition (2.1) can be interpreted as the probability flux ρs(ϑ) · [ω + ψ(ϑ) · ρs(0)] being
constant on S1. Since ψ(0) = 0, the flux must be strictly positive. This yields the form

ρs(ϑ) =
ωρs(0)

ω + ψ(ϑ)ρs(0)
(2.2)

for all stationary densities ρs. The condition that ρs be a probability density translates to
the fixed-point equation

ρs(0) =
1

ω

[∫
S1

dϑ

ω + ψ(ϑ)ρs(0)

]−1

(2.3)

in the stationary stimulus ρs(0) > 0. Conversely, solving (2.3) (under the condition
ω + ψ(ϑ)ρs(0) > 0, ∀ϑ ∈ S1) yields through (2.2) a stationary probability density. We
shall refer to (2.3) as stationary state equation for noise-free networks. The following
lemma gives a sufficient condition for the existence and uniqueness of its solutions.

Lemma 2.1. Suppose the coupling strength E := ‖ψ‖∞ /ω is strictly smaller than 1
2 .

Then there exists a unique stationary probability density ρs ∈ C1(S1,R). The stationary
stimulus ρs(0) is within (2/3, 2). Moreover, ρs → 1 uniformly as E → 0.

Proof. Abbreviating the right hand side of (2.3) by A0(ρs(0)), for any stationary
probability density ρs one can easily estimate

A0(ρs(0)) ≤ 1 + Eρs(0), (2.4)

which, by (2.3) and E < 1
2 , implies that ρs(0) < 2. Note that A0(r) is well-defined for

r ∈ [0, 2] and that the compact interval J := [0, 2] is A0-invariant. The function A0 : J → J
is continuous and differentiable on Jo := (0, 2), with derivative

A′0(r) =
A2

0(r)

ω

∫
S1

ψ(ϑ) dϑ[
1 + r

ωψ(ϑ)
]2 . (2.5)

Since the mapping x 7→ x
1+αx (where α ≥ 0) is increasing in x for x > −1/α, one has

ψ(ϑ)

[1 + αψ(ϑ)]2
≤ ψ(ϑ)

1 + αψ(ϑ)
≤

‖ψ‖∞
1 + α ‖ψ‖∞

(2.6)

whenever ψ(ϑ) > −1/α. Letting α := r/ω for any r ∈ (0, 2), leads by (2.5) and (2.6) to
the estimate

A′0(r) ≤ EA
2
0(r)

1 + Er
≤ E [1 + Er]2

1 + Er
≤ E [1 + 2E ] < 1
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for all r ∈ (0, 2). Therefore A0 : J → J has a unique fixed point ro. It corresponds to
a stationary probability density ρs with ρs(0) = ro, having the form (2.2). Similarly to
(2.4), one can also estimate A0(ρs(0)) ≥ 1 − Eρs(0), which implies ρs(0) > 2/3. In fact,
together with (2.4) this implies

1

1 + E
≤ ρs(0) ≤ 1

1− E
,

which shows that ρs(0)→ 1 as E → 0. Thus by (2.3), ρs → 1 uniformly as E → 0.

2.2. Existence and local uniqueness in networks with noise. In the case D >
0, stationary states ρs ∈ C2(S1,R+) are non-negative normalized L1 solutions to the
differential equation

d

dϑ

[
ρs(ϑ) · [ω + ψ(ϑ)ρs(0)]−D d

dϑ
ρs(ϑ)

]
= 0.

This is equivalent to

d

dϑ
ρs(ϑ) =

1

D
[ω + ψ(ϑ)ρs(0)] ρs(ϑ) + C (2.7)

for some appropriate constant C ∈ R. For fixed stimulus ρs(0), (2.7) is a first-order ODE,
admitting on [0, 1] the unique solution

ρs(ϑ) = exp

[
1

D
[ωϑ+ Ψ(0, ϑ)ρs(0)]

]
·
[
C

∫ ϑ

0
dϕ exp

[
− 1

D
[ωϕ+ Ψ(0, ϕ)ρs(0)]

]
+ ρs(0)

]
,

where Ψ(ϑ1, ϑ2) :=
∫ ϑ2
ϑ1
dϕ ψ(ϕ). The periodicity condition ρs(0) = ρs(1) determines the

constant C and eventually leads to the representation

ρs(ϑ) = ρs(0)

{∫ 1

0
dϕ exp

[
− 1

D
[ωϕ+ Ψ(0, ϕ)ρs(0)]

]}−1

×
∫ 1

0
dϕ exp

[
− 1

D
[ωϕ+ Ψ(ϑ, ϑ+ ϕ)ρs(0)]

]
,

(2.8)

where we used the fact that Ψ(0, 1) + Ψ(0, ϕ) = Ψ(0, 1 + ϕ). Finally, the normalization
condition

∫ 1
0 dϑ ρs(ϑ) = 1 is equivalent to the fixed point equation

ρs(0) =

{∫ 1

0
dϑ

∫ 1

0
dϕ exp

[
− 1

D
[ωϕ+ Ψ(ϑ, ϑ+ ϕ)ρs(0)]

]}−1

×
∫ 1

0
dϕ exp

[
− 1

D
[ωϕ+ Ψ(0, ϕ)ρs(0)]

] (2.9)

in the stationary stimulus ρs(0) > 0. Conversely, the solutions to (2.9) correspond through
(2.8) to stationary probability densities, which by (2.7) are of class C2(S1,R+). Similarly
to (2.3), we refer to (2.9) as the stationary state equation for networks with noise. The
following results provide existence and local uniqueness statements for the solutions.

Proposition 2.2. Let AD(ρs(0)) denote the right hand side of (2.9) and denote
Jβ = [0, β]. Suppose β ≥ 2 and E := ‖ψ‖∞ /ω ≤ 1/(4β). Then AD(Jβ) ⊆ J5/3 and the
mapping AD : Jβ → J5/3 is a contraction with a Lipschitz constant not depending on D or
β.
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Proof. We define two auxiliary functions ζ, η : R→ R+ by

ζ(s) :=

∫ 1

0
dϕ e−sϕ =

1

s

[
1− e−s

]
,

η(s) :=

∫ 1

0
dϕ e−sϕϕ =

1

s2

[
1− e−s − se−s

]
.

(2.10)

(The values at s = 0 being equal to 1 and 1
2 respectively, from the integrals.) Note that

for 0 ≤ s1 ≤ s2,

ζ(s1)

ζ(s2)
≤ s2

s1
,

η(s1)

ζ(s2)
≤ s2

s2
1

. (2.11)

Let M(ρs(0)) and N(ρs(0)) denote the numerator and denominator on the right hand side
of (2.9) respectively, so that AD = M/N . For r, r1, r2 ≥ 0, it is straightforward to obtain
the estimates

|M(r)| ≤ ζ
[ ω
D

(1− Er)
]
,

ζ
[ ω
D

(1 + Er)
]
≤ |N(r)| ≤ ζ

[ ω
D

(1− Er)
]
,

|M(r1)−M(r2)| ≤
‖ψ‖∞
D

· η
[ ω
D

[1− E max(r1, r2)]
]
· |r1 − r2| ,

|N(r1)−N(r2)| ≤
‖ψ‖∞
D

· η
[ ω
D

[1− E max(r1, r2)]
]
· |r1 − r2| .

Combining them leads to the estimate

|AD(r)| ≤
ζ
[
ω
D (1− Er)

]
ζ
[
ω
D (1 + Er)

] (2.12)

and (assuming r1 ≥ r2) to

|AD(r1)−AD(r2)| ≤
[
|N(r2)| · |M(r1)−M(r2)|+ |N(r1)−N(r2)| · |M(r2)|

]
|N(r1)N(r2)|

≤2E ·
η
[
ω
D (1− Er1)

]
ζ
[
ω
D (1− Er2)

]
ζ
[
ω
D (1 + Er1)

]
ζ
[
ω
D (1 + Er2)

] · ω
D
|r1 − r2| .

(2.13)

Now let β ≥ 2 and assume E ≤ 1/(4β). Then Er < 1 for all r ∈ Jβ. By applying (2.11) to
(2.12) we find that

|AD(r)| ≤ 1 + Er
1− Er

≤ 1 + Eβ
1− Eβ

≤ 5

3

for all r ∈ Jβ, so that indeed AD(Jβ) ⊆ J5/3. Similarly, by applying (2.11) to (2.13) we
find

|AD(r1)−AD(r2)| ≤2E · 1 + Er1

(1− Er1)2 ·
1 + Er2

1− Er2
· |r1 − r2|

≤ 1

2β
· (1 + Eβ)2

(1− Eβ)3 · |r1 − r2| ≤
25

27
|r1 − r2|

for all r1, r2 ∈ Jβ.
Proposition 2.3. For D > 0, let A0, AD : R+ → R+ be the functionals introduced

in lemma 2.1 and proposition 2.2, respectively. Let E := ‖ψ‖∞ /ω and r ≥ 0 be such that
Er < 1. Then AD(r) tends to A0(r) as D → 0+.
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Proof. The proof is based on the following easily verifiable fact: If f ∈ C([0, 1],R) is
(right-)differentiable at 0 with f ′(0) > 0, and 0 is the unique global minimum of f , then

lim
D→0+

{∫ 1

0
dϕ exp

[
− 1

D
f(ϕ)

]}−1

·
∫ 1

0
dϕ exp

[
− 1

D

[
f(0) + f ′(0)ϕ

]]
= 1. (2.14)

For each ϑ ∈ [0, 1] consider the function fϑ : [0, 1]→ R defined as fϑ(ϕ) := ωϕ+ Ψ(ϑ, ϑ+
ϕ)r. Then fϑ satisfies the assumptions of the above assertion with f ′ϑ(0) = ω+ψ(ϑ)r > 0.
By (2.14) this implies that

lim
D→0+

AD(r) =

{∫ 1

0
dϑ lim

D→0+

[∫ 1

0
dϕ exp

[
− 1

D
[ω + ψ(0)r]ϕ

]]−1

×
∫ 1

0
dϕ exp

[
− 1

D
[ω + ψ(ϑ)r]ϕ

]}−1

=

{∫ 1

0
dϑ lim

D→0+
ζ
[ ω
D

]−1
ζ

[
1

D
[ω + ψ(ϑ)r]

]}−1

=

[
ω

∫ 1

0

dϑ

ω + ψ(ϑ)r

]−1

= A0(r),

with ζ : R+ → R+ being the auxiliary function introduced in (2.10), where we used
Lebesgue’s dominated convergence theorem to swap the limit with the ϑ-integral. The
latter holds due to the estimate{∫ 1

0
dϕ exp

[
− 1

D
[ωϕ+ Ψ(0, ϕ)r]

]}−1 ∫ 1

0
dϕ exp

[
− 1

D
[ωϕ+ Ψ(ϑ, ϑ+ ϕ)r]

]
≤
{∫ 1

0
dϕ exp

[
− 1

D
[ω + ‖ψ‖∞ r]ϕ

]}−1 ∫ 1

0
dϕ exp

[
− 1

D
[ω − ‖ψ‖∞ r]ϕ

]
=
ζ
[
ω
D [1− Er]

]
ζ
[
ω
D [1 + Er]

] <∞,
holding uniformly in ϑ.

Lemma 2.4. Let β ≥ 2 and E = ‖ψ‖∞ /ω ≤ 1/(4β). Then for every D > 0 there exists
exactly one stationary probability density ρs ∈ C2(S1,R) such that ρs(0) ∈ Jβ := [0, β].
The density ρs in fact satisfies ρs(0) ∈ [0, 5/3]. As D → 0+, ρs converges pointwise to
the stationary probability density for noise-free networks (the existence and uniqueness of
which is ensured by lemma 2.1). Furthermore, the density ρs depends continuously (in the
supremum norm) on D > 0.

Proof. By proposition 2.2, the functionals AD : Jβ → J5/3 ⊆ Jβ (D > 0) are con-
tractions with a Lipschitz constant LA < 1 not depending on D. By Banach’s fixed point
theorem, each AD has a unique fixed point rD in Jβ corresponding to the stationary state
ρs(· ;D, rD), where we define

ρs(ϑ;D, r) := r

{∫ 1

0
dϕ exp

[
− 1

D
[ωϕ+ Ψ(0, ϕ)r]

]}−1

×
∫ 1

0
dϕ exp

[
− 1

D
[ωϕ+ Ψ(ϑ, ϑ+ ϕ)r]

]
.

By proposition 2.3, AD(r0) → A0(r0) as D → 0+, with r0 ∈ J2 being the fixed point of
A0. Together with the estimate

|rD − r0| = |AD(rD)−A0(r0)| ≤ LA |rD − r0|+ |AD(r0)−A0(r0)| (2.15)
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this implies that rD → r0 as D → 0+. Furthermore, in a way similar to the proof
of proposition 2.2, one finds that ρs(ϑ;D, r) is Lipschitz continuous in r ∈ Jβ, with a
Lipschitz constant Lr uniform in D > 0 and ϑ ∈ S1. Denote

ρs(ϑ; 0, r) :=
rω

ω + ψ(ϑ)r

for ϑ ∈ S1 and r ∈ Jβ. Then by (2.2), ρs(· ; 0, r0) is the stationary state for noise-free
networks. Similar to proposition 2.3 one finds that ρs(ϑ;D, r) → ρs(ϑ; 0, r) as D → 0+,
for every r ∈ Jβ and ϑ ∈ S1. Using the estimate

|ρs(ϑ;D, rD)− ρs(ϑ; 0, r0)| ≤ Lr |rD − r0|+ |ρs(ϑ;D, r0)− ρs(ϑ; 0, r0)|

we conclude that ρs(ϑ;D, rD) → ρs(ϑ; 0, r0) as D → 0+, for every ϑ ∈ S1. It remains to
show the continuous dependence of ρs on D > 0. For D,D′ > 0 and the corresponding
stationary stimuli rD, rD′ , one can estimate

(1− LA) |rD − rD′ | ≤ |AD(rD)−AD′(rD)| , (2.16)

in a similar fashion to (2.15). From (2.9) it is clear that the right hand side of (2.16)
vanishes as D′ → D. Since LA < 1, this implies that rD → rD′ as D′ → D. Consequently,
ρs(ϑ;D, rD)→ ρs(ϑ;D′, rD′) as D′ → D, uniformly in ϑ ∈ S1.

Lemma 2.5. For any Em > 0 and rm > 1 there exists a constant C > 0 such that
whenever E := ‖ψ‖∞ /ω ≤ Em and D/ω ≥ C, there exists exactly one stationary state
ρs ∈ C2(S1,R) with ρs(0) ∈ [0, rm]. Furthermore, ρs(ϑ) → 1 as D/ω → ∞ uniformly in
ϑ ∈ S1 and E ≤ Em.

Proof. From (2.9) it is straightforward to show that the derivative A′D(r) of the
functional AD tends to 0 as D/ω →∞, uniformly in E ≤ Em and r ∈ [0, rm]. Now choose
C > 0 so large that A′D|[0,rm] < min {1, (rm − 1)/rm} whenever D/ω ≥ C and E ≤ Em.
Since AD(0) = 1, we find that AD has a unique fixed point in [0, rm] whenever D/ω ≥ C
and E ≤ Em, corresponding to the stimulus ρs(0) of a stationary state ρs ∈ C2(S1).
Furthermore, ρs(0)→ 1 as D/ω →∞ uniformly in E ≤ Em. Recall that by (2.8) we have
the representation

ρs(ϑ) =
ρs(0)

M(ρs(0))

∫ 1

0
dϕ e−

ω
D
V (ϑ,ϕ,ρs(0)).

We conclude that ρs(ϑ)→ 1 as D/ω →∞, uniformly in ϑ ∈ S1 and E ≤ Em.

The last two lemmas describe the local qualitative change of stationary states in noisy
networks as noise tends to zero or to infinity. They show that, for weak coupling, the
stationary state is preserved in a modified form as noise is increased from zero, and tends to
the uniform distribution as noise tends to infinity. Contrary to the noise-free case (lemma
2.1), this preserved stationary state is only locally unique, and in fact little information is
provided on the possible appearance of other stationary states. Nonetheless, the radius of
uniqueness (in the supremum norm) can be chosen large enough, provided that coupling
is sufficiently weak or noise sufficiently strong.

3. Stability of stationary states. In this section we perform a linear stability
analysis of stationary states ρs against small perturbations h(t) ∈ C1(S1).



10 Stilianos Louca and Fatihcan M. Atay

3.1. Stability analysis in noise-free networks. We start with the case D = 0.
Suppose ρs + h satisfies the Fokker-Planck equation (1.1). It is then easy to see that h
satisfies the evolution equation

∂th(t, ϑ) = (Qh(t, ·))(ϑ)− h(t, 0) · (h(t, ϑ)ψ(ϑ))′ , (3.1)

where the linear operator Q is given by

Qf = − [(ω + ψρs(0)) · f ]′ − (ψρs)
′f(0), f ∈ C1(S1),

with the prime symbol denoting the partial derivative with respect to ϑ ∈ S1. Note that
Q maps C1(S1) into the space Czm(S1) of continuous functions with zero mean. In fact, in
view of the normalization condition

∫
S1(ρs +h) = 1 imposed on all network states, we will

consider only the restriction of Q to the domain C1
zm(S1), the latter seen as a subspace

of Czm(S1). Determining eigenperturbations h that evolve as h(t) ≈ eλth(0) in the linear
approximation corresponds to a point-spectral analysis of Q and gives insight to the local
stability of ρs.

Lemma 3.1. The linear operator Q has the following properties:

1. The point spectrum σp(Q) is given by the solutions λ ∈ C of the eigenvalue equation∫ 1

0
dϑ

eλTs(ϑ)

v2
s (ϑ)

= 0, (3.2)

with the so-called stationary velocity vs(ϑ) := ω + ψ(ϑ) · ρs(0) and stationary travel time

Ts(ϑ) :=
∫ ϑ

0 dϕ 1/vs(ϕ). All eigenvalues are of geometric multiplicity one.
2. The eigenvalue equation (3.2) has a countably infinite number of solutions

{λn}n∈Z, which can be numbered so that λn ∼ i2πn/Ts(1) as |n| → ∞. Furthermore,
all eigenvalues satisfy |<(λn)| ≤ ρs(0) · ‖ψ′‖∞.

Proof.

1. The eigenvalue equation in the eigenperturbation h ∈ C1
zm(S1) with eigenvalue λ

reads

(ω + ψρs(0))h′ +
(
λ+ ψ′ρs(0)

)
h+ (ψρs)

′h(0) = 0. (3.3)

If the perturbation stimulus h(0) is regarded as constant, (3.3) is an inhomogeneous linear
ODE in h, whose solution is

h(ϑ) = h(0)eAλ(ϑ)

[
1 +

∫ ϑ

0
dϕ B(ϕ)e−Aλ(ϕ)

]
, (3.4)

where

Aλ(ϑ) := −
∫ ϑ

0

dϕ

vs(ϕ)

[
ψ′(ϕ)ρs(0) + λ

]
,

B(ϑ) := −(ψρs)
′(ϑ)

vs(ϑ)
=

ωρ′s(ϑ)

vs(ϑ)ρs(0)
.

The periodicity condition h(0) = h(1) 6= 0 is equivalent to

χ(λ) := 1− eAλ(1)

[
1 +

∫ 1

0
dϕ B(ϕ)e−Aλ(ϕ)

]
= 0. (3.5)
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Note that by the stationary state equation (2.3) we have Ts(1) = 1/(vs(0)ρs(0)) and

Aλ(ϑ) = ln
vs(0)

vs(ϑ)
− λTs(ϑ) (3.6)

for ϑ ∈ [0, 1]. Every non-trivial solution λ of (3.5) corresponds through (3.4) to a function
hλ ∈ C1(S1) solving (3.3). Since λhλ = Qhλ is in Czm(S1) and λ 6= 0, we have that
hλ ∈ C1

zm(S1), so that hλ is an eigenperturbation with eigenvalue λ. The value λ = 0
always solves (3.5); however, it can be shown to correspond to a perturbation with non-
zero mean, given h0(0) 6= 0. It follows that the eigenvalues of Q are exactly the non-trivial
solutions λ of (3.5). Using (3.6) and (2.2) we find that

χ(λ) = e−λTs(1)λω

∫ 1

0
dϕ

eλTs(ϕ)

v2
s (ϕ)

.

Thus the non-trivial roots of χ are exactly the solutions of (3.2). The single multiplicity
of eigenvalues is evident from (3.4).

2. The eigenvalue equation (3.2) can be brought into the form of a standard expo-
nential integral ∫ Ts(1)

0
dt f(t)eλt = 0, (3.7)

with f(t) := 1/vs(Θ(t)) and Θ : R→ S1 being the solution of the initial value problem

Θ̇(t) = vs(Θ(t)), Θ(0) = 0.

Note that Θ(Ts(1)) = Θ(0). One has −f ′(t)/f(t) = ρs(0)ψ′(Θ(t)). By [38, §4] we know
that any solution to (3.7) must therefore satisfy |<(λ)| ≤ ρs(0) ‖ψ′‖∞. Furthermore,
defining ν(ϕ) := f [Ts(1)(ϕ+ 1)/2] /f(0) allows us to write (3.7) in the equivalent form∫ 1

−1
dϕ ν(ϕ)e

λ
2
Ts(1)ϕ = 0, (3.8)

with ν(−1) = ν(1) = 1. It is a known fact [28, Theorem 13] that the zeros (λn)n∈Z of
(3.8) can be numbered in such a way that λnTs(1)/2 ∼ nπi as |n| → ∞.

Note that Ts(ϑ) is the time it takes for an oscillator to advance from phase 0 to ϑ
when the network is in stationarity. Assertion 2 of lemma 3.1 can be interpreted in the
following way: Eigenperturbations of high orders (high frequencies) oscillate at frequencies
which are approximately integer multiples of the stationary oscillator frequency 1/Ts(1).
Furthermore, they tend to have slow dynamics, decaying or growing at a rate approaching
zero as their order tends to infinity. Lemma 3.2 below takes this finding to an extreme
for response functions having a symmetry property. We note that spectra approximating
the grid i2π/Ts(1) · Z have also been found in the stability analysis of stationary states
for similar networks with smooth (as opposed to Dirac-like) pulses, in the limit of weak
coupling [1].

Lemma 3.2. Suppose the response ψ satisfies ψ(ϑ) = ψ(−ϑ), ∀ϑ ∈ S1. Then either
all eigenvalues of Q are purely imaginary, or all but a finite number of eigenvalues are
purely imaginary and some eigenvalues have strictly positive real part. In particular, the
stationary state is either (linearly) neutrally stable or unstable.
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Proof. We begin with a claim: If λ = x + iy (with x, y ∈ R) solves the eigenvalue
equation (3.2), then so does its reflection λ̃ := −x + iy. To prove the claim, note that
vs(ϑ) = vs(1− ϑ) and thus Ts(ϑ) = Ts(1)− Ts(1− ϑ) for ϑ ∈ [0, 1]. Therefore,∫ 1

0
dϑ

eλ̃Ts(ϑ)

v2
s (ϑ)

=eλ̃Ts(1)

∫ 1

0
dϑ

eλ
∗Ts(1−ϑ)

v2
s (ϑ)

= eλ̃Ts(1)

∫ 1

0
dϑ

eλ
∗Ts(ϑ)

v2
s (1− ϑ)

=eλ̃Ts(1)

[∫ 1

0
dϑ

eλTs(ϑ)

v2
s (ϑ)

]∗
= 0.

Now suppose σp(Q) is not purely imaginary. Then by the above claim, at least one eigen-
value has strictly positive real part. Furthermore, due to the asymptotic distribution of
eigenvalues for large orders predicted by lemma 3.1(2), only a finite number of eigenvalues
λn admits a reflection λ̃n 6= λn.

3.2. Stability analysis in networks with noise. In analogy to noise-free networks,
a good starting point for a local stability analysis of stationarity in noisy networks would
be the linearized dynamics of small perturbations h(t) ∈ C2

zm(S1). Similarly to (3.1) one
finds the dynamics

∂th = QDh− h(0)(hψ)′,

with the linear part

QDh := −(vsh)′ − (ψρs)
′h(0) +Dh′′

provided that ρs +h satisfies the Fokker-Planck equation (1.1). Note that QD maps C2(S1)
into Czm(S1). Unlike in the noise-free case, the eigenvalue equation QDh = λh is not easily
reducible to a lower-dimensional form.

One may attempt to deal with the eigenvalue equation through a trigonometric ap-
proximation of eigenperturbations. The condition Dh′′ = λh+(vsh)′+(ψρs)

′ ·h(0) implies
that any eigenperturbation h ∈ C2

zm(S1) is in fact in C3
zm(S1) (recall that by §2.2 one has

ρs ∈ C2(S1)). Thus the Fourier series of h, h′ and h′′ converge uniformly. It is straightfor-
ward to see that the eigenvalue equation QDh = λh is equivalent to the algebraic system

λFn(h) =− (2πn)2DFn(h)

− i2πn
∞∑

k=−∞
Fk(h)Fn−k(vs)

− i2πnFn(ψρs)
∞∑

k=−∞
Fk(h)

(3.9)

for n ∈ Z \ {0}, with F0(h) = 0. The above system is the starting point for the ap-
proximative method used in the numerical spectral stability analysis presented in §4.2
below.

4. Numerical methods. In this section we outline the numerical methods we used
to further investigate the model (1.1). These methods involve the solution of the station-
ary state equations, the calculation of the point-spectrum of the linearized dynamics at
stationary states and the integration of the Fokker-Planck equation. Technical details are
given in appendix B. The numerical analysis was applied exclusively to type I and type II
responses (1.4)–(1.5). We restricted our attention to the parameter values ϑo ∈ [0.3, 0.7],
|ψo| /ω ∈ [0, 0.5], and D/ω ∈ [0, 1]. In our calculations we normalized ω = 1, though we
use the dimensionless parameters ψo/ω and D/ω for the presentation of the results.
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(a) (b)

Fig. 4.1. Graph of the function AD introduced in proposition 2.2, for (a) symmetric accelerating type
I and (b) symmetric attracting type II responses. The solid line is the diagonal in R2

+. Fixed points of AD
correspond to stationary stimuli. Note that all graphs intersect the diagonal exactly once and within the
interval [0, 2]. This property is shared by all symmetric and non-symmetric type I and type II responses
that we tested.

4.1. Evaluating the stationary state equations. Both stationary state equations
(2.3) and (2.9) are generally difficult to solve analytically. In order to get a better feeling
for the shapes of stationary states and their dependence on the response function and
noise strength, we implemented numerical quadratures of the integral expressions involved.
Using them we constructed routines for the evaluation of the operator AD introduced in
lemma 2.1 (D = 0) and proposition 2.2 (D > 0). We were thus able to search for
stationary states (or rather their corresponding stimuli) using a fixed point iteration of AD,
as suggested by proposition 2.2 for both type I and type II responses. We refer to appendix
B.1 for technical details. Figure 4.1 shows a numerical evaluation of the functional AD
for symmetric type I and type II responses and typical combinations of D/ω and ψo/ω.
As can be seen, the graph of the functional AD : R+ → R+ intersects, at least within
the illustrated domain, the diagonal exactly once. This suggests the uniqueness of the
calculated stationary states.

4.2. Evaluating the eigenvalue equations. For the linear stability analysis of
stationarity in noise-free networks, the eigenvalue equation (3.2) for the operator Q (see
§3.1) was solved numerically as described in appendix B.2. For the spectral stability
analysis of stationarity in noisy networks, our starting point was the infinite system of
equations (3.9) in the Fourier spectrum of eigenperturbations, introduced in §3.2. For
its numerical evaluation we considered only a finite subset of it, by implicitly assuming
Fn(h) = 0 for |n| > N (for some sufficiently large N) for the sought eigenperturbations
h ∈ C2

zm(S1). See appendix B.3 for more technical details. The results of this approach
agree very well with those of the exact spectral analysis for the special case D = 0.

4.3. Integrating the Fokker-Planck equation. In order to better understand
the behaviour of the network near stationary states and also determine other possible
attractors, we numerically integrated the Fokker-Planck equation (1.1). For that we used
a so-called spectral method (see [2, §3.C] for a review on this approach to the Kuramoto
model). The idea is to approximate the density ρ(t, ϑ) by a finite trigonometric sum in
ϑ, of sufficiently high order. The time-dependent Fourier coefficients then satisfy a finite
system of ODEs, which can be solved using standard tools. We refer to appendix B.4 for
technical details.
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(a) (b) (c)

Fig. 5.1. (a) Stationary states in networks with symmetric, accelerating type I responses and coupling
strength |ψo| /ω = 0.5. The horizontal line represents the uniform distribution approached in the limit
D/ω →∞. (b) and (c): Stationary stimuli ρs(0) for various coupling and noise strengths for accelerating
(b) and delaying (c) symmetric type I responses. Note the different value ranges.

5. Behaviour for type I responses. We now focus on the structure and stability
of stationary states as well as the long-term behaviour of the model for type I responses
defined by (1.4), using the numerical methods outlined in §4. Our stability analysis shows
that a sufficiently strong noise locally stabilizes stationarity. Numerical simulations in
fact suggest this stability to be global. As noise is reduced, stationarity undergoes a
supercritical Hopf bifurcation and a stable limit cycle appears, the so called main attractor,
on which the network splits up into several approximately synchronized oscillator groups.
The system’s long term behaviour seems to be dominated by the attractor consisting of
the stationary state, the main attractor and the orbits connecting the two.

5.1. Stationary states and stationary stimuli. For noise-free networks with sym-
metric type I responses ψ(ϑ) = ψo

2 [1− cos(2πϑ)], the stationary state equation (2.3) ad-
mits as solution the unique stationary stimulus

ρs(0) =
ψo
2ω

+

√(
ψo
2ω

)2

+ 1. (5.1)

Solving the stationary state equation for networks with noise or non-symmetric responses
turns out to be more difficult; hence we resort to numerical methods as described in §4.1.
Figure 5.1(a) shows typical stationary states in networks with symmetric, accelerating type
I responses and various noise strengths. For delaying, symmetric responses, stationary
states qualitatively follow a similar pattern, though with swapped minima and maxima.
For non-symmetric responses, stationary states change accordingly. We note that, contrary
to the Kuramoto model [25, 26], the stationary phase distribution here is far from being
uniform.

In view of the interpretation of the stimulus ρ(t, 0) as current network activity, the
dependence of the stationary stimulus ρs(0) on parameters like the coupling strength
|ψo| /ω and noise strength D/ω are of special interest. Figures 5.1(b) and 5.1(c) illustrate
how ρs(0) varies with these parameters for symmetric type I responses. Figure 5.1(b)
shows that for accelerating responses, increased coupling and weaker noise lead to a higher
stationary network activity. For delaying responses, on the other hand, increased coupling
and weaker noise lead to a lower stationary network activity, as shown in Figure 5.1(c).
Similar relations were found to hold for non-symmetric type I responses as well.

5.2. Linear stability of stationarity. For noise-free networks with symmetric type
I responses, the eigenvalue equation (3.2) for the linearized dynamics at ρs can be treated
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(a) (b) (c)

Fig. 5.2. Stability spectra of stationary states in noise-free networks with (a) accelerating and (b)
delaying type I responses for various turning points ϑo. (c) Leading eigenperturbations (real part) of
stationary states in noise-free networks with accelerating type I responses. Leading eigenvalues are λ ≈
(0.23+i·15.75)ω (order 2) for ϑo = 0.4 and λ ≈ (0.22+i·7.18)ω (order 1) for ϑo = 0.6. Eigenperturbations
are scaled to have value 1 at the origin. Their imaginary part is of similar shape as their real part. Coupling
strength is |ψo| /ω = 0.5 in all cases.

analytically (see appendix C). As it turns out, the point spectrum is purely imaginary and
given by

σp(Q) =

{
λn :=

i2πn

Ts(1)
: n ∈ Z \ {0,±1}

}
∪

{
λ±1 := ±iω2π

√
1 +

ψo
2ω
ρs(0)

}
. (5.2)

Compare this to the predictions of lemmas 3.1(2) and 3.2. Eigenperturbations hn of order
n corresponding to eigenvalues λn, are characterized by |n| local maxima and |n| local
minima, in their real as well as imaginary parts. Each one can be interpreted as tending to
split oscillators into |n| synchronized groups. As eigenvalues appear in complex-conjugate
pairs, only those with non-negative imaginary parts will be considered in the following.

Since all eigenvalues have zero real part, stationary states in noise-free networks with
symmetric type I responses are only (linearly) neutrally stable. It turns out, though, that
the symmetric case (ϑo = 0) is a special one, since for both ϑo < 0.5 and ϑo > 0.5 at least
two eigenvalues are found on the right half plane, leading to the instability of stationarity.
Figures 5.2(a) and (b) show the computed spectra for |ψo| /ω = 0.5 and different turning
points ϑo. Figures 5.3(a) and (b) further illustrate the dependency of the real part of
eigenvalues on ϑo. Figure 5.2(c) shows typical leading eigenperturbations in networks
with accelerating type I responses. It is apparent that these differ qualitatively for the
cases ϑo < 0.5 and ϑo > 0.5, corresponding to different orders. A similarly abrupt change
of leading eigenvalue order also appears for delaying type I responses. Integrating the
Fokker-Planck equation (1.1) reveals that this difference is related to a bifurcation in the
long term behaviour of the network as ϑo passes through 0.5 (see §5.3 below).

As noise is increased, all eigenvalues move towards the left half plane, at a speed
increasing with their order. For sufficiently strong noise, all eigenvalues are eventually
located on the open left half plane, suggesting a local stabilization of stationarity. This is
illustrated in figures 5.3(c)–(d), which show the stability spectra of stationary states over
varying ϑo and non-zero noise. While a noise-induced stabilization takes place regardless
of ϑo and the coupling strength, the exact noise threshold depends non-trivially on both,
as is illustrated in figures 5.4(a)–(b). They show the real part of leading eigenvalues over
varying coupling and noise strengths, for fixed ϑo = 0.4. As can be seen, stationarity
becomes stable when noise exceeds a certain threshold, which itself increases (weakly
non-linearly) with the coupling strength.
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(a) (b)

(c) (d)

Fig. 5.3. Real parts of low-order eigenvalues for type I responses (accelerating in left column, delaying
in right column) as a function of the turning point ϑo, for two different noise levels (D = 0 in top row and
D/ω = 0.0025 in bottom). Only the first 5 eigenvalue orders (including the leading ones) are displayed.
Increasing the noise shifts all eigenvalues to the left half plane (lower real part), at a rate increasing with
the eigenvalue order. Coupling strength is |ψo| /ω = 0.5, but similar results have also been found for
|ψo| /ω ∈ {0.1, 0.2, . . . , 0.5}.

(a) (b) (c) (d)

Fig. 5.4. The similarity between the real part of the leading eigenvalues at stationary states (a & b),
and the global distance of phase density from stationarity (c & d), evaluated over a range of coupling and
noise strengths. Responses were (a)-(c) accelerating and (b)-(d) delaying type I responses with ϑo = 0.4.
The white dashed contour is at level zero. Note the different noise scales. The leading eigenvalue is of order
2 in (a), at least for the unstable parameter range, and of order 1 in (b) for the whole parameter range.
Figures (c) and (d) show the supremum distance (logarithmic scale) of phase density at time t = 200 ω−1

from stationarity, after integration of the Fokker-Planck equation (1.1) starting from a uniform distribution.
Integration time step was 2.5×10−4 ω−1, spectral order was 100. The supremum distance is evaluated on a
uniform grid of size 100. Similar spectra and simulation results have also been obtained for ϑo = 0.3, 0.4, 0.6,
and 0.7.
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(a) (b)

Fig. 5.5. Integration of the Fokker-Planck equation for networks with accelerating type I responses
with ϑo = 0.4 and zero noise. (a) Evolution of the phase density, after a perturbation of the stationary
state. The perturbation was the real part of the leading eigenperturbation (λ2 ≈ (0.23 + i · 15.75)ω, order
2) with perturbation stimulus 0.01. Note that the initial and stationary densities seemingly overlap in the
graphic. (b) Evolution of the corresponding network stimulus. The latter eventually oscillates at a frequency
(2.52±0.05)ω ≈ =(λ2)/(2π). Coupling strength is ψo/ω = 0.5. The Fokker-Planck equation was integrated
as described in §4.3 at spectral order 300 and time step 2× 10−5 ω−1.

5.3. Numerical simulations. The stability of stationarity as well as the long-term
behaviour of networks have been tested by integrating the Fokker-Planck equation (1.1)
as described in §4.3. Parameter values considered were ϑo ∈ {0.3, 0.4, 0.6, 0.7}, |ψo| /ω ∈
{0.1, 0.5} and D/ω ∈ [0, 1]. The local stability of stationarity has been tested against
eigenperturbations h (real part) of order up to 10, with ‖h‖∞ ≈ 0.01. Other applied
perturbations included random harmonic ones of order up to 10 with similar amplitudes.

Our simulations reproduced the predictions of the linear stability analysis. More pre-
cisely, in the unstable realm, all applied perturbations result in the network splitting up
into n oscillator groups, with n being the order of the leading eigenvalue λn (e.g. two
for ϑo = 0.4, ψo/ω = 0.5, D = 0). Eventually, the network settles on a limit cycle, on
which all oscillators in each of these n (approximately equally sized) groups are in partial
synchrony. The degree of synchrony within each group increases with decreasing noise,
and for zero noise each group is perfectly synchronized. This splitting of the network into
successively firing oscillator groups, results in an oscillation of the network stimulus at a
frequency near =(λn)/(2π). We mention that initial distributions near a uniform or Gaus-
sian distribution also eventually converge to this limit cycle, though in some cases after a
transition close to stationarity, indicating a large basin of attraction. We shall therefore
refer to this limit cycle as the main attractor. In fact, our simulations suggest that the
main attractor, the stationary state and the orbits connecting the two, constitute a global
attractor.

Figure 5.5(a) shows the results of such a simulation for ϑo = 0.4, ψo/ω = 0.5, and
zero noise. It demonstrates the splitting of the network into two groups, the oscillators
within each group being in synchrony. Figure 5.5(b) depicts the evolution of the corre-
sponding network stimulus, oscillating at an ever increasing amplitude. Figures 5.6(a)–(c)
show typical simulation results for the same response function and non-zero noise, still in
the unstable realm and for various initial distributions. The evolution of the correspond-
ing network stimuli are given in Figures 5.6(d)–(f). In all cases the network is seen to
eventually settle on the main attractor.

At a particular threshold noise strength, the main attractor merges with the network’s
stationary state. This point coincides with the local stabilisation of stationarity, as typical
for a supercritical Hopf bifurcation. Figure 5.7 shows the results of an example integration
of the Fokker-Planck equation for networks with accelerating type I responses (ϑo = 0.4
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(a) (b) (c)

(d) (e) (f)

Fig. 5.6. Example integration of the Fokker-Planck equation for networks with accelerating type I
responses with turning point ϑo = 0.4, weak noise, and for various initial distributions. Top row: Evolu-
tion of the phase density; bottom row: evolution of the stimuli (partially displayed) corresponding to the
simulation on top. (a) and (d): The initial distribution was the stationary state, perturbed by the real part
of the leading eigenperturbation (λ2 ≈ (0.051 + i · 15.75)ω, order 2), with a perturbation stimulus 0.01. (b)
and (e): The initial distribution was the uniform one. (c) and (f): The initial distribution was the wrapped
normal distribution [31, §3.5.7] with variance σ2 = 4× 10−4. In all cases the stimuli eventually approach
the form shown in (d), oscillating at a frequency (2.51± 0.05)ω ≈ =(λ2)/(2π). These final pattern persists
for as long as simulations were run (at least 10 times the periods displayed). Note that in (a) the initial and
stationary densities seemingly overlap. The same is true for the intermediate and stationary densities in
(c). Also note the different density scales in (c) compared to (a) and (b). Other parameters are ψo/ω = 0.5
and D/ω = 10−3. The Fokker-Planck equation was integrated as described in §4.3 at spectral order 150
and time step 2× 10−4 ω−1.

and ψo/ω = 0.5), with sufficiently strong noise so that stationarity has been stabilized and
the main attractor has vanished.

Our numerical simulations suggest that the local stabilization of stationarity in fact
goes along with its global stabilization. We demonstrate this in figures 5.4(c) and (d). They
show the final distance of the network state to stationarity for accelerating and delaying
type I responses, for a range of coupling and noise strengths. The initial distribution
in these simulations was the uniform one, but similar results have been obtained for
other initial distributions as well (e. g. for wrapped normal distribution with variance
σ2 = 4 × 10−4). Notice the narrow transition bands between orders of magnitude in
the final distance to stationarity across these maps. These bands closely resemble the
transition boundaries in figures 5.4(a) and (b) between linear stability and instability.
Similar spectra and simulation results have also been obtained for ϑo = 0.3, 0.4, 0.6, and
0.7.

6. Behaviour for type II responses. We now consider type II responses defined
by (1.5). We study the structure and stability of stationarity and the long-term network
behaviour. To a large extent, type II responses induce similar behavioural patterns as type
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(a) (b)

Fig. 5.7. Integration of the Fokker-Planck equation for accelerating type I responses with turning
point ϑo = 0.4 and noise strong enough to stabilize stationarity. The initial distribution was the wrapped
normal distribution with variance σ2 = 4 × 10−4. (a) Evolution of the phase density; (b) evolution of
the network stimulus. Note that in (a) the final and stationary densities seemingly overlap. A similar
asymptotic behaviour was observed for all other tested initial densities (e.g. bimodal and uniform) as well.
Coupling and noise strengths are ψo/ω = 0.5 and D/ω = 10−2 respectively. The Fokker-Planck equation
was integrated as described in §4.3 at spectral order 150 and time step 2× 10−4 ω−1.

I responses. In particular, stationarity is still stabilized by sufficiently strong noise, and the
stabilization is accompanied by a supercritical Hopf bifurcation similar to type I responses.
The corresponding limit cycle appearing at sufficiently low noise levels, the so called main
attractor, is characterized by a splitting of the network into several approximately equally
sized and approximately synchronized oscillator groups. The stationary state, the main
attractor, and the orbits connecting the two, apparently constitute an attractor of the
system. In contrast to type I responses, we demonstrate the existence of a second limit
cycle for certain type II responses under weak noise.

6.1. Stationary states and stationary stimuli. For noise-free networks with sym-
metric type II responses ψ(ϑ) = −ψo · sin(2πϑ), the stationary state equation (2.3) has the
unique solution

ρs(0) =
[
1 + (ψo/ω)2 ]−1/2

. (6.1)

Stationary states for the case of non-symmetric responses or non-zero noise had to be
calculated numerically as described in §4.1. Figure 6.1(a) shows some typical stationary
states in networks with attracting, symmetric type II responses for various noise strengths.
For repulsing, symmetric responses, stationary states qualitatively follow a similar pattern,
though with swapped minima and maxima. For non-symmetric responses, stationary
states change accordingly.

Figures 6.1(b) and (c) illustrate how the stationary stimulus varies with the cou-
pling and noise strengths for symmetric type II responses. For attracting responses, the
network’s activity depends (for fixed coupling strength) non-monotonically on the noise
strength (Figure 6.1(b)). In fact a maximum is attained at a non-trivial noise level, an
effect that can be interpreted as a resonance between the network’s dynamics and noise.
For repulsing type II responses, the network’s activity depends on the coupling and noise
strength in a comparable way (Figure 6.1(c)), except that here the stationary stimulus is
actually minimized at a certain non-trivial noise strength. Similar relations were found to
hold for non-symmetric type II responses as well.

6.2. Linear stability of stationarity. For noise-free networks with symmetric type
II responses, the eigenvalue equation (3.2) can be solved analytically (see appendix D),
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(a) (b) (c)

Fig. 6.1. (a): Stationary states in networks with attracting, symmetric type II responses with coupling
strength |ψo| /ω = 0.5 and various noise strengths. The horizontal line represents the uniform distribution
approached as D/ω →∞. Stationary stimuli ρs(0) for various coupling and noise strengths are shown for
(b) attracting and (c) repulsing symmetric type II responses. Note the different value ranges.

yielding the point spectrum

σp(Q) =

{
λn :=

i2πn

Ts(1)
: n ∈ Z \ {0,±1}

}
∪
{
λ±1 := π

[
ψoρs(0)±

√
ψ2
oρ

2
s (0)− 4ω2

]}
.

(6.2)

All eigenvalues are purely imaginary, except for a pair of complex conjugate eigenvalues
that lie on the open right half plane if ψo > 0 and on the open left half plane if ψo < 0.
The stationary state ρs is therefore unstable if ψo > 0 and (linearly) neutrally stable if
ψo < 0.

Similarly to type I responses, the spectrum always intersects the open right half plane
for non-symmetrical type II responses and sufficiently weak noise. This is illustrated for
the case of zero noise in figures 6.2(a) and (b). In particular, stationary states are unsta-
ble for all attracting responses, unstable for all non-symmetric, repulsing responses and
neutrally stable for symmetric, repulsing responses. As with type I responses, eigenpertur-
bations corresponding to eigenvalues of order n ∈ N have been found to be characterized
by n local maxima and n local minima in their real and imaginary parts. Once again,
an increased noise eventually results in the linear stabilization of stationarity, which is
illustrated in figures 6.2(c) and (d). The eigenvalues move towards the left half plane as
noise is increased, with higher order eigenvalues moving faster than lower order ones. The
exact noise threshold for stabilization depends non-linearly on the response parameters,
as shown in figures 6.3(a) and (b).

6.3. Numerical simulations. The asymptotic behaviour of the system has also been
studied by integrating the Fokker-Planck equation (1.1) as described in §4.3. Parameter
values considered were ϑo ∈ {0.3, 0.4, 0.6, 0.7} (as well as ϑo = 0.5 for attracting responses),
|ψo| /ω ∈ {0.1, 0.5}, and D/ω ∈ [0, 1]. Perturbations applied to stationarity were chosen
as in §5.3. The simulations reproduced the predictions of the linear stability analysis.

The observed long-term network behaviour is similar to the one for type I responses.
More precisely, we find the existence of a stable limit cycle (henceforth referred to as the
main attractor), on which the network’s state is characterized by a number (henceforth
referred to as the order of the attractor) of approximately synchronized and approxi-
mately equally sized oscillator groups. These groups succeed each other in firing and
cause the network’s stimulus to oscillate at a constant amplitude and frequency. The level
of synchronization within each of these groups increases as noise is reduced. In noise-
free networks the main attractor is characterized by a number of perfectly synchronized,
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(a) (b)

(c) (d)

Fig. 6.2. Real parts of low-order eigenvalues for type II responses (attracting in left column, repulsing
in right column) as a function of the turning point ϑo, plotted for different noise strengths (D = 0 in (a)
and (b), D/ω = 0.05 in (c) and D/ω = 0.001 in (d)). Only the first 5 eigenvalue orders (including the
leading ones) are displayed. Increasing the noise pushes all eigenvalues further to the left half plane (lower
real part), at a rate increasing with the eigenvalue order. Coupling strength is |ψo| /ω = 0.5, but similar
results have been obtained for all coupling strengths |ψo| /ω ∈ {0.1, 0.2, .., 0.5}.

(a) (b)

Fig. 6.3. Real part of the leading eigenvalues of linearized dynamics at stationary states as a function
of coupling and noise strength, for (a) attracting and (b) repulsing type II responses with turning point
ϑo = 0.4. The white dashed contour is at level zero. Note the different noise scales. In (a) the leading
eigenvalue is of order 1 in the whole parameter range, whereas in (b) the black contours separate the regions
where the leading eigenvalue has order 2 (left-most region), 3 (centre region), and 4 (right-most region).
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(a) (b) (c)

(d) (e) (f)

Fig. 6.4. Integration of the Fokker-Planck equation for repulsing type II responses with turning point
ϑo = 0.4. The top row shows the evolution of the phase density after a perturbation of the stationary
state, for noise level D/ω equal to 0 in (a), 3 × 10−5 in (b), and 10−4 in (c). The evolution of the
corresponding stimuli is shown in the bottom row below each figure. Perturbations were the real part of the
leading eigenperturbations (of order 4 in (a) and (b), order 3 in (c)). Perturbation stimuli were 0.01 in
(a)-(b) and 0.2 in (c). Note that in (a) and (b) the initial and stationary densities seemingly overlap. The
same is true for the final and stationary densities in (b). Coupling strength is |ψo| /ω = 0.5 in all cases.
The Fokker-Planck equation was integrated as described in §4.3 at order 200 and time step 10−4 ω−1.

equally sized oscillator groups. Simulations indicate that its basin of attraction includes
a neighbourhood of the stationary state and in certain cases, the uniform distribution as
well. The order of the main attractor was found to be equal to the order of the leading
stationarity eigenperturbation for attracting response functions. For repulsing response
functions this was true for most but not all cases. When noise strength exceeds a certain
threshold, the main attractor merges with the stationary state. This threshold coincides
with the point at which stationarity becomes linearly stable, as is characteristic for a su-
percritical Hopf bifurcation. Our numerical simulations further suggest that at that point
stationarity becomes globally stable. This is supported by similar numerical experiments
as for type I responses (§5.3).

Figure 6.4 shows typical simulation results for certain non-symmetric repulsing type
II responses starting close to stationarity. In the unstable cases (figures 6.4(a)-(b)), the
leading eigenvalue is of order four and oscillators tend to form four clusters that are ap-
proximately synchronized. At increasing noise the main attractor vanishes and stationarity
becomes stable (figure 6.4(c)).

6.4. Multiplicity of attractors. For certain attracting type II responses and a
non-trivial noise range, a second stable limit cycle is found to coexist along with the main
attractor described above. This can for example be observed for the parameter values
ϑo = 0.7, ψo/ω = 0.5, and D/ω ∈ [0, 0.004], for which the leading stationarity eigenper-
turbation as well as the main attractor are of order 2. Simulations reveal the existence
of an additional limit cycle, on which oscillators form a single, more or less synchronized
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(a) (b)

Fig. 6.5. Coexistence of two stable limit cycles for certain attracting type II responses (see §6.4). The
figures show the evolution of the phase density, as predicted by an integration of the Fokker-Planck equation.
In (a) the network state is initially a uniform distribution, eventually settling on the main attractor, which
is characterized by two approximately synchronized oscillator groups. In (b) the phase density is initially a
wrapped Gaussian with variance σ2 = 2× 10−3, which eventually settles on the secondary attractor, which
is characterized by an approximate network synchrony. For comparison, the stationary state is shown with
the purple dashed curve. Parameters are ϑo = 0.7, |ψo| /ω = 0.5 and D/ω = 0.004. Spectral integration
order was 100, time step was 2× 10−4 ω−1.

group. On this secondary attractor of order 1, the extent of synchrony increases as noise
is decreased. In particular for zero noise, all oscillators are synchronized and the phase
density is formally a time-dependent Dirac distribution. The main attractor’s basin of at-
traction still includes a neighbourhood of stationarity as well as the uniform distribution.
On the other hand, unimodal distributions of an adequately small variance (e.g. wrapped
Gaussian with variance σ2 . 0.002), have been found to be included in the basin of at-
traction of the secondary attractor. The latter vanishes when noise is sufficiently strong
but still at a level lower than the one needed to destroy the main attractor. See figure
6.5 for an illustration of the main and secondary attractors in networks with the above
parameter values. These findings suggest that secondary attractors might exist for other
response functions as well, at least for weak noise. Under which conditions this is the
case, and whether they always disappear before the main attractor as noise is increased,
remains to be investigated.

7. Comparing the Fokker-Planck and Langevin equations. As indicated in
the introduction, the Fokker-Planck equation (1.1) can be considered a limit of the Win-
free model (1.3) extended by additive white noise, as the number of oscillators tends to
infinity and the emitted pulses approach a Dirac distribution. To examine the validity of
this interpretation, we considered the system of coupled Langevin equations (1.6) in the
stochastic processes θ̂1, . . . , θ̂N on S1. We numerically integrated (1.6) for various type I
and type II responses and noise strengths. As pulse P , we considered wrapped normal
distributions with zero mean and a variance σ2

p between 10−2 and 10−4. The number of
oscillators N ranged from 102 to 104. We used an explicit two-step Runge-Kutta scheme of
mean square order 3/2, as described in [32, §3.4, Theorem 3.3]. All random numbers were
generated using the libc pseudo-random generator [4]. Normally distributed numbers were
generated using the Box-Muller transform [18, §5.2.1]. The time step was set to σp/(50ω);
no change in the outcome of the simulations was observed for smaller time steps. Consid-
ered parameter values were ϑo ∈ {0.3, 0.4, 0.6, 0.7} (as well as ϑo = 0.5 for attracting type
II responses) and |ψo| /ω ∈ {0.1, 0.5}, D/ω ∈ [0, 0.1]. The phases θ̂1, . . . , θ̂N were initially
uniformly and independently distributed.

We compared our simulation results to the long-term dynamics suggested by the



24 Stilianos Louca and Fatihcan M. Atay

(a) (b) (c)

Fig. 7.1. Example realisations of the integrated Langevin equation (1.6) at time t = 103 ω−1, for
repulsing type II responses with ϑo = 0.4. The illustrated phase densities (solid curve) are estimated using
a box kernel density estimator of width 0.02. Oscillator count and pulse variance are: (a) N = 102 and
σ2
p = 10−4, (b) N = 103 and σ2

p = 10−4, (c) N = 104 and σ2
p = 10−2. Initial phases were uniformly

and independently distributed on S1. For comparison, the stationary state of the Fokker-Planck equation
(1.1) is plotted with the dashed curve in (c). The splitting of the network into four clusters persisted for
the lifetime of the simulations in (a) and (b) (at least up to time t = 104 ω−1). The same is true for the
seemingly stationary distribution attained in simulation (c). Coupling strength is |ψo| /ω = 0.5 and noise
strength is D/ω = 3× 10−5 in all cases. Time step used was 2× 10−4 ω−1 for (a) and (b), and 2× 10−3

for (c). Compare these results to the integration of the corresponding Fokker-Planck equation illustrated in
figure 6.4(b).

Fokker-Planck equation (1.1), in particular for large N and small pulse variances σ2
p. Both

the Langevin and Fokker-Planck equations were integrated until the network settled onto
an attractor. The underlying oscillator phase distribution was estimated from the realiza-
tions θ̂1, . . . , θ̂N using a kernel density estimator [44], based on a box kernel of width 0.02.
Preliminary tests revealed a good agreement between the qualitative long-term network
behaviour suggested by the two methods, provided N was large enough (typically above
500) and σ2

p small enough (typically below 10−4). Figure 7.1 illustrates this for a specific
repulsing type II response and noise strength, by displaying the estimated phase densities
after an integration of the Langevin equation for various oscillator counts N and pulse
variances σ2

p. Figure 6.4(b) shows a simulation of the Fokker-Planck equation for the same
response function and noise, where the network eventually settles on its main attractor.
The latter is characterized by a splitting into four oscillator groups that are approximately
equally sized and approximately synchronized. As can be seen in figures 7.1(a) and (b),
for sufficiently small pulse widths the network indeed settles on an attractor similar to
the main attractor predicted by the Fokker-Planck equation. In fact, this is even true for
oscillator counts as “low” as N = 100. On the other hand, as shown in figure 7.1(c) for
an even higher oscillator count (N = 104), an increased pulse width can lead to a totally
different qualitative behaviour, in this case an eventual stationarity of the oscillator phase
distribution.

8. Conclusion. We have studied a generalized Fokker-Planck equation as an approx-
imation of the dynamics of large pulse-coupled oscillator networks, for which the pulses
can be approximated by a Dirac distribution. For networks with the response functions
examined in this article, stationarity is locally and apparently also globally stable provided
that noise is sufficiently strong. The noise threshold was found to be quite low compared
to the intrinsic oscillator dynamics (i.e. D/ω � 1). Such behaviour has already been
observed in the monofrequent Kuramoto model, where the stationary state (usually re-
ferred to as the incoherent state) is globally stable if and only if the noise exceeds a certain
positive threshold Dc (for a fixed frequency and coupling strength) [47, §3.4(a)]. Due to
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the rotational symmetry of the Kuramoto model, which is non-present in our model, the
incoherent state is in fact a uniform phase distribution. Similar noise-induced stabilization
effects of stationary states and cancelling of oscillations have also been discovered recently
in large-scale stochastic networks of firing-rate neurons with sigmoidal interactions [49, 50].
In our model, the stationary network activity itself was found to depend non-linearly on
the noise strength, for certain response functions even reaching an extremum at a finite
non-trivial noise level.

As noise is reduced, for all but a few critical response parameters, a stable limit cycle
emerges from stationarity, on which the network splits up into one or more groups of ap-
proximately synchronized oscillators. From a macroscopical point of view, this leads the
network activity to oscillate at frequencies often much higher than the intrinsic oscilla-
tor frequency. This so-called main attractor dominates the dynamics of the network, at
least when starting in the proximity of stationarity or uniform phase distributions. Our
results thus show that quite simple response function shapes can lead to the emergence
of high-frequency oscillatory network behaviour. These effects may need to be taken into
consideration when attempting to fit biophysical neuron models to observed oscillatory
activity of neural potential fields. Furthermore, the bifurcation of the main attractor from
stationarity and its relation to the eigenperturbations show the importance of stationary
states in large networks of short-pulse-coupled oscillators with noise. In the monofrequent
Kuramoto model, the unique periodic solution branching from the incoherent state as
noise is reduced, was shown to be linearly stable and correspond to a rotating unimodal
distribution, interpreted as a partial network synchronization (coherence) [47, 2, 8].

For certain attracting type II responses and sufficiently weak noise, a second stable
limit cycle was found on which all oscillators are approximately synchronized. This at-
tractor appears at a lower noise level than the main attractor, so that certain hysteresis
phenomena are to be expected during slow changes of the system’s noise strength. The
existence of this attractor is consistent with our recent findings for similar, noise-free net-
works with short smooth pulses P (i. e. described by (1.2) with D = 0) [29]. They show the
local stability of the synchronized state for a large class of response functions, including
attracting type II ones.

It has recently been shown for the monofrequent Kuramoto model, that the system
has a one- or two-dimensional global attractor, depending on the noise strength. For noise
not less than Dc, that attractor is in fact the incoherent state. For noise less than Dc, it
is homeomorphic to a two-dimensional disk, consisting of orbits connecting incoherence to
the periodic solution of partial coherence [19]. This makes the analysis of the long term
behaviour of the Kuramoto model simpler than our model.

Finally, we point out that the comparisons we performed between the Fokker-Planck
equation and the finite Winfree model (see §7), are by no means exhaustive. Nevertheless,
they suggest that the Fokker-Planck equation (1.1) studied in this article is a good starting
point for modelling large finite networks of spiking oscillators with noise.

Appendix A. An upper bound for the imaginary part of eigenvalues. Our
starting point is the spectral stability analysis of stationarity in noise-free networks, in-
troduced in §3.1. We show that the eigenvalue equation

χ(λ) := 1− e−λTs(1)

[
1 + ωTs(1)

∫ 1

0
dϕ ρ′s(ϕ)eλTs(ϕ)

]
= 0

(see the proof of lemma 3.1(1)) can not be satisfied if <(λ) 6= 0 and

|=(λ)| > M̃
[
1− e−|<(λ)|Ts(1)

]−1
,
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with M̃ given by

M̃ :=
1

Ts(1)

[
2

ω

∣∣ψ′(0)
∣∣+

∥∥∥∥(ψ′vs

)′∥∥∥∥
∞

]
. (A.1)

Using ρs(ϕ) = 1/(Ts(1)vs(ϕ)) we can write χ(λ) as

χ(λ) = 1− e−λTs(1)

[
1− 1

Ts(1)

∫ 1

0
dϕ

ψ′(ϕ)

v2
s (ϕ)

eλTs(ϕ)

]
. (A.2)

We estimate the integral C :=
∫ 1

0 dϕ ψ′(ϕ) · eλTs(ϕ)/v2
s (ϕ) appearing in (A.2). For λ 6= 0

we have

C =
1

λ

∫ 1

0
dϕ

ψ′(ϕ)

vs(ϕ)

d

dϕ
eλTs(ϕ) =

1

λ

ψ′(0)

vs(0)

[
eλTs(1) − 1

]
− 1

λ

∫ 1

0
dϕ eλTs(ϕ) d

dϕ

ψ′(ϕ)

vs(ϕ)
. (A.3)

Define χo(λ) := 1− χ(λ), so that

|χo(λ)| = e−<(λ)Ts(1) |1− C/Ts(1)| . (A.4)

Now suppose that |=(λ)| > M̃
[
1− e−|<(λ)|Ts(1)

]−1
. Consider first the case <(λ) < 0.

Then using (A.3) we can estimate

|C| ≤ 1

|=(λ)|

[
2
|ψ′(0)|
vs(0)

+

∥∥∥∥(ψ′vs

)′∥∥∥∥
∞

]
=
M̃Ts(1)

|=(λ)|
. (A.5)

Applying (A.5) to (A.4) yields

|χo(λ)| ≥e−<(λ)Ts(1) (1− |C| /Ts(1)) ≥ e−<(λ)Ts(1) · (1− M̃/ |=(λ)|) > 1,

which is a contradiction to the eigenvalue equation. Now consider the case <(λ) > 0.
From (A.3) we can estimate

|C| ≤ 1

|=(λ)|

[
2
|ψ′(0)|
vs(0)

+

∥∥∥∥(ψ′vs

)′∥∥∥∥
∞

]
e<(λ)Ts(1) =

M̃Ts(1)

|=(λ)|
e<(λ)Ts(1). (A.6)

Applying (A.6) to (A.4) yields

|χo(λ)| ≤ e−<(λ)Ts(1) (1 + |C| /Ts(1)) ≤ e−<(λ)Ts(1) +
M̃

|=(λ)|
< 1,

which again contradicts the eigenvalue equation.

Appendix B. Elaborations on the numerical analysis. We provide technical
details of the numerical methods outlined in §4. They are to be understood in the context
of the respective section referring to them.

B.1. Solving the stationary state equations. As starting point for the fixed-point
iteration we took the stimulus value 1, corresponding to the uniform density. The iteration
process was ended whenever subsequent iterations changed the stationary stimulus only
by a value less than 10−3. Within the considered parameter range the iteration always
converged to a limit in [0, 2] independently on the starting value, for starting values within
[0, 1000].
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B.2. Solving the eigenvalue equation for noise-free networks. For the numer-
ical solution of the eigenvalue equation (3.2), we used Newton’s method with quadratic
backtracking [39]. Starting values were taken on a sufficiently fine grid covering a do-
main deemed large enough for our purposes. Specifically, the distance of adjacent grid
points was taken to be roughly one tenth of 2π/Ts(1), the latter corresponding to the typ-
ical distance between successive eigenvalues, as suggested by lemma 3.1(2). This length
scale is also verified analytically for symmetric type I and type II responses in §5 and
§6, respectively. In order to limit the search to a finite domain, we used the estimate
|=(λ)| ≤ M̃ ·

(
1− e−|<(λ)|Ts(1)

)−1
, valid for any eigenvalue λ ∈ σp(Q) with <(λ) 6= 0. The

constant M̃ , given in (A.1), depends on ψ and ω and was calculated numerically. A proof
of this estimate is given in appendix A. In view of this estimate and lemma 3.1(2), we
limited the grid a priori to the domain [−M,M ] + iR+, where M := ρs(0) ‖ψ′‖∞. This
domain was scanned in a real-part-first and increasing imaginary part direction. As soon
as an eigenvalue λ ∈ C with non-trivial real part was found, the domain’s imaginary part
was reduced (if applicable) on the corresponding (left or right) half plane in a way that no
eigenvalues with real parts of comparable or greater magnitude would be omitted. More
precisely, if the search domain was ([−M, 0]+i · [0, Nl))∪([0,M ]+i · [0, Nr)), then finding a
new eigenvalue λ with <(λ) < 0 would reduce it to ([−M, 0]+i·[0, Ñl))∪([0,M ]+i·[0, Nr)),
where

Ñl := max
{
Nmin,min

{
Nl, M̃

(
1− e−|<(λ)|Ts(1)

)−1
+ ω

}}
.

Similar adjustments were made when <(λ) > 0. The lower limit Nmin > 0 was set suf-
ficiently high to get an acceptable picture of the point spectrum at hand (recall that by
lemma 3.1(2) the point point spectrum approaches the grid i2π/Ts(1) · Z for larger imag-
inary parts). The number of iterations was limited to 500 per start value. During these
iterations, an attained value λ ∈ C was considered to be an eigenvalue if it satisfied the
eigenvalue equation (3.2) up to an error of less than ω−2/1000 and if subsequent itera-
tion values only differed by less than ω/100. Eigenvalues closer than ω/100 to each other
were considered identical. Through numerical quadratures for the representation (3.4), we
approximated the shapes of eigenperturbations corresponding to the found eigenvalues.
Their periodicity (equivalent to the eigenvalue equation) served as a verification of their
correctness.

B.3. Solving the eigenvalue equation for noisy networks. The cutoff of higher
order parts of the hierarchy (3.9), corresponds to the approximation of the low-order point
spectrum of the linear operator QD : C2

zm(S1) ⊆ Czm(S1) → Czm(S1) by the spectrum of
the finite matrix Q(N) ∈ C2N×2N , defined as(

Q(N)
)
nk

:= −(2πn)2Dδnk − i2πnFn−k(vs)− i2πnFn(ψρs).

Here, δnk is the Kronecker symbol and the indices n, k range within
IN := {−N, ..,N} \ {0}. The eigenperturbations h were then approximated by the
found eigenvectors (hn)n∈IN ∈ C2N as h(ϑ) ≈

∑
n∈IN hne

in2πϑ. The threshold N was

chosen to be 100. We used LAPACK [3] for the spectral analysis of Q(N). The Fourier
components Fn(vs) and Fn(ψρs) were calculated numerically. Further increasing N did
not seem to have any noteworthy influence on the calculated leading eigenvalues, nor on
the approximations of corresponding eigenperturbations.

B.4. Integrating the Fokker-Planck equation. Here we describe the numeri-
cal integration scheme used for the Fokker-Planck equation (1.1), based on the spectral
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method. The idea is to write the density ρ(t, ϑ) in the spectral form

ρ(t, ϑ) =
∑
n∈Z

ρn(t)ein2πϑ. (B.1)

Inserting (B.1) into (1.1) yields the hierarchy of differential equations

ρ̇n(t) +
[
in2πω + (n2π)2D

]
ρn(t) + i2πn

∑
k∈Z

ρk(t)
∑
m∈Z
Fn−m(ψ)ρm(t) = 0 (B.2)

in the time-dependent Fourier components (ρn)n∈Z. We numerically integrated a finite
subset of the above hierarchy, ignoring high-order spectral components ρn for |n| > N ,
where N is referred to as the spectral order. We used an explicit fixed-time-step numerical
integration scheme of order 2 in the time step, based on an ad-hoc short-time propagator
which we derive below. For that, we write the reduced hierarchy as a non-linear ODE

dρ(t)

dt
= −Ω̂ρ(t) + S(ρ(t)) · Ψ̂ρ(t) (B.3)

in the vector ρ(t) := (ρn(t))|n|≤N ∈ C2N+1. The matrices Ω̂, Ψ̂ ∈ C(2N+1)×(2N+1) are
defined as

Ω̂nm :=
[
in2πω + (n2π)2D

]
δnm, Ψ̂nm := −in2πFn−m(ψ),

with the indices n,m ranging within {−N, . . . , N}. The stimulus S(ρ(t)) is defined as

S(ρ(t)) := 〈1,ρ(t)〉 :=
∑
|n|≤N

ρn(t).

We note that any solution ρ(t) to (B.3), should it exist, is of class C∞. Furthermore, we
have

ρ(to + δt) = exp
[
−δt · Ω̂ +R(δt,ρ(to))Ψ̂

]
ρ(to) (B.4)

for any start time to ∈ R and time step δt ≥ 0, where R(δt,ρ(to)) :=
∫ to+δt
to

dt S(ρ(t)).
Note that R(δt,ρ(to)) depends on the initial value ρ(to) but not on to, as the differen-
tial equation (B.3) is autonomous. Using the Zassenhaus formula [30] and the fact that
R(δt,ρ(to)) ∈ O(δt) as δt→ 0+, we can write (B.4) as

ρ(to + δt) = e−δt·Ω̂ · eR(δt,ρ(to))Ψ̂ · exp

[
δt ·R(δt,ρ(to)) ·

1

2
[Ω̂, Ψ̂]

]
ρ(to) +O(δt3)

= e−δt·Ω̂
[
1 +R(δt,ρ(to))Ψ̂ +

1

2
R2(δt,ρ(to))Ψ̂

2

]
×
[
1 + δt · 1

2
R(δt,ρ(to))[Ω̂, Ψ̂]

]
ρ(to) +O(δt3),

(B.5)

with [Ω̂, Ψ̂] := Ω̂Ψ̂− Ψ̂Ω̂ denoting the commutator of Ω̂ and Ψ̂. Note that

R(δt,ρ(to)) = S(ρ(to))δt+
dS(ρ(·))

dt

∣∣∣∣
to

δt2

2
+O(δt3), (B.6)

where

dS(ρ(·))
dt

∣∣∣∣
to

=
∑
|n|≤N

dρn
dt

∣∣∣∣
to

=
〈
1,−Ω̂ρ(to) + 〈1,ρ(to)〉 Ψ̂ρ(to)

〉
. (B.7)
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Inserting (B.7) and (B.6) into (B.5) yields ρ(to + δt) = Ûs(δt,ρ(to)) + O(δt3), with the
non-linear short time propagator Ûs(δt, ·) : C2N+1 → C2N+1 defined by

Ûs(δt,ρ(to)) :=e−δt·Ω̂
[
1 +Rs(δt,ρ(to))Ψ̂ +

1

2
R2
s(δt,ρ(to))Ψ̂

2

]
×
[
1 + δt ·Rs(δt,ρ(to)) ·

1

2
[Ω̂, Ψ̂]

]
ρ(to),

Rs(δt,ρ(to)) := 〈1,ρ(to)〉 δt+
〈
1,−Ω̂ρ(to) + 〈1,ρ(to)〉 Ψ̂ρ(to)

〉δt2
2
.

Setting ρ(0) := ρ(0) as start value and defining the step ρ(n+1) := Ûs(δt,ρ
(n)), we obtain

an explicit fixed-time-step numerical integration scheme for (B.3) of order 2 in δt, with
ρ(n) approximating ρ(n · δt). The technique follows the ideas of the well-known Feynman
path integral method for the Schrödinger equation [16, 43, 51].

The spectral order N was chosen large enough for
∑
|n|≤N/2 ρn(0)ein2π·(·) and∑

|n|≤N/2Fn(ψ)ein2π·(·) to adequately represent the initial density ρ(0, ·) and response
function ψ(·) respectively. Typical values were N & 100; further increases in N did not
seem to have any notable effects. We mention that in the case D > 0, explicit fixed-
time-step Runge–Kutta methods for (B.3) of order up to 4 turned out to be less efficient,
requiring impractically small time steps to ensure a satisfactory accuracy. This stiffness
of the system [11, §5.11] can be traced back to the factor n2D, dominating the differen-
tial equation (B.2) for larger orders n. Typical time steps ranged between 2 × 10−4 and
2×10−5. The integration was aborted when the modulus of the marginal components ρ±N
exceeded 10−4. This was the case whenever narrow peaks appeared in the distribution
ρ(t, ·) and in fact only encountered for low noise strengths (D/ω . 10−5).

Appendix C. The point spectrum for symmetric type I responses. For noise-
free networks with symmetric type I responses ψ(ϑ) = ψo

2 [1− cos(2πϑ)], we provide an
analytical treatment of the eigenvalue equation (3.2) for the linearized dynamics at the
stationary state ρs. We assume ψo 6= 0, since otherwise the point spectrum is easily found
to be given by (5.2). The corresponding stationary stimulus ρs(0) is given by (5.1). The
eigenvalue equation takes the form∫ 1

0

dϑ eλTs(ϑ)[
ω + ψo

2 ρs(0) [1− cos(2πϑ)]
]2 = 0, (C.1)

with the travel time Ts(ϑ) introduced in lemma 3.1 is for ϑ ∈ [0, 1] given by

Ts(ϑ) =
1

πω
√

1 + ψo
ω ρs(0)

· arctan

[√
1 +

ψo
ω
ρs(0) · tan (πϑ)

]
.

Note that arctan(·) is evaluated so that Ts(0) = 0 and Ts(ϑ) is continuous in ϑ ∈ [0, 1].
The left hand side of (C.1) evaluates to

Q(λ)

4ωλ
· eλ/(ρs(0)ω) − 1

λ2 + 2π2ψoρs(0)ω + (2πω)2
,

with

Q(λ) := (2λ)2 + 2ψoρs(0)ω(2π)2 + (4πω)2,
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provided that λ 6= 0 and λ2 + 2π2ψoρs(0)ω + (2πω)2 6= 0, that is, λ /∈ {0,±i2πωρs(0)}.
Clearly, λ = 0 does not satisfy the eigenvalue equation (C.1). It is easy to see that

lim
λ→±i2πωρs(0)

eλ/(ρs(0)ω) − 1

λ2 + 2π2ψoρs(0)ω + (2πω)2
= ∓ 1

ρs(0)2ω2
· i

4π
.

Consequently, the left hand side of (C.1) tends with λ→ ±i2πωρs(0) to

−Q(±i2πωρs(0))

4ω · i2πωρs(0)
· 1

ρs(0)2ω2
· i

4π
,

which is non-zero if ψo 6= 0. Since the left hand side of the eigenvalue equation (C.1) is
continuous in λ, we conclude that ±i2πωρs(0) are not eigenvalues of Q. Consequently, the
point spectrum σp(Q) is given by the solutions of

Q(λ) ·
[
eλ/(ρs(0)ω) − 1

]
= 0

other than {0,±i2πωρs(0)}. We thus arrive at (5.2).

Appendix D. The point spectrum for symmetric type II responses. We
consider noise-free networks with symmetric type II responses ψ(ϑ) = −ψ0 sin(2πϑ). We
present an analytical evaluation of the eigenvalue equation (3.2). We assume ψo 6= 0,
since otherwise the point spectrum is easily found by (6.2). The corresponding stationary
stimulus ρs(0) is given by (6.1). The eigenvalue equation takes the form∫ 1

0

dϑ eλTs(ϑ)

[ω − ψoρs(0) sin(2πϑ)]2
= 0. (D.1)

The travel time Ts(ϑ) introduced in lemma 3.1 is for ϑ ∈ [0, 1] given by

Ts(ϑ) = − 1

πω
√

1− (ψoρs(0)/ω)2
· arctan

[
ψoρs(0)− ω tan(πϑ)√

ω2 − ψ2
oρ

2
s (0)

]
+ Cs,

with the constant Cs chosen and arctan(·) evaluated so that Ts(0) = 0 and Ts(ϑ) is
continuous in ϑ ∈ [0, 1]. The left hand side of (D.1) evaluates to

1

λω
· λ

2 + (2πω)2 − 2πψoρs(0)λ

λ2 + (2π)2(ω2 − ψ2
oρ

2
s (0))

·
[
eλ/(ρs(0)ω) − 1

]
, (D.2)

provided that λ2 + (2π)2(ω2 − ψ2
oρ

2
s (0)) 6= 0 and λ 6= 0, that is λ /∈ {0,±2πi/Ts(1)}. Here

we used the fact that Ts(1) = 1/(ρs(0)ω). It is easy to see that

lim
λ→±(2πiρs(0)ω)

eλ/(ρs(0)ω) − 1

λ2 + (2π)2(ω2 − ψ2
oρ

2
s (0))

= ∓ 1

ω2ρ2
s (0)

· i
4π
. (D.3)

Applying (D.3) to the representation (D.2) we find that the left hand side of (D.1) tends
to

− 1

2πiρs(0)ω
· 1

ω2ρ2
s (0)

· i
4π
· ψoω(2π)2(ψo ∓ iω)

ω2 + ψ2
o

6= 0

as λ→ ±2πi/Ts(1). By continuity in λ, we conclude that {±2πi/Ts(1)} are not eigenvalues
of Q. Clearly, λ = 0 does not solve (D.1). Thus, the eigenvalues of Q are the solutions of[

λ2 + (2πω)2 − 2πψoρs(0)λ
]
·
[
eλ/(ρs(0)ω) − 1

]
= 0 (D.4)

other than {0,±2πi/Ts(1)}. Solving (D.4) finally yields the point spectrum (6.2).
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