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Abstract

We study the stability of networks of multi-agent systems with local pinning strategies and
two types of time delays, namely the transmission delay in the network and the pinning delay
of the controllers. Sufficient conditions for stability are derived under specific scenarios by
computing or estimating the dominant eigenvalue of the characteristic equation. In addition,
controlling the network by pinning a single node is studied. Moreover, perturbation methods
are employed to derive conditions in the limit of small and large pinning strengths. Numerical
algorithms are proposed to verify stability, and simulation examples are presented to confirm
the efficiency of analytic results.

I. INTRODUCTION

Control problems in multi-agent systems have been attracting attention in diverse contexts
[1]–[7]. In the consensus problem, for example, the objective is to make all agents converge
to some common state by designing proper algorithms [2]-[5], such as the linear consensus
protocol

ẋi = −
n∑
j=1

Lijxj(t), i = 1, . . . , n. (1)

Here, xi ∈ R is the state of agent i and Lij are the components of the Laplacian matrix L,
satisfying Lij ≤ 0 for all i 6= j and Lii = −

∑
j 6=i Lij . The Laplacian is associated with

the underlying graph G, whose links can be directed and weighted. It can be shown that,
if the underlying graph has a spanning tree, then all agents converge to a common number,
which depends on the initial values [1], [4], [5]. On the other hand, if it is desired to steer
the system to a prescribed consensus value, auxiliary control strategies are necessary. Among
these, pinning control is particularly attractive because it is easily realizable by controlling
only a few agents, driving them to the desired value s through feedback action:

ẋi = −
n∑
j=1

Lijxj(t)− δD(i)c(xi − s), i = 1, . . . , n, (2)
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where D denotes the subset of agents where feedback is applied, with cardinality |D| = m,
δD(i) is the indicator function (1 if i ∈ D and 0 otherwise), and c > 0 is the pinning strength.
Eq. (2) provides the local strategy that pins a few nodes to stabilize the whole network at a
common desired value. The following hypothesis is natural in pinning problems and assumed
in this paper.

(H) Each strongly connected component of G without incoming links from the outside has
at least one node in D.

The following result is proved in [8], [9].
Proposition 1: If (H) holds, then system (2) is asymptotically stable at xi = s ∀i.
In many networked systems, however, time delays inevitably occur due to limited information

transmission speed; so Proposition 1 does not apply. In this paper we consider systems with
both transmission and pinning delays,

ẋi = −
n∑

j=1,j 6=i
Lij(xj(t− τr)− xi(t))− cδD(i)(xi(t− τp)− s), (3)

for i = 1, . . . , n, where τr denotes the transmission delay in the network and τp is the pinning
delay of the controllers. Several recent papers have addressed the stability of consensus systems
with various delays. It has been shown that consensus can be achieved under transmission
delays if the graph has a spanning tree [13]-[15]. However, if a sufficiently large delay is
present also in the self-feedback of the node’s own state, then consensus may be destroyed [16];
similar conclusions also hold in cases of time-varying topologies [17]–[19] and heterogeneous
delays [20]-[22]. The stability of pinning networks with nonlinear node dynamics have been
studied in [6]–[12], [23]–[26]. However, the role of pinning delay was considered in only a
few papers [23]–[26], where it was argued that stability can be guaranteed if the pinning delays
are sufficiently small. Precise conditions on the pinning delay for stability, the relation to the
network topology, and the selection of pinned nodes have not yet been addressed.

In this paper, we study the stability of the model (3) under both transmission and pinning
delays. First, we derive an estimate of the largest admissible pinning delay. Next, we consider
several specific scenarios and present numerical algorithms to verify stability by calculating
the dominant eigenvalue of the system. Included among the scenarios are the cases when only
a single node is pinned in the absence of transmission delay, or when the transmission and
pinning delays are identical. Finally, we use a perturbation approach to estimate the dominant
eigenvalue for very small and very large pinning strengths.

II. NOTATION AND PRELIMINARIES

A directed graph G = {V, E} consists of a node set V = {v1, . . . , vn} and a link set
E ⊆ V × V . A (directed) path of length l from node vj to vi, denoted (vr1 , . . . , vrl+1

), is a
sequence of l + 1 distinct vertices with vr1 = vi and vrl+1

= vj such that (vrk , vrk+1
) ∈ E for

k = 1, . . . , l. The graph is called strongly connected if there is a directed path from any node
to any other node, and it is said to have a spanning tree if there is a node vp ∈ V such that
for any other node j there is a path from vp to vj .

We denote the imaginary unit by j and the n × n identity matrix by In. For a matrix L,
Lij denotes its (i, j)th element and L> its transpose. The Laplacian matrix L is associated
with the graph G in the sense that there is a link from vj to vi in G if and only if Lij 6= 0.
We denote the eigenvalues of L by {θ1, . . . , θn}. Recall that zero is always an eigenvalue,
with the corresponding eigenvector [1, . . . , 1]>, and Re(θi) > 0 for all nonzero eigenvalues θi.
Furthermore, if the graph G is strongly connected (or equivalently, if L is irreducible), then
zero is a simple eigenvalue of L. The diagonal element Lii is the weighted in-degree of node
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i. Let K = diag{L11, . . . , Lnn} be the diagonal matrix of in-degrees and A = K − L. Let
yi = xi − s, y = [y1, . . . , yn]>, and D = diag{d1, · · · , dn} with di = δD(i). System (3) can
be rewritten as

ẏ = −Ky +Ay(t− τr)− cDy(t− τp). (4)

Considering solutions in the form y(t) = exp(λt)ξ with λ ∈ C and ξ ∈ Cn, the characteristic
equation of (4) is obtained as

χ(λ) := det [λIn +K −A exp(−λτr) + cD exp(−λτp)] = 0. (5)

The asymptotic stability of (4) is equivalent to all characteristic roots λ of (5) having negative
real parts. The root having the largest real part will be termed as the dominant root or the
dominant eigenvalue. For the undelayed case, Proposition 1 can be equivalently stated as
follows.

Corollary 1: If (H) holds, then all eigenvalues of L+ cD have negative real parts.
We also state an easy observation for later use:
Lemma 1: For any two column vectors u, v ∈ Rn, det(In + uv>) = 1 + v>u.

III. ESTIMATION OF THE LARGEST ADMISSIBLE PINNING DELAY

We first show that the system (4) is stable for all values of the pinning delay τp smaller
than a certain value τ∗p .

Proposition 2: Assume condition (H). Let

F (w, c, l, τ) = c2 + ω2 + 2c [l cos(ωτ)− ω sin(ωτ)] (6)

and define
τ∗p = sup

τ>0

{
τ : min

ω∈R
min
i∈D

F (w, c, Lii, τ) > 0

}
. (7)

If τp < τ∗p , then system (4) is stable for all τr ≥ 0.
Proof: First, we take τp = 0 and prove stability for all τr ≥ 0. Assume for contradiction

that there exists some characteristic root λ∗ of (5) such that Re(λ∗) ≥ 0. Applying the
Gershgorin disc theorem to (5), we have

|λ∗ + Lii + cdi| ≤
∑
j 6=i
|Lij || exp(−λ∗τr)| ≤

∑
j 6=i
|Lij | = Lii (8)

for some i, which implies

[Re(λ∗) + Lii + cdi]
2 + [Im(λ∗)]2 ≤ L2

ii.

Since Lii, c, di ≥ 0, it must be the case that Re(λ∗) = Im(λ∗) = 0; i.e., λ∗ = 0. Then
exp(−τrλ∗) = 1, and since τp = 0, (5) gives det(λ∗In + L + cD) = 0. This, however,
contradicts Corollary 1. Therefore, when τp = 0, all characteristic roots of (5) have negative
real parts.

We now let τp ≥ 0. Suppose (5) has a purely imaginary root λ = jω, ω ∈ R. By (8), we
have, for some index q,

|jω + Lqq + cdq exp(−jωτp)| ≤
∑
j 6=q
|Lqj || exp(−jωτr)

=
∑
j 6=q
|Lqj | = Lqq

implying √
[Lqq + cdq cos(ωτp)]2 + [ω − cdq sin(ωτp)]2 ≤ Lqq.



4

Thus,
(cdq)

2 + ω2 + 2cdq (Lqq cos(ωτp)− ω sin(ωτp)) ≤ 0. (9)

We claim that q must be a pinned node. For if dq = 0, then ω must be zero, which implies that
zero is a characteristic root of (5), contradicting Corollary 1. Therefore dq = 1. In the notation
of (6), the inequality (9) can then be written as F (w, c, Lqq, τp) ≤ 0. By (7), however, we have
that F (w, c, Lqq, τp) > 0 for all p ∈ D, ω ∈ R and τp < τ∗p . We conclude that (5) does not
have purely imaginary roots for τp < τ∗p . Thus, by [27, Theorem 2.1], all characteristic roots
of (5) have strictly negative real parts for τp < τ∗p .

Remark 1: Proposition 2 provides an estimate for the largest admissible pinning delay for
which system (4) is stable. This estimate needs only the knowledge of the set of pinned nodes
and their weighted in-degrees.

IV. PINNING A SINGLE NODE

We now consider the possibility of controlling the network using a single node, say, the qth
one. Then D = uqu

>
q , where uq denotes the qth standard basis vector, whose qth component

is one and other components zero. If λIn+K−A exp(−λτr) is nonsingular, the characteristic
equation (5) becomes

χ(λ) = det
[
λIn +K −A exp(−λτr) + cuqu

>
q exp(−λτp)

]
= det(λIn +K −A exp(−λτr))

det
[
In + cuqu

>
q (λIn +K −A exp(−λτr))−1 exp(−λτp)

]
= det(λIn +K −A exp(−λτr))

(1 + cu>q (λIn +K −A exp(−λτr))−1uq exp(−λτp)) (10)

using Lemma 1. Then we have the following result.
Proposition 3: Assume (H). If all solutions λ of the equation

1 + cu>q (λIn +K −A exp(−λτr))−1uq exp(−λτp) = 0 (11)

satisfy Re(λ) < 0, then system (4) is stable.
Proof: As in the first part of the proof of Proposition 2, the equation det[λIn + K −

A exp(−λτr)] = 0 has no solutions with Re(λ) ≥ 0. Hence, if all solutions λ of (11) have
negative real parts, then all roots of (5) have negative real parts.

We consider two specific cases to obtain more information about the solutions of (11). First,
we consider the absence of transmission delays, i.e., τr = 0. Suppose for simplicity that L is
diagonalizable and has only real eigenvalues: L = Q−1JQ for some nonsingular Q and a real
diagonal matrix J = diag{θ1, . . . , θn} of eigenvalues of L. The column vectors of Q−1 (resp,
the row vectors of Q) are the right (resp., left) eigenvectors of L. Then, (11) can be written as

1 + cζ>(λIn + J)−1ξ exp(−λτp) = 0, (12)

where ζ> = u>q Q is the qth left eigenvector and ξ = Q−1uq is the qth right eigenvector of L.
We expand (12) as

1 + c

n∑
i=1

ξiζi exp(−λτp)
λ+ θi

= 0 (13)
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in terms of the components ξi, ζi of ξ and ζ, respectively. Consider the smallest value of τp
for which there exists a purely imaginary solution, λ = jω. Then, the real and imaginary parts
of (13) give {

1 + a(ω) cos(ωτp)− b(ω) sin(ωτp) = 0

b(ω) cos(ωτp) + a(ω) sin(ωτp) = 0

where

a(ω) = c

n∑
i=1

ξiζiθi
ω2 + θ2i

, b(ω) = c
∑
i

ξiζiω

ω2 + θ2i
. (14)

Rearranging gives cos(ωτp) = −a(ω)/(a2(ω) + b2(ω)) and sin(ωτp) = b(ω)/(a2(ω) + b2(ω)).
This implies a(ω)2 + b2(ω) = 1 and

cos(ωτp) = −a(ω), sin(ωτp) = b(ω). (15)

We then have the following result.
Proposition 4: Suppose τr = 0, L is diagonalizable, irreducible, and all its eigenvalues

are real. Let the eigenvalues {θi} of L be sorted so that θq = 0, and let ζ = [ζ1, . . . , ζn],∑n
k=1 ζk = 1, be the left eigenvector of L corresponding to the zero eigenvalue. Let Z denote

the set of positive solutions of the equation

a2(ω) + b2(ω) = 1 (16)

with respect to the variable ω2, where a(ω) and b(ω) are given by (14). Define

τMp =
arccos(−a(

√
maxZ))√

maxZ
. (17)

Then system (4) is stable for τp < τMp .
Proof: Eq. (10) implies that any purely imaginary solution jω of (5) should also be a

solution of (13). Then ω must be a real solution of (16). By the definition of Z , the solution
set of (16) with respect to ω is {±

√
z : z ∈ Z}. By the assumption of irreducibility, θi > 0

for all i 6= q and ζi, ξi > 0 ∀i. If ω =
√
z, then the smallest positive solution of (15) with

respect to τp is arccos(−a(
√
z))/
√
z. If, on the other hand, ω = −

√
z, noting that a(ω) > 0

and b(ω) ≤ 0, the smallest positive solution of (15) is again arccos(−a(
√
z))/
√
z. Therefore,

given ω2 ∈ Z , the smallest nonnegative solution of (15) with respect to τp should be in the set
{arccos(−a(

√
z))/
√
z : z ∈ Z}. Since the mapping z 7→ arccos(−a(

√
z))/
√
z is a decreasing

function of z > 0, the quantity τMp defined in (17) is the smallest nonnegative solution of
(15) with respect to τp, given ω2 ∈ Z . Hence, for τp < τMp (13) does not have any purely
imaginary solutions. Since for τp = 0 all characteristic roots of (5) have negative real parts,
we conclude that all roots have negative real parts for τp < τMp .

Remark 2: By derivation, Eq. (13) is independent of the ordering of the eigenvalues or the
eigenvectors in J . Therefore, the bound τMp for allowable pinning delays given in Proposition 4
does not depend on the choice of the pinned node.

Proposition 4 suggests an algorithm to calculate τMp :
1) Find the largest positive solution ω2 of the equation

n∑
k=1

(ξkζk)
2

ω2 + θ2k
+ 2

∑
i>j

ξiξjζiζj(θiθj + ω2)

(ω2 + θ2i )(ω
2 + θ2j )

=
1

c2
. (18)

2) Calculate (17).
We illustrate this approach in an Erdős-Renyi (E-R) random network of n = 100 nodes

with linking probability 0.03, where the first node is pinned. The left and right eigenvectors
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Fig. 1. (a) The stability region {(c, τp) : τp < τMp } in the parameter plane (c, τp), where the dashed line depicts
τMp as a function of c. Direct simulation verifies that the system is indeed stable for the parameter values c = 4.48
and τp = 0.7724 (b), and unstable for the slightly different values c = 4.48 and τp = 0.9441 (c), corresponding
to the blue and red stars, respectively, in subfigure (a).

of L associated with the zero eigenvalue are given by ζ = [1, . . . , 1]/
√
n. Figure 1 shows the

parameter region {(c, τp) : τp < τMp }, illustrating the inverse dependence of τMp on c. Note
that τp > τMp does not necessarily imply instability, since Proposition 4 gives only a sufficient
condition. Nevertheless, the curve shown in Fig. 1(a) turns out to be a good approximation
of the boundary of the exact stability region. To illustrate, we take two parameter points very
close (±10% of the τMp ) to the curve but on different sides of it, as indicated by blue and
red stars in Fig. 1(a). We simulate (3) at the corresponding parameter values, with the same
Laplacian as above and τr = 0. As seen in Fig. 1(b)–(c), the two points indeed yield different
stability properties.

The other situation we consider is the homogeneous case when L is diagonalisable and
normalised, i.e., Lii = l ∀i for some l > 0, and τr = τp. Then (11) becomes

1 + cu>q ((λ+ l)In −A exp(−λτr))−1uq exp(−λτp) = 0. (19)

Let L = QJQ−1; thus A = Q(lIn−J)Q−1. Then, by the same algebra as above, (19) becomes

1 + c

n∑
k=1

ζkξk exp(−λτp)
(λ+ l) + (θk − l) exp(−λτp)

= 0. (20)

We have the following result.
Proposition 5: Suppose that τr = τp, L is diagonalizable, irreducible, normalised (Lii = l

∀i), and all its eigenvalues {θi} are real. Denote θq = 0 and let ζ = [ζ1, . . . , ζn] be the left
eigenvector of L corresponding to the eigenvalue 0, with

∑
i ζi = 1. Let S denote the set of

all the branches of the solutions of the equation

1 + c

n∑
k=1

ζkξk
exp(−lτp)s/τp + (θk − l)

= 0 (21)
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with respect to the variable s. Then system (4) is stable whenever the real parts of the numbers
{W (s)

τp
− l : s ∈ S} are all negative, where W is the Lambert W function [28].

Proposition 5 can be proved by transforming (20) into (21) with s = τp(λ+ l) exp(τp(λ+ l))
and using Proposition 3.

V. SMALL AND LARGE PINNING STRENGTHS

In this section, we consider the extreme situations when the pinning strength c is very small
or very large. We will employ the perturbation approach in [29], [30] to approximate the
eigenvalues and eigenvectors in terms of c.

The characteristic roots λ of (5) are eigenvalues of the matrix Σ(c, λ) = −K+A exp(−λτr)−
cD exp(−λτp). Hence, when c = 0, the characteristic roots of (5) equal to the eigenvalues
{σi} of Σ(0, λ). Under the condition (H), there is a single eigenvalue σ1 = 0. We denote the
right and left eigenvectors of Σ(0, σi) by φi and ψi> respectively, with ψi>φi = 1. It can be
seen that ψ1 and φ1 (associated with σ1 = 0) are, respectively, the right and left eigenvectors
of L associated with the zero Laplacian eigenvalue.

Let λi(c) denote the characteristic roots of (5) and φ̃i(c) and ψ̃i(c) denote the right and
left eigenvectors of Σ(c, λi(c)), regarded as functions of c, with λi(0) = σi, φ̃i(0) = φi and
ψ̃i(0) = ψi. Using a perturbation expansion [29], [30],

λi(c) = σi + λ1i c+ o(c), φ̃i(c) = φi + φi,1c+ o(c)

ψ̃i(c) = ψi + ψi,1c+ o(c)

where o(c) denotes terms that satisfy limc→0 |o(c)|/c = 0. Thus,

[−K +A exp(−λi(c)τr)− cD exp(−λi(c)τp)]φ̃i(c)
= λi(c)φ̃

i(c).

When c is sufficiently small, the dominant eigenvalue is λ1(c), since σ1 = 0 is the dominant
eigenvalue when c = 0. Hence, we consider i = 1. Then exp(−λ1(c)τ) = 1 − cλ11τ + o(c).
Comparing the first-order terms in c on both sides, (−Aλ11τr−D)φi−Lφi,1 = λ11φ

i. Multiplying
both sides with ψ1> and noting that ψ1>φ1 = 1,

λ11 = − ψ1>Dφ1

1 + τr(ψ1>Aφ1)
. (22)

Hence, we have the following result.
Proposition 6: Suppose that the underlying graph is strongly connected and at least one

node is pinned. Then, for sufficiently small c, all characteristic roots of (5) have negative real
parts and the dominant root is given by

λ1(c) = − ψ1>Dφ1

1 + τr(ψ1>Kφ1)
c+ o(c). (23)

Proof: Since the graph is strongly connected, L has a simple zero eigenvalue. When c = 0,
the dominant root of (5) is σ1 = λ1(0). Since the roots of (5) depend analytically on c, they
are given by λ1(c) for all sufficiently small c. Substituting (22) into λ1(c) and noting that
ψ1>(−K +A)φ1 = 0 completes the proof.

In order to understand the meaning of (23), consider the special case of an undirected graph
with binary adjacency matrix A. Then, with φ1 = [1, . . . , 1]> and ψ1 = [1, . . . , 1]>/n, we
have ψ1>Kφ1 =

∑n
i=1 Lii/n, which equals the average degree of the graph. In addition,
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ψ1>Dφ1 =
∑n

i=1 δD(i)/n, which is the fraction of pinned agents. Then, (23) yields the
approximation

λ1(c) ≈ −
Pinning Fraction

1 + τr ×Mean Degree
c (24)

for small c, which uses only the pinning fraction and the mean degree of the graph. Since
the real part of the dominant characteristic value measures the exponential convergence of the
system, Proposition 6 implies that, for sufficiently small c, the convergence rate is improved
if the number of pinned nodes is increased, the transmission delay is reduced, or the mean
degree is decreased. If the graph is directed, a similar statement can be obtained by taking the
components of ψ1 as weights: ψ1Dφ1 =

∑n
j=1 ψ

1
j δD(j).

To illustrate this result, we employ a numerical method to calculate the real part of λ1(c),
namely, by simulating the system (4) and expressing its exponential convergence rate in terms
of its largest Lyapunov exponent. In detail, letting τm = max{τr, τp}, we partition time into
disjoint intervals of length τm, tk = kτm, and define ηk(θ) = y(tk + θ) for θ ∈ [0, τm]. Then,
the largest Lyapunov exponent, which equals to the largest real part of solutions of (5), is
numerically calculated via [31]

Re(λ1,sim) = lim
N→∞

1

Nτm
log ‖ηN‖ = lim

N→∞

1

Nτm

N∑
k=1

log
‖ηk‖
‖ηk−1‖

, (25)

where ‖ ·‖ stands for the function norm. The latter is numerically calculated by approximating
ηk(·) with a finite-dimensional vector ϕk obtained by evaluating ηk at a finite number of equally
spaced points and using the vector norm ‖ϕk‖. The estimate (25) can then be compared with
the analytical estimate for Re(λ1) obtained from (23):

Re(λ1,est) = − ψ1>Dφ1

1 + τr(ψ1>Kφ1)
c. (26)

For simulations, we generate an undirected E-R random graph of n = 100 nodes with
linking probability p = 0.03 and randomly select a given fraction f of them as the pinned
nodes. The pinning delay is taken as τp = 0.1. Figure 2 shows that the simulated value of
Re(λ1) decreases almost linearly with respect to c and f , and increases with respect to τr and
the mean degree. The simulation results are in a good agreement with the theoretical results.
The error between Re(λ1,est) and Re(λ1,sim) depends on the values of λ11 and c. It can be
seen that the error will increase as c or λ11 (or equivalently, f ) increases, or else as the mean
degree or τr decreases.

Next, we consider the case of large c. Letting ε = 1/c and µ = λ/c, (5) is rewritten as

det [µIn + εK − εA exp(−µτr/ε) +D exp(−µτp/ε)] = 0. (27)

By the foregoing results, one can see that when ε is sufficiently small, equivalently, c is
sufficiently large, the largest admissible pinning delay for (4) approaches zero. It is therefore
natural to assume that τp depends on c in such a way that τpc is bounded as c grows large.
Thus, we assume that τpc := τpc remains bounded as c→∞.

When ε = 0, (27) becomes approximately ẋ = −Dx(t− τp∞), where τp∞ can be any value
between limc→∞τpc and limc→∞τpc. In terms of components, ẋi = −xi(t − τp∞) if i ∈ D,
and 0 otherwise. The characteristic equation (27) with ε = 0 can be written as

(µ+ exp(−µτp∞))mµn−m = 0 (28)

where m = |D|. It is known that Re(µ) < 0 for all roots of the function µ 7→ µ+exp(−µτp∞)
if and only if τp∞ < π

2 . Therefore, we impose the condition: τp c < π
2 .
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Fig. 2. Variation of Re(λ1) with system parameters. The estimate (26) (plotted with +) shows good agreement
with the values obtained via simulation and (25) (plotted with �). The parameters that are kept fixed are: (a) f = 0.3,
τr = 0.1, mean degree = 3.4; (b) c = 0.1, τr = 0.1, mean degree = 3.4; (c) c = 0.1, f = 0.3, τr = 0.1; (d)
c = 0.1, f = 0.3, mean degree = 3.4.

Thus, the largest real part of the solutions of (28) is zero, and is obtained for the solution
µ = 0. The corresponding eigenspace has dimension n−m and has the form

ES = {u = [u1, . . . , un]> ∈ Rn : ui = 0, ∀ i ∈ D}.

Without loss of generality, we assume D = {1, . . . ,m}. Thus, we consider perturbation in
terms of ε near zero eigenvalues µi and its corresponding right and left vectors, ξi, ζi> ∈ ES
such that (ζi)>ξi = 1 and (ζj)>ξi = 0 if i 6= j, i, j = m + 1, . . . , n. Let µi(ε) stand for the
perturbed solution of (27), ξ̃i(ε) and ζ̃i(ε) be the corresponding right and left eigenvectors,
respectively. By a perturbation expansion,

µi(ε) = µ1i ε+ o(ε), ξ̃i(ε) = ξi + ξi,1ε+ o(ε)

ζ̃i(ε) = ζi + ζi,1ε+ o(ε) (29)

as ε→ 0. Thus, from (27),[
−εK + εA exp

(
−µi(ε)

τr
ε

)
−D exp(−µi(ε)τPc)

]
ξ̃i(ε)

= µi(ε)ξ̃
i(ε).

Since exp(−µi(ε)τ) = 1− εµ1i τ + o(ε), by comparing the coefficients of order 1, we have

[−K +A exp(−µ1i τr)]ξi −Dξi,1 = µ1i ξ
i. (30)

We write
K =

[
K1 0
0 K2

]
, A =

[
A11 A12

A21 A22

]
, D =

[
Im 0
0 0

]
,
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−0.6

c

R
e
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)

Fig. 3. Variation of Re(λ1) with large values of c, calculated for f = 0.3, τr = τp = 0.1, and mean degree
= 3.4. The estimation Re(λ1,est) is plotted by the blue solid line and the real values by the dash line with red �.

and ξi = [ξi1
>, ξi2

>
]>, ξi,1 = [ξi,11

>
, ξi,12

>
]>, with K1, A11, ξi1 = 0 and ξi,11 corresponding to

the pinned subset D of dimension m. Then (30) becomes{
[−K2 +A22 exp(−µ1i τr)]ξi2 = µ1i ξ

i
2

exp(−µ1i τr)A12ξ
i
2 − ξ

i,1
1 = 0.

(31)

We have the following result.
Proposition 7: Suppose that the underlying graph is strongly connected and at least one

node is pinned. Fix τr ≥ 0, and suppose τpc < π
2 as c→∞. Then the dominant root of (27)

has the form
λ(c) = µ1∗ + o(1) as c→∞, (32)

where µ1∗ is the dominant eigenvalue of the delay-differential equation

ẏ = −K2y(t) +A22y(t− τr). (33)

Furthermore, Re(λ(c)) < 0 for all sufficiently large c.
Proof: The condition τpc < π/2 implies that, when ε = 0, the dominant root of the

characteristic equation (27) is zero and corresponds to the eigenspace ES. So, for sufficiently
small ε, the dominant root of equation (27) and the corresponding eigenvector have the form
(29), where µ1i satisfies the first equation in (31), i.e., is an eigenvalue of (33). Since λ(ε) = µ/ε,
(32) follows. Moreover, since −K2+A22 is diagonally dominant, one can see that Re(µ1i ) < 0
under condition (H). Therefore, for sufficiently large c, all characteristic values of system (3)
have negative real parts.

We note that µ1∗ depends only on the coupling structure of the uncoupled nodes. To illustrate
this result, we consider examples with a similar setup as in Sec. V. We take an E-R graph
with n = 100 nodes and linking probability p = 0.03, and pin m = 30 nodes. We set τr = 0.1
and τp = 1

c . The real part of the dominant characteristic root of (5) is numerically calculated
via the largest Lyapunov exponent, using formula (25). Its theoretical estimation comes from
Theorem 7: Re(λ1,est) = max

{
Re(µ1) : det

(
µ1Im +K2 −A22 exp(−µ1τr)

)
= 0
}

, where
the largest real part of µ1 is similarly calculated from the largest Lyapunov exponent of (33).
Fig. 3 shows that as c grows large, the real part of the dominant root of (5) obtained from
simulations approach the theoretical result Re(λ1,est), thus verifying Proposition 7.

We have shown in this paper that the stability of the multi-agent systems with a local
pinning strategy and transmission delay may be destroyed by sufficiently large pinning delays.
Using theoretical and numerical methods, we have obtained an upper-bound for the delay
value such that the system is stable for any pinning delay less than this bound. In this case,
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the exponential convergence rate of the multi-agent, which equals the smallest nonzero real
part of the eigenvalues of the characteristic equation, measures the control performance.
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