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Abstract

The solution of boundary-value problems for the Helmholtz equation with decay is required by
many physical applications, in particular viscoelastodynamics and electromagnetics. The boundary
integral equation method allows to reduce the dimensionality of the problem by expressing the
unknown quantity with the help of a boundary integral operator of a density given on the boundary
of the domain. However, the BEM discretization of boundary integral formulations typically leads
to densely populated matrices.

In the last three decades a new generation of data-sparse methods for the approximation of
BEM matrices was designed. Among those are panel-clustering, hierarchical matrices (H-matrices),
H2-matrices and fast multipole methods (FMM).

In this work we review main concepts of data-sparse techniques. We present a description of the
high-frequency fast multipole method (HF FMM) with some technical details, both for a real and
complex wavenumber. A significant part of the report is dedicated to the error analysis of the HF
FMM applied to the Helmholtz equation with a complex wavenumber. We compare the performance
of the multilevel high-frequency fast multipole method and #-matrices for the approximation of the
single layer boundary operator for the Helmholtz equation with decay. Based on these results, a
simple strategy to choose between these techniques is suggested.
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Chapter 1

Introduction

1.1 Overview

The solution of boundary-value problems for the Helmholtz equation with decay is required by many
applications, particularly, in viscoelastodynamics (materials with damping) and electromagnetics
(propagation of waves in the lossy media). The boundary integral equation method allows to reduce
the dimensionality of the problem by expressing the unknown quantity via a boundary integral
operator of a density given on the surface of the domain. This allows to reduce the dimensionality
of the problem. Typically, however, the Galerkin discretization of such formulations leads to densely
populated matrices.

In the last three decades a new generation of data-sparse methods for the approximation of BEM
matrices was designed. Among those are panel clustering, hierarchical matrices (H-matrices), H?2-
matrices and fast multipole methods (FMM). The main ideas of these techniques can be traced back
to the classical Barnes-Hut algorithm for the fast O(nlogn) evaluation of gravitational (Coulomb)
interactions of n bodies [11].

Hierarchical matrix techniques [57, 59, 63, 49, 14, 12] rely on a blockwise low-rank approximation
of a BEM matrix. In the case when these ranks can be bounded by C'log® M, where o > 0, C' > 0 and
M is the size of the matrix, the corresponding approximation is of an almost linear complexity. This
is true for many important applications, e.g. the Laplace equation in two and three dimensions,
the biharmonic equation, the inverses of FEM matrices and BEM preconditioners. Unlike most
of fast multipole methods, H-matrix techniques do not require certain analytic expansions of an
integral kernel to be known, but need a procedure to evaluate the integral kernel [12, 19, 48]. The
applicability of H-matrix techniques to the two-dimensional Helmholtz equation has been analyzed
in [8] and to the three-dimensional Helmholtz equation in [14]. The questions of the application of
‘H-matrices to the Helmholtz equation with decay were studied in [7, 14].

Panel clustering techniques [64, 58] are closely related to one-level fast multipole methods, as
well as to H2-matrices. The latter [20, 62, 60, 61] can be viewed as a generalization of fast multipole
methods. The history of fast multipole methods starts with the seminal works [74, 52], where an
algorithm for the fast evaluation of the sums

N
1 .
fi:z%mv zj €R’ g €R, j=1,...,N,
n=1 n J
N
fj: Zleog”«Tm*ijH, IjGRZ’ 4 eR, j=1,...,N,
m=1

was developed. Similarly to H-matrices, the fast multipole methods rely on certain matrix decompo-
sitions of blocks of a BEM matrix. These decompositions are chosen so that respective matrix-vector
products can be efficiently evaluated. The complexity of the FMM depends on the complexity of such



transforms. Though recently several black-box fast multipole methods were developed [92, 36, 37],
many FMMs heavily rely on the analytic expansions of integral kernels.

The one-level fast multipole method for the Helmholtz potential was introduced in [75]. An
excellent algorithmic description of this method can be found in [30]. A wide range of works is dedi-
cated to various improvements and the efficient implementation of the high-frequency fast multipole
algorithm: see [80, 33, 26, 84, 28, 87, 56, 85] and references therein. In [31] the author developed the
fast multipole algorithm coupled with the microlocal discretization; this method is particularly effi-
cient for high frequencies. A stable for all frequencies fast multipole method for Maxwell equations
was introduced in [34]. In [93, 55, 56] an alternative FMM was developed, based on the expan-
sions of [38]. When applied to the high-frequency Helmholtz equation, this method is not of linear
complexity, however, in practice it may perform better than the HF FMM for small discretizations.
The applicability of this method to the Helmholtz equation with decay was numerically analyzed in
[43]. In this work the authors numerically examined the effect of decay on the length of multipole
expansions and suggested empirical formulas well suited for the error control. In particular, it was
shown that the presence of decay decreases the complexity of multipole transforms, thus improving
the efficiency of the algorithm.

In [27] the authors mentioned that the choice of the ranks of the multipole transforms can
be performed ignoring the complex part of the wavenumber (decay), though for large decays more

savings are possible. The fast multipole method for the Yukawa potential %, A > 0, was developed
in [53].

The applicability of the HF FMM of [27] to the Helmholtz equation with decay was analyzed in
[51, 44]. There the authors suggested that if the relative error (instead of the scaled error defined in
[43]) is of interest, the complexity of FMM transforms slightly increases with the increase of decay.
In [51] the authors proposed a close to optimal empirical formula to determine the length of the
multipole expansion.

The work [91] is dedicated to the numerical studies of the applicability of the high-frequency fast
multipole method to the Helmholtz equation with decay; the authors demonstrated that if decay is
sufficiently large, cancellation errors can occur, and proposed a strategy to avoid these errors (which
resembles the use of the definition of the scaled error as in [43]). The cancellation and roundoff
errors were studied as well in [6].

We refer to [43] for the review of other works on the fast multipole method for the Helmholtz
equation with a complex wavenumber, as well as the list of possible applications.

The comparison of the H-matrices and the FMM for the Helmholtz equation (without decay) is
presented in [22], where both techniques were applied to solve the Burton-Miller integral formulation.
The HF FMM used in this work was slightly modified for the efficient application with the half-space
mirror techniques, see [23].

The primary goal of this technical report is two-fold. First, we present a description of the high-
frequency fast multipole method with some important technical details. Second, we compare the
performance of the HF FMM and H-matrices for the approximation of boundary integral operators of
the Helmholtz equation with decay. A secondary goal is to present an error analysis of the multilevel
HF FMM that would incorporate the case of the complex wavenumber. This work extends and refines
some of the results of [68].

This report is organized as follows. In the first section we present a sample problem that requires
application of data-sparse techniques. Next, we review basic definitions from the theory of data-
sparse techniques, as well as recall the notions of H- and H?-matrices. We summarize the main
results of the existing studies on the applicability of H-matrices to the Helmholtz equation with
decay. Chapter 3 is dedicated to the algorithmic description of the HF FMM. In Chapter 4 we
provide error analysis and suggest a strategy to choose the parameters of the HF FMM based on
theoretical and numerical considerations. For a reader interested solely in the implementation of
the HF FMM, it is sufficient to read Sections 2.2, 2.4.1, 2.5, Chapter 3 and Section 4.5. Chapter
5 contains numerical experiments on the H-matrix approximations and HF FMM. We discuss the
efficiency of both strategies and suggest a heuristic that would allow to choose between the HF FMM
and H-matrices in a concrete case.



1.2 Motivation

Let Q C R3 be a bounded Lipschitz domain, ¢ be its complement and I' be its boundary. The
function u solves the following Dirichlet boundary-value problem:

—Au+ s*u =0, inQ° seC: Res >0,
u(z) = g(z), xel.

If Res = 0, the unique solvability of this problem can be guaranteed only if the above problem
is equipped with a radiation condition at infinity. For Res > 0 it is sufficient to require that
u(z) € H' (Q°) [5]. The existence and uniqueness of solutions to this problem was proved in [5].

The unknown u(z) can be written as the single-layer potential of an unknown density A(z), « € T,
namely

(1.1)

e—sllz—yll
—_— dr’ Q°.
ue) = / P

The continuity of the single layer potential through I' allows to write the following boundary integral
equation for \:
e—sllz—yll

o) = (V($)N) (z) = /

————A(y)dI',, zel. 1.2

The well-posedness of this problem is due to [5], where the following proposition was deduced.

Proposition 1.2.1. For Res > 0, the single layer boundary operator V(s) is an isomorphism
V(s): H 2(T) — H2(T).

If Res > oq, for some o9 > 0, then

Ch 1
L I C

Cs 1
-1 2
VO by < o (1) P

for some Cy,Cy > 0 that depend on I' only. For all ¢ € H_%(I‘), the following coercivity estimate
holds:

Re(¢. sV (s)¢) > Camin(oo, ls| 0l

where C3 > 0 does not depend on s, ¢.

Here we concentrate on the efficient approximation of the Galerkin discretization of (1.2). In
particular, we analyze H- and H?-matrix techniques applied to the Galerkin discretization of the
single-layer boundary integral operator for —A + s?, s € C, Res > 0. Let the boundary I' be
subdivided into N panels (m)l\il Let (¢;)M, be Galerkin test and trial basis functions. Then the
Galerkin discretization of V (s) is defined as

e—sllz— yH
i T.dl’ g =1,..., M. 1.
// 4W||$—y|| )(b](y)d Id Y l)j ’ ) ( 3)

For simplicity, throughout this work we use piecewise constant basis functions, i.e.

T € my,

@(m)z{oz i=1,...,N=M.

else,



All the arguments can be extended to a more general case under the assumption that the test and
trial basis functions are compactly supported (more precisely, supported on a constant number of
mesh elements). Additionally, we assume that given the meshwidth Az, the number of boundary

elements scales as M = O ﬁ .

The case Res = 0 is considered as well. However, the well-posedness of the problem (1.1) can
be guaranteed only if it is equipped with a proper radiation condition. The equation (1.2) is no
longer uniquely solvable and should be changed to another well-posed integral formulation (e.g. the
combined field integral formulation)®.

1For more information on the theory of boundary integral equations (BIE) see [71], [86] and [83]. Monographs [86]
and [83] are dedicated to the numerical treatment of BIE.



Chapter 2

H- and H?-matrices

The notion of H-matrices was introduced in [57]. The questions of the efficient construction of
‘H-matrices and the complexity of algebraic operations are addressed in [49]. Recent monographs
[59, 14] are dedicated to H-matrix theory and provide both theoretical and numerical evidence
of the efficiency of H-matrix techniques. The non-exhaustive list of applications include the ap-
proximation of boundary integral operators [63], of the inverse of FEM matrices [16], and efficient

LU-preconditioners in BEM and FEM [13, 50].

In this section we review the main notions of the theory of H-matrices, following [59].

2.1 Asymptotically Smooth Functions

Definition 2.1.1. Given X,Y C R%, a function k : X xY — C is called separable if it can be

written in the following form:

k(z,y) = z:a,,(ﬂc)b,,(y)7 (r,y) € X x Y.
v=1

The right hand side of

T

k(z,y) = al’(@)b (y) + Re(z,y), (z,y) € X x Y.

v=1

is called an r-term separable expansion of k(x,y) with the remainder R,..

One of the methods to obtain a separable expansion is polynomial interpolation. Namely, let X

be a box

X = [al, bl] X ... [ad, bd]
Let a set of interpolation points (x,ij))jil be defined on intervals [ag, bg], k =
(1)
B x —
Lw(z) = 11 o) _ W

pn=1,...,Ng, p#v Ly, Ty

denote the v*" Lagrange polynomial. Given z = (z1,...,24),

EO @) = 3 L @) S Lowa(@a) . S Liva(wa)k ((ﬁ)

1,...,d. Let

(2.1)



constitutes an r = N1 Ny... Ng-term separable expansion of k(z,y). Let us for simplicity assume
that Ny = Ny = ... Ng = m. By A; we denote the Lebesgue constant for the set of interpolation
points on [a;, b;]; if the interpolation points are chosen as Chebyshev nodes

2
Ai=A<1+ —log(m+1).
T

The interpolation error, i.e. the remainder R,., can be bounded by, see [59, Lemma B.3.4],

d
T 1 - m
k() = K (2,9)] < — AT w107 R 1) oo, x
’ i=1

m .
where w; = w;(x;) = [] (z; — xy)). If all the partial derivatives of k(x,y) do not grow too fast,
j=1
his error can be easily controlled. This motivates the introduction of another important concept,
namely asymptotic smoothness.

Definition 2.1.2. Let X,Y C R? and let k : {(z,y) € X x Y,z #y} — C be smooth. Then k is
called asymptotically smooth if there exist C, k,~y,p, s.t.

0205 k(z,y)| < Cla+ B)la + By o —y| ~loI=1P1=2, (2.3)

forallze X, yeY, x#y, o,BENI, a+B#0.

The following lemma shows that under additional geometrical assumptions on domains X, Y
tensor-product interpolation (2.2) of the asymptotically smooth k(z,y) converges to k(x,y) expo-
nentially.

Lemma 2.1.3. [59, Proposition 4.2.13, p.69] Let k(x,y) be asymptotically smooth in X xY C
R x R?. Let additionally (2.1) hold. Let the number of interpolation points in each of the directions
equal m — 1 and the Lebesque constant Aj = O(c™), for some ¢ > 1 and for all j =1,...,d. Given
m+s >0 (where s is defined by (2.3)), tensor-product interpolation (2.2) approximates k(z,y) with
the error

Co diamoo (X

k(o y) = kD) loox < ( disi(y. X) )) ,yeY\ X, (2.4)

where c1,co do not depend on m and
diamq, (X) = max{b; —a; : 1 <i<d}.
Hence there exists a separable expansion for an asymptotically smooth k(z,y) in X,Y if
ndiame (X) < dist(Y, X),

for some 7 > 1.

2.2 Cluster Trees and Block Cluster Trees

Let the boundary I' be subdivided into M panels 7;, and let the corresponding index set be defined
as Z ={1,...,M}. Note that when piecewise-constant basis functions are employed, supp ¢; = m;,
i=1,..., M.

Definition 2.2.1. Given a constant C, a tree Tz is called a cluster tree corresponding to an index
set T if Tz is a binary labeled tree with the following properties:

o the label T of a vertex T of Tz is a subset of Z;



Figure 2.1: Subdivision of a bounding box into two boxres of equal size, with two associated clusters filled
with different colors (2D schematic representation).

o the label of the root of the tree is I;
o the label of a verter T is a disjoint union of labels of its sons;
o for every leaf 7, #7 < C.

The leaves of the cluster tree 77 are denoted by £(7z). All the vertices located at the level £ of
the cluster tree Tz are denoted by 7F; the root is located at the level £ = 0.

The structure of the cluster tree introduces a hierarchical subdivision of T" into sets of panels. A
set of panels corresponding to a cluster 7 is denoted by {2:

Q.,- = Uﬂ'i.

PET

In the H-matrix theory, the bounding box of a cluster 7 is the (axis-parallel) box containing the
set €2,; the center of the box we denote by ¢, and its diameter by d,. The next definition can be
found in [18, Def. 3.16].

Definition 2.2.2. A predicate A: Tz x Tr — {true, false} is an admissibility condition for T X T,
if A(7,v) = true implies that for all 7' € sons(7), A(7/,v) = true and for allv’ € sons(v), A(r,v') =
true.

Remark 2.2.3. When the high-frequency fast multipole method is employed, the actual definition of
a bounding box is slightly different from the one used in the H-matriz theory. Namely, as we show
further, for the efficient implementation of the HF FMM it is crucial that the boxes on the same
level of the cluster tree are of the same size. This can be achieved by a subsequent bisection of the
bounding box of the domain. In case when some of the boundary elements do not belong to any of the
bozes (they cross the border of two bozxes), see Figure 2.1, they are assigned to either of the clusters.

Now we have all the ingredients to introduce the concept of the admissible block-cluster tree. We
adopt here a slightly modified definition, similar to the one used in the high-frequency fast multipole
method [27]. In the H-matrix theory it corresponds to the level-consistent admissible block-cluster
tree.

Definition 2.2.4. Let 77 be a cluster tree. We will call an admissible block-cluster tree Trzxz a
subtree of a labeled tree Tz X Tz that satisfies the following conditions:

1. The root of the tree is (root(Tz),root(Tz)).

2. The son clusters of each block-cluster b = (1,0) are defined by

oy J A 0", T esons(T), o' €sons(o)}, sons(T) # 0, sons(o) # 0,
sons(b) = { ) sons(t) = () or sons(c) = B;

3. A block-cluster (1,0) is a leaf if and only if one of the following holds true:

(a) (7,0) is admissible;
(b) (1,0) is not admissible, and T € L(Tz) or o € L(Tz);



Let us note that the actual choice of the admissibility condition depends on the integration kernel.
For asymptotically smooth kernels the natural choice is, see (2.4),

ndist(r,0) > max{d,,ds}, (2.5)

for some 1 > 0.

In the literature on the fast multipole methods it is quite common to use an admissibility con-
dition of the form (2.5), or a similar one: only the neighboring clusters are not admissible. We use
a slightly different admissibility condition, see also [78].

Definition 2.2.5. We will call a pair of clusters (1,0) admissible if for some fized n > 1 the
following holds true:

n
ler —coll > §(d‘r +dy).

Thus, all the leaves of the admissible block-cluster tree can be split into two sets, namely
L1 (Tzxz) of admissible block-clusters and £_(7zxz) of non-admissible block-clusters. The first
set is called the far-field, while the second one is referred to as the near-field.

Remark 2.2.6. The definition of a cluster tree can be modified to include the case of an octree
(instead of a binary tree), which is often used in the HF FMM theory. All the definitions of this
section can be generalized to cover this case.

In the HF FMM a cluster octree is constructed using the following procedure. For each non-leaf
cluster T, its sons are formed by splitting its bounding box into 8 identical bores and associating each
of the resulting bounding bozxes with a set of indices. Since I' is a 2-dimensional surface, in average
every non-leaf cluster will have only 4 non-empty sons.

2.3 H-matrices

We wish to approximate a Galerkin matrix of a (boundary) integral operator

(M), = [ [ M gstaros aradr,, ig=1,....0. (2.

I'xIl

in the H-matrix format. The main idea that lies behind H-matrix techniques is the following.

Let us assume that the kernel of the integral operator k(x,y) is an asymptotically smooth func-
tion. The admissibility condition has to be chosen so that k(x,y) has a separable expansion inside
all the admissible clusters, see Section 2.1. Given (7,v) € L (Tzxz), for all ¢ € 7, j € 0, it should
hold that

tﬁuwmmmmmmzz [ﬂmmm& /wmmwm. (2.7)
k=1

Q, Xy =1 \q, Q.
Let #7 = n, #0 = m. We denote by M |;xs the following matrix block:
(M 250 )k, = Mij kie{l,...,n}, {; e{1,...,m},
| 1E€T, JED.
The expansion (2.7) shows that the matrix block M |zx5 can be approximated by a rank r-

matrix. Hence instead of storing all matrix entries it is possible to keep in the memory only r
n-dimensional vectors A, a=1,...r,

AL = / al)(z)¢i(z)dly, i€,

Q-



and r m-dimensional vectors B(®), a=1,...r,

B = / b (@), (z)dTa;  j € D,
Q.

This allows to reduce storage costs and the time of the matrix-vector multiplication from O(nm) to
O(r(n+m)).

Definition 2.3.1. Let Z be an index set and Trxz be an admissible block-cluster tree. Let also
k: Ly (Tzxz) — Ny. A matriz M € CT*% is called an H-matriz (or hierarchical matriz) if for each
b= (1,0) € Ly (Tzxz) the matriz M|, is a k(b)-rank matriz, i.e.

rank M|, < k(b)
and is represented in the form
M|, = A,By
where A, € RTXL-k®} B e RoX {1 k(b))

An important notion for analyzing the complexity of H-matrix arithmetic is the sparsity constant.
We provide here a definition adapted to our needs, similar to [59] and [77]; for alternative definitions
see the same reference, as well as [49)].

Definition 2.3.2. The sparsity constant for Lo C L(Tzxz) is defined as

Csp (L) = max {Hé%z{{#(f €Tz:(1,0) € Lo}, né%gc{#T €Tr:(r,0) € LO}} )

In [64] it was demonstrated that under some mild assumptions on T, the sparsity constant can
be bounded by a constant that depends on the admissibility condition and the space dimension.
The following lemma can be found in [49, Lemma 2.5] and [59, Lemma 6.3.6].

Lemma 2.3.3. Let Tzxz be a given admissible block-cluster tree with the sparsity constant Cg, for
L(Tzxz). Let M be an H-matriz, and k > 0 be s.t. for allb € Ly (Tzx1)

rank(M|p) < k.
Additionally, let nyin € Ny be s.t. for all (1,0) € L_(Tzx71):
#7 < nmin and #0 < Nmin.
Then the following complexity estimates hold:

1. The storage costs scale as

Sy < 2Cp max(Nmin, k) (depth(Tz) + 1)#Z.

2. The complexity of the matriz vector product can be bounded by

M < 25y.

From now we assume that C,, does not depend on size of the discretization. The cluster tree is
constructed so that depth(7z) = O(log #Z). Under these suppositions the storage costs, as well as
the complexity of the matrix-vector product scale almost linearly, i.e. O(M log M), with respect to
the size of the index set Z, and hence the number of Galerkin basis functions.

In practice the construction of H-matrices is usually done using techniques based on the ideas
from [47], e.g. ACA [12, 17], ACA+[48] or HCA [19] (although formula (2.4) is available). Such
methods, besides being computationally efficient, possess major advantages over the polynomial
expansion (2.4):



e 10 a priori information on ranks is needed, only evaluations of the integral kernel are used;

e low-rank approximations constructed with the help of such techniques can be close (and in
practice are close) to optimal [47, 15].

The optimal low-rank approximation can be constructed with the help of the singular value
decomposition. Due to high computation costs, the SVD is employed in the H-matrix theory only
rarely (e.g. for coarsening, see [48]).

2.4 H-matrices for Helmholtz Boundary Integral Operators

Questions of the applicability of H-matrices to the Helmholtz equation have been studied in various
works [8, 7, 46], see also [14] and references therein. Let us address the simplest case, namely, the use
of H-matrices for the approximation of the Galerkin discretization of the boundary integral operator
V(s), namely

e—sllz—yll
Gi(y)dTpdT,y, 3,5 =1,..., M,
//47r|\x—yu (@)¢5(y)dLadly

where (¢;(z))M, are piecewise-constant test (and trial) basis functions.
In a nutshell, the results of these studies are the following.

1. If s = ik, k € R, the complexity (storage and matrix-vector multiplication) is bounded by
O(M]|k|log M); the hidden constant depends on the accuracy. A typical assumption on the
number of Galerkin basis functions is

M = O(|x|?), as |k| = +oo.
Consequently, the complexity scales as
O(M? log M).

This result can be found in Section 3.4.5.2 of [14].

| Im s|

2. For complex s : Res > 0, in [7] it was shown that if Res] < ¢ for some ¢ > 0, the Helmholtz
kernel is asymptotically smooth and the complexity of the H-matrix approximation is almost
linear. Based on the results of [21], in [14, p.114, Theorem 3.18, p.157] it was demonstrated
that the matrix-vector multiplication and storage costs depend on M as

o(u(ee )

for some C' > 0. Under the assumption M = O(]s|?), the H-matrix approximation is of almost
linear complexity, namely O(M log M).

The complexity of H-matrix assembly depends on the complexity of the procedure used for
computing the low-rank approximations of matrix blocks. In particular, the complexity of the
adaptive cross-approximation (ACA) [12, 17], see also [48, 19], applied to a matrix block of size
m x n, can be estimated by O(r?(m+n)), where r is the rank of the low-rank matrix approximation
of this block computed in the course of the ACA [14]. When the ACA is applied to the Galerkin
discretization of the Helmholtz single layer boundary operator, its complexity scales as

O(Cyr(m +n) + Cor?(m +n)), (2.8)

where C; depends on the complexity of the evaluation of 4-dimensional BEM integrals, and Cy
is a (small) constant. The value C; = O (log” M), where a < 4, due to the use of tensor Gauss

10



quadratures with coordinate transformations, applied with the accuracy sufficient to preserve the
stability of the Galerkin method [83, 39, 65, 81, 82].

It can be shown that the ranks r can be estimated by O(|x|)[14, p.157]), and thus the complexity
of the ACA based assembly of an H-matrix approximation of the Helmholtz single layer boundary
operator in the case s = ix, k € R, is O(|k|*> M) = O(M?), i.e. the same as for the dense matrix.
In practice, however, even for large problems the complexity of the matrix assembly scales close to
O(M? log® M) (c.f. the numerical experiments in Section 5). There are two main reasons for this.
First, in the complexity estimate of the ACA (2.8) usually Cy < C1, and the first term prevails even
for large values of r [14, Remark 3.31]. Second, the ranks produced by ACA-like procedures are
typically close to optimal, and the estimate r = O(|k|) (which leads to the quadratic complexity)
may appear too pessimistic in many practical cases.

In the case s = |s|e!®, a = const, Res > 0, the asymptotic complexity of the matrix construction
is larger than the storage and matrix-vector multiplication complexity by a factor up to O (log® M),
where a < 4 (this is due to the complexity of the evaluation of 4-dimensional boundary integrals),
and hence scales not worse than O (M log®*™ M )

2.4.1 Efficient Construction of H-Matrices for the Boundary Single Layer
Operator of the Helmholtz Equation with Decay

In [43] the error of the fast multipole method for the Helmholtz equation with decay has been
studied. It was suggested that the relative error in the case Res > 0 does not serve any more as
a good error estimator. Clearly, the elements of the Galerkin matrix of the Helmholtz single layer
boundary operator satisfy the inequality

e—sllz—yll _ 1
. T.dT. | < — Re s dist(m;,m ) / / L . T dl
//47r||:c—y|| bi(z )¢J(y)d dly| <e 47T||$7y”¢1(x)¢](y)d 2dTy,

T Tj T Tj

and hence become exponentially small when dist(m;, ;) gets larger. Therefore, the contribution of
the blocks corresponding to the parts of the boundary I' that are distant from each other, can be
neglected up to a certain tolerance when computing the matrix-vector product.

Accordingly, it is possible to skip constructing some blocks in the H-matrix approximation. Let
(1,0) denote an admissible block-cluster, and let the distance between the bounding boxes of the
clusters 7 and o equal d > 0. If

exp(—dRes)

Tnd <€, (2.9)

for a fixed accuracy € > 0, the corresponding block can be approximated by a zero matrix. The
actual choice of € has to be made based on extensive numerical experiments.

The accuracy of the approximation of other blocks within the ACA+ algorithm may be reduced
as well (see [76, pp.69-73] for the detailed description of the algorithm). When using the ACA/ACA+
algorithm, it is easier to control the relative accuracy of the approximation of matrix blocks, and
hence we proceed as follows. If the distance between two admissible clusters is d, the relative
accuracy of the approximation may be scaled by e®¢*¢ what we also do. This is in correspondence
with the definition of the scaled error in [43]. Alternatively, one could control the absolute accuracy
of the approximation of each matrix block within the ACA/ACA+ algorithm.

2.5 7H2-Matrices

The notion of H2-matrices was introduced in [62]. In [20] the authors developed a black-box algo-
rithm that compresses a given matrix in the H2-matrix format. For the cases when the construction
of a dense matrix is too expensive (e.g. discretizations of integral operators), an efficient method of
the construction of H2-matrix based approximations was suggested in [61].
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Another way to assemble an H2?-matrix is based on the use of known explicitly separable expan-
sions of an integral kernel, e.g. those coming from fast multipole methods. This was done for the
discretization of the boundary single-layer operator for the Helmholtz equation in two dimensions
in [8], as well as implicitly in [3].

In this section we review the main definitions of the #2-matrix theory based on recent mono-
graphs [18, 59] and lecture notes [76].

Let us fix a cluster tree 77 and an admissible block-cluster tree Tzx7.

Definition 2.5.1. A family of matrices (Vt)teTI, s.t. for all t € Tz the matriz V! € CixKe for
some finite index set Ky, is called a cluster basis.

Definition 2.5.2. (Uniform H-matriz) Let (V*),cr., (W'),cr . A matric M € C**7 s called a
uniform H-matriz if for all admissible (t,s) € L (Trxz) there exists S5 € CK*K" g4,

Mgy = ViShs ()"
Matrices St are called coupling matrices.

A uniform H-matrix is an H-matrix, since the ranks of all its subblocks corresponding to admis-
sible clusters are bounded:

rank (Vtstvs (WS)T> < rank §"* < min (#K*, #K*) .

Definition 2.5.3. A cluster basis (Vt)teTI is called nested if for every non-leaf clustert and for all

t' € sons(t) there ezists a matriz T' € CK" K" Ctransfer matriz’), such that
vi=vir"

Definition 2.5.4. A uniform H-matriz whose column and row cluster bases are nested is called an
H2-matriz.

The use of H2-matrices is motivated by a possible reduction of storage and computation costs
when dealing with the nested cluster basis compared to the cluster basis. Namely, if V! are dense
matrices, storing them for all ¢ € 77 may be costly. In the case when the nested cluster basis is used,
one only needs to store the cluster basis for leaves and (possibly) transfer matrices. If these are of a
special structure (e.g. are sparse), storage costs and time for the computation of the matrix-vector
product may be reduced significantly.

The algorithm for the efficient matrix-vector multiplication

y = Mz,
with M being an H2-matrix, is performed in three stages.

1. Forward transformation. During the forward transformation vectors z*, for all s € Tz, are

computed:
s s\T
=) el (2.10)
If the cluster basis is nested, this computation can be performed recursively:
(WS)T Tlg, ifse Ly,
v > (T{fV)T z!, otherwise, (2.11)
tesons(s)

where Ty, are the transfer matrices of the cluster basis (W?) . .
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2. Multiplication. Let Ry = {s € Tz : (t,5) € L+ (Tzxz)}, t € Tz. The result of the multiplica-
tion is

y' = Z Shsps, (2.12)

SER:
for all clusters t € T7.
3. Backward transformation. The result of the backward transformation is the vector (y;)

given by
= Y, (V)

teTr: jEE

jeT

If the cluster basis is nested, this computation is performed recursively, similarly to the forward
transformation. For s € Tz we first recursively compute:

yls =y° + T5y", s € sons(t), (2.13)

where T are the transfer matrices of the cluster basis (V)

Next, for all i € 7

seTz"

yi=(V*y*),, seTr, i€s. (2.14)

4. The non-admissible blocks are treated as in the case of H-matrices.

Remark 2.5.5. In the FMM the forward transformation and multiplication stages are split and
done per level (rather than for the full cluster tree at once). For the level £ (starting from the lowest
one), the vectors x* for this level are constructed (forward transformation), next the multiplication
is done for all admissible block-clusters at the same level (multiplication). The same procedure is
performed for the level £ —1 (with the forward transformation that uses the vectors x® constructed at
the level £) and so on. This procedure allows to avoid storing the result of the forward transformation
for the full cluster tree, but rather keep it only per level.

Remark 2.5.6. If, for a given ¢ > 1, there are no admissible clusters at the levels k: 1 < k < ¢ of
the block-cluster tree, there is no need to perform the forward and backward transformation for the
levels k < £: for all such clusters t, Ry = 0 (see Step 2 above), hence they do not contribute to the
whole matriz-vector product.
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Chapter 3

High-Frequency Fast Multipole
Method

In this section we describe the high-frequency fast multipole method (HF FMM) of [75, 27] in the
framework of H2-matrices concentrating on technical and algorithmic questions. Before describing
the method, we review the definitions of related special functions.

3.1 Special Functions

The Legendre polynomials are defined as
1 ar
—2nplden

They are orthogonal with respect to the La-product on [—1, 1]:

Pn(z) (232 — 1)n

1

/ Po(2) Py (2)dz —

-1

2
2n+1

671/7”7

where 0, is the Kronecker delta. The following classical theorem (see [35]) describes the convergence
rate of the Legendre approximation to analytic functions.

Theorem 3.1.1. Let f(z) be analytic in the interior of a Bernstein ellipse

B, [t

3 , ¢ €0, 27r)}

for some p > 1, but not in the interior of any E,, with p’ > p. Then

f(z) = Z an P (2)
n=0
with
2n+1 i
n = — /f(ac)Pn(:r)dac

-1

The series converges absolutely and uniformly on any closed set in the interior of E, and diverges
in the exterior of E,. Moreover,

. 11
limsup |a,|» = —.
n—o00 P
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The associated Legendre functions are defined with the help of the Legendre polynomials:

P(x)=(-1)"(1- x2)%(zr—mmPn(x), 0<m<n,
Py(x) = Pa(2),
P (z) =0, |m| > n.

The normalized associated Legendre functions

S 1\ (n—m)! g m d™ .
n _\/<”+2) ) m Eal@); (3.1)

m =P ™, m < 0.

By #, 3, ... we denote unit vectors in R3, namely, given a vector x € R3,

. x
r=-—-.
k4|

The spherical coordinates of a vector in R?® are given by (p, ¢,6), with ¢ being the azimuth and 6
the inclination. Then the Cartesian coordinates of a vector § on the unit sphere are read as

§ = (cos¢sinb, sinpsinf, cosb), ¢ € [0, 27], 6 €0, 7). (3.2)
A spherical harmonic of degree n and order m is a function

Y™ St C,

rE = e = W“&?i’”‘ rRemepr cost), ] <, (33)

Y (8) = (=1)"Y,(3).
These functions constitute an orthonormal basis of Lo(S?) and

/ YM(8)Y(8)ds = npOmu. (3.4)
SZ
They are connected to the Legendre polynomials via the addition theorem. Given two unit vectors
z, 9,
n

Pai i) = o 3 YI@YI) (35)

m=—n

Spherical Bessel functions of the first kind j,,(x) and spherical Bessel functions of the third kind
h;l)(x), hg)(:c) are defined as in [2, (10.1.1)]. We denote

B () = BV (2).

The analytic expressions for these functions are given by Rayleigh’s formulas:

i) = (1) (36)
hn(2) = ju(z) — i2" <—1d)n cosz

zdz

z
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Spherical Bessel functions are the coefficients of the expansion of the plane-wave function in the
Legendre polynomial basis [2, (10.1.47)]:

elzcost — Z(Qn + 1)i"j, (2) Py(cos §). (3.8)

n=0

Remark 3.1.2. Theorem 3.1.1 allows to conclude that the series (3.8) converges supergeometrically,
since the function e'** is entire in t.

The following is a particular case of the Funk-Hecke theorem [54, Theorem 3.4.1].

Theorem 3.1.3 (Funk-Hecke theorem). Let f be a bounded integrable function on [—1,1]. Then
fa(8) = f(a-3), & € S?, is integrable on S* and, for alln € N,

where

The next identity can be immediately derived from the above theorem combined with (3.8) and
Theorem 3.1.1:

/e”@'ﬁpk(ﬁ &)ds = 4mi* (N Pu(g-2), k €N, A € C. (3.9)
SQ
The following expression serves as the basis for the fast multipole method and is known under

the name ’addition theorem’ (or 'Gegenbauer’s addition theorem’), see [2, (10.1.45), (10.1.46)]:

ho(kllz = yll) = D>~ (2n+ Dhn(sllz])jn(k]lyll) Pa (- 9), (3.10)
n=0

v,y € R ¢ lz] > [ly].

Another component of the fast multipole method is numerical integration over the unit sphere.
In the fast multipole method literature it is often performed with the help of the quadrature rule
introduced in the following lemma from [75].

Lemma 3.1.4. Let f be a spherical harmonic of degree ny, and g be a spherical harmonic of degree
ne, f = f(8), g = g(3), where § is given by (3.2). For any ng > [MF224L] ny > ny +ng + 1 the
quadrature rule on the unit sphere given by the nodes and weights

(Pr,05) = ((k — 1)2£,arccos xj> )
Mg
2T

Wgj = niqgw]ﬁ k= 1, <3 Mgy -7 =1,..,m,

(3.11)

with (xj);‘il, (wj)?il being Gaussian quadrature nodes and weights on the interval [—1,1], integrates

the product of f and g exactly.

Proof. Integration of the product of f and g requires the evaluation of the integrals of the type, see
(3.3),

27 1
/ eimbeim'd g / Pﬂ(gc)P{L’;/(x)dx,
—1

0
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where m,m’ € Z, |m| < nq, |m/| < ng. The first integral can be evaluated exactly with the help of
the trapezoidal rule with at least n = n; + ng + 2 points, more precisely, the quadrature with nodes
¢, and weights wg, k=1,...,n

~ 2w

¢k: (k_l)v

2T N 2 .
=, Wj = , 2<j53<n—-1.
2(n—1) n—1

—_

3

w1 =

&

The integrand of
1
/PZL’IL (z)P, " (x)dx
S1

is a polynomial of the degree not larger than n; + no, hence this integral can be integrated exactly
with any Gaussian quadrature rule with {%"2“] points. O

Here we employ the Gauss-Legendre quadrature. The abscissas of the quadrature of the order n
are given by the zeros of the Legendre polynomial P,, and the weights by
2
we = 5, £=1,...,n.
(1= z¢)? (P (20))
Remark 3.1.5. In what follows we use the quadrature rule with ng =

Remark 3.1.6. We adopt a short notation for the quadrature rule defined in Lemma (3.1.4):

(we, 80)F_y, (we,o)by, ... (3.12)
stands for a quadrature rule with L = 2n2, and 3¢ (74, ...) is a vector (3.2) with ¢, 0 given by (3.11).
Remark 3.1.7. We will denote the integral ff )d§ computed with the help of the quadrature

(%"ZH] and ng = 2ng.

(we, 80)5_, by QL [f(8)]. When necessary, the varzable of the integration is stated explicitly in the
upper index:

/f(§ ) dé = Q5 [f(5-7)]. (3.13)

Additionally, we will use the following lemma which is a straightforward corollary of Lemma
3.1.4 and (3.5).

Lemma 3.1.8. Given M € Ny and m,n € Ng: [ZE2H] < M,
o P (G- 7) ifn=m
4.8 5.8 — 2n+1- "1 ’
Qi [P (d-8) P (7- 3)] { 0, otherwise.
for all g, € Ss.

Proof. We use the addition theorem (3.5) for Legendre functions to rewrite

m n

Qi [P (0-9) Pa 78] = 5" 3™ V@) Y V(I [V (©VEG)]
4

=—m k=—n

The quadrature rule of order M as in the statement of the lemma integrates the product of these
spherical harmonics exactly. Hence for m # n the result follows from orthogonality of spherical
harmonics, see (3.4). For m = n, we again employ (3.4) to get

Qi [P (0 @)Pm-s:)]:(%ﬂ) 3 Vi@
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3.2 High-Frequency Fast Multipole Algorithm

The high-frequency fast multipole method is based on the expansion (3.10). Namely, given s € C,
T,Y,78, Yo € R3, it holds:

—sllz—yll °
e S
-_— E 2n + D hn(is]|casl)in(islly — x + capll) Pn(Cap: Fap),

for [lcagll > [Irapll,
where cng = Yo — g and rog = = — Y + Cag.
Truncating the above series at N + 1 terms, employing (3.9) and interchanging the limits of

integration, gives

o—slle—yl

N
° )" 3 —s(rag,”
7167-‘-2 2(277/4’1)(72) hn(ZS“Ca5||)/e ( B )
n=0 2

drllz —yll (3.14)

X Pp(éap-7)di + Ey (N),

where Ey.(N) is the truncation error.

The next step is the discretization. The addition theorem (3.5) combined with (3.8) shows that
the integrand of (3.14) is a sum of products of spherical harmonics, hence the quadrature rule of
Lemma 3.1.4 can be employed. In [32] it was suggested that L should be chosen so that L > 2(N+1)2.
This gives the following separable expansion of the Helmholtz kernel:

e—sllz—yll N

(Y=Ya,7x)
wye’
anfle — gl Z (

X e S(r *0:7) 4 By (N)+ Ef(L,N),

hn(isl[cag ) Pn(Cap Tk))

n=0

where E; is the integration error.

Another way to discretize (3.14) based on the modification of the integrand and the use of the
trapezoidal quadrature rule was recently suggested in [80, 26].

The fast multipole method can be cast into the framework of H2-matrices. Before, this was
done in [8, 3]. Namely, the matrix-vector multiplication described in Section 2.5 can be viewed as a
generalized description of the fast multipole algorithm, with properly defined cluster basis, transfer
and coupling matrices.

Let us consider the Galerkin discretization of the Helmholtz single layer boundary operator

e—sllz—yll
; & 4r,dr,, i,j=1,...,M.
// G000 g ety B

I'xI’

In this section we show how this matrix can be approximated with the help of the fast multipole
method. We will comment on the choice of the parameters and the error control in the further
sections.

We fix the block-cluster tree Tzxz. We use the uniform partition of the domain, i.e. all the
bounding boxes of the clusters located at the same level of the block-cluster tree are of the same
size.

With each level £ of the cluster tree we associate a set of quadrature nodes on the unit sphere

(wmfn)n 1, Le €N, (3.15)

defined as in Lemma 3.1.4.
The version of the algorithm described here is the high-frequency FMM of [27] with minor
modifications.
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3.2.1 Cluster Basis

Given a cluster 7, located at the level £ of the cluster tree and c,, being the center of its bounding
box, we define the column cluster basis as a matrix

(WTa)k}jn (s) = /e—:s(ac—co”v%)qﬁj(,yg)dF$7 (3.16)
kj € {17"'7#%01}; j €7A—om n= 1; 7LZ-

The row cluster basis for the cluster 7., has a different form:

(V™) (5) :wn/es@—cmwj(x)drm, ki€ (L. #Fa), j €4 n=1,....Ls.

To

Efficient Computation and Storage of the Cluster Basis

It is sufficient to compute the column cluster basis only, whereas the row cluster basis can be
constructed based on the symmetry of the quadrature points (3.11) on the unit sphere. Let p :=
T — ¢ = (p1, P2, p3) € R3. For quadrature nodes # = (cos ¢y, sinf;, sin ¢y sin6;, cos Oj)T, it holds
that

es(:zzfca ,7) _ es(p1 cos ¢, sin 0+p2 sin ¢y, sin 0;+ps cos 0;) efs(p,zjkj)
;

Grj = (cos(m + ¢) sin(m — 6;), sin(w + ¢y) sin(mw — 6;), cos(m — 0;)) .

Let L, = Qng, ng € N, see Remark 3.1.5. Since the nodes of the Gauss-Legendre quadrature are
symmetric about 0,

T—0; =0n,—jt1,
and also

T+ ¢ et k= 2—W((nngl)kmonng),
Ng 2n9

the vector gi; indeed belongs to the set (fn)ﬁil. Hence, only the column leaf cluster basis need to
be computed and stored.

For some applications it is necessary to compute the cluster basis for many values of s € C.
In this case storing all of the dense matrices (3.16) may be expensive. Alternatively, the function
falz,7) = e~*(@=ca™) can be interpolated in x with the help of multivariate interpolation (as done
when evaluating the boundary integrals with the help of a quadrature rule). Then the entries of the
column leaf cluster basis are

W7),0(5) = [0 "0 (@),

. (3.17)
~ Z efS(wk,afca,fn)w;k,
k=1
where z,o € 7o are quadrature nodes and wf;, k =1,..., K are weights. Hence for all s € C we

can store only the weights w7, , the interpolation points o and the centers of the clusters ¢, and
then compute W™ on the fly when reading the data from the memory to perform the matrix-vector
multiplication.

3.2.2 Transfer Matrices

In the fast multipole method transfer matrices are represented by translation operators. Namely, for
the column cluster basis transfer matrices correspond to the multipole-to-multipole (M2M) transla-
tions, and for the row cluster basis they are equivalent to local-to-local (L2L) translations.

Before defining transfer matrices, let us provide some information on one of the ingredients of
these operators, namely the fast spherical harmonic transform as described in detail in [67].
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Fast Spherical Harmonic Transform
Let
f:$?—C.
Let us set $(6,¢) = (cos ¢sinf, sin¢sinf, cosfh). We assume that for some K € N,

F(5(6,9)) ZZf,;“Yk 0

k=0m=—k

Ng,Mne

Given the values of the function f on the grid (¢, 6,,),; -] defined by (3.11)

fg_’n = f(§(9n, d)g)), 6 = 1, e ,’/ld,, n = 1, ...y,
we need to compute the values of the function

N k
F(30,0)=>_ > [0, 9),

k=0m=—k

on the grid of different size, namely (¢, 6 )en 1 defined by (3.11). We assume ngy
ny, = 2ny, set
L = 2n2, L' =2(n)?,
and define REL as an operator
Fppn= (RL,’Lf>€ = F ((cos ¢} sin ), sin¢ysiné,,, cosb.)),
,N
= 1,...,71;57 n=1,...,np.
To perform the truncation exactly, n4 has to be chosen so that

A trivial algorithm for the spherical harmonic transform can be described in two steps.

1. Evaluate f;, using the quadrature rule from Lemma 3.1.4:

Ny ng

. / FEY™3)ds =30 forwr
SQ

(=1 k=1

2. Define F as in (3.19) and evaluate F' on the corresponding grid:

N k
Frn=Y_ > [OVEO,.6), (=1...n, n=1..n

k=0m=—k

(3.18)

(3.19)

= 2ng and

(3.20)

(3.21)

(3.22)

The fast spherical harmonic transform makes use of the structure of the sums (3.21,3.22) exploit-

ing the fast Fourier and Legendre transforms. This algorithm proceeds as follows.

1. For every n =1,...,ng, compute
2
fm= sz i l)m m=-npg+1,...,np — 1.

with the help of the inverse fast Fourier transform. Particularly, for m < 0

rm F(m4ng) mod ng
fn = Jn '

This operation is of the complexity O(ngnglogng).
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. For every m = —N,...,N, k=1,...,np, evaluate

PR (cosb,) — PR (cos 0),) PR, | (cos 6y,)

cos ), — cos b,

9

neg D !/
. o PNq(cosbr)
FITZG%-Hanwn -

n=1

where P™ are the normalized associated Legendre functions, see (3.1), W, are the weights of
the Gauss-Legendre quadrature of the order ng and

o n2 — m?2
" 4n? —1°
If cos6,, = cos#@),, the quotient can be evaluated using I'Hépital’s rule. For m = —N,...,N

the matrices

Pyt (cos b)) Pyt (cos by,)
n cos ), — cos b,
P (cos 0,) PR, (cos 0y,)

pmy = k=1,...,np, n=1,...,m
(P2")en cos ), — cos b, ’ e e

)

can be efficiently represented in the H-matrix format (as Nystrom discretizations of the asymp-
totically smooth kernels, see Section 2.3) or with the help of the one-dimensional fast multipole
method, see [90].

This operation can be performed with the asymptotic complexity O(Nnjlognp).

. Compute the quantities

EN: nl4 7i%e(m71) / /
Fm,n: n€ 4 s m:1,...n¢,n:1,...,n9,
{=—N

with the help of the fast Fourier transform.

Note that from the description of the spherical harmonics transform it follows that, for all N € N
N

¢
and bandlimited functions f(3) = Y~ > fomY;™(3)
¢

=0 m=—

RNNFf=T.

Remark 3.2.1. In our implementation of the fast multipole algorithm, we use

TL9:K+1’ n¢:2n9a
nyg=N+1, ng = 2ny.

In the course of the fast multipole algorithm it is also mecessary to evaluate the function given

on the 'new’ grid (9§,¢;€) s J=1mpk=1,...,ny on the ‘old’ grid (0;,¢r), j =1,...,n0,k =
1,...,ng. The algorithm proceeds as in 1-3, interchanging in the description ng and nib and ng and
ny. The matriz-vector multiplication in Step 2 has to be substituted by the matriz-vector multiplica-

tion with transposed matrices (P™)* | (Py)T.

The transpose of the spherical harmonics transform is

(RN,M)T — RM.N
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Transfer Matrices (M2M and L2L Translation Operators)

Let clusters 7, ¢ L7, and 73 € sons(7,) be located correspondingly at the levels k and k + 1 of the
cluster tree. Let the centers of their bounding boxes be ¢4, cg. Then the translation operators for
the column cluster basis are defined as

T:"(s) = REw+1Lr pTas (),

where RE#+1:Lr is the fast spherical harmonics transform and D774 (s) is a diagonal translation
operator. Its entries are explicitly given by

D;g’rﬁ (s) =exp (s(cg — ca, 1)), 0=1,..., L, (3.23)

where (fg)é—“:kl are as in (3.15).

The translation operators for the row cluster basis are defined similarly:
T,7 (s) = REw+vLe pTasTs (), (3.24)

Efficient Computation and Storage of Translation Operators

Let us consider a cluster 75 with the bounding box centered at cg and its parent cluster 7, (whose
bounding box is centered at ¢, ). The cluster 74 is located at the level ¢ of the cluster tree, and the
cluster 7, at the level £ — 1. Then the multipole-to-multipole (local-to-local) translation operator
T.? depend only on the cluster basis rank L, on the level ¢, cluster basis rank L,_; on the level £—1
and on the cog = cg — co. If the uniform partition of the domain is used, there exists only a fixed
number of different c,g per level, see Figure 3.1. Hence only a few translation operators need to be
constructed and stored (and this is the reason to use the uniform partition of the domain).

cdy | s | @ | e

Figure 3.1: Bounding boxes on two levels of a uniform binary cluster tree. In this case only two translation
matrices per level are needed.

3.2.3 Multipole-to-Local Operators, or Coupling Matrices

Given an admissible block-cluster b = (74, 73) located at the level ¢ of the block-cluster tree, the
corresponding multipole-to-local translation operator is defined as, see [33, 22],

St = D?, (3.25)
where Db is a diagonal matrix with elements

TLbfl

b S N . ~ R .
Djy =1 ;(2n+ 1)(=1)"hn (i5]|capl) P (Cap- 1),  k=1,..., Ly, (3.26)

where cq3 = co — c3. Recall that (fk)ﬁi , are the nodes of the quadrature on the unit sphere, see
also (3.15).
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Remark 3.2.2. In the work [27], the multipole-to-local operator is defined slightly differently,
namely,

St = RLeNepbpNeLe, (3.27)
where D° is a diagonal matriz
ny—1
b $ -\ . A N
Dy =162 > @n+1)(=i)"hn(isllcapl) Pa(ap $1),  k=1,...,Ne. (3.28)
n=0

Here (§k),1€v£1 is the set of quadrature points on the unit sphere, see Lemma 3.1.4. Given Ly = 2n%,

an accurate choice of Ny is

(3.29)

2 1
Ne= 202 s > {WW 7

2

for all admissible b located at the level £, see also (3.20) and [27]. However, in practice, a slightly

more efficient Ny = 2 max n% does not deteriorate the accuracy (this value also coincides with the
beLt

heuristic suggested in [27] for the non-decay case).
In the present work we use the coupling matrices defined by (3.25), rather than (3.27): our
numerical experiments did not encounter a significant deterioration of accuracy when a simpler and

more efficient (3.25) is used.

Efficient Construction and Storage of Multipole-to-Local Operators

A straightforward computation of the diagonal translation matrix (3.26) would require O(nyLy)
operations, which, for s = —ix, k € R, scales as O(k?) (because of L, = O(k?) and n, = O(k)), see
Section 4.2. Although this operation, as we show in the second part of this section, is repeated only
a constant number of times per level, it can potentially destroy asymptotic complexity estimates
of the fast multipole algorithm (see also [27]). There are several ways to deal with this problem,
namely, the use of the Clenshaw summation algorithm [29] or the local interpolation approach,
briefly described in [27]. We used the method that bears similarities with the latter one. More
specifically, the function (see the expression (3.26))

nbfl
S

ft) = _W Z (2n + 1)i" hn(is]|capl]) Pa (1),
n=0

is a polynomial in ¢ € [—1, 1] of degree n,—1, hence can be represented by its values in n;, Chebyshev
points {t; };‘il of the second kind. The evaluation at any other point p € [—1, 1] can be done with
the help of the barycentric Lagrange interpolation [79]:

j§1l(71)j£%g; n
fp) = $cu P, (3.30)

J

p—t;

Il
R

where the prime indicates that the terms j = 1 and j = n; are multiplied by % Our task is to
evaluate this fraction for O(xk?) points p = p1,...,pr,. Clearly, summations in the numerator and
the denominator can be viewed as the multiplication of the matrix

1
M. — pit;’ Pi 7’é tj,
" 0, else ,

i=1,...,L,
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by corresponding vectors. This matrix, in turn, for large ny, Ly can be efficiently approximated
with the help of H-matrix techniques (see Section 2), and the evaluation of (3.30) for L, points
will require at most O(Lglog L,) operations. The cases p; = t; should be treated explicitly. The
disadvantage of this method is that it needs the H-matrix approximation to be very accurate and
hence is efficient only for rather big values of n;,, Ly.

As before, the symmetry of the quadrature on the unit sphere, as well as the uniformity of the
block-cluster tree allow us to construct and store per level only a small number of multipole-to-local
translations (see also [22, 41]). This is due to the fact that the elements of the matrix D°

nbfl

b _ s N . ~ A _
D}, = “Ton2 7;0 (2n + 1) (=) hp(is|lcagll) Pn(Cap i) k=1,..., Ny,

depend only on the direction é,3 and on the distance d = ||cag||. The value ny, as we show later,
depends only on d, and the size of a cluster at the level £. Hence the elements of the matrix D® can
be obtained by permuting the diagonal entries of the matrix

S

Pl — -
kk 1672

np—1
Y @+ 1)(=) " halisllcas|)Pa(h- 1), k=1,..., Ny,
n=0

where \ = [N€ap,1, HCap2, Véap,a], with n, p,v € {—1,+1}.
A more efficient realization of (3.27) in (2.12) reads as

yt — RL[,N@ § DbRLe,Ngmv-
vER:

Remark 3.2.3. Although sections on efficient construction and storage of the cluster basis and
translation matrices may seem to provide unnecessary technical details, they are crucial for the
implementation of the fast multipole algorithm. An algorithm implemented without them appears to
be unpractical even for quite large problems (with 10° unknowns).

24



Chapter 4

Error Analysis of the FMM for the
Helmholtz Equation with Decay

The question of the proper choice of lengths of expansions in the fast multipole method had been
intensively studied in [30, 73, 32, 33, 69, 25, 24]. Since Bessel functions are rather difficult to
analyze, in most cases the error analysis is based on asymptotic expansions or explicit bounds on
these functions; a very precise, near-optimal error analysis was recently made in [24, 25]. To our
knowledge, these works use the fact that the wavenumber is purely real, and hence cannot be in
a straightforward way adapted to the complex wavenumber case. In the recent works [43, 51] the
authors numerically investigate the error of the truncation of the Gegenbauer’s series in the case
when the wavenumber has a decaying part, as well as provide empirical formulas for the choice of
the length of the expansion. In this section we study analytically the error of the truncation of the
Gegenbauer’s series for the complex wavenumber, as well as analyze other sources of errors of the
fast multipole method.

4.1 Behavior of Spherical Bessel and Hankel Functions

First we examine the behavior of spherical Bessel and Hankel functions of a complex argument.
There exists a wide range of literature on these functions, see e.g. classical monographs [72; 89], and
their asymptotic behavior is to a large extent known. We summarize these results here. First we
consider spherical Bessel functions j,(z), argz € (0, m) in different regimes.

1. Fixed order n, small argument z. As z — 0 [2, (9.1.7)]:

Tzt 1
27+ D(n+ 3)’

Jn(z) =

2. Order n: n < |z|, |2| = +00. We are interested in the range argz € (0, 7). The expression
2, (10.1.14)]

1
Jn(z) = %(f')"/eiZtPn(t)dt (4.1)
-1
shows that

gn(=2)| = lin(2)]-
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For z € (0, g), the following asymptotic expansion holds for j,(z), see expressions (10.17.13,
10.17.14, 10.17.15) combined with (10.4.4) in [1]:

1 ) . _\n+2 .1z
]n(z) — g <(_i)n+1ezz 4 Z-n+1efzz _ bn( Z)Z ©
Z'7L+Ze—iz . .
0 R i R ) )
z
where
(2n+1)? -1
by = —7"—,
8
and
n2+n
R < 2((Qn +1)2 = 1)((2n +1)* — 32) e [P
nl= 2. 82 22
n2+n
| < 4(@n D = D(@n 1 1) - 3) e’ T
nl= 2. 82 22

From the above we can see that

(1 — z'b") S T (1 + zb;> + f(z,n)

z

Im z

e

|Jn(Z)| ~ m

)

where f(z,n) =0 (%) Alternatively,

Im z

e2|7| (14 (=1)"e%%) + 5(2,m)], (4.2)

[gn ()] ~

where 0(z,n) = O ("—2 + %)

2]

3. Regime n ~ |z|, n — +o00. Let z = (n+ 1)t. We are interested in the case argt € (0, 7).

The asymptotic expansion for this regime can be found in [2, 9.3.35,10.4.59]:

)i
in((n+=])t)~ 1 |
] 2 2n+ 1)Vt (1—2)3

where 7(t) = V1—12 - log (@)

In the case ¢ € R, spherical Bessel functions j, (t(n + 3)) oscillate, however, remain bounded
as n — +00.

4. The order is much larger than the argument n > |z|, n — +oo.

In this regime j,(z) decays super-exponentially, see [2, (9.3.1)]:

Jn(2) ~ \/g(zn(j_zi)nﬂ~ (4.4)

Another bound on spherical Bessel functions of complex argument valid for all n € N is given by
[2, 9.1.62]

2" e 2l"(20)!

Im z
—_— 4.
2n+ 1)l onpl (45)

lin(2)] <
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1013 T 10°T

Figure 4.1: In the left plot [jn(rem)| for different values of a and fixed r = 30 is depicted. The magnitude
[hn (re*™)| for the same values of a and r is plotted on the right.

Using Stirling’s approximation

this can be rewritten as

| e e (lele \™
G (2)] < €' ENG (2(n+1)) . (4.6)

The behavior of spherical Hankel functions h,(z) is in some sense opposite to that of spherical
Bessel functions: they decay exponentially with Re z in the regime n < |z|, see Figure 4.1.

1. Fixed order n, small argument z. The behavior of the function h,(z), z — 0, is given by

2, 9.1.9]:
Tn+i) 2n
as z — 0.
2. Order n < |z|.
According to [1, 10.17.13,10.17.14,10.17.15),
()] = S [ i Ry 2)
n - |Z| P 1 b
_ (2n+1)2-1 AT :
where b,, = *=—g~—— and, for arg z € [0, 7| (which is the case of interest for us),
(2n4+1)2 —1) ((2n +1)? — 3%) =24n
R < =12
|R1(2)] < 2. 82|22 €
This implies that in the regime n < |z|
e~ Im z
|hn(2)| ~ (1+V(|2\7ﬂ))T, (4.8)

where y(|z[,n) = O (ILI + "—2)
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3. Regime n ~ |z|, n — +00. Let z = (n + )t. We are interested in the case argt € (0, ).

The behavior of the spherical Hankel function h,(z) is defined by the asymptotic expansion
given in [2, 9.3.37, 10.4.59]:

1 2i )
ho((n+2)t) ~— e~ (3N 4.9
(( 2) ) (2n+1)Vi(1 —t2)3 )

where 7(t) = V1 — t? — log (1*7 thfﬂ>

If ¢ is purely real, the function oscillates but remains bounded with n — +o0.

4. The order is much larger than the argument n > |z|, n — +oco. In this regime
hn(2) = jn(2) + iyn(2) experiences superexponential growth, see [2, 9.3.1] and (4.4):

|hn (2)] ~ |yn(z |Z|\[(2Z|jl) (4.10)

Additionally, magnitudes of spherical Hankel functions are strictly monotonically increasing in
their order, see [1, 10.37.1]:

|hn(2)] < [hm(2)], m > n, (4.11)

when Rez > 0. The proof of this result can be found in [40].

4.2 Truncation of the Gegenbauer’s Series

In this section we study the dependence of the truncation parameter N in (3.14) on the complex
wavenumber s € C, Res > 0.
Let 2,y € R3, ||z| and ||y|| be fixed, and let also ||z| > ||y||. We are looking for N s.t.

N-1

ho(isl|x = yll) = Y (2 + Dhe(is||(|)je(is||yl) Pe (& )
£=0

ELY = <e (4.12)

for a fixed € > 0. Crucially, to truncate the Gegenbauer’s series we use the criterion based on the
absolute error rather than the relative one, which resembles similarities with [27] and [43].

Remark 4.2.1. In particular in [43] instead of the relative error

hoisz — yll) — ;Vg:(ze T DhaGislal)jeGislyl) Pe (2 9)
[hoisz — 9]

EXV(N) =

rel

the authors considered the weighted relative error, namely EX9(N) = Efe'?(N)e’ Reslz=yll to account
for rapid decay of the Helmholtz kernel with Res. This definition was adapted to take into consider-
ation the geometry of a block-cluster tree. Namely, for a pair of admissible clusters whose bounding
bozes are located at the distance d, the weighted error is defined as EXY(N) = Efe;’( Ye~dRes see
Figure 4.2. In this work we do not use the definition in this form, and instead of the weighted rel-
atiwe error consider the absolute error. However, all the considerations that follow can be extended

to include the definition of the relative error as per [43].

Let t =& -9, t € [-1, 1]. Then the addition theorem for the spherical Bessel functions (3.10) is
the Legendre polynomial expansion of the function

, , i e—s(uwnz+||yu2—2uwnHynt)%
£8) = ho (is (2l + 1 = 2lalllyht)* ) = -————— :
s (lel” + lyl12 = 2lallliylio’*
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Figure 4.2: Bounding boxes and their circumscribed spheres.

int. For Ret <tz = % the function f(¢) is analytic, hence Theorem 3.1.1 can be applied.

The parameter p for the corresponding Bernstein ellipse is defined as

X
P = tmax + \/t?nagcflzU

lyll
This rate of convergence coincides with the one deduced in [75, 73].

Remark 4.2.2. The convergence rate of the Gegenbauer’s series can be also deduced by analyzing
the asymptotic behaviour of spherical Bessel and Hankel functions in the regime n >> |s|||z||, see
formulas (4.4) and (4.10). It is well known that in the no-decay case (Res = 0), for large |s| the
Gegenbauer’s series starts converging earlier, namely when j,(is||yl]) starts decaying superexponen-
tially and hy(is||z||) remains bounded [32, 33], see (4.4). The length of the Gegenbauer’s series
(4.12) can be estimated by a semi-empirical formula, see [30],

N = slllyll + C'log(m + |s][lyl]),

where C is a constant that depends on the accuracy. For large |s| the value of N does not depend
on ||z

Let us first summarize the results of this section. First, it is not difficult to see that under the
condition

Ims

Res < C, Res > o >0, (4.13)

for fixed C, o > 0, the length of the fast multipole expansion can be bounded by a constant indepen-
dent of Im s (that depends on C, o, €, p though). This behavior is similar to that of H-matrices,
see Section 2.4. The result can be seen by noticing that there exists r € R, r > o, s.t. for all s € C
with |s| > r:

— Res|la—y]
. e
[ho(isllz —yl)] =

c _ _|<e (4.14)
|slllz — yll

Hence the length of the expansion (4.12) is bounded by the largest of the lengths of the expansions
over all s € C satisfying (4.13) and |s| < r. This justifies the use of the empirical formulas for
the length of the expansion derived in [43]: it indeed can be bounded by a constant when decay is
significantly large. Another implication of this is the complexity of the fast multipole approximation
to the Galerkin discretization of the Helmholtz single layer boundary operator (under the assumption
€ = const): for multilevel fast multipole methods based on the expansion (4.12), for s satisfying (4.13)
and M = O(|s|?), it scales linearly, namely O(M), even if in the high-frequency regime the method
is of O(M 2 log M) complexity (see also Appendix A).

Remark 4.2.3. If ¢ # const, but rather varies as € = eo|s|™>, with ¢y being a constant ac-
curacy parameter and X > 0 (this may be required by the stability/convergence of the Galerkin
method, see [83]), the length of the expansion still can be bounded by a constant. This is because
|s|* |ho(is|lz — y)| — 0 as |s| = +oo and (4.13) holds, c.f. (4.14).
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For s = |s|e’ with |a| close to 5 this constant bound is far from optimal. This can be seen
in Figure 4.3 (|lyll = 2, ||z|| = 4, £ - ¢ = 1): the length of the expansion needed to achieve a
given accuracy increases with increasing |s| on the whole interval under consideration. Notably, for
|a| < 7, the length of the expansion does not seem to increase with |s|. Our goal is to provide some
theoretical justification for this phenomenon. Here we present more refined bounds on the value of
N in (4.12), as well as motivate the error analysis in the subsequent sections.

T T T T 120 T \
150 F --- a=o04% a=05% B
a=06% 4 a=07TZ%
—E—a:O.SESZ% —— a:O.Q% ’«’ 100
—e— a=095% = = =a=098% ‘,~’
- 80
100 |
3 P 60
50 i 40
= N
. N
N R 20
' 1
0 | = A I\ 0
0 10 20 30 40 50
Is|

Figure 4.5: Dependence of the length of the truncated expansion for accuracies € = 10712 (the left plot) and
e =10"" (the right plot) on |s|, for s = |s|e’™ and different values of a.

The following result is due to [88].

Theorem 4.2.4. Let the function f be analytic inside and on a Bernstein ellipse E,, p > 1. Let
{an} be the coefficients of the Legendre series expansion of f. Then the following bound holds true
for allmn > 0:

lan] < 20+ 1o~ M U(E,) (1 - p2) ",
where M = max |f(2)] and I(E,) is the circumference of the ellipse E,,.

The next lemma bounds the values of the function f(¢) on the Bernstein ellipse.

Lemma 4.2.5. Given s = |s|e!®, a € [—g, g], the function

£(8) = ho (i (22 + 92 = 2lallIyle) )

[l

inside the Bernstein ellipse Ee, £ < p = ol s bounded by

T 1\ "

0] < ma (1, clvlelsmnel—eeno)) (15l Gy fp -+~ 1)

p

where
1 1
Ap)=5{p—=)- 4.1
=3 (s-2) (4.15)
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Proof. Let us bound the numerator and the denominator of

1
exp (s (o] + > = 20 ligle) *)

1
s (|2l + [ly[1* = 2llz[[[ly[I£)>

on the boundary of the Bernstein ellipse

i | e—1.—id
Eg{z:zge +g ° ,¢€[0,27T)}, §<p|||z||||.

The absolute value of the denominator

i | e—1,—igp\ |3
a(6) = Cetre e ™)

; Lo L
= zllllyll |p+p~" — e — e 2

The minimum of this expression is achieved when ¢ = 0:

1 + Nyl = 2ll= ] 1y

d(6) > vallyl/p— € + % -1

A%

Let, for a given £ < p,
1
G(t) = exp (=5 (1P + Iyl — 2yl ), ¢ € Be.

From the maximum principle it follows that for all ¢ in the interior of the Bernstein ellipse £, (and
hence E¢, 1 <& < p),

< Nl
IG(t) < pax |Gt

Hence, we are looking for max |G(t')]. Given s = |s|e’, for all t € E,,
/e o

p+pLl  peit 4 p-le—id
exp (—s<2||x||y||>1/2\/ L

= exp (=@l 21 Fleos (a+ 5 ) ). (4.16)

G@)| <

where

ptpt pett 4 plemit
2 2

z =

, B =argz. (4.17)

We find |z| = Z(f) using the geometric meaning of (4.17).

Figure 4.4: Bernstein ellipse
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The foci of the Bernstein ellipse lie in the points
F, =(-1,0), F, =(1, 0).

From the properties of the Bernstein ellipse, using Figure 4.4,

1 —1
A%WJ:B%;——L

A

2
rtv=y+o=p+p,
r? = |22 + 42 — 2|z|ycos B,

v? = |2|? + 0% — 2|z|o cos 3,

ve(53)

From equations (4.19) and (4.21), we obtain the following expression for r, |z|:

where

|2|2 + 0% — 2|z|ocos B = (y + 0 —71)?

4.20
(4.20) V2 4 0% + (|22 + 4% = 2|z|y cos B) + 2vo — 2(y + o).

Then r can be written as a function of |z|:

(4.18) 2|z| cos B

IV PUe
r=r |z\fy+gcosﬂ ~to

2 ( 2|zcosﬁ)2
rP=(y-——7-
Tt+o

(4.20)

Hence,

|2|% 4+ % — 2| 2|7y cos B.
From this we obtain the following expression for |z|:
4 cos? 2
|2|? 1—&ﬁ2 = 2|z|ycos <1— ) .
(v +0) T+o

From this follows that |z| = 0 or

2 4cos® B -1 T T

Note that for |3| = § the above expression gives |z| = 0.
Hence, inserting (4.22) into (4.16), we obtain:

maxG(t) = max _g(B),

teE, sel-z, z]
where
o(8) = exp (—2 (1ot (1 2)) 1 (4.23)
o+
2 —1/2
xm(l—m) cos<a+§>>.
This expression has to be maximized in 3. Let p:= —2— and

o+
R(B) := —+/cos 3 cos <a + g) (1 — p? cos? 5)_% .

We consider two cases corresponding to a > 0. The bounds for @ < 0 can be found from similar
considerations.
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1. aE[O ] In this case, forallﬁe( z, %)7

and hence

2. a € (%, %} The maximum of R(f) is achieved in some 8 = S, € [—g g], s.t.
0s ( ﬂ*> <0,

By € {7‘(—20[, g}

which shows that

Setting p := cos 8, with § lying inside the above interval:

1-— _1
< il 5 ) (1—p?p?) % (sina— cosa).
Next we find the maximum of the function f(p) = % on [0, 1]. It is achieved at
1—+/1—p2
pe=
7
and equals
\J1—1—p?
=
Hence,

F

banz — COS Oé

The bound in the statement of the lemma can be deduced noting that
1—1— 2
1= K (4.24)

p=—,
n

14++/1— p?
N (4.25)
I

and v = % + 1. More precisely, the coefficient in the exponent near |s|||y||(sina — cosa) in
(4.23) is

Ap) =2v/py(1 — p)

_ — V!
=vpv(l u)\/ﬁ7



where we applied (4.24). Inserting the explicit expression of v in terms of u, we obtain

V1= p?

Ap) = —,
(p) .
which, using (4.24) and (4.25), gives the explicit expression for A(p).
O
Theorem 4.2.4 and Lemma 4.2.5 allow us to formulate the following bound.

Corollary 4.2.6. Let ||z > ||y]| >0 and 1 < & < p = % Then for s = |s|e'™ s.t. a € [-F, ]

the following bound holds true:

(i)l < €7 V/EE T €2 max (1, ellvllslil s el—eoser (o))

—1 (4.26)

_ 1 1
< (Illullva - €2 fo-g45 - 1)
p £
where A(p) is given by (4.15).
Proof. To apply Theorem 4.2.4, we need to bound the perimeter of the ellipse (analytically, it is
expressed via the complete elliptic integral of the second kind):
a? + b2
2 Y
where a, b are correspondingly the lengths of the semi-major and semi-minor axes of the ellipse Fk.
This bound is due to Euler; other, more precise expressions can be found in e.g. [10]. Hence

I(Be) < my /€2 + giz

For s = [sle’™, |a| < Z, the length of the truncated expansion (4.12) can be bounded by a
constant that is independent of |s|, « for the range of |s| > ¢ > 0 for a fixed o > 0. This is not the
case for § < |a| < F: Corollary 4.2.6 shows that

N = O (|slllyll (|sina| = cosa)),

l(Eg) S 2T

O

which is tight for smaller values of |s| and « close to 7, however is pessimistic as |s| — +00, as
Figure 4.5 shows.

Remark 4.2.7. Our numerical experiments show that the length of the truncated expansion for
Res > 0, moderate values of p (p > 1.5) and moderate values of |s| satisfies:

N < |slllz]- (4.27)

The reason for this is that in the presence of decay, i.e. when Res > 0, the length of the truncated
expansion is not larger the length of the truncated expansion in the no-decay case (keeping Im s fized),
see also Figure 4.6 and Remark 4.2.2. For the latter there exist tight formulas showing (4.27), see
e.g. [25].

Recall that the criterion based on (4.12) is often used to choose the length of the multipole
expansion, see [33, 27]. Numerical experiments, see Figure 4.5, show that the length of the expansion
for larger values of |s|||y|| can be smaller than for smaller |s|||y||. In the fast multipole algorithm, |y||
stands for the diameter of a cluster, and ||z|| for the distance between the centers of the admissible

clusters, see also Section 3.2. Assuming that p = L=l 5 fixed, we can conclude that for larger

= Iyl
clusters one may need the expansion of the smaller length than for smaller ones. It is not obvious
if such choice of the length of the expansion leads to the deterioration of the accuracy when doing
multipole-to-multipole and local-to-local transforms. This motivates the need for the analysis of the

error of the multilevel fast multipole method for a complex wavenumber case.
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Figure 4.5: In both plots the dependence of the length of the expansion (4.12) on |s| (s = |s|e*®) for

e = 107" and various a is shown. Here ||z|| =3, |ly]| =2, -9 = 1.
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Figure 4.6: The length of the expansion for s = s, + isi, as defined in (4.12), with varying s, and fized s;;
lzll =3, llyll =2, 2-9=1.

4.3 Error Analysis

4.3.1 Error Control

Given a block-cluster tree Trxy, let 7, and 75 be two admissible clusters (the block cluster (7,,73)
belongs to the set of admissible leaves of the block-cluster tree). In this section we consider the error
of the approximation of hg(is||x — y||) by ho(s,x,y) computed in the course of the fast multipole

algorithm:
E = |ho(is|lz — y||) — ho(s,z,y)], s € C, (4.28)

where x € 74, y € T3.
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I
Yor

Figure 4.7: A sample configuration of bounding boxes of the clusters with their circumscribed spheres. By
r1,y1 we denote two closest points of these spheres.

There exist several empirical formulas [30, 25, 43, 51] that provide tight estimates for the length
of expansions in the fast multipole algorithm. In works [33, 27] authors suggest that it can be chosen
analyzing the convergence of the Gegenbauer’s series (4.12). We adopt this approach.

In [69] the authors analyzed the full error of the fast multipole algorithm in the case is € R. Their
error analysis uses superexponential decay of spherical Bessel functions j, (is||y||) in the regime n >
Is||ly|| and the geometric convergence of the quadrature on the unit sphere used for the interpolation
of multipole expansions in the course of the fast multipole method. A straightforward application
of such an error analysis to the case of the complex wavenumber may result in pessimistic error
bounds, since it would not take into account the decay of spherical Hankel functions.

In this section we derive an explicit expression for the error of the multilevel fast multipole
method for the case of general s € C and comment on the choice of lengths of multipole expansions.

We study the following simple case.

Assumption 4.3.1. Let admissible (in the sense of Definition 2.2.5) clusters T, and 15 be given.
Let the points © € To, y € Ta, and let the clusters 1o, € sons(7y) and Tz € sons(7g) be s.t. & € Ty
and y € Tg-. We assume that 7 is a leaf, and so is T3:. BY Yo, T8, Yo', T we denote the centers
of the bounding boxes of the clusters 7o, T8, Tar, Tpr.

Remark 4.3.2. In the FMM theory instead of clusters one considers their bounding boxes. It is
assumed that the error is the largest in either closest points of these boxes, see [43], or in the points
of boxes that are most distant from their centers, see [26].

In this work we associate the clusters with circumscribed spheres of their bounding boxes. Then the
largest error should be achieved in points x,y lying on these spheres so that |x — x5 —y+ya|| — max,
due to a slower convergence of the Gegenbauer’s series in this case, c.f. Remark 4.2.2 and Section
3.2. In [25] it was shown that the Gegenbauer’s series truncation error is the largest in two most
distant or two closest points of these spheres (while the local mazimum in other points is typically
smaller than these values) when |s| — +00, s =ik, k € R. In the case Res > 0, as we show further
with the help of extensive numerical experiments, considering the two closest points is enough. Such
a configuration is shown in Figure 4.7.

We assume that all spherical harmonic transforms are done exactly, i.e. no matrix approximation
is used in the course of the transform, see Section 3.2.2 for more details. Recall that with every level
of the cluster tree we associate a set of quadrature points on the unit sphere given by (3.11), i.e.

(8)20%. (4.29)

We set ng = N at the level where the children clusters are located and ng = M at the level of the
parent clusters. Let us also define

N, = min(N, M).

First, let us assume that N # M. The fast multipole algorithm proceeds in the following stages.
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1. Evaluation of the multipole expansion for the cluster 7. The function f(§) = e (5= zy) g

sampled on the grid (4.29) of size N x 2N, see Remark 3.1.5.

2. Evaluation of the multipole expansion for the cluster 7. This is done in two stages. First, the
multipole expansion for the cluster 75/ is re-sampled on the grid of size M x 2M with the help
of the spherical harmonic transform operator (and possibly the spherical harmonic expansion
of f(8) is truncated to min(N, M) = N, summands, see Section 3.2.2 and Remark 3.2.1). The
result of this operation is the vector of values of the function

N,—1 n

s = 5SS Brvs),

n=0 m=-n
B = Qu [es @y g)|

in the points of the grid (4.29) of size M x 2M. The expression for S is obtained using
Lemma 3.1.4. An alternative expression for b(§) can be obtained using (3.5):

N,—1
oo = Y 2 gy [ b5 g).
n=0

Next,
B(8) = e (s == 3)p(3)
is evaluated at the points of the grid (4.29) of size M x 2M.
3. Multipole-to-local translation. At each point of the grid 85,k = 1,...,2M?, B(8;) is multiplied
by
R 1" Ny Yo — T3 .
Maal58) = g D30+ D Wlilve s (=i se) o (130
where L € N. The result of this operation is the vector of values of the function
F(3) = M, 5(3)B(3) (4.31)
in the points of the grid (4.29) of size M x 2M.

4. Local-to-local translation. First, at each point of the grid F(8) is multiplied by e~ 5Wa—Yar:5)
evaluated at this point. The result of this operation is the vector of values of

A(3) = e~ 5(Wa—Vas ,é)F(g)

in the points of the grid (4.29) of size M x 2M. Next, the (adjoint) spherical harmonic
transform operator is applied to A(S), possibly truncating its spherical harmonic expansion
and re-sampling it on the grid (3.11) of size N x 2N. The result of this operation is the vector
of values of the function

ap' = Qum [A(QY" (9)],

in the points of the grid (4.29) of size N x 2N. An explicit expression for the coefficients "
is:

o = Qay [e7 I DAy (g)e* w0 V(@)Y ()]
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Using the addition theorem for Legendre functions (3.5),

a(8) = Z 2”“QM[ A@P.(G-9).

n=0

Finally, the result is evaluated at the point y, giving the approximation
ho(s,2,y) = Qn [0 —1a(5)]

Remark 4.3.3. If N = M, there is no need to perform a spherical harmonic transform when

doing multipole-to-multipole and local-to-local translations. In this case the approximation error is
equivalent to that of a one-level FMM, see Lemma 4.3.4.

Making use of the linearity of the quadrature rule, we end up with the following approximation
to ho(is|lz —yl)):

N,—1
; 2 og 41 ) A
ho(S,IE,y) QN [ o =Y:4) E + QM |: *S(ya*ya/,s)M (é)efs(zﬁzfmﬁ,s)

a,f3
k=0
N,.—1
S 27’L+1 —s(z—xg/,7 a.a 4.8
x 3 Q[ ﬂ’>Pn<s~r>] Pk<q-s>H
n=0

- Qi [Z QL [errv Py -9

k=0

_5(ya Yol » é)M ( ) —s(xgr—x4,3) Z 27’L+1QN |: —s(z—zgr, 7)P (,]ag):|‘| .

Our goal is to rewrite this expression in a more convenient form.
Let

N.—
A 5 ’r— 3 N 2k + 1 q S — 7,q ~ A
PN(ya’7 Yar Y, S) = e‘s(ya gers) kZ_O 41 Q(]ZV e W=va 7q)‘Pk(q ) 8)i| ’

Then hq (s,z,y) can be rewritten as:

h0(87 z, y) = Q,Zg\/,[ [PN(_J:B'v _$ﬂ7 —x, §)Ma,5(§)7)N (ya’7 Yo, U, §)] . (432)

From the expression (4.32) one can see that Py (Yo, Ya,¥,3) approximates e5(y=¥e:9),

Let us
show this. First, let © = yo — y. According to (3.8),

N,—1
5 v 2k+1 -
PN(ya’a Yoy Y, é) = es(yazfya,s) g + Qq |: 78(u’q)Pk(cj . .§)]
k=0

N,—1
= sl und) 3 2k+1

Z (2m + 1)i™ (i) ul) QY [P (G- @) Py(q - 3)] -

k=0 m=0
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Making use of Lemma 3.1.8:

N.—1 2% + 1 2N—N.,
PN Yars Yo, Y5 §) = o5 War —Ya,8) Z = Z (2m + 1)i™ (3| ul])
k=0 m=0
X QN [P (G- 0)Pr(q - 3)]
N,—1 +oo
s 2k+1 I
+ 5War—¥as8) Z Z (2m + 1)i" jip, (is]|ul])
k=0 & m=2N—N,+1

X Q% [P (d - @) Pi(q - 9)]
min(2N—N,,N,—1)
= ¢5Wa’ ~Va:3) > (2m 4 1)i"™ jm (i8] u])) P (5 - ©)
m=0
N,—1 “+o0o

5 2k +1
5(Yo! —Yor,8) m - .
e T Y @mA Dl
k=0 m=2N—N,+1

x Q% [Pr(q - @) Pr(q- 3)).
Let us introduce

“+o0o
ric(s, @, 7) = Y (2n+ 1)i"jn (is]x]) Pa(d - 7). (4.33)
n=K

Then, using (3.8) and 2N — N, > N, — 1, Pn(Ya; Ya, Yy, §) can be represented as a sum of three
terms:

PN War s Yar Yy §) = eS(W—Vard) _ eS(ya/—qu”)rN* (5, Yor — ¥, q)

2k 1
et 3 S Qv i —uAG))

Hence, Py (Yo', Ya»y,q) approximates e*¥ ¥4 with the error that is a sum of two errors, one
coming from the truncation of series (3.8) to a finite number of terms (see (4.33)), and another
induced by the imprecise quadrature.

The obtained explicit expressions for Py (-, -, -, -) have to be inserted into (4.32). After computa-
tions one can see that

9
ho(s,,y) = holislle = yl) + Y An,
n=1
where
Ar = Qi [0 My 5 (5)e" 2 759 | — o islla — yl), (4.34)
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and
A2 = —Qjy {es(y_yaﬂﬁ_w’é)Ma,ﬁ(g)TN*(S»x - xﬁ/vg)} )
AS = 7Q}§\4 |:68(xﬁix7y0+ya,’§)Ma,f3(‘§)rN* (svyo/ - Y, §):| P

r N,—1
. A — 2k +1
Ay = Q3 |ertrmmmtmaea g, o(3) 30
k=0 d
N,

QN [ran—n.+1(s,@ — x5, 7) Pe(7 - 8)] |,

s s(xrg—x— 7,8 A — 2k+1 q ~ A A
As = Q3 |es@emevatvar S nr, 5(5) QY [ren—n.+1(8,Yar — ¥, @) Pr(q - 5)]] ;

4m
i k=0
Ag = 1§\/1 es(ya/—ya+xﬁ—fcﬁ/,§)TN* (57 Yor — Y, §)Ma,5(§>TN* (s7 T — T, 3)} ,
Ar = —Qiy [es(yﬂ’_y””_””@rm (8,0 — 2p1,8) My 5(3)
N.-1
— 2k+1 4.35
x 3 i QN [ran—n.+1(5,Yar — ¥, @) Pr(d 1 (4.35)
k=0
N.-1
ok 1 o
X Y Qi [rav- (.3 — w0, PP s>1] ,
k=0

.Ag — Q]é\/[ |:es(ya/—ya+w5—x5/,§)Ma”8(§)

N*lmn+1
X Z QN [ran—nN.41 (5,2 — g0, 7) P (7 - 3)]
Z QkJrl

QN TON—N, +1( Sy Ya! y7q)Pk(q§)]] .
k=0

Notice that A has the same structure as As, A4 as A5 and A7 as Ag. More precisely, for a fixed
Ma,,@(é)a AQ = AQ(LE, Y X, LB Yos Yo 5 Ma,ﬂ) and A3 = AQ(_'ry Y, Yo, —Ya’s =B, LG, Maﬁ)

Our goal is to show how L in (4.30), N and M have to be chosen to control each of the terms
A, k=1,...9. We will use the trivial bound, see also Lemma 3.1.4:

2M? 2M?

Qum [f(@)]] = Zwquk <sup|f |Zwk—47rsup|f( 7)|. (4.36)

k=1 k=1 qes?

2M*?
The sum of the quadrature weights wy = 47, since > wy equals the quadrature rule of Lemma
k=1
3.1.4 applied to approximate f d$ = 47, which in turn is computed by this quadrature rule exactly
S2
(as an integral over the product of two spherical harmonics Y{(3) = 1), see Lemma 3.1.4.
Recall that

|P,(t)] <1, tel-1,1]. (4.37)
We will make use of (3.8):
¢80 =N (20 + 1)i"jn (2) Pa(cos ). (4.38)
n=0

For the sake of brevity, from now on

CaB ‘= Yo — T3 (439)
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First, let us assume that M > L, where L is as in (4.30). Due to the monotonicity result (4.11) and
the bound (4.37),

L—1 L—1
1 .
|Ma,s Z (20 + 1) (=) he(is]|capl) P (ap- 3)| < y= D 20+ Dlh(iscagl))]
£=0 £=0
1 L—1 L2
< g lhe—1(islleas]))] >+ < o | e-1Gisllcas])]- (4.40)
£=0

The following lemmas show how the errors A;, j = 1,...,9, can be controlled. In particular,

the error Aj, see (4.34), does not depend on N, and hence is not related to multipole-to-multipole
(local-to-local) translations. More precisely, it equals the error of the one-level fast multipole method.
Similar statements (though formulated slightly differently) have been proved in [73, 69]. For sim-
plicity, we denote

ViI=Yo—Y— T3+ . (4.41)

Lemma 4.3.4. Let s € C be s.t. Res > 0, x,y,23,ya € R? satisfy Assumption 4.3.1, v be given by
(4.41) and cqp by (4.39). Let L be as in (4.80) and M > L. Let us denote

Ei(Lyv,capys) = | Y (2m+ 1)jm(is|[v])hm(islcas]) P (8 - éap)] (4.42)
m=L
+oo
Erf(M, Lv,capys) = | Y (2k+1)i"jiu(is||ol) Q3 [Mas (3) P (3-9)]| - (4.43)
k=2M—-L+1

Then Ay = Av(M, L, z,28,Y, Yo, s) defined by (4.34) satisfies
|A1(M7L,$,$5ay,ya75)| < EtT'(L7vvcaBa8) + E](M,L,U,CQB,S).

Proof. Let
H = Qé |: s(y— yous)M ( ) S(%g st):|

Then A; defined by (4.34) equals A; = H — ho(is||z — y||). Let us separately consider H:

H = Qi [ My 5(5)]

o L—1
4.38,4.30) 1 )
I S @ D) uislloll) Y 26+ 1)(=) helislicasl) Qs [Pe (Fas-3) Prl - 3)].

k=0 =0

We split
| ML L—1
H= (2k + 1)i%ji(isl|v]}) D (26 + 1) (=) he(islcapl) Qas [Pr (Cap- 8) Pr(® - 3)]
k=0 =0
1 = ~
+E Z (2k + 1)i* i (is|v|) Z 204 1)(—=i) he(is||cap|) Q5 [Pe (Gap- 8) Pr(9 - 8)] .
k=2M—L+1 =0
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Applying Lemma 3.1.8 to the above and using M > L, we obtain:

L—1
H = 372k + 1)ji(is|[o] i is casll) P (éas - 9)
k=0
+oo
Y @k DiFlislol) @S [Mas (8) P (5 0)]
k=2M—L+1
+oo
C2 ho(isllr —yl) — 3 2k + Dji(islol e (isllcas ) Pr (as - )
k=L
+oo
S @k DFlisol) Qi [Mas (3) P (3-0)).
k=2M—L+1

The definition of Ay = H—hg(is||x—y||) combined with (4.42) and (4.43) gives the desired bound. O
The following is a trivial corollary of the above lemma.

Corollary 4.3.5. Let s € C be s.t. Res >0, z,y, 25, Yo € R satisfy Assumption 4.5.1, v be given
by (4.41) and cap by (4.39). Let e >0, L as in (4.30), M > L and

Ei(L,v,cap,s) + Er(M,L,v,cap,s) <€

where Ey,. and E; are defined by (4.42) and (4.48). Then Ay = Ay(M,L,x,23,Y,Ya,s) defined by
(4.34) satisfies

|A1(M,L,$,(E57y,ya7s)| <€

Proof. The corollary trivially follows from Lemma 4.3.4. Such M and L exist, since the Gegenbauer’s
series converges geometrically, see Section 4.2, |Q3; [Ma,s (8) Px (5 - 9)]| can be uniformly bounded

+oo
for all k& (see also Lemma 4.3.6) and Y (2m + 1)|jm(z)| converges supergeometrically for all z € C,
m=0
see Remark 3.1.2. O
The following lemma shows how the term E;(M, L, v, cag, s) can be bounded.

Lemma 4.3.6. Let s € C be s.t. Res > 0, x,y,23,ya € R® satisfy Assumption 4.3.1, v be given by
(4.41) and cap by (4.39). Let L be as in (4.30) and M > L. Then the following bounds hold for E;

defined by (4.43):

Er(M,L,v,cap,5) < L* |hr—1(is||lcagl)| Z (2m + 1)|dm (is]|v]])]. (4.44)
m=L
and
Er(M, L,v,cap,s) < L* Y (2m+ 1) |ju (isl|ol] A is | cas - (4.45)
m=L

Proof. Inequalities (4.36,4.37,4.40) let us bound

+oo
Er(M,L,v.cag,s) = | Y, (2k+ 1)i%i(isl|v])Q}y [Map (5) Pi (5 9)]
k=2M—L+1
<LZZ (2k +1) ik (isllvlhr—1Gslleasl)] -
k=L
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The monotonicity of spherical Hankel functions (4.11) and the above bound imply that

o
Ef(M,L,v,cag,8) < L* Y (2k + 1) ju(isl|oll) -1 (isllcas])]
k=L

< L2y (2k + Dlji(is]|ol]) b (isl|capl]) |-
k=L

O

The error terms A;, j = 2,...,9, defined by (4.35), occur due to the multipole-to-multipole and
local-to-local transforms (each of these expressions contains a term that depends on N). To show
how these errors can be controlled, we will need the following auxiliary quantities. Let us set

—+oo

Ric(d) = Y (2m+1)|jm(d).

m=K

Clearly |rx(s,x — xp,8)| < Rk (is|jx — xzp/||) for arbitrary § € S3. Moreover, since the series (4.38)
converges supergeometrically (Remark 3.1.2), Rk (d) decays rapidly as K — +o0.

Given d,,dg,dq’,dg being the diameters of bounding boxes of clusters 7., 73,74, Ts/, let us
introduce auxiliary quantities:

1
rp = 5 max(dq,dg),

re(x) = ||z —zp ||, (4.46)
Te(y) = |y — Yol
ra = max ([[ya — Yorll, llzg —z5]).
Clearly, ro(z) < 3dg and rc(y) < 3do
The following simple lemma demonstrates how the errors A;, j =2,...,9, defined by (4.35) can
be made small.

Lemma 4.3.7. Let s € C be s.t. Res > 0, ,9,28, T8, Yo, Yo' € R3 satisfy Assumption 4.3.1,
Tp, T, Te(x), 7 (y) be defined by (4.46) and cap by (4.39). Given € >0, L as in (4.30), let N, M be
chosen so that N, = min(N, M) satisfies:

EWM = [2N2eRes(rptra) |hr—1(is||capl])| max (Ry, (isre(x )) Ry, (isrc(y))) < (4.47)
E® = [2N}e?Resra |y (is capl)| max (R% (isre(x)), Ry (isre(y ) <e (4.48)
Then the following bound holds for A; = A;(L, M, N, .y, %8, Yo, T3/, Yo', S)s J = 2,...,9, defined
by (4.35):

|.Aj|<€, j=2,...,6.
Proof. We bound each of the errors A;, j =2,...,9:
| = |Q4y [erveten =2 M o (3 (5,0 = 0,

(4.36,4.40) Re s(ryra) 12 , . €
s e OL hp o (is]lcasl))] By, (is7e(2)) < 575,

where the last bound follows from (4.47). Similarly the bound for |A3| can be derived.

N,—1
§ s(y— rg—xgr,8 a N 2k+1 4 ~ A A
[Asl = |Qr [e Wvatoe=op, )Maﬁ(s) Z 47 Qx [7”2N—N*+1(8,$—$B’7Q)Pk(Q'3)}]|
k=0
(4.36,4.37,4.40) _ . N.—1
< LR r 37D By (isl|cap )| Ron—n. 41 (isre(2)) D (2k +1)
k=0

< LANZeRe 0t |y (is|lcas)| Ry (isre(2)),
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where we used N > N,.. The bound (4.47) gives |A4| < e. Again, the bound |A5| < € can be derived
using the same arguments. Similarly, we bound

|-A6‘ _ ’Q}é\/j [Cs(ya/*ya+xﬁfz/3/,§)rN* (s’ya, -, =§)Ma,,8(§)7"N* (s, T —Tg, §)} ’

(4.36,4.40)

< LP?Remax (RY, (isre(x)), RYy, (isre(y))) [hp-1(is]lcasl)] < 1\2‘3’
where the last bound was obtained using (4.48).
[ Ae] = | Q@i [estom a0 D (5,0 — 23,8) Mo ()
N.-1
3 L0 v v (s, — 9 )P s)]] |
k=0
(4.36,4.40) N.—1
< PROTRy (isre(@))LPlho-(isllcas ) Ron—n. 41 (isre(y) D (2k+1)

k=0

) , . €

< LNZ maxc (R, (isre (), R, Gisre(®))) o (isllcas )] < 5o,

where N, < N and (4.48) were used. Analogically the same bound for |Ag| can be derived. Finally,
the error

(Aol = |@f [e7trermvetm o0 53

N,.—1
3 2m+1 .
; ) o
X mEZO N [ron—N,+1(8, % — 2/, 7) P (7 - 3)]

N.—1
— 2k+1 R U

X Z TQ?V [roN—N.+1(Yar — Y, ) Pr(q - 3)]] ‘
k=0

(4.36),(4.40) 2Resrg pn7d T2 . 2 : 2 :

< € "N L7[hp—1(is]lcapl|)| max (RszN*H(ZSTc(x))»RszN*H(ZSTc(y))) <e
O

The results of numerical experiments in Table 4.1 show that a good estimate for

max  max (R, (isre(z)), Rm(is7:(y))
ZETB/ ZSYET !

. . d., d - .
is R, (isr.), where r. = max ( 5, ;’), m > 1. Hence a criterion based on the use of this value

can serve for choosing the length of multipole expansions.

Remark 4.3.8. The values EV, E®) decay with Res > 0, as Ims — 400, independently of the
choice N, M (however, with L satisfying Lemma 4.3.6). To show this, let us fix the admissibility
condition (assuming that the diameters do, dg of the bounding boxes of clusters T, and T3 are equal):
3
lcagll = 1 (da +dg) = 3rp. (4.49)
We will need two ingredients.

1. Ezponentially fast decay of spherical Hankel functions as Res — +o00. As |s|diam 7, > 1, see

Remark 4.2.7,
L < |sllcas]-
Hence, the spherical Hankel function hy_1(is||cagl|) is in the asymptotic regime (4.8), namely
. o Reslicas]
h—1(isllye =zl ~ (L+(Islllcasl) =77 (4.50)
Islllcasll

where ")/(|5|||cozﬁHaL) :O( L + |S\2L4 ”2)

Is[llcasll llcas
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2. Ezponentially fast (but with a relatively small rate) growth of |Ry,(r.)|. Let us show that,
given e = 3 max(dqas, dg),

Ry, (isre(x)) < Cy|s|*r2eftesre Cy, > 0. (4.51)

The same holds for Ry, (isrc(y)). The expression (4.1) allows to derive a trivial bound:

(4§7) leRe ST

5 (4.52)

nlisre(@)] = |5(=0)" [ e P, (0t

Recall that spherical Bessel functions satisfy the bound (4.6):

n+1
. e |z]e
< Im z .
i) <o e (e )
Let N' € N, N' > |z|e. Then for alln > N, it holds that

) <emem & (e N _e (1Y (4.53)
A S ENACCE) =% gnr\2) ‘

Then, given N’ > |s|r.e > |s|r.(z)e,

Ry, (isrc(z)) < Ro(isre(z Z (2n + 1)|jn(isre(2))|
n=0
N'—1 +oo
= > @n+Dljalisre(@)| + Y @n+ Dljalisre(@))]-
n=0 n=N'

The first term can be bounded using (4.52) by

1
*N/ZGRG sre(x) < C|S|2’I"36Re 57"07

for a constant C that does not depend on s and r.. The second term can be bounded with the

help of (4.53)
+oo

> (@04 1)|jn(isre(x))] < Clelosrel®) < Creliesre

n=N’
for some C" > 0. This lets obtaining (4.51). The above considerations can be repeated to bound
Ry, (1c)(y)-

Now let us consider the errors EY) and E®). We insert (4.50,4.51) into the expression for E™)
to obtain

M 2 02 y oy eRes(rptratre=llcas)
EY o~ CLLENG (L4 (Islllcagll, L)) [s[re

[slllcagll
Clearly, rq < rp, rc <1p, hence, using (4.49),

rp +7d+ 7 — |lcasll <O,
which shows the exponential decay of EM) with Re s.

Similarly, we can substitute Ry, (r.) and hp_1(is||cagl|) in (4.48) by their estimates (4.51, 4.50)
to obtain:

B = 2NN [y isla ) max (R, (isre(a)), B, (isre (1))
cRe s(2ra+2rc—llcapll)

~ L2N;C|s['rg (1 + (sl casll)
[slllcasl]

We consider two cases, the first one when an octree based partitioning of the domain is used, and
another one when a binary partitioning is employed (see [22]). We assume that bounding bozes of

clusters 7o, 7g are cuboids with sides a,b,c. Then r, = 1v/a® + b2 + 2.
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1. if an octree partitioning is used, r. = %rp = r4, hence we obtain:

—Res(|lcapll—27p)

e
E® ~ LAN2C?|s]Prt (1 +(slllcasll)) lcasll

Due to the admissibility condition (4.49), ||cagl| > 2rp, hence E®?) decays with Re s.

2. if a binary cluster tree is used, a parent cluster is split into two children clusters. More precisely,
one of the sides of the bounding box is halved, and the bounding boxes of children clusters are
defined as cuboids obtained as a result of this subdivision. We assume w.l.o.g. rq = § and

re = %,/af + b2 + 2. Hence, using (4.49), we obtain:

eRe s(g+4/ %+b2+c27%\/a2+b2+62)

E(2) NLQN:}C%|S|3T3 (1+’Y(|S|||Ca5||)) ||C ,(3”
«

Since 244/% + b2+ 2—3V/a2 + 02+ 2 = £-1/a2 + 02 + 2+ /L + b2 + 2—aZ + b2 + 2

0, the above expression decays exponentially with Re s — +o0.

Note that these considerations are also true when applied to the admissibility condition typically used
in the HF FMM (||cagll > %rp) combined with the uniform octree partitioning.

In the next section we discuss practical implications of the above bounds. We proceed as fol-
lows. First, we consider the expressions of Lemma 4.3.4 and with the help of extensive numerical
experiments demonstrate that in practice only (4.42) for ¢ - é,3 = 1 needs to be controlled. Un-
fortunately, we were not able to provide a formal theoretical justification to this fact. Second, we
numerically study the expressions of Lemma 4.3.7. We demonstrate that usually there is no need to
check the conditions of Lemma 4.3.7, however, in some cases the use of these bounds can improve
the complexity of the algorithm.

4.3.2 One-Level FMM Error

Let us consider expressions (4.42) and (4.43), namely

D-Cap,L = . . . PO
Bt o | S @t 1) jon (i 0] o (5 ) Pro (5 )] (4.54)
m=L
0,6ap,L,M = 8
EPert =1 N 2k + Difia(is|lo]) @4y [Ma,s (8) P (5-9)]] - (4.55)
k=2M—L+1

Under the assumption M > L, the error of the one-level FMM can be bounded by the sum of
these expressions, see Lemma 4.3.4. Recall that given c,5 € R? both errors have to be controlled
for a range of v, more precisely, for & € S? and |[v]| € [0, p™|lcapll] (here p is a fixed number
defined by the admissibility condition, see Section 4.2). We will numerically study only the case
vl = p~tlcasl], as it is often done in the HF FMM theory. In the following two sections we conduct
numerical experiments that demonstrate that to control the error of the one level FMM it is sufficient
to consider only EtlT’L. Unfortunately we were not able to provide a theoretical justification for this
fact, though a related result has been proved in [25].
For further considerations we fix e > 0 being the desired accuracy, |cag|| and |v]| = p~|cagl|-

Truncation Error

There exists several strategies to truncate the series (4.54):
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1. use the bound
L—1
ho(is|lcas — vll) = Y (20 + Dho(is|cag)je(is||o])) P (¢ap- D)

=0 (4.56)

[ng

(20 + 1) |he(islicaplDie(isl|vl)] =: Egs,

~

=L

and then estimate the sum of this series by the first term (as geometrically convergent series),
see e.g. [33] and [27]. Remarkably precise formulas for L valid for large purely imaginary s
were analytically derived in [25]. Alternatively, one can use empirically derived bounds for L.
We will denote the smallest L stemming from the condition chbs < € by Lgps-

2. make use of (4.12) explicitly; more precisely, let L5 be the smallest integer satisfying

€08 9, Luni g
B, <e€

for all ¢ € [0,27). This is an approach suggested in [25]; the results of [25] were used in [26].

For the real wavenumber case, as numerical experiments in [25] show, the difference between L
and Ly is significant only for very large values of |s|, close to 10® (e.g. for is = 200, for accuracies
10~2 and 1077 the difference in L,ps and Lyni¢ does not exceed Lgps — Lunig < 3). In the decay

10~*
100
50 $ 1077 n
0 —~10 | |
10 0 50 100

n

Figure 4.8: In the left plot we show Luniy and Laps determined numerically, |cap|| = 3, ||v]| =2, ¢ = 1074,
s =|s[e®93 | for different values of |s|. The right plot depicts absolute values of first 140 terms of the
Gegenbauer’s series (namely an, = (2n + 1) |hn(is]|cagl)jn(is||v]])|, 0 < n < 139), with ||cag|| =3, ||v]| =2
and s = 60e'%°°% . In this case |ho(is||cap — v|))| < 1.6e — 4, however,

—+o0
‘ S (2 + 1)|hg(is\|cag||)jl(i5|\v||)‘ < le — 4 only starting with L > 102.
=L

case the situation is different, as Figure 4.8: even for |s| < 100 Lgps and Ly, s differ significantly.
Indeed, in points where hg(is||z — y||) is close to (or smaller than) e the sum

+oo

> @+ Dljesllvl)helislicas])] > €
£=0

though each of the terms of the above series is smaller than e. This is also shown in Figure 4.8.

In further sections we show that the use of L,,;s instead of L,ps provides a good error control
for the truncation error. First, however, let us address a question of an actual evaluation of L, .
For this, let us study the dependence of L., which we define as the smallest integer for which

Bl < ¢ on cosy. In [25] it was proved that in the no-decay case for large |s| and L > |s|||v]| — i
the error
N-1
gles ol = |emolas =IOl — g — v Y~ (20 + Dhalislcasl)ielis]v]]) Pe(Eas - ) (4.57)
=0
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achieves its maximum when é,5 - © = £1. The formulas provided in [25] show that the errors in
Cap -0 =1 and ¢y - 0 = —1 differ insignificantly.

1073 § 10-3
1074 F 104
w S w E
1072 107° E
—6 L —6 L | | L]
10 0 10 0 1 2 3
—s=1, L=17
T T T
, 107° . 107°
1077 1077 F | | n
0 1 3
—s=2, L =21

Figure 4.9: Given the length of the expansion L, ||cagll = 3, ||v]| = 2, we study the dependence of the error
of the truncation of the series Etcfsw’L defined by (4.57) on 1. In all the experiments the error has a global
mazimum at Y = 0.

The results of our numerical experiments in Figures 4.9, 4.10 and 4.11 confirm that the maximum
of the absolute error Ej. sY.L s almost always achieved when cosvy = 1, even for small values of L
(to check this we computed the smallest L, s.t. Ei" < ¢, and evaluated E22°%"* for a range of ).
In case when this does not hold, the maximum of the error never exceeded the value of the error in
1 = 0 more than twice. In 1 = 7 there is a local maximum. Hence, in practice it is reasonable to
use the value ¢ = 0 for controlling the truncation error (4.54). Unfortunately we were not able to
prove this formally for s € C, as it was done in [25] for the no-decay case in the asymptotic regime
|s| = +oo.
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0 1 2 3 0 1 2 3
——s=20t+5, L =068 ——s=2004+6, L=13
T T
10°7
w w
10-9
| | |
0 1 2 3
— s =100¢, L =211 ——s=100: + 1, L = 223
106 | | | 106
w 10—9 L 1 w 10_8
—10 | |
10—12 | | | 10 | | |
0 1 2 3 0 1 2 3
—— s =1007 + 6, L = 183 ——s=100: + 8, L =122
10-6 T T ] 10-6 T T 7]
v 10—9VﬁNWWWWWWWWWWWWWWWWﬂWﬂn“"ﬂ v 1070 :
—12 | | | —12 | | |
1077, 1 2 3 1077, 1 2 3
—— s =100 4+ 9, L =52 ——s=100¢4+9.2, L=9

Figure 4.10: Given the length of the expansion L, ||cag|l = 3, ||v|| = 2, we study the dependence of the error
of the truncation of the series Etcfsw’L defined by (4.57) on 1. In all the experiments the error has a global
mazimum at ¢ = 0.
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1074
v 107°
1076
_7 ! ! ! ! !
10 0 1 2 3 0 1 2 3
—— =500 +1, L =1011 —— s =500i + 1.95, L =215
10—6 N
v Y070
| | —12 | | |
0 1 2 3 10 0 1 2 3
—— s =1000¢ + 6, L = 1211 —— s =1000{ + 6.9, L =117
T T T T T T
) w
10_15 n | 10—15
| | | | | |
0 1 2 3 0 1 2 3
—— s = 10007 + 10, L = 2001 —— s = 10007 + 15, L = 1662
10-12F T T ] 10-12 T T ]
w 10—15 - w 10—15 -
—18 | | | —18 | | |
10 0 1 2 3 10 0 1 2 3
—— s =1000¢ + 20, L = 642 —— s =1000¢ 4+ 20.7, L =116
1075
—13 _
. 10 o 10 7
10—t 10792 + I
! ! !
0 1 2 3

Figure 4.11: Given the length of the expansion L, ||cag| = 3, ||v|| = 2, we study the dependence of the error
of the truncation of the series Etcf“p’L defined by (4.57) on 1. In almost all the experiments the error has
a global maximum at 1 = 0; if this is not the case the value of the error at 1 = 0 differs insignificantly
from the global mazimum.
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The Total Error of the One-Level FMM

Recall that according to Lemma 4.3.4, under assumption M > L, the error of the one-level fast
multipole method can be bounded by a sum of truncation (4.42) and integration errors (4.43). More
precisely, the integration error (4.43) is defined as

+oo
Byt M| 3T @k D)itji(iso) @i [Mays (3) P (8- 9)]
k=2M—L+1
L—1
where M, 5(8) = 7= > (20+1)(—i)*hy(is||capl]) Pr (¢ap- 8) and M > L. In this section we would like

to demonstrate that tzheore is no need to account for the integration error separately when determining
the length of the multipole expansion, and the criterion based solely on the truncation error analysis
can be used.

In numerical experiments of this section we compute the total error and demonstrate that it can
be estimated by the truncation error Etl,’.L, and hence the integration error is significantly smaller
than the truncation error. In the no-decay case this was discussed in [69], for the case Res = 0.
This fact was also confirmed by various experiments of [27]. In the latter work it was shown that
choosing the length of the multipole expansion by examining the last term of the Gegenbauer’s series
provides a good total error control. Numerical experiments of this section confirm that the choice of
the length of multipole expansion based solely on the analysis of the convergence of the Gegebauer’s
series allows to control the total error of the one-level FMM in the decay regime, i.e. Res > 0.

We fix |lcagl = 3, [[v]] = 2, e = 1073,1075,1072,107'2, find the smallest L, s.t. E5" < € for
all N > L, and compute the total error, setting the parameter M that defines the length of the
multipole expansion to the smallest possible value, namely M = L. The results of this comparison
can be found in Figure 4.12. In general, the integration error (and hence the total error, see also
Lemma 4.3.4) E})’C“‘a’L’L depends on directions ¢,g and 9. From the definition of E})’C“‘a’L"L, see
(4.55), it follows that w.l.o.g. we may fix é,3 = (1,0,0). Given éag, |lcasll, ||v]|, we study numerically
the dependence of the total error on ¢ € S2.

In Figure 4.12 we show the dependence of the computed value (4.34)

&= max |A1 (L, L, z(0), 23, y(0), Ya, S)| (4.58)

on s (here (%), y(9) € R? are chosen so that v = x — x5 + Yo — v, ||v| fixed). The value L is chosen

as suggested in Section 4.3.2, i.e. as the smallest N, s.t. Etl;N < €. To exclude the contribution of
the roundoff errors, see Section 4.4, we compute & only for values of s, L s.t.

Lihz-1(isllcasl)le™* e, <,

where €, is the machine precision, see (4.65). We can see that in all the numerical experiments the
total error & can be bounded by CE.", where C' is a constant close to 1. We are not aware of
any works dedicated to derivation of nearly optimal error bounds for the FMM integration error,
even for the case of the real wavenumber. However, the results of numerical studies suggest that the

criterion solely based on the analysis of Etl;,L provides a good error control of the HF FMM.
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Ims=0 Ims=5

1073 | —— ‘ ‘ . 1073 f—r ‘ ‘ .
Y1078 | g 1078 | o .
s AN S e —
0 5 10 15 20 25 0 5 10 15 20 25
Res Res
Ims =20 Ims =50
1073 p— ‘ ‘ ] 1073 — ‘ ‘ .
© 10-8| T .
10—13 :, T | "J‘—_'T‘AA'_—\_“—*,: 10—13 MMW_T*TM ,:
0 5 10 15 20 25 0 5 10 15 20 25
Res Res

e=10"3 e=10"6 e=10"9 e=10"12

Figure 4.12: Given the smallest L satisfying Etl,ZL < €, we show the numerically computed truncation error
Etlr’L and & defined by (4.58) for different values of s and €. For a fized €, the dark line corresponds to the
total error (not measured when the roundoff error exceeds €) and the light dotted one to Etlr‘L. In all the
experiments ||cagll = 3 and ||v|| = 2.

4.3.3 FErrors due to M2M and L2L Translations

In order to control the error during multipole-to-local and local-to-local translations we make use
of Lemma 4.3.7. We adopt the same notation as in Section 4.3.1, see Remark 4.3.1. In particular,
given € > 0, it is suggested that N, = min(N, M) (where N defines the length of the multipole
expansion at the children level and M at the parent level, see Section 4.3.1) satisfies:

B = LANZM 0 [ iscasl) max (Rev. Gore(@), B sy S e o
67

E®) = [?N2e2Resra \hp—1(is||cap|])| max (R3_ (isrc(z)), Ry (isre(y))) <
for all y € 7, @ € 73. Recall that M, L satisfy Lemma 4.3.7 and R, (isr) = > (2n+ 1)|jn,(isr)|.
n>m

First, let us numerically demonstrate that for all z € R?, s.t. ||z|| < r., the value Ry (isr.)
serves as a good bound for Ry (is||z||). This is shown in Table 4.1.

s R(is) 5 R(is) s R(is) s R(is)

107 0 501 0.0056 400z 0.0055 1007 | 0.0033
107 +0.25 0 507 4+ 0.25 | 0.00062 4007 + 0.25 | 0.0013 2007 | 0.0064
107 +1 0 50¢ + 1 0 4007 + 1 0 5007 | 0.0061
10i 45 0 50¢ + 5 0 400i + 5 0 1000¢ | 0.0044
107 + 10 0 50i + 10 0 400¢ + 10 0 20004 | 0.0019
102 + 20 0 50¢ 4 20 0 400z 4 20 0 5000¢ | 0.0009

R, (isa)—R, (is
0328?(1] n(isa) n(is)

Table 4.1: The value R(is) = max

1<n<nmax R (is)
that |Rn,...(is)| < le — 16) for different values of s. We can see that the mazimum of R, (isa), with
a € (0,1], is close to Ry (is) (or equals Ry (is) when Res > 1).

determined numerically (nmax s chosen so

First we would like to demonstrate that conditions of Lemma 4.3.7 and Lemma 4.3.4 indeed
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allow to control the error of the multilevel HF FMM.
Next, based on these numerical experiments we discuss if it is always necessary to check the
conditions of Lemma 4.3.7, or the use of Lemma 4.3.4 can solely provide a good error control.

We start with numerical experiments for several different configurations of the clusters shown in
Figure 4.13.

1 x
7 xrpr
o Yo o 4T
Y 2
xTgr
o 6T
x3
Y3
Yo
Jo °

Figure 4.13: Schematic 2D presentation of configurations that we used in experiments. Cluster parameters
are given in the table below.

Value | Upper left plot | Upper right plot | Lower left plot Lower right plot
Yo (0,0,0) (0,0,0) (0,0,0) (0,0,0)
zp (3,0,0) (3,0,0) (3,0,0) 3( & &
Yo! (05707 0) (ﬁ7070) (05707 0) (2131070)
-4 (25,07 0) (3 - T\1/§7070) (35707 0) (\/g_ 2\1/51 \/’?;7 \/g)
Tp 1 1 1 1
T T
Td 0.5 2v3 0.5 V3
re 0.5 ¥3 0.5 V3
We compute a multilevel FMM approzimation to ho(is||z; — y;ll), 7=0,...,3, and ho (is||mék) —yol),
k=1,...,5. The coordinates of these points are provided below.
Lo = (25070) Yo = (17070)
z{? = (2.5,0.5,0) 2P = (2.5,-0.5,0)
_ 1 1 1 — (L L 1
-771—( V3’ 37\/§) Y1 = V3' V3’ V3
w2 = (3 4,0,0) y2 = (45,0,0
2Y =(3.5,0.5,0) z{V = (3.5,-0.5,0), 27 = (4,0,0)
EE E R | N T
V3 V3 V3 V3 V3 V3 ST\ V3 VE
First, given € > 0, we define L as the smallest integer satisfying
L—-1
ho(is(llcasll = 2rp)) = Y (2k + Dhy(islcas ) jx(2isry) | < .
k=0

Next, to control the errors E(V, E?) | we look for N > 0 s.t.

(= DhaaGsllcas|) exp(Res(ry +ra))in Gisro)N| < wo0)

N
|(L — 1)hp—1(is|capl)) exp(2Re srq)jx (isrc)N| < e.

Compared to the explicit expressions for E(), E@) we dropped some powers of N, L, since our
estimates in Lemma 4.3.7 are non-optimal. Additionally, we estimated Ry (isd) by |jn(isd)|, since
the corresponding series converges supergeometrically. Then the length of the expansion on the
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level where the children clusters are located is chosen as 2N?2. To choose the length of the multipole
expansion 2M? on the level where the parent clusters are located, we set M = max(L, N). We
compute a multilevel HE FMM approximation to ho(is|lz; —y;l), 7 =0,...,3, and ho(is||zgk) —oll),
k=1,...,5, for configurations depicted in Figure 4.13. For all s the largest values of the error was
achieved for pairs (zg,yo) and (z3,ys). The measured error never exceeded 2e.

We plot the dependence of the measured error of the approximation of hg(is||zo — yo||) on Res
in the right plot of Figure 4.14.

Ims =20

I I I I I
M, e =106 1073 - e=10"6 e=10"6 |

—— M, e=10"10 - [ e=10"10 - - - ¢ =10710

--- N, e=10"6
--- N, e=10"10 10-7 | N
L', e=10"6

L', e = 10—10

! | 10*11 L | | | N
30 40 50 0 5 10 15 20

Res Res

Figure 4.14: In the left plot we depict M = L, N computed as in Lemma 4.3.7 and Lemma 4.3.4 and L’
computed per Lemma 4.5.4 (under the assumption that a child cluster has an admissible neighbor, see
(4.61) with ¢ = 3r.) for Ims = 20 and two different accuracy settings. In the right plot the dependence of
the error of the approzimation of ho(is||zo — yol|) on Res for a fixed imaginary Im s is shown, for two
gwen accuracy settings, e = 107° and e = 10710, With dashed lines we demonstrate the computed error for
Im s = 50 and with solid lines the computed error for Im s = 20 is shown.

The results of these numerical experiments show that the error control provided by the use of
such length of expansions is fairly robust (see Figure 4.14). Let us now discuss if the conditions of
Lemma 4.3.7 require to be checked at all. First, let the parent clusters be located at the level £ — 1
and the children clusters at the level /.

Let us assume that at the level £ all the clusters are leaves and there exists at least one pair of
admissible clusters. Let also the centers of the bounding boxes of these clusters are located at the
distance ¢. In this case the length of the multipole expansion at the level £ is not smaller than the
one provided by Lemma 4.3.4. More precisely, as discussed before, we require that N > L', where
L' is s.t.

Z (2n + 1)h, (is¢)jn (2isrc(x))Pp(cosa)| <€, forall 0 <r.(z) <r. and a € [0,27), (4.61)

n=L"

where 7. is the half-diameter of a bounding box on the level £. Such inequality should hold for all
admissible pairs at the level £.

In the case of no-decay and |s| — 400, the truncation parameter L', and hence N, has to be
chosen larger than |2isr.| (this is shown [25]), namely, when j (2isr.) starts decaying superexpo-
nentially. Similarly, at the parent level M > L and L > |2isr,|. In this case it is guaranteed that
errors EM and E?) are small, since N, > min(L, L') > |2isr.| (recall that |s| is large), and hence
|7, (isre)| in (4.59) is in the regime of the superexponential decay (4.4). Therefore the expressions
of (4.59) are negligibly small.

In the decay case, the same arguments as above can also apply. However, if decay is large enough,
it may occur that min(L, L") < |2isr.|. Nevertheless, as results of the numerical experiments in
Figure 4.14 show, the computed value of L’ is always larger than N computed in accordance with
(4.60). We were not able to detect a case when this does not hold.

Nevertheless, in practice we recommend performing the checks (4.60). Let us assume that an
FMM accelerated matrix-vector product has to be computed for a range of complex frequencies
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and the same block-cluster tree should be used for all of them. In this case it may appear that at
the levels of the block-cluster tree where leaves are located, due to the low-frequency breakdown
of the FMM there may be no admissible clusters (this will be explained in Section 4.4). For some
geometries this is also possible at other levels of the block-cluster tree, when a binary cluster tree is
employed. In these cases to determine the length of the expansion we may assume that there is at
least one pair of admissible clusters at this level and compute the length of the expansion as discussed
above. However, as the results of numerical experiments show, it may appear advantageous for the
efficiency of the algorithm (and in some cases easier to implement) to make use of bounds (4.60)
instead: they will provide a smaller length of the expansion sufficient to achieve a desired accuracy.

4.4 Numerical Stability and Control of Roundoff Errors

There are two sources of round-off errors when the high-frequency fast multipole method is applied
to Helmholtz problems with complex wavenumbers. The first one is connected to the exponential
growth of spherical Hankel functions h,,(z) when n > |z| and is also inherent to the HF FMM applied
to the problems with a purely real wavenumber, see e.g. [73]. The second one is intrinsic to the HF
FMM applied to the Helmholtz equation with large decay and was studied in [91]. Importantly, these
errors occur in different situations: the first one appears only when small clusters are considered,
while the second one is likely to appear when applying the high-frequency fast multipole method
to distant (and hence, due to the definition of the admissibility condition, large) clusters. In the
following section we study an effect of these errors on the high-frequency FMM.

The low-frequency breakdown of the fast multipole method occurs when performing the multipole-
to-local transform between small admissible clusters. One of the ways to control this error was
suggested in [27]: there numerically determined bounds on size of clusters were used (e.g. to achieve
an accuracy 1072, the authors recommend to use HF FMM only for clusters whose size exceeds i
of a wavelength). Indeed, such strategy has to be adapted to different admissibility conditions, as
well as to the presence of decay, which can (though not always) decrease the magnitude of rounding
errors.

Our strategy of the roundoff error control is based on the following observation. In the simplest
case of the one-level fast multipole method hg(is||z — y||) is approximated by the scalar product

2M?
ho(ist — y||) ~ Z wle—s(w—xﬁ,éz)Maﬁ(§Z)es(y—ya,§5) _ ATB, (4.62)
=1
A= {wle_s(x—xﬁ,§1)7 o 7w2M2e—s(x—x5,§2M2)} T

. . T
B = {Maﬁ(gl)esw—ya,sﬂ s Maﬁ(gzMQ)eS(y—ymszMz)}

where (wy, §k)i¥f are the quadrature nodes and weights and M, g is given by (4.30). The following
lemma from [66, Section 3.1] bounds the error of the evaluation of the scalar product in the finite
precision arithmetic.

Lemma 4.4.1. Given x,y € R", let s,, = 7y and 3,, = fl(xTy) be the inner product xTy computed
with no overflow or underflow in the finite precision arithmetic compliant with the standard model,
i.e. for all floating point numbers a,b

fllaob) =aob(l+0), |0] < em;o=+,—, %\, (4.63)

where €, is a machine accuracy. Then,

n
|§n - Sn‘ < Yn Z |xiyz“7
=1

NEm

= L (4.64)

1—nen,
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Questions of the accuracy of the complex floating point arithmetic are considered in [66, Lemma
3.5]. In a nutshell, it is possible to implement the basic arithmetic operations so that

fl(aob) :aob(1+5)’ |5| < €m,;0=+,—,
fl(ab) = ab(1+8), [6] < V272,

a

f1(5) = 30 +9). 16 < V2,

where 7, is given by (4.64).
Hence, for complex s, the roundoff error of the evaluation (4.62) can be bounded by

2M?
€roundoff S YM Z |A/HB€|
=1
< 20 M2y elesd max | M, 5(3)], (4.65)
se

where C' is a constant coming from the use of the complex arithmetic and d = ||z — || + |y — yall-
In the BEM code, the low-frequency (occurring when |s|d is smaller than a fixed value) roundoff
error can be controlled by checking if

(L = 1) |hpr(isleas) em < € (4.66)
for a given € > 0. In case when ¢ < le — 9 we recommend checking
(L —1)e® 5 |hp 1 (is||capl)| €m < €.

In the case of high decay, the cancellation errors can occur when performing multipole-to-
multipole (local-to-local) transforms. First, recall that the cluster basis of the high-frequency fast
multipole method is the matrix of the form

ij = /e_s(y_y“’é’“)@(y)dl‘y,ék €S2

To

In the course of the FMM algorithm this matrix is approximated by performing subsequent multipole-
to-multipole transforms. These transforms involve spherical harmonic transforms, which includes
many additions and subtractions of these numbers. Since the entries of the cluster basis for large
Re s and ||y —yq || can vary greatly in magnitude, such transforms can potentially lead to cancellation
errors. For a cluster with a bounding box of diameter d such a cancellation error can be estimated
by efte S%em. This seems to be pessimistic, since in numerous experiments we were not able to detect
the influence of these errors on the result. This can be explained as follows. After the multipole-
to-multipole transform the corresponding vector is multiplied by M, g(8¢), 5, € S2. This value is
not larger than L2 |hy_1(is||cagl|)| ~ L?e™ Reslcasll|s|=1||c,s] 7! (see (4.40) and Remark 4.3.8 for
a related discussion). During the local-to-local translation the result is multiplied by e~ 5(Wa—Yar5k)
(that does not exceed eRes%)
by

, and hence the cancellation error of the final computation is bounded

e, ~ o~ Resllleanll—d)

Recall that in this case the absolute error is of interest (c.f. (2.9)), hence, due to e~ Resllcasl=d) < 1/
the cancellation errors do not seem to cause problems.

4.5 On Choice of the Parameters of the HF FMM

In this section we comment on the choice of the parameters of the HF FMM, particularly, the length
of the multipole expansion, the cluster tree and the admissibility condition.
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Cluster Tree

The cluster tree has to be constructed so that the diameter of the bounding boxes of leaf clusters
is O (ﬁ) Typically, an octree is used, see [27]. In this work we employ a binary cluster tree,

similarly to [22, 42, 41]. In [22] it was suggested to make a cluster a leaf if the number of degrees
of freedom inside this cluster does not exceed some fixed ng. We use such strategy as well (with
ng = 20), however, with an additional correction: leaf clusters can be located only at the levels
£ > {y, where £y is given a priori and increases logarithmically with M. The reason for the latter
requirement is that it may happen that some of clusters with a few boundary elements occur at
very coarse levels of the cluster tree. The size of bounding boxes of clusters located at one level of
the cluster tree is the same (see Remark 3.2.3), and hence if such clusters were leaves, they would
have large non-admissible neighbors and the size of the near-field would increase. This strategy is in
agreement with [27]. Concerning the admissibility condition, we suggest the following. If the cluster
tree is a binary tree, the admissibility condition should be chosen by Definition 2.2.5:

ler = eall > 3 (dr +do),

with n > % If the cluster tree is an octree, the clusters that do not touch each other can be

considered admissible.

Lengths of the Multipole Expansions

To choose the length of multipole and local expansions, we suggest the following scheme. Let € > 0
be the desired accuracy. Let ry be the half-diameter of the bounding box of a cluster at the level £.

First, let us consider the multipole-to-local operator. Let an admissible block-cluster b = (74, 73)
be located at the level £ > 0 of the block-cluster tree. Let the bounding box of the cluster 7, be
centered at y, and the bounding box of the cluster 73 be centered at zg. Additionally, cag = Yo — 3.
The choice of the length n; of the truncated expansion for the corresponding multipole-to-local
translation operator, see also (3.26), can be determined by checking (c.f. Lemma 4.3.4, Section
4.3.2)

np—1

ho(is(||cagll — 2re)) — Z (2m + 1)jm (2isre) A (islcagl])| < €. (4.67)

m=0

If

(L = 1) |hp—a(isllcapl)] €m > €,

the low-frequency breakdown happens, see (4.66), and we set formally n, = 0. Such cluster is to
be approximated with the help of H-matrix techniques. Similarly, we approximate by zero matrix
blocks for which (2.9) holds.

The value ny, depends on 7, and ||cag|| only. Since there is a fixed number of different ||cqgs]|
per level, the check (4.67) can be performed once for each different ||c,g||. The complexity of this
operation is obviously sublinear.

Denoting the set of admissible block clusters located at the level ¢ by ﬁﬁ, let us introduce an
auxiliary quantity:

ng = max nyp. (4.68)
beLt
If Res = 0, the length of the multipole expansion at the level ¢ should be set to 2n? (and the

2
respective quadrature rule is to be chosen as (wy, q})iiﬂ, see (3.15)). A similar strategy was suggested
in [33, 27]. This strategy can be also applied for determining the length of the multipole expansion
for the case when Res # 0.
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As we discussed before, in some cases it may occur that at levels of the cluster tree where leaves
are located there may be no clusters having admissible neighbors (and this can be the case for the
applications that are of interest for us, e.g. Runge-Kutta convolution quadrature with the near-field
reuse [9]). Therefore, we additionally perform the following checks.

The analysis in Section 4.3 shows that to control the multipole-to-multipole (local-to-local) errors,
the length of the expansion has to satisfy conditions of Lemmas 4.3.4 and 4.3.7. Through the
multipole-to-multipole (local-to-local) translation the error propagates to the coarser (finer) cluster
tree levels. Though we do not present the analysis of the error after several consecutive multipole-
to-multipole (local-to-local) translations, we suggest the following strategy.

Let us introduce an auxiliary quantity:

He = sup [ho,—1(islsl)] < sup [ho,—1(islichll)] (4.69)
beLlt beLlt

where the last inequality is obtained from (4.11). The value ||c?, s is the distance between the centres
of bounding boxes of clusters forming an admissible block-cluster b. In practice this quantity (at
least for large ng) can be approximated by

hy,—1(is min ||c?
we1(6s i sl

c.f. (4.7, 4.8,4.10), as well as [25], where the dependence of n; on % is discussed for Res = 0.
In our the numerical experiments we employed this approximation at all levels of the block cluster
tree.

Given a cluster 7, ¢ located at the level ¢, let 74 0—1, Ta -2, --., Ta,k be s.t.
Ta,j € sons(Ta,j-1), k<j<lt. (4.70)

Here k is the smallest level at which there is at least one admissible block cluster. Let Ti"l’a be the
distance between the centers of the bounding boxes of clusters 7, ; and 74,¢. Given levels ¢, j, the
maximum of Té’z’a over the pairs of clusters 7, ¢, 7o ; Subject to (4.70) we denote by

=it
Ty = max

j, €,
e
(Ta,lﬂ'a,j)

This quantity can be computed in time not worse than linear (or even O ((height(TI))Q) =0 (log2 M),

where we used the fact that height(7z) = O (log M)), due to the uniform partition of the domain,
and hence it does not affect the complexity of the algorithm. Alternatively, it also can be estimated
by f’é’e <rj.

In practice we look for Ny, such that for all £ < j < ¢ (i.e. for all higher levels with respect to
the current level),

NgTLjHj |jNe (7:377)‘ eR‘CS(Tj-‘rF“;’E) <e

. . 2 2Resil* (471)
NeniHj |jn, (isre)|”e™ 7% a <,
cf. (4.60). Let Ny = max(mngq, ng) (cf. Lemma 4.3.7, Lemma 4.3.4). Then we choose the
q=k
length of the expansion at the level £ to be equal to 2]\/42.

Remark 4.5.1. Recall that j,(x) has real zeros. Hence in the case when the above inequalities hold
true for some N = Ny, we suggest checking additionally if they are also valid for several consecutive
values of N, namely No + 1,... Ny + q (with ¢ =5 for ezample).

We would like to underline that in practice max Ny is rarely larger than ng, and hence the choice
q>

ny as (4.68) may suffice.
All these checks are of the complexity not larger than linear, and hence do not affect the asymp-
totic complexity of the fast multipole algorithm.
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Remark 4.5.2. In this section we provided the heuristic to choose the length of the multipole ex-
pansion for ho(is||z — y||). A verbatim application of this strategy to the BEM approzimation of

the single layer potential (whose kernel is % = —i=-ho(is||x —yl|)) does not seem to lead to a
noticeable increase of the error with |s|. Nonetheless for larger values of |s| we suggest to adapt this

o—slle—yll

heuristic for the case S&=—.
drllz—yll
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Chapter 5

Numerical Comparison of
H-Matrix Techniques and the
High-Frequency Fast Multipole
Method

In this section we compare the performance of H-matrices and the fast multipole method for the
Helmholtz equation with decay. We present results of numerical experiments for H-matrices and
H2-matrices, which were constructed with the help of the expansions coming from the fast multipole
method, approximating the Helmholtz boundary single-layer operator on the unit sphere and on the
surface of a NASA almond-like domain (see Figure 5.1), both for complex and real wavenumbers.
The domain and the mesh for it were generated with the help of Gmsh [45]. The length of this
domain is 2.5, width 1 and height 0.32.

Figure 5.1: The domain that we use in experiments. The domain is oriented parallel to x-azis; the
incoming wave first hits the tip of the domain.

We report the matrix construction times and matrix-vector multiplication times, as well as errors
of the approximation. The matrix construction time for #2-matrices includes the time needed to
construct an H-matrix part, transfer matrices, multipole-to-local operators as well as the leaf cluster
basis. Let us also remark that the time for the construction of the latter is the time to evaluate the
integrals (3.17) using the precomputed quadrature points, weights and cluster centers (see the end
of Section 3.2.1), and the precomputation itself is included into the matrix construction time as well
(in practice it is negligible compared to the time needed to construct the leaf cluster basis).

Matrix-vector multiplication errors are measured as

€ :If(la.Xi”/\/lU_Dv||2
P T D

based on results of 100 matrix-vector multiplications with random complex vectors with entries
having real and imaginary part lying in [—1, 1]. Here M is an H—matrix or an H2?—matrix, which
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was constructed with the help of the high-frequency fast multipole expansions. The matrix M
is assembled with a given accuracy e. The matrix D is a dense matrix (or a highly accurate H-
matrix) constructed using the quadrature rule (for the evaluation of Galerkin integrals) with the
same number of quadrature points as for an H-matrix. We also measure an average matrix-vector
multiplication time.

Typically, the assembly time of H-matrices is significantly larger than the assembly time of
H2-matrices, see also [22], while the H-matrix-vector multiplication time is much smaller, even for
discretizations with approximately 10° degrees of freedom. If many matrix-vector multiplications
are needed, H-matrices can outperform the HF FMM approximation. In this work we compute N,,,,
the number of matrix-vector multiplications after which it makes sense to construct an H-matrix
based approximation. We use the formula

T.(H) - T. (H?)
Tonw (H2) = Trpy (H) |

va =

where T, is the matrix construction times and T,,, is a time needed for one matrix-vector multipli-
cation.

In the case when a matrix-vector multiplication with a given #2-matrix has to be done only a
few times and it is necessary to store the matrix, the strategy of Section 3.2.1 can be employed.
In this case it may be necessary to construct the leaf cluster basis as in Section 3.2.1 every time a
matrix-vector multiplication is performed, and the value T,,, thus has to include the time needed
to construct the leaf cluster basis.

All experiments were done on the cluster of the Max Planck Institute for Mathematics in the
Sciences, on a single processor of the hexa-core CPU Intel Xeon X5650 with 2.67 GHz. For the
computation we used HLIBpro library, see [70].

Spherical Bessel and Hankel functions were computed with the help of the Amos library [4].

Indeed, there is still a room for improving the FMM code and many FMM parameters, e.g.
the quadrature order of near-singular and singular integrals, the number of quadrature points to
construct the leaf cluster basis®, or the accuracy of the H-matrix approximations involved in spherical
harmonic transforms. Additionally, one could make use of the strategy of [43] to control the HF
FMM error.

The experiments are done with three accuracy settings: € = 1074, € = 1076 and ¢ = 107°. The
parameter € used to determine the length of the multipole expansions, see Section 4.5, is set to one
of these values. The relative accuracy for H-matrices is set correspondingly to 1073, 10~° and 108
(such a choice is based on the observation that setting an ACA+ accuracy to some parameter often
guarantees an accuracy several magnitudes higher).

In all the experiments with H2-matrices we used an admissibility condition according to Definition
2.2.5, with n = 2 (for accuracies € > e = 1079) or n = 2 (for accuracies 107%). For high accuracies,
the latter choice appeared advantageous for the time of the construction of the cluster basis in the
case of decay, which is due to the strategy adapted for choosing lengths of multipole expansions.

We would like to make an additional remark concerning the complexity of the algorithm. Further
numerical experiments show that the complexity of the HF FMM is close to O(M log M), though
the theoretical estimate is O(M log® M ). The logarithmic factor in the latter comes from multipole-
to-multipole and local-to-local transforms. Unlike multipole-to-local transforms that are performed
many times per a cluster and total complexity of which is O(M log M), the M2M and L2L transforms
are done only once per a cluster. Hence, the complexity of the FMM is O(c; M log M + co M log? M),
where typically co < ¢1. Therefore, for a range of M the time of the FMM accelerated matrix-vector
multiplication scales closer to O(M log M) rather than O(M log® M). This can also be noticed in
numerical experiments of [27].

1For the construction of the leaf cluster basis we suggest to use the following number of quadrature points in
every triangular mesh element: for the accuracy ¢ = 10=% ¢ = 22, for ¢ = 1076 ¢ = 32 and for ¢ = 1079 ¢ = 42.
Although for many algorithms this parameter does not play a significant role, it may be advantageous to adjust it in
implementations of convolution quadrature that utilize the FMM (e.g to improve the performance of the algorithm of

(9)
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5.1 Real Wavenumber

In this section we present results of numerical experiments for the Helmholtz equation without decay.
Our goal is to validate the correctness of the fast multipole implementation as well as to compare
efficiency of the FMM and H-matrices for this simple case. Similar experiments have been already
performed in [22], but for the Burton-Miller integral formulation rather than for the Helmholtz single
layer boundary operator, and using an optimized for the half-space problem HF FMM [23].

5.1.1 Accuracy 10~*

The results for the unit sphere are presented in Table 5.1 and for the elongated domain in Table 5.2.

M s T.(H) TC(HQ) Lo (H) va(H2) er(H) er(Hz) Ny
2048 —8i 7.1 4(0.3) 0.014 0.4 2.7e-4 3.2e-4 9
4232 —11.37 18.7 9.8 (0.8) 0.04 0.84 3.2e-4 2.6e-4 12
8192 —161¢ 41.6 21 (1.4) 0.09 1.3 4e-4 2.4e-4 18
16200 —22.60 &89 41 (2.6) 0.2 3 4.6e-4 2.3e-4 18
32768 —32i 225 90 (5.8) 0.46 5.2 5e-4 5.6e-4 29
65448 —45.37 1481 414 (11) 1 13.2 5.2e-4 5.8e-4 88
129970 —64.0¢ 3254 847 (22.5) 2.5 26.4 - - 101

Table 5.1: Construction times T., matriz-vector multiplication times Ty, and computed relative errors for
the accuracy setup € = 10™* for the unit sphere. The times are given in seconds. In brackets the time to
construct the leaf cluster basis is shown. Ny, is the number of matriz-vector multiplications when it makes
sense to construct an H-matriz instead of an FMM approzimation of a BEM matriz. For the last
experiment we did not construct a highly accurate matrix: it appeared to be too expensive. For the last two
experiments we increased the Galerkin quadrature order: we observed the deterioration of accuracy due to
the insufficient number of quadrature points.

M S TC(H) Tc(rHQ) Tino (H) Tino (HQ) Ny
2152 —10.6: 8.8 6.4 (0.4) 0.012 0.25 11
4096 —157 19.9 9 (07) 0.027 0.9 13
8780 —21.2¢ 51 23.8 (1.6) 0.07 1.4 21
16072 —30z 302 112.4 (3) 0.15 2.4 85
64230 —607 1625 431.2 (11.5) 0.87 8.7 153
144092  —90q 4067 1047 (26.1) 2.3 21.4 159

Table 5.2: Construction times T, and matriz-vector multiplication times Ty, for the accuracy setup
e = 107", for the NASA almond-like domain. The times are given in seconds. In brackets the time to
construct the leaf cluster basis is shown. Ny, stands for the number of the matriz-vector multiplications
needed for H-matriz approzimation to outperform H2-approzimation. The relative error of H-matric
approzimations does not exceed 6 -10~* and of the HF FMM 5-10~*. For the last three experiments we
increased the Galerkin quadrature order.

As expected, the number of matrix-vector multiplications for which H-matrices outperform the
HF FMM increases with the discretization size. For problems with 5 - 10* — 10° unknowns the
‘H-matrices should be constructed only if more than 100 — 150 matrix-vector multiplications are
needed. For smaller discretizations H-matrices have to be constructed if more than 10-20 matrix
vector multiplications are needed.

5.1.2 Accuracy 1076

The results for the accuracy setup € = 1075 for the sphere are shown in Table 5.3 and for the
elongated domain in Table 5.4. As before, the number of matrix-vector multiplications with which
‘H-matrices outperform the HF FMM increases with the discretization size. However, in this case the
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HF FMM is more efficient than H-matrices already for quite small discretizations (10* unknowns):
for both domains if less than 40 matrix vector multiplications are needed, there is no sense to
construct H-matrices.

M s T.(H) T.(H%) Too(H)  Too(HD) & (H) & (HD) Ny
2048 —81 22.6 14.5 (0.9) 0.016 0.6 5e-6 1.5e-6 14
4232 —11.3: 61.7 33.7 (2) 0.046 1.1 3.9e-6 1.5e-6 27
8192 —162 150.7  59.5 (4.5) 0.1 2.24 4.5e-6 1.1le-6 43
16200 —22.6c 363 117 (7.9) 0.27 4.3 4.9e-6 1.1e-6 62
32768 —32i 890 241.7 (19.1) 0.64 8.5 6.2e-6 1.2e-6 83
65448 —45.31 7612 491 (35.2) 1.7 194 1.8e-5 2.4e-5 403
129970 —64.0¢ - 972 (79) - 42.3 - - -

Table 5.3: Construction times T., matriz-vector multiplication times T, and computed relative errors for
the accuracy setup € = 107° (unit sphere). The times are given in seconds. In brackets the time to
construct the leaf cluster basis is shown. The deterioration of the accuracy for large matrices is due to
insufficient accuracy of Galerkin quadrature. N, is the number of matriz-vector multiplications when it
makes sense to construct an H-matriz instead of an FMM matriz. For the largest experiment we did not
construct H-matrices.

M s T.(H) T.(H?) TooH) Too(H?) e (H) & (H?) Npo

2152 —10.6: 33.1 23.4 (0.6) 0.013 0.34 le-5 2.3e-6 30

4096 —157 79 38.7 (1.6) 0.034 0.73 3.4e-6  2.3e-6 58

8780 —21.2¢ 199.3 87.5 (3.2) 0.09 1.98 4.5e-6  2.6e-6 60

16072 —-301 450 156 (6.3) 0.21 3.4 7.5e-6 1.3e-5 93

64230 —607 4347 535 (27.7) 1.46 15.2 1.8e-5 6.8e-52 278

144092 —90: 16885.6 1276.3 (68.2) 4.6 40.9 - - 431

Table 5.4: Construction times T., matriz-vector multiplication times Ty, and computed relative errors for

the accuracy setup € = 107° (the elongated domain). The times are given in seconds. In brackets the time
to construct the leaf cluster basis is shown. Ny, stands for the number of the matriz-vector multiplications
needed for H-matriz approzimation to outperform H?-approzimation.

The results in Table 5.5 demonstrate that the high-frequency fast multipole method is of almost
linear complexity, while the complexity of H-matrices scales somewhat worse, though better than
predicted theoretically. This is connected to the fact that low-rank approximations constructed
using H-matrix techniques are close to optimal and take into account the geometry of a problem.

s i

No  sn gy pir(H) logy gt (H) logy g () log, gt (?)
4232 —11.37 145 15 1.22 (1.15) 0.9

8192 —16¢ 1.29 1.12 0.82 (1.17) 1

16200  —22.6¢ 1.27 14 0.98 (0.82) 0.94

32768  —32i 1.29 1.25 1.05 (1.27) 1

65448  —45.3i 3.1 1.4 1.03 (0.89) 1.2

129970 —64.0i - - 1(1.17) 1.12

Table 5.5: The rate of times for matriz assembly and times for matriz-vector multiplication for a current
discretization and the twice coarser one for different techniques with the accuracy setup e = 1075,

2The deterioration of the accuracy is due to the insufficient Galerkin quadrature order. After its increase, the error
of H-matrix approximation does not exceed 6e — 6 and of H2-matrix approximation 2.4e — 6. The construction times
increase correspondingly to 5840 and 1157 seconds.
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5.1.3 Accuracy 107°

The results for the unit sphere are shown in Table 5.6 and for the NASA almond-like domain
in Table 5.7. Besides showing that H-matrices are less efficient than the HF FMM already for
discretizations with 10* unknowns in the case when 100 matrix-vector multiplications is needed,
these results demonstrate that matrix-vector multiplication times of H2-matrices constructed with
a high accuracy can be slightly smaller (or do not increase significantly) compared to that of H2-
matrices constructed with a lower accuracy (c.f. Tables 5.6 and 5.3). This happens because of two
reasons. First, the increase of the accuracy requires more matrix blocks to be approximated with the
help of H-matrix techniques (due to the low-frequency breakdown), and, as it can be seen from the
numerical results, the matrix-vector multiplication times of H-matrices are in practice much smaller
compared to that of H2-matrices. Second, for large values of |s| the increase of the length of the
multipole expansion with the accuracy is relatively insignificant, c.f. [25, Table 3].

M S T.(H) TC(HQ) Tow(H) T (HQ) er(H) ET(HQ) N
2048 —8i 155 94.6 (1.6) 0.017 0.58 3.2e-9 1.2¢e-9 108
4232 —11.37 466 198.5 (3.8) 0.06 1.1 4.1e-9 1.2e-9 258
8192 —161 1219 374.5 (7.8) 0.16 2.8 4.7¢-9 1.2¢-9 320
16200 —22.60 3212 720 (14.6) 0.42 5.6 5.2e-9 1.6e-9 482
32768 —32i 8259 1570 (35) 1 11.4 5.9e-9 1.8e-9 644
65448 —45.3i 19270 3142 (68.7) 2.7 25.3 1.9e-8  2e-9 714
129970 —644 - 6225 (140.3) - 57.2 - - -

Table 5.6: Construction times T., matriz-vector multiplication times Ty, and computed relative errors for
the accuracy setup € = 107° (the unit sphere). The times are given in seconds. In brackets the time to
construct the leaf cluster basis is shown. For the last two experiments we did not construct an H-matriz
approximation: for the given accuracy setting, it appears to be too expensive.

M S TC(H) TC(HQ) Tonv (H) Tonv (HQ) Ny
2152 —10.6¢ 194 121 (1.1) 0.018 0.45 167
4096 —157 502 291 (2.6) 0.06 0.92 246
8780 —21.2¢ 1518 634 (5.9) 0.18 3 349
16072 —30: 3556 1226.7 (10.6) 041 4.2 615
64230 —607 22077 4342.5 (46.9) 2 21.8 896
144092  —90: 57817 9100 (118.3) 5.4 57.1 943

Table 5.7: Construction times T, and matriz-vector multiplication times Ty, for the accuracy setup
e =1077 (the elongated domain). The times are given in seconds. In brackets the time to construct the leaf
cluster basis is shown. Ny, stands for the number of the matriz-vector multiplications needed for H-matriz
approzimation to outperform H>-approzimation.

For the last two experiments we did not construct a highly accurate approximation, but compared the results
of FMM-accelerated to H-matriz approximated matriz-vector products. In both cases the relative error did
not exceed 2e — 8.

For the rest of experiments the relative errors of H2-matrices did not exceed 2e — 9 and for the H-matrices
they varied from 8e — 7 to 3e — 8.

The results of our numerical experiments confirm the conclusion of [22]: if many matrix-vector

multiplications are needed (for discretizations with 10° unknowns more than 100-150 for € = 1074,
200-400 for € = 1075 and > 700 for e = 10~?), H-matrices are advantageous over H>-matrices.

5.2 Complex Wavenumber

In this section we present the results of the numerical experiments for the Helmholtz equation with
decay. First, we fix M and |s| and study how the efficiency of H- and H2-matrix approximations
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changes with the argument of s = [s|e’?, ¢ € [-F, 0].

5.2.1 Accuracy 107*

The results of the experiments with this accuracy setting for the NASA almond-like domain are
shown in Table 5.9 and for the unit sphere in Table 5.8. In both cases the number of matrix-vector
multiplications when H-matrices outperform the FMM reduces with |¢|. If [¢| < T, only 5-12 matrix
vector multiplications are sufficient for H-matrices to outperform the HF FMM.

d) TC(H) TC (H2) TTYLU (H) TTYLU (H2) va

—T 89 41 (26) 02 3 18
—g—g 109 535 (5.5) 0.14 2.8 21
—5T 811 574 (52) 0078 25 10
S 1 549 (45) 0055 2.3 12
—3r 68 58.9 (4.6) 0.054 22 5
— 61 48.4 (4.4) 0.05 1.8 8
—T 68 58.4 (4.5) 0.05 1.4 8
0 52 46.2 (3.3) 0.04 1.3 5

Table 5.8: Construction times T. and matriz-vector multiplication times Ty, for the accuracy setup
e =10"* M = 16200, |s| = 22.6 (the unit sphere). The times are given in seconds. In brackets the time to
construct the leaf cluster basis is shown. N, stands for the number of the matriz-vector multiplications
needed for H-matriz approzimation to outperform H?-approzimation. The relative error of H-matriz
approzimations does not exceed 2.4 - 10~* and of the HF FMM 8 -107° in the case of decay and
correspondingly 4.6 - 107* and 2.3 - 10~* in the no-decay case.

¢ T.H) T.(H*)  Two(H) Two(H?) N

—T 1466 45(3.3)  0.16 2.4 16
fg—g 125 71 (6.6)  0.12 2.6 22
—5T 106 66.7 (6.4) 0.09 2.2 19
~dr 400 67.3(6.2) 0075 2.2 16
—3m 93 67.5 (6.2) 0.07 2.2 12
—2r g7 68.1 (5.9) 0.06 2 10
—I 833 689 (59) 0.05 2.3 7
0 684  55.5(42) 0.5 2.1 7

Table 5.9: Construction times T, and matriz-vector multiplication times Ty, for the accuracy setup
e=10"% M = 16072, |s| = 30 (the elongated domain). The times are given in seconds. In brackets the
time to construct the leaf cluster basis is shown. Nm. stands for the number of the matriz-vector
multiplications needed for the H-matriz approzimation to outperform the H>-approzimation. We did not
increase the Galerkin quadrature order with M (unlike the experiments without the decay). The relative
error of H- and H>*-matriz approzimations does not exceed 3.5 - 10~ in the case with decay and 4-107% in
the no-decay case (with the error of FMM approzimation not exceeding 3 - 1074).

To check whether N,,, changes with the discretization size, we conduct the experiment for
|p| = %, different |s| and M, as well as different ratios % The results of the experiment for the
unit sphere are shown in Table 5.10 and for the NASA almond-like domain in Tables 5.11 and 5.12.
In all the cases the number of the matrix-vector multiplications needed for H-matrix approximation
to outperform the FMM does not seem to increase, remaining bounded by 9 for the unit sphere
and by 18 for the NASA almond-like domain. The increased absolute value of decay (preserving
¢ = const = 7) favorably affects the complexity of approximation, as Tables 5.11 and 5.12 show.

Numerical results show the following effects of the presence of decay. First, the construction time
of FMM matrix approximations increaslt‘ss s}lgniﬁcantly. This is due to the fact that the evaluation

o—sle—y

of the Helmholtz kernel with decay T S € C, is more computationally expensive compared
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M s T.(H) T.(H?) Too(H)  Too(HD) 6 (H)  6(H2)  Nonw
2048 8-8i 83 465 (0.44) 0004 033 24e5 24e5 13
4232 11.3-11.3i 18 11.8 (1.1)  0.01 0.53 2.6e-5 2.5e-5 12
8192  16-16i 322 257(2) 0017 085 3.3e-5 3.3e5 8
16200 22.6-22.61 60 514 (3.8) 0.036 15 485 4de5 6
32768 32-32i 122 1123 (8) 0068 2.2 6.7¢-5 5665 5
65448  45.3-45.3i 2547 215 (15.4) 0.13 46 9.8¢-5 8.6e-5 9
120970 64-64.0i  510.7 456 (30.6)  0.25 7.6 1.3e-4 12e-4 8

Table 5.10: Construction times T, matriz-vector multiplication times Ty, and computed relative errors for
the accuracy setup ¢ = 10™* (the unit sphere). The times are given in seconds. In brackets the time to
construct the leaf cluster basis is shown. Ny, is the number of matriz-vector multiplications when it makes
sense to construct an H-matriz instead of an H*-matriz.

M S T.(H) TC(Hz) Tow(H)  Tonw (Hz) N
2152 10.6 — 10.67 11.6 9.4 (0.8) 0.007 0.2 12
4096 15 — 154 24.5 11.8 (1.3) 0.012 0.6 22
8780 21.2—-21.2¢ 45.7 33 (2.9) 0.03 1.12 12
16072 30 — 307 75.6 65.8 (4.9) 0.045 1.61 7
64230 60 — 601 291.2  229.3 (18.8) 0.16 5.45 12
144092 90 — 901 657.4 539 (43.6) 0.35 12.2 10

Table 5.11: Construction times T. and matriz-vector multiplication times Ty, for the accuracy setup
e =10"" (the elongated domain). The times are given in seconds. In brackets the time to construct the leaf
cluster basis is shown. Ny, stands for the number of matriz-vector multiplications needed for H-matriz
approzimation to outperform H2-approzimation. For the last experiment we did not construct a highly
accurate matrix approrimation but compare the results of H-matrix accelerated and FMM accelerated
matriz-vector products (this relative error did not exceed 9.5¢ — 4). The relative error of the rest of
accelerated matriz-vector products did not exceed 6e — 4.

eirllz—yll

to the evaluation &————+, x € R. Similar arguments apply to the leaf cluster basis. In the latter
drflz—y]

sections we will see that this can affect H-matrices as well, though not being always the case: the
presence of sufficiently large decay can also reduce the time of the H-matrix construction (due to
the drastic decrease of ranks of H-matrix blocks).

The results in Tables 5.1, 5.8 and 5.10 show that matrix-vector multiplication times of the HF
FMM in the presence of decay are smaller than in the case of no-decay. This can be explained by the
reduction of the length of multipole expansions. Similarly, the matrix-vector multiplication costs for
‘H-matrices are reduced compared to the no-decay case.

In cases of prevailing decay (i.e. Res > Ims), the memory (RAM) requirements for H-matrices
can be several (5-6) times smaller than that of H?-matrices, even for large discretizations. This is
connected to the fact that the cluster basis should be precomputed and stored in memory (RAM)
and the respective HF FMM multipole expansions are relatively long, c.f. [27, Table 10]. In a
nutshell, the length of the multipole expansion for a cluster at the level ¢ of the cluster tree with a
bounding box of diameter d can be determined by examining the convergence of the Gegenbauer’s
series. Namely, it is sufficient to find n s.t. |j,(isd)hy(isc)| < €, where ¢ is the distance between the
centers of the bounding boxes of two closest admissible clusters at the level £ (see e.g. [33] or [27]
where a similar criterion is used). For small clusters the actual values produced by such criterion
may be large (n > |s|d) due to the superexponential growth of spherical Hankel functions of a
complex argument, c.f. [27]. This effect is enhanced by the fact that the length of the multipole
expansion has to be chosen as O (nz) We did not observe this behavior for large discretizations in
the no-decay case.
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M s T.(H) T.(H?) Tono(H) Tro(H3)  Nowo
2152 5—5i 1.1 9.1 (0.5) 0.007 026 8
4096  71-7.1i 259 165 (1.1) 0016 0.8 12
8780  10—10i 535 353 (28 0035 135 14
16072 14—14i 939 652 (5.2)  0.066  2.27 14
64230 28 —28i 3753 240.3 (19.9) 0.25 7.9 18
144092 42 —42i 849  565.8 (43.4) 0.53 17.73 17

Table 5.12: Construction times T. and matriz-vector multiplication times T, for the accuracy setup
e=10"* (the elongated domain). The times are given in seconds. In brackets the time to construct the leaf
cluster basis is shown. Np,, stands for the number of matriz-vector multiplications needed for H-matriz
approzimation to outperform H?-approzimation. For the last two experiments we did not construct a highly
accurate matriz approximation but compare the results of H-matriz accelerated and FMM accelerated
matriz-vector products (this relative error did not exceed 7.2e — 4 for the experiment with 64230 unknowns
and 1.1e — 3 for the experiment with 144092 unknowns).

For other discretizations the relative error of H-matrices and the FMM did not exceed 3.3e — 4.

5.2.2 Accuracy 107°

Similarly to the previous section, we study the effect of the change of the argument of s on the
efficiency of different techniques with the accuracy setting ¢ = 107%. These results are shown in
Table 5.14 for the thin, elongated domain and in 5.13 for the unit sphere.

6 T.(H) T.(H?) Too(H)  Too(H%) Ny
—T 363 117 (7.8) 0.27 13 62
f% 4255 173 (19.4) 0.2 45 59
—5T 3234 166.9 (18.3) 0.11 45 36
—4T 92686 156 (16.6)  0.086 4.4 27
—3T 9362 148 (15.2)  0.072 4.8 19
—2r 2211 146.3 (14.8) 0.066 4 20
—T 2154 1458 (13.9) 0.065 3.8 19
0 174 118.2 (10.2) 0.06 3.8 15

Table 5.13: Construction times T. and matriz-vector multiplication times Ty, for the accuracy setup
e=10"% M = 16200, |s| = 22.6 (the unit sphere). The times are given in seconds. In brackets the time to
construct the leaf cluster basis is shown. N, stands for the number of matriz-vector multiplications needed
for H-matriz approzimation to outperform H?-approzimation. In all the experiments the relative error of

H- and H2-approzimations did not exceed 1.6 - 107C.

As before, with decreasing |¢| the efficiency of H-matrix approximation is improved compared to
H2-matrix approximation. In the case of the unit sphere H-matrix approximation is more efficient
than the HF FMM if [¢| < 7 and more than 20 matrix-vector multiplications are needed. In the case
of the NASA almond-like domain #H2-matrix approximation outperforms -matrix approximation
for the whole range of ¢ if less than 25 matrix-vector multiplications are needed.

To check how N,,, changes with the discretization size, we assemble approximations of the
matrices V' (s) for s = |sle”%?. The results of these experiments are shown in Tables 5.15 for the
unit sphere and 5.16 for the thin NASA almond-like domain.

Numerical results in Table 5.15 suggest that, similarly to the case of the Helmholtz equation
without decay, the assembly time of H-matrices is larger than that of H2-matrices. However, if
in the case of purely real wavenumber for the matrices of size 10* — 10° the difference varies from
1.5 to 4 (and even more) times, in the case of prevailing decay (i.e. for s = |s[e’*, a € [-Z, Z])
the difference is not that significant. In our experiments it never exceeded 2 times for matrices of
size 10* — 10°. Therefore, H-matrix approximations in this case are more efficient than H?-matrix
approximations, even if a small number of matrix-vector multiplications is needed.
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T.(H?)

va (H) va (HQ) va

¢ T.(H)
—T 450
—i—g 512.3
—5T 426.3
—am 3734
—aT 334
—2r 3125
—Z 301
0 2452

156 (6.3) 0.21 34
222 (13.6)  0.13 3.5
218.6 (13.3) 0.11 3.23
214.1 (12.7)  0.09 3
201 (13.7)  0.08 3.2

2074 (13) 0077 29
193 (15.9)  0.076 3.2
169.1 (11.7)  0.07 3.1

93
87
67
95
43
38
35
26

Table 5.14: Construction times T. and matriz-vector multiplication times Ty, for the accuracy setup
e =105 M = 16072, |s| = 30 (the elongated domain). The times are given in seconds. In brackets the
time to construct the leaf cluster basis is shown. N, stands for the number of matriz-vector multiplications
needed for H-matriz approzimation to outperform H2-approzimation. In the case of non-zero decay the
relative error of H-matriz approzimations does not exceed 4.3e — 6 and of the HF FMM 3e — 6.

M P T.(H)  T.(H2) Tro ) Tono(H3) Noww
2048 8-8i 29.8 17.7 (2.1) 0.0075 0.75 17
4232 11.3-11.31  73.3 47.9 (5.1) 0.015 0.92 29
8192 16-16i 119.5 91 (11.2) 0.03 2.1 14
16200 22.6-22.61  240.8 171.8 (18.1)  0.056 3.24 22
32768 32-321 458.7 331 (45.6) 0.11 6.5 20
65448 45.3-45.31  923.7 697.1 (78.2) 0.22 10.2 23
129970 64-64.01 1856.9 1375 (177.2) 0.44 21.9 23

Table 5.15: Construction times T. and matriz-vector multiplication times Ty, for the accuracy setup
e=10"° (the unit sphere). The times are given in seconds. In brackets the time to construct the leaf
cluster basis is shown. Ny, stands for the number of matriz-vector multiplications needed for H-matriz
approzimation to outperform H?-approzimation. In all experiments the computed relative error of

approximations did not exceed 2.5e — 6.

M i T.(H) TC(HQ) Tonw(H) Ty (HQ) Ny
2152 10.6 — 10.6¢ 34.6 27.2 (1.6) 0.007 0.43 49
4096 15— 15 72.9 44.2 (4.2) 0.019 1.2 25
8780 21.2-21.2¢ 173.6 102.3 (9) 0.038 2.35 31
16072 30 — 30z 300.3 191.7 (19.9) 0.075 3.74 30
64230 60 — 60z 1167 716 (81.1) 0.25 12.95 36
144092 90 — 90s 2546 1619 (163.4) 0.56 31.1 31

Table 5.16: Construction times Te and matriz-vector multiplication times Ty, for the accuracy setup
e =10"% (the elongated domain). The times are given in seconds. In brackets the time to construct the leaf
cluster basis is shown. Np,, stands for the number of matriz-vector multiplications needed for H-matriz
approzimation to outperform H>*-approzimation. In all experiments but the last one the relative error of
accelerated matriz-vector products did not exceed 7.3e — 6. In the last experiment the relative error
increased to 3.5e — 5, which is connected to the insufficient precision of Galerkin quadrature.
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5.2.3 Accuracy 107°

The results of the computation with the accuracy setup € = 10~° for the sphere are shown in Tables
5.17 and 5.19, while for the elongated domain in Tables 5.18 and 5.20. When a higher accuracy
is required H-matrices outperform H2-matrices for larger problems only when more than 200-400
matrix-vector multiplication is needed. This remains true even in the case of high decay, though
indeed, with decreasing |¢| in s = |s|e’® the performance of H-matrices improves compared to the
performance of the HF FMM.

¢ T.(H) T.(H) Too(H) Tro(H3)  Nowo
—T 3212 720 (144) 0.42 5.6 482
—g—g 4558 1290 (30.5) 0.27 48 722
—5T 3558 1242 (28.3) 0.18 5.1 471
—AT 9774 1145 (28.2)  0.13 5.1 328
—3T 9379 1082 (27.7) 0.1 48 276
—2m 2189 1107 (26.1) 0.1 412 270
T 1920 1047 (29)  0.09 4.1 218
0 1592 796 (20.7)  0.09 4.6 177

Table 5.17: Construction times T. and matriz-vector multiplication times Ty, for the accuracy setup
e=10"% M = 16200, |s| = 22.6 (the unit sphere). The times are given in seconds. In brackets the time to
construct the leaf cluster basis is shown. Ny, stands for the number of matriz-vector multiplications needed
for H-matriz approzimation to outperform H?-approzimation. In all the experiments the relative error of

H-matric approzimations did not exceed 5.2e — 9 and of H?-approzimations 1.6e — 9.

) T.(H) T.(H? Too(H)  Too(H?) Ny
—T 3556 1226.7 (10.6) 0.41 42 615
—g—;j 5074 2007 (22.9) 0.3 4.24 779
5T 4270 1945 (22.2)  0.25 4.23 585
1T 3763 1730 (26.9) 0.2 3.7 585
—5T 3408 1688 (26.8) 0.2 3.9 465
—2m 3115 1601 (26.7)  0.17 3.9 406
—T 2046 1567 (26.9)  0.16 3.3 440
0 2392 1274 (20) 0.17 3.5 336

Table 5.18: Construction times T. and matriz-vector multiplication times Ty, for the accuracy setup
e=10"°, M = 16072, |s| = 30 (the elongated domain). The times are given in seconds. In brackets the
time to construct the leaf cluster basis is shown. Ny, stands for number of the matriz-vector multiplications
needed for H-matriz approzimation to outperform H?-approzimation . In all the experiments the relative
error of H-matric approzimations did not exceed 5.3 - 10™° and of H?-approzimations 3.5 - 107°.
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M s T.(H) T.(H%) Tono(H) T (H2) Ny
2048 8-8i 189.3  84.7 (3.8) 0.011 0.8 152
4232 11.3-11.31 466 201 (9.6) 0.024 1.5 180
8192 16-16i 921.3 496 (17.3) 0.044 2.7 161
16200 22.6-22.61 1824 868 (36) 0.091 4.8 204
32768 32-32i 1957 3800 (69) 0.18 7.2 263
65448 45.3-45.31 7469 4300 (133.5) 0.35 13.4 243
129970 64-64.0i 15151 8503 (282) 0.72 26.6 257

Table 5.19: Times of matriz construction and matriz-vector multiplication for the accuracy setup e = 1072
(the unit sphere). The times are given in seconds. In brackets the time to construct the leaf cluster basis is
shown. Np,, stands for the number of matriz-vector multiplications needed for H-matriz approximation to
outperform H?-approzimation.
In all cases the relative error of H2-matrices did not exceed 1.2e — 9, and of H-matrices varied from 2e — 9

to 5.5e — 8.
M P T.(H) T.(HY) Too(H) Tro(H2) & (H) & (H2) N
2152 10.6 — 10.6: 237 172 (3) 0.015 0.49 1.4e-6 8.9e-10 137
4096 15— 152 555.5 291.4 (6.7) 0.03 1.2 5e-8 8.2e-9 226
8780 21.2 —21.2¢ 1468 696 (18.3) 0.09 2.9 1.1e-7 1.8e-9 282
16072 30 — 307 2792 1282.6 (32.8) 0.15 4 5.3e-8  2.6e-9 393
64230 60 — 60z 11250 4800 (125.9) 0.5 16.2 3.3e-8  4.7e-9 411
144092 90 — 90z 24217 12052 (300) 1.08 35.6 4.3e-8 7.7e-9 353

Table 5.20: Construction times 1., matriz-vector multiplication times Ty, and computed relative errors for
the accuracy setup e = 107° (the elongated domain). The times are given in seconds. In brackets the time
to construct the leaf cluster basis is shown. Ny, stands for the number of matriz-vector multiplications

needed for H-matriz approzimation to outperform H?-approzimation.

The decrease in the accuracy of H-matrices is likely to be connected to the insufficient Galerkin quadrature
order.
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Conclusions

In this work we provided the description of the HF FMM with important technical details, as well
as analyzed the error of the multilevel FMM approximation. Additionally, we reviewed known facts
about H-matrix techniques.

We have shown that the presence of decay allows to decrease the ranks of multipole transforms,
thus improving the performance of the HF FMM. In this regime H-matrix approximation is of almost
linear complexity, namely O(M log® M), a > 0. In practice, the choice between H-matrices and the
HF FMM is quite difficult. The efficiency of both methods depends on the geometry of the domain,
accuracy and discretization size.

In [22] it was shown that for the no-decay case the time to construct an H-matrix is significantly
larger than the time to construct an HF FMM matrix, while the opposite holds for the matrix-vector
multiplication times. Hence, H-matrices have to be constructed only when 300-600 matrix-vector
multiplications are needed. Our experiments show that the presence of decay allows to decrease
the H-matrix construction times, and thus they perform in practice better than the HF FMM even
if a small number of matrix-vector multiplications is needed. Based on the results of the previous
sections, we suggest the following simple heuristic to perform the choice between H-matrices and
the high-frequency fast multipole method.

First, H-matrices have to be constructed when at the first few (2-3) levels of the admissible block-
cluster tree there are admissible block-clusters that cannot be approximated by FMM expansions
because of the low-frequency breakdown. This is a clear indicator that |x| diam Q is small enough,
i.e. this is the case of the low-frequency regime.

Next, depending on the accuracy and the angle ¢ in s = |s|e’®, we suggest that H-matrices are
constructed only when more than V,,, matrix-vector multiplications are needed, where N,,, is given
in Table 5.21. These values are valid for discretizations with 5 - 10* — 10° unknowns. For moderate

‘16—4 le—6 le—9

100-150  250-400  700-900
8-12 20-30 90-400

o] >
lp| <

Table 5.21: The number of matriz-vector multiplications depending on the desired accuracy € and the
argument ¢ in s = \s|e“¢’ for which the use of H-matriz based techniques would be advantageous compared
to HF FMM matrices.

s
4
s
4

and small accuracies (¢ > 107%) and small decay in practice H-matrices perform worse than the HF
FMM, while in the case of prevailing decay they are advantageous over the HF FMM, as Table 5.21
shows. For high accuracies it makes sense to use the HF FMM for the whole range of ¢.

Nevertheless, as noted in [22] for non-decay case, the application of H-matrices to the solution
of boundary-value problems for the Helmholtz equation may still be advantageous, due to the avail-
ability of efficient H-matrix based preconditioners, which require a corresponding H-matrix to be
constructed in advance.
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Appendix A

Complexity of the HF FMM

Let us analyze the complexity of the HF FMM when applied to the approximation of

M
fgtho(iste—ka)qk, z€l, qeC, =1,...,M.
k=1

Let us assume that the diameter of the domain is 1, fix an admissible block-cluster tree and introduce
the following quantities. Let C};5,,(C15,) be the complexity of one multipole-to-multipole (local-to-local)
transform on the level j, C{sz be the complexity of one multipole-to-local transform at the level j. Let
us assume that an octree based partitioning of the domain is employed; however, since we consider a 2-
dimensional surface T, at each level j of a cluster tree there are (in average) 4’ non-empty clusters (see
Remark 2.2.6). Importantly, the diameter of the bounding box of a cluster at the level j can be bounded
by 277, The cluster basis for a leaf cluster 7 is a matrix of size (N; x #7), where N, is the length of the
multipole expansion. If for all leaf clusters o

diam (Q|s]) < const,

then N, can be bounded uniformly (for all leaf clusters o) by constant. Hence, the number of levels of the
cluster tree has to be chosen so that this condition holds true. More precisely, the depth of the cluster tree
L should satisfy

27 %|s| < const,

ie. L > log|s| + ¢, for some ¢ € R. Hence, forming the multipole expansion (performing the forward
transformation involving the leaf cluster basis, see Section 2.5) requires O(M) steps.

We additionally assume that the number of admissible neighbors of a cluster at level £ can be bounded by
a constant independent on ¢, M, i.e. the sparsity constant of the block-cluster tree Cy;, < const, see Section
2.3. Then the complexity of the FMM is bounded by the sum of the complexities of all the transforms over
all the levels of the block-cluster tree:

L L
O(M)+0 (Z (ClltnM‘lk + szL4k)> +0 (Z C'JkuzL4k> .
k=0 k=0

In the case when s = |s|e’®, a = const and |s| — 400, the complexity of the transforms can be bounded
by a (possibly large) constant. Hence, the complexity of the HF FMM is

log |s|+c
oM+ > 4] =0mM),
k=0

under assumption M = O(|s|?).
Let us remark that in the no-decay case

Cllf/mM = 0(4_k‘5|210g ‘2_k5|)7 Cfu = 0(4_k|5|210g |2_k8|)a CJIfML = 0(4_k‘5|2)7

and hence the total complexity of the HF FMM is O(M log? M).
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