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Abstract. In this paper we discuss geometric torsion in terms of a distinguished
class of Dirac operators. We demonstrate that from this class of Dirac operators a
variational problem for torsion can be derived similar to that of Yang-Mills gauge
theory. As a consequence, one ends up with a propagating torsion even in vacuum as
opposed to the usual variational problem encountered in ordinary Einstein-Cartan
theory.
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1. Introduction

A connection on the frame bundle of any smooth manifold M is known to yield the
two independent geometrical concepts of curvature and torsion. There are various (but
equivalent) approaches to the torsion of a connection, depending on the geometrical
setup. For instance, the torsion of a connection ∇ ≡ ∇TM on the tangent bundle of
M may be defined by

τ∇ := d∇Id ∈ Ω2(M,TM) . (1)

Here, d∇ denotes the exterior covariant derivative with respect to ∇TM. The canonical
one-form Id ∈ Ω1(M,TM) is defined as Idx(v) := v for all tangent vectors v ∈ TxM
and x ∈ M . This canonical one-form corresponds to the soldering form on the frame
bundle of M .

In general relativity a field equation for the torsion is obtained by the so-called
“Palatini formalism”, where the metric and the connection on the tangent bundle are
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2 J. TOLKSDORF

regarded as being independent from each other (c.f. [11]). The resulting field equation
for torsion in Einstein’s theory of gravity is known to be given by

τ∇ = λgrav jspin , (2)

where the real coupling constant λgrav is proportional to the gravitational constant.
The so-called “spin-current” jspin ∈ Ω2(M,TM) is obtained by the variation of the
action functional that dynamically describes matter fields with respect to the metric
connection. Usually, ordinary bosonic matter does not depend on the metric connec-
tion as, for instance, described by the Standard Model. According to (2) the connection
is thus provided by the Levi-Civita connection. This holds true, in particular, when
matter is disregarded. When matter is defined in terms of spinor fields, as in the case
of the Dirac action, then the right-hand side of (2) may be non-vanishing. This is
usually rephrased by the statement

“Spin is the source of torsion”.

However, even in this case torsion is not propagating in space-time since (2) is purely
algebraic relation between torsion and matter. Furthermore, the ordinary Dirac action
is real only if it is defined in terms of a torsion-free connection (c.f. [4]).

In this work, we discuss torsion within the framework of general relativity which
is different from the ordinary Palatini formalism. We obtain field equations for the
torsion from a functional that looks similar to the Einstein-Hilbert-Yang-Mills-Dirac
action. This functional is derived from a certain class of Dirac operators. The geomet-
rical background of these Dirac operators is basically dictated by the reality condition
imposed on the action including torsion. Furthermore, this class of Dirac operators fits
well with those giving rise to Einstein’s theory of gravity, ordinary Yang-Mills-Dirac
theory and non-linear σ−models, as discussed in [15].

From a physics point of view torsion provides an additional degree of freedom to
Einstein’s theory of gravity. In the latter the action of a gravitational field is described
in terms of the curvature of a smooth four dimensional manifold M . Even more, this
curvature is assumed to be uniquely determined by the Levi-Civita connection on the
tangent bundle of M with fiber metric gM. In other words, the geometrical model
behind Einstein’s theory of gravity is known to be given by a smooth (orientable)
Lorentzian four-manifold (M, gM) of signature s = ±2 (resp. a diffeomorphism class
thereof). For a “space-time” (M, gM) to be physically admissible the metric field gM

has to fulfill the Einstein equation of gravity (and maybe topological restriction on
M , like global hyperbolicity), whereby the source of gravity is given by the energy-
momentum current of matter. The latter is either phenomenologically described by a
mass density or in terms of matter fields (i.e. sections of certain vector bundles over
space-time). This holds true, especially, if the spin of matter is taken into account. In
this case, matter is geometrically described by (Dirac) spinor fields. According to the
above mentioned statement about the relation between spin and torsion a huge variety
of generalizations of Einstein’s theory of gravity including torsion has been proposed
over the last decades, going under the name “Einstein-Cartan theory”, “Poincare gauge
gravity”, “teleparallel gravity”, etc. (see, for instance, [7], as well as the more recent
essay [8] and the references cited therein). For higher order gravity with (propagating)
torsion discussed within the realm of Connes’ non-commutative geometry we refer to
[6], [12] and the references sited therein.

In some of the above mentioned approaches torsion does not propagate, whereas
other approaches propose only torsion but no curvature. In any case, spin is considered
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to be the source of torsion. Since spin is fundamental torsion plays also a prominent
role in (super-)string theory (see, for instance, [2] and [9]). For an overview about
the role of torsion in theoretical physics we refer to [5]. Also, we refer to [16] as a
reasonable source of references to the issue. From a physics perspective it is speculated
that torsion might contribute to dark energy, whose existence seems experimentally
confirmed by the observed acceleration of the universe.

The approach to a dynamical torsion presented in this work is different, for it
starts out with Rarita-Schwinger fermions to which torsion minimally couples. These
fermions are geometrically modeled by sections of a twisted spinor bundle, where the
“inner degrees of freedom” are generated by the (co-)tangent bundle of the underlying
manifold. As a consequence, the resulting coupling to torsion completely parallels that
of spinor-electrodynamics. Since the known matter is geometrically described by Dirac
spinors, the Rarita-Schwinger fermions may serve as a geometrical model to physically
describe dark matter (or parts thereof). Accordingly, the energy momentum of torsion
(the underlying gauge field) may contribute to dark energy. The coupling constant
between the Rarita-Schwinger and the torsion field, however, is a free parameter like
in ordinary gauge theory, although the underlying action is derived from “first (ge-
ometrical) principles”. Moreover, this gauge coupling constant is an additional free
parameter as opposed to ordinary Einstein-Cartan theory.

This paper is organized as follows: We start out with a summary of the necessary
geometrical background of Dirac operators in terms of general Clifford module bundles.
Afterwards, we discuss torsion in the context of a distinguished class of Dirac operators
which give rise to field equations similar to Dirac-Yang-Mills equations.

2. Geometrical background

The geometrical setup presented fits well with that already discussed in [15] for
non-linear σ−models and Yang-Mills theory. For the convenience of the reader we
briefly summarize the basic geometrical background. In particular, we present the
basic features of Dirac operators of simple type. This class of Dirac operators will play
a fundamental role in our discussion. For details we refer to [14] (or [15]) and [1], as
well as to [3] which serves as a kind of “standard reference” for what follows.

In the sequel, (M, gM) always denotes a smooth orientable (semi-)Riemannian man-
ifold of finite dimension n ≡ p + q. The index of the (semi-)Riemannian metric gM

is s ≡ p − q 6≡ 1 mod 4. The bundle of exterior forms of degree k ≥ 0 is denoted
by ΛkT ∗M →M with its canonical projection. Accordingly, the Grassmann bundle is
given by ΛT ∗M ≡

⊕
k≥0 ΛkT ∗M →M . It naturally inherits a metric denoted by gΛM,

such that the direct sum is orthogonal and the restriction of gΛM to degree one equals
to the fiber metric g∗M of the cotangent bundle T ∗M →M .

The mutually inverse musical isomorphisms in terms of gM (resp. g∗M) are denoted

by [/] : TM ' T ∗M , such that, for instance, gM(u, v) = g∗M(u[, v[) for all u, v ∈ TM .
The Clifford bundle of (M, gM) is denoted by πCl : ClM = Cl+M ⊕ Cl−M → M . Its

canonical “even/odd” grading involution is τCl ∈ End(ClM). The hermitian structure〈
·, ·
〉
Cl

is the one induced by the metric gM due to the canonical linear isomorphism
between the Clifford and the Grassmann bundle (c.f. (8), below). We always assume
the Clifford and the Grassmann bundle to be generated by the cotangent bundle of
M .

Throughout the present work we always identify on (M, gM) the vector bundle
πΛT∗M|Λ2T∗M : Λ2T ∗M → M with the (Lie algebra) bundle πso : so(TM) → M of



4 J. TOLKSDORF

the gM skew-symmetric endomorphisms on the tangent bundle πTM : TM → M due
to the canonical linear (bundle) isomorphism (over the identity on M)

Λ2T ∗M
'−→ so(TM) ⊂ End(TM)

ω 7→ Ω ,
(3)

where for all u, v ∈ TM : gM(u,Ω(v)) := ω(u, v). Accordingly, we always take advan-
tage of the induced isomorphism

Λ2T ∗M ⊗ TM '−→ T ∗M ⊗ so(TM)

ω ⊗ v 7→ v[ ⊗ Ω .
(4)

A smooth complex vector bundle πE : E → M is called a Clifford module bundle,
provided there is a Clifford map. That is, there is a smooth linear (bundle) map (over
the identity on M)

γE : T ∗M −→ End(E)

α 7→ γE(α) ,
(5)

satisfying γE(α)2 = εg∗M(α, α)IdE . Here, ε ∈ {±1} depends on how the Clifford product
is defined. That is, α2 := ±g∗M(α, α)1Cl ∈ ClM, for all α ∈ T ∗M ⊂ ClM and 1Cl ∈ ClM
denotes the unit element.

To emphasize the module structure we write

πE : (E , γE) −→ (M, gM) . (6)

The bundle (6) is called an odd hermitian Clifford module bundle, provided it is
Z2−graded, with grading involution τE , and endowed with an hermitian structure〈
·, ·
〉
E , such that γE ◦ τE = −τE ◦γE and both the grading involution and Clifford action

are either hermitian or skew-hermitian. In what follows, (6) always means an odd
hermitian Clifford module.

The linear map

δγ : Ω(M,End(E)) −→ Ω0(M,End(E))

ω ≡ α⊗B 7→ /ω ≡ γE
(
σ−1

Ch (α)
)
◦B

(7)

is called the “quantization map”. It is determined by the linear isomorphism called
symbol map:

σCh : ClM
'−→ ΛT ∗M

a 7→ ΓCh(a)1Λ .
(8)

Here, 1Λ ∈ ΛT ∗M is the unit element. The homomorphism ΓCh : ClM → End(ΛT ∗M)
is given by the canonical Clifford map:

γCl : T ∗M −→ End(ΛT ∗M)

v 7→
{

ΛT ∗M −→ ΛT ∗M

ω 7→ εint(v)ω + ext(v[)ω ,

(9)

where, respectively, “int” and “ext” indicate “interior” and “exterior” multiplication.
When restricted to Ω1(M,End(E)) the quantization map (7) has a canonical right-

inverse given by

extΘ : Ω0(M,End(E)) −→ Ω1(M,End(E))

Φ 7→ ΘΦ ,
(10)
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where the canonical one-form Θ ∈ Ω1(M,End(E)) is given by Θ(v) := ε
nγE(v

[), for all
v ∈ TM . The associated projection operators are p ≡ extΘ ◦ δγ |Ω1 and q := IdΩ1 − p,
such that

Ω1(M,End(E)) = p
(
Ω1(M,End(E))

)
⊕ q
(
Ω1(M,End(E))

)
. (11)

Notice that for any connection on a Clifford module bundle the first order operator
T∇ ≡ q(∇E) : Ω0(M, E) → Ω1(M, E), ψ 7→ ∇Eψ − Θ

(
/∇Eψ

)
is the associated twister

operator. Here, /∇E ≡ δγ(∇E) denotes the Dirac operator associated to the connection
(see below).

A (linear) connection on a Clifford module bundle is called a Clifford connection if
the corresponding covariant derivative ∇E “commutes” with the Clifford map γE in
the following sense:

[∇EX , γE(α)] = γE
(
∇T

∗M
X α

) (
X ∈ Sec(M,TM), α ∈ Sec(M,T ∗M)

)
. (12)

Here, ∇T∗M is the Levi-Civita connection on the co-tangent bundle with respect to g∗M.
Equivalently, a connection on a Clifford module bundle is a Clifford connection if

and only if it fulfills:

∇T
∗M⊗End(E)

X Θ = 0
(
X ∈ Sec(M,TM)

)
. (13)

Apparently, Clifford connections provide a distinguished class of connections on any
Clifford module bundle.

We denote Clifford connections by ∂A. This notation is used because Clifford con-
nections are parametrized by a family of locally defined one-forms A ∈ Ω1(U,Endγ(E)).
Here, Endγ(E) ⊂ End(E) denotes the total space of the algebra bundle of endomor-
phisms which commute with the Clifford action that is provided by the Clifford map
γE .

We call in mind that a Dirac operator /D on a Clifford module bundle is a first order
differential operator acting on sections ψ ∈ Sec(M, E), such that [ /D, df ]ψ = γE(df)ψ
for all smooth functions f ∈ C∞(M). The set of all Dirac operators on a given
Clifford module bundle is denoted by Dir(E , γE). It is an affine set over the vector
space Ω0(M,End(E)). Moreover, Dirac operators are odd operators on odd (hermitian)
Clifford module bundles: /DτE = −τE /D . In this case, the underlying vector space
reduces to Ω0(M,End−(E)).

We call the Dirac operator /∇E ≡ δγ(∇E) the “quantization” of a connection ∇E
on a Clifford module bundle. Let e1, . . . , en ∈ Sec(U, TM) be a local frame and
e1, . . . , en ∈ Sec(U, T ∗M) its dual frame. For ψ ∈ Sec(M, E) one has

/∇Eψ :=

n∑
k=1

δγ(ek)∇Eekψ =
n∑
k=1

γE(e
k)∇Eekψ , (14)

where the canonical embedding Ω(M) ↪→ Ω(M,End(E)), ω 7→ ω ≡ ω ⊗ IdE is taken
into account.

Every Dirac operator has a canonical first-order decomposition:

/D = /∂B + ΦD . (15)

Here, ∂B denotes the (covariant derivative of the) Bochner connection that is defined
by /D as

2evg
(
df, ∂Bψ

)
:= ε

(
[ /D2, f ]− δgdf

)
ψ

(
ψ ∈ Sec(M, E)

)
, (16)
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with evg” being the evaluation map with respect to gM and δg the dual of the exterior
derivative (see [3]).

The zero-order section ΦD := /D− /∂B ∈ Sec(M,End(E)) is thus also uniquely deter-
mined by /D. We call the Dirac operator /∂B the “quantized Bochner connection”.

Since the set Dir(E , γE) is an affine space, every Dirac operator can be written as

/D = /∂A + Φ . (17)

However, this decomposition is far from being unique. The section Φ ∈ Sec(M,End(E))
depends on the chosen Clifford connection ∂A. In general, a Dirac operator does not
uniquely determine a Clifford connection.

Definition 2.1. A Dirac operator is said to be of “simple type” provided that ΦD

anti-commutes with the Clifford action:

ΦDγE(α) = −γE(α)ΦD

(
α ∈ T ∗M

)
. (18)

It follows that a Dirac operator of simple type uniquely determines a Clifford con-
nection ∂A together with a zero-order operator φD ∈ Sec(M,Endγ(E)), such that (c.f.
[14])

/D = /∂A + τEφD . (19)

These Dirac operators play a basic role in the geometrical description of the Standard
Model (c.f. [14]). They are also used in the context of the family index theorem
(see, for instance, [3]). Apparently, Dirac operators of simple type provide a natural
generalization of quantized Clifford connections. Indeed, they build the biggest class
of Dirac operators such that the corresponding Bochner connections are also Clifford
connections.

Every Dirac operator is known to have a unique second order decomposition

/D2 = 4B + VD , (20)

where the Bochner-Laplacian (or “trace Laplacian”) is given in terms of the Bochner
connection as 4B := εevg

(
∂T
∗M⊗E

B ◦ ∂B

)
. The trace of the zero-order operator VD ∈

Sec(M,End(E)) explicitly reads (c.f. [14]):

trEVD = trγ
(
curv( /D)− ε evg(ω

2
D)
)
− εδg

(
trEωD

)
, (21)

where curv( /D) ∈ Ω2(M,End(E)) denotes the curvature of the Dirac connection of
/D ∈ Dir(E , γE) and trγ := trE ◦ δγ the “quantized trace”. The Dirac connection of
/D is defined by ∂D := ∂B + ωD, where ωD ≡ extΘΦD ∈ Ω1(M,End+(E)). The Dirac
connection has the property that it is uniquely determined by /D and /∂D = /D.

Let M be closed compact. We call the functional

ID : Dir(E , γE)→ C

/D 7→
∫
M
∗trEVD

(22)

the “universal Dirac action” and

ID,tot : Dir(E , γE)×Sec(M, E)→ C

( /D,ψ) 7→
∫
M
∗
(〈
ψ, /Dψ

〉
E + trEVD

) (23)

the “total Dirac action”. Here, “∗” is the Hodge map with respect to gM and a chosen
orientation of M .
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If the Dirac connection of /D is a Clifford connection, then also ∂D = ∂B. In this
case, the universal Dirac action (22) reduces to the usual Einstein-Hilbert functional.

In contrast, for Dirac operators of simple type the universal Dirac action becomes

ID

(
/∂A + τEφD

)
=

∫
M
∗
(
− ε rk(E)

4 scal(gM) + trEφ
2
D

)
, (24)

with rk(E) ≥ 1 being the rank of the underlying Clifford module bundle and the
smooth function scal(gM) is the scalar curvature of the Levi-Civita connection of gM.
The explicit formula (24) is a direct consequence of Lemma 4.1 and the Corollary 4.1 of
Ref. [14] (see also Sec. 6 in loc. site). The restriction of the universal Dirac action (22)
to Dirac operators of simple type (19) therefore corresponds to the Einstein-Hilbert
action with a cosmological constant Λ, where (up to numerical factors)

Λ = trEφ
2
D ≡ ±‖φD‖2 . (25)

3. Dirac operators with torsion

To this end let (M, gM) be a (semi-)Riemannian spin-manifold of even dimension
n = p + q and signature p − q 6≡ 1 mod 4. Let πS : S = S+ ⊕ S− → M be
a (complexified) spinor bundle with grading involution τS ∈ End(S). The hermitian
structure is denoted by

〈
·, ·
〉
S
. The Clifford action is provided by the canonical Clifford

map γS : T ∗MC → EndC(S) ' ClCM. The induced Clifford action is supposed to be
anti-hermitian. The Clifford action also anti-commutes with the grading involution.
The grading involution is assumed to be either hermitian or anti-hermitian.

We consider the twisted spinor bundle

πE1 : E1 := S ⊗M TM −→M (26)

with the grading involution τE1 := τS⊗ IdTM and Clifford action γE1 := γS⊗IdTM. The
hermitian structure reads:

〈
·, ·
〉
E1

:=
〈
·, ·
〉
S
gM.

The Clifford extension of (26) is denoted by (c.f. [15])

πE : E := E1 ⊗M ClM −→M . (27)

Here, the grading involution and Clifford action, respectively, are given by τE := τE1⊗τCl

and γE := γE1⊗IdCl. The hermitian structure is
〈
·, ·
〉
E :=

〈
·, ·
〉
E1

〈
·, ·
〉
Cl

.

In what follows all vector bundles are regarded as complex vector bundles, though
we do not explicitly indicate their complexifications.

We denote the covariant derivative of the spin connection by ∇S. The corresponding
spin-Dirac operator is /∇S.

For A ∈ Ω1(M,Λ2T ∗M), the most general metric connection on the tangent bundle
is known to be given by the covariant derivative

∇g := ∇LC +A . (28)

Here, ∇LC is the covariant derivative of the Levi-Civita connection on the tangent
bundle with respect to gM.

Accordingly, the torsion τ∇g ∈ Ω2(M,TM) of a metric connection (28) can be
expressed by the torsion form (also called “torsion tensor”)

τA(u, v) ≡ A(u)v −A(v)u (u, v ∈ TM) . (29)
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Indeed, the definitions (28) and (29) imply that for all smooth tangent vector fields
X,Y ∈ Sec(M,TM):

τA(X,Y ) = ∇gXY −∇
LC
X Y −∇gYX +∇LC

Y X

= ∇gXY −∇
g
YX − [X,Y ]

= d∇gId(X,Y ) .

(30)

Hence, we do not make a distinction between the torsion τ∇g ∈ Ω2(M,TM) of a metric
connection ∇g and the torsion form τA ∈ Ω2(M,TM) of A ∈ Ω1(M,Λ2T ∗M).

Definition 3.1. Let ∇g be the covariant derivative of a metric connection on the
tangent bundle of (M, gM). We call the section

A := ∇g −∇LC ∈ Ω1(M,Λ2T ∗M) (31)

the “torsion potential” of τA = d∇gId.

Consider the following hermitian Clifford connection on the Clifford module bundle
(26) that is provided by the following covariant derivative:

∂A := ∇S⊗IdTM + IdS⊗∇g

= ∇S⊗IdTM + IdS⊗∇LC + IdS⊗A
≡ ∇E1 + IdS⊗A .

(32)

Clearly, (32) is but the gauge covariant derivative of a twisted spin connection on (26)
that is defined by the lift of (28).

Of course, every metrical connection (28) on (M, gM) can be lifted to the spinor
bundle πS : S → M . However, in this case the resulting spin connection is neither a
Clifford connection, nor is the ordinary Dirac action real-valued.

With respect to an oriented orthonormal frame e1, . . . , en ∈ Sec(U, TM), with the
dual frame being denoted by e1, . . . , en ∈ Sec(U, T ∗M), the corresponding twisted
spin-Dirac operator reads:

/∂A = /∇S ⊗ IdTM +
n∑
k=1

γS(ek)⊗∇gek

= /∇S ⊗ IdTM +
n∑
k=1

γS(ek)⊗∇LC
ek

+
n∑
k=1

γS(ek)⊗A(ek)

≡ /∇E1 +
n∑
k=1

γS(ek)⊗A(ek) ≡ /∇E1 + /A .

(33)

It looks similar to the usual gauge covariant Dirac operator encountered in ordinary
electrodynamics on Minkowski space-time.

Accordingly, on the Clifford extension (27) we consider the Clifford connection

∇̃E := ∂A⊗ IdCl + IdE1⊗∇Cl

≡ ∇E + IdS⊗A⊗ IdCl ,
(34)

with ∇Cl being the induced Levi-Civita connection on the Clifford bundle.
With regard to the canonical embedding πE |S : E1 ↪→ E → M, z 7→ z ≡ z ⊗ 1 one

obtains for ψ ≡ ψ ⊗ 1 ∈ Sec(M, E) the equality

∇̃Eψ = ∂Aψ ⊗ 1 . (35)
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Definition 3.2. Let d∇LC be the exterior covariant derivative induced by the Levi-
Civita connection with curvature F∇LC. Also, let F∇g ∈ Ω2(M,Λ2T ∗M) be the curvature
of ∇g. We call the relative curvature

FA := F∇g − F∇LC = d∇LCA+A ∧A
= d∇LCA+ 1

2 [A,A] ∈ Ω2(M,Λ2T ∗M)
(36)

the “torsion field strength” associated to the torsion potential A = ∇g −∇LC.

On a metrical flat manifold (M, gM) the torsion field strength fulfills a Bianchi
identity and therefore becomes a true curvature that is defined by torsion. In some
approaches to torsion, this curvature is used to geometrical describe gravity on metrical
flat space-time manifolds.

Let again e1, . . . , en ∈ Sec(U, TM) be a local (oriented orthonormal) frame with
the dual frame being denoted by e1, . . . , en ∈ Sec(U, T ∗M). We consider the following
one-form:

Σ :=

n∑
b=1

eb ⊗ Σb ∈ Ω1(M,End−γ (E)) ,

Σb :=

n∑
a=1

IdS⊗ FA(eb, ea)⊗ ea ∈ C∞(U,End−γ (E)) .

(37)

Again, End−γ (E) ⊂ End(E) denotes the sub-algebra of the (odd) endomorphisms which
commute with the Clifford action provided by γE .

We consider the Dirac operator of simple type

/D := /̃∇E
′

+ τE′φD (38)

on the Clifford twist (see, again, [15])

πE′ : E ′ := E ⊗M ClM →M (39)

of (27). The grading involution, the Clifford action and the hermitian product are
defined by

τE′ := τE⊗IdCl , γE′ := γE⊗IdCl ,
〈
·, ·
〉
E′ :=

〈
·, ·
〉
E

〈
·, ·
〉
Cl
. (40)

Also,

∇̃E
′

:= ∇̃E⊗ IdCl + IdE⊗∇Cl (41)

is the covariant derivative of the induced Clifford connection on the Clifford twist of
(27) and

φD := −
n∑
b=1

Σb ⊗ eb

=

n∑
a,b=1

IdS⊗ FA(ea, eb)⊗ ea ⊗ eb ∈ Sec(M,End−γ (E ′)) .
(42)

Notice that the Dirac operator of simple type (38) is fully determined by the Clifford
connection (32). In contrast, the quantization of the lift of ∇g to the spinor bundle is
neither a quantized Clifford connection, nor a Dirac operator of simple type.
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Theorem 3.1. Let M be closed compact. When restricted to the class of simple type
Dirac operators (38) and to the sections ψ ∈ Sec(M, E1) ⊂ Sec(M, E ′), the total Dirac
action decomposes as

ID,tot( /D,ψ) =

∫
M
∗
(
− ε rk(E′)

4 scal(gM) +
〈
ψ, /∂Aψ

〉
E1
− 22nrk(S)‖FA‖2

)
, (43)

where ‖FA‖2 ≡ −g∗M(ea, ec) g∗M(eb, ed) tr
(
FA(ea, eb)FA(ec, ed)

)
≡ −trFabF ab ∈ C∞(M) .

In particular, the variation of the total Dirac action (43) with respect to the global
torsion potential A ∈ Ω1(M,Λ2T ∗M) yields a Yang-Mills like equation for the torsion
field strength:

δ∇LCFA = −λ0Re
〈
ψ,Θψ

〉
S
. (44)

Here, λ0 ≡ 2−2(n+1)εn/rk(S) and δ∇LC ≡ (−1)n(k+1)+q+1 ∗d∇LC∗ is the formal adjoint
of the exterior covariant derivative d∇LC.

With respect to an oriented orthonormal frame the right-hand side of (44) explicitly
reads:

Re
〈
ψ,Θψ

〉
S

:=
ε

n

n∑
i,j,k,l,m=1

gM(ei, ej)gM(el, ek)Re
〈
ψk, γS(ej)ψm

〉
S
ei ⊗ el ⊗ em

≡ ε

n

n∑
i,j,k=1

Re
〈
ψi, γkψ

j
〉
S
ek ⊗ ei ⊗ ej

≡ ε

n

n∑
i,j,k=1

〈
ψi, γkψj

〉
S
ek ⊗ ei ∧ ej ∈ Ω1(M,Λ2T ∗M) ,

(45)

whereby ψ =:
∑n

k=1 ψ
k⊗ek ∈ Sec(M, E1) and ψi ≡

∑n
j=1 gM(ei, ej)ψ

j.

Before proving the theorem (3.1) it might be worthwhile adding some comments
first: Clearly, the functional (43) looks much like the usual Dirac-Yang-Mills action
including gravity. This holds true, especially, when (M, gM) is supposed to be flat.
Hence, the Euler-Lagrange equation (44) may not come as a surprise. In fact, for
flat (M, gM), (44) formally coincides with the inhomogeneous Yang-Mills equation,
where the electric current is proportional to the Dirac current. A crucial distinction
to ordinary Yang-Mills theory arises since the torsion field strength not only depends
on the torsion potential but also on the Levi-Civita connection (determined by the
Einstein equation). As a consequence, the energy-momentum current not only depends
on the metric but also on its first derivative. This additional dependence, however,
can be always (point-wise) eliminated by the choice of normal coordinates (nc.), such
that at x ∈M :

FA|x
nc.
=
(
dA+ 1

2 [A,A]
)
|x . (46)

Such a choice of local trivialization of the frame bundle does not affect the torsion
potential (in contrast to the action of diffeomorphisms on M).

In order to end up with the field equation (44) the sections ψ ∈ Sec(M, E1) are
twisted fermions of spin 3/2, as opposed to ordinary Dirac-Yang-Mills theory. In the
presented approach to torsion the additional spin-one degrees of freedom of matter are
regarded as “internal gauge degrees” that couple to torsion.

We stress that the functional (43) is real-valued, indeed. This is because, the Dirac
operator /∂A is symmetric and the twisted spin-connection provided by ∇E1 is torsion-
free. If the spinor bundle were not twisted with the tangent bundle in (26), then
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one has to use (28) instead of ∇E1 to define the ordinary Dirac action. In this case,
however, the functional (43) would be necessarily complex, as mentioned already. The
demand to derive a real action including torsion from Dirac operators of simple type
basically dictates the geometrical setup presented that eventually leads to (43).

Proof. The statement of (3.1) is a special case of the Proposition 6.2 in [15]. To
explicitly prove the statement we consider the Z2−graded hermitian vector bundle
πE : E := TM⊗MClM⊗MClM →M . The grading involution and hermitian structure
are given, respectively, by τE := IdTM⊗ τCl⊗ IdCl and

〈
·, ·
〉
E

:= gM

〈
·, ·
〉
Cl

〈
·, ·
〉
Cl

. Hence,

πE′ : E ′ = S ⊗M E → M is an odd twisted hermitian spinor bundle, with the grading
involution τE′ := τS ⊗ τE and the Clifford action provided by γE′ := γS ⊗ IdE. The
hermitian structure is

〈
·, ·
〉
E′ :=

〈
·, ·
〉
S

〈
·, ·
〉
E
. Furthermore, the twisted spinor bundle

carries the canonical Clifford connection that is provided by ∇E′ = ∇S⊗E, where
∇E := ∇TM⊗Cl⊗Cl and ∇TM ≡ ∇LC.

From the general statement concerning the universal Dirac action restricted to Dirac
operators of simple type it follows that

ID( /D) =

∫
M
∗trγ

(
curv( /∇E

′
) + trE′φ

2
D

)
. (47)

One infers from the ordinary Lichnerowicz-Schrödinger formula of twisted spin-Dirac
operators (c.f. [10] and [13]) that

trγcurv( /∇E
′
) = −ε rk(E′)

4 scal(gM) . (48)

Furthermore, it is straightforward to check that

trE′φ
2
D ∼ ‖FA‖2 . (49)

Finally, when restricting to sections ψ ∈ Sec(M, E1) ⊂ Sec(M, E ′) one obtains〈
ψ, /Dψ

〉
E′ =

〈
ψ, /∂Aψ

〉
E1

=
〈
ψ, /∇E1ψ

〉
E1

+
〈
ψ, /Aψ

〉
E1
.

(50)

The first equality holds because〈
ψ, τE′φDψ

〉
E′ = −

n∑
a,b=1

〈
ψ, (IdS ⊗ FA(ea, eb))ψ

〉
E1

〈
ea, 1

〉
Cl

〈
eb, 1

〉
Cl

= 0 .

(51)

This proves (43). To also prove (44) we remark that (50) formally coincides with the
gauge covariant Dirac-Lagrangian and

∗ ‖FA‖2 ∼ tr
(
FA ∧ ∗FA

)
(52)

formally coincides with the usual Yang-Mills-Lagrangian. The basic difference is that
the torsion potential A ∈ Ω1(M,Λ2T ∗M) itself does not define a connection, in general.
As already mentioned, if (M, gM) is flat, then the torsion field strength FA has the geo-
metrical meaning of the curvature of a general metric connection. In general, however,
the torsion field strength determines the torsion of a general metric connection. �

We also mention that by an appropriate re-definition of the sections φ and ψ one
may always recast the functional (43) into

ID,tot( /D,ψ) ∼ − ε
λgrav

∫
M
∗scal(gM) +

∫
M
∗
〈
ψ, /∂Aψ

〉
E1
− 1

2g2

∫
M
tr
(
FA ∧ ∗FA

)
, (53)
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with g > 0 being an arbitrary positive (coupling) constant like in ordinary non-abelian
Yang-Mills theory. Furthermore, by re-scaling the torsion potential A, which is ad-
missible since the torsion potential belongs to a vector space as opposed to gauge
potentials, the field equation (44) changes to

δ∇LCFA = −λtorRe
〈
ψ,Θψ

〉
S
. (54)

The dimensionless constant λtor ≡ εng > 0 is a free parameter analogous to ordinary
Dirac-Yang-Mills theory. Accordingly, the Dirac equation becomes

/∂Aψ = 0 ⇔ /∇E1ψ = −g /Aψ . (55)

As in ordinary general relativity the Levi-Civita connection is determined by the
Einstein equation with the energy-momentum current similarly defined to the usual
Dirac-Yang-Mills theory. As already mentioned, when (53) is varied with respect to the
metric one also has to take into account that the torsion field strength itself depends
on gM (and its first derivative).

The field equation (54) for torsion should be contrasted with the field equation (2)
of ordinary Einstein-Cartan theory. The coupling constant g determines the coupling
strength of the inner degrees of freedom of the fermions to torsion similar to ordinary
Dirac-Yang-Mills theory. This coupling constant is dimensionless and independent
of the gravitational constant as opposed to the coupling constant obtained by the
Palatini formalism of general relativity. Therefore, the assumption 0 < g << 1 allows
to treat all the field equations perturbatively. In particular, one also obtains non-trivial
solutions of (54), even if the coupling to the fermions is omitted (e.g. in matter free
regions). This is also in strong contrast to (2).
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4. M. Göckeler, Th. Schücker: Differential geometry, gauge theories, and gravity, Cambridge Univer-

sity Press, New York, (1987).
5. B. Gogala: Torsion and related concepts: An introductory overview, Int. J. Theor. Phys., Vol. 19,

Issue 8, Aug. 1980, pp. 573 - 586, (1980).
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