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Abstract

In this paper we construct and analyze a two-well Hamiltonian on a 2D
atomic lattice. The two wells of the Hamiltonian are prescribed by two rank-
one connected martensitic twins, respectively. By constraining the deformed
configurations to special 1D atomic chains with position-dependent elonga-
tion vectors for the vertical direction, we show that the structure of ground
states under appropriate boundary conditions is close to the macroscopically
expected twinned configurations with additional boundary layers localized
near the twinning interfaces. In addition, we proceed to a continuum limit,
show asymptotic piecewise rigidity of minimizing sequences and rigorously
derive the corresponding limiting form of the surface energy.

1 Introduction
In the last decades there has been an intensive mathematical research on marten-
sitic transformations in shape memory alloys using nonlinear elasticity models of
continuum mechanics, see e.g. [1–4]. In several models a finite length scale of the
emerging martensitic microstructure was obtained and analyzed by adding penaliz-
ing higher order gradient terms to the elastic energy [2, 3, 5]. In parallel to this, the
analysis of microscopic models in nonlinear elasticity and the systematic derivation
of the corresponding discrete-to-continuum limits has recently attracted a lot of at-
tention [6–11]. In this context, even more general reference-free models have been
constructed and analyzed in [12, 13]. In particular, the derivation of the arising
limiting surface energies was investigated rigorously in [14–19]. While the cases
∗Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, D–04103 Leipzig, Ger-

many. E-mail: Georgy.Kitavtsev@mis.mpg.de
†Mathematical Institute, University of Leipzig, 04009 Leipzig, Germany. E-mail:

stephan.luckhaus@math.uni-leipzig.de
‡Mathematical Institute, University of Bonn, Endenicher Allee 60, D - 53115 Bonn, Germany.

E-mail: rueland@math.uni-bonn.de

1



when the minimizers of the energy belong to a single well are well understood also
in several dimensions, see e.g. [16], surface energies for two-well, discrete problems
have to the best of our knowledge only been derived rigorously in 1D cases [15, 17].
The multi-well structure, however, is an intrinsic feature of martensitic microstruc-
tures and of the understanding of the appearing characteristic, finite length scales.

In this paper we investigate the problem of the formation of twinned marten-
sitic microstructures from a microscopic point of view. We begin by defining a
class of atomistic two-well Hamiltonians on a 2D atomic lattice. These Hamiltoni-
ans feature nonconvex interactions and are constructed to model simple martensitic
microstructures. We aim at describing the structure of their ground states and at
deriving a limiting form of the corresponding surface energies at zero temperature.
The latter should emerge naturally from the full microscopic energy given by the
Hamiltonian.

The novelty of our approach consists of the non-discreteness of the set constitut-
ing our minimizers. The energy wells are given by SO(2)U0∪SO(2)U1 with U0 and
U1 being rank-one-connected matrices in SL(2,R ). This setting allows for a very
rich microscopic behavior reflecting the interesting behavior of the corresponding
continuum models [1–4]. Due to the expected complexity of the material behavior,
we only consider a simplified “(1+ ε)-dimensional” model. In a sense, the model we
investigate in this study is an intermediate one. On one hand, it is more involved
than a purely one-dimensional model as we consider two-dimensional deformations.
On the other hand, it is not fully two-dimensional since we restrict our attention
to laminates – i.e. 1D atomic chains. Thus, the considered model does not include
genuinely two-dimensional phenomena such as the formation of e.g. branched mi-
crostructures which are expected to form for a large class of boundary conditions,
see e.g. [20, 21]. However, already in our simplified setting we are confronted with
phenomena which, from a mathematical point of view, differ from the analogous
one-dimensional situations:

• In the crucial compactness statements which are necessary in order to pass
to the first order Γ-limit, one cannot argue via pure L∞ arguments. As the
energy wells of the functional are not discrete an additional argument has to
ensure compactness. For this we use the Friesecke-James-Müller Lp rigidity
theorem, c.f. [22].

• In order to estimate the density of defect points possessing high local energy
(needed for obtaining compactness and piecewise rigidity of the minimizing
sequences), we apply a dimension separation approach, i.e. we first estimate
the number of high energy points for a few fixed horizontal atomic layers
and then in the bulk between them. This argument makes crucial use of the
structure of the two wells (c.f. the proof of Proposition 3.1.).
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• Due to the lack of L∞ compactness and the prescribed deformation in the ver-
tical direction, we develop slight modifications of Braides’ and Cicalese’s [15]
original, one-dimensional strategy of deriving the respective first order Γ-
limits. At this point horizontal and vertical “cutting procedures” are intro-
duced (see e.g. Remark 4.1) that preserve the non-interpenetration condition
of the modified deformations.

We finally conclude the introduction by commenting on the organization of the
remainder of the article:

• In Section 2 we introduce a class of discrete two-well Hamiltonians with pre-
scribed properties. Under a special periodicity assumption on the atomic
configuration in the vertical direction, we then reduce these Hamiltonians to
functions on certain generating 1D atomic chains.

• In Section 3 we show compactness and asymptotic rigidity of the minimizing
sequences as well as of sequences whose rescaled energy remains controlled in
the continuum limit.

• In Section 4 we, rigorously, derive the first order Γ-limit for the chain Hamil-
tonian and, by that, obtain the limiting form of the surface energy.

• In Section 5 we provide results of a numerical simulation underscoring the an-
alytical results. These indicate exponential asymptotic decay of the boundary
layers between twin configurations.

• In Section 6 we discuss the results and give an outlook.

2 Setting and Notation
In the sequel we work on the following parallelogram Ω ⊂ R2 and for n ∈ N also
consider the associated lattice Ωn on it. For λn = 1

n , we set:

Ω :=

{
z
∣∣∣ z = s

(
1
0

)
+ t

1√
2

(
−1
1

)
, s, t ∈ [−1, 1]

}
,

Ωn := Ω ∩ [λn Z]2.

With a slight abuse of notation, we denote the lateral boundaries of the parallel-
ograms by ∂xΩ and ∂xΩn. For brevity of notation, we further define the rescaled
parallelograms

Ωrn :=

{
z
∣∣∣ z = s

(
1
0

)
+ t

1√
2

(
−1
1

)
, s, t ∈ [−n, n]

}
∩ Z2.
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Moreover, it proves to be convenient to introduce the notation

Ω(x1, x2) :=
{
z
∣∣∣ z =

(
x
0

)
+

y√
2

(
−1
1

)
, x ∈ (x1, x2), y ∈ [−1, 1]

}
∩ Ω,

for a parallelogram determined by any pair of points x1, x2 ∈ [−1, 1]. By An we
denote the set of all deformations u : Ωn → R2 of a finite, n-dependent number of
atoms from their initial reference configuration Ωn such that u is an orientation-
preserving, non-selfinterpenetrating deformation, i.e.

An :=
{
u : Ωn → R 2

∣∣∣ det(u(x2)− u(x1), u(x3)− u(x1)) ≥ 0 for all

{x1, x2, x3} ⊂ Ωn such that diam(x1, x2, x3) =
√

2λn

and det(x2 − x1, x3 − x1) ≥ 0
}
.

(2.1)

Below we will identify such deformations with their piecewise affine interpolations

Ãn :=
{
u : Ω→ R 2 : u ∈ C(R 2), u(x) is affine in Ω±ij

∣∣∣
det(u(x2)− u(x1), u(x3)− u(x1)) ≥ 0

for all {x1, x2, x3} ⊂ Ωn such that diam(x1, x2, x3) =
√

2λn

}
,

where we define Ω±ij to be the triangles with the vertexes(
iλn
jλn

)
,

(
(i+ 1)λn
jλn

)
,

(
iλn

(j + 1)λn

)
and

(
iλn
jλn

)
,

(
(i− 1)λn
jλn

)
,

(
iλn

(j − 1)λn

)
,

respectively. With a slight abuse of notation we will often identify An and Ãn and
omit the tildes in the notation in the sequel.

Moreover, in the remainder of the article we frequently make use of the notations
f . φ and f ∼ φ in order to indicate the existence of positive, universal constants
c and c1, c2 such that the inequalities f(·) ≤ cφ(·) and c1φ(·) ≤ f(·) ≤ c2φ(·) hold
uniformly in the set in which the arguments and parameters of the (positive) func-
tions f and φ are assumed to vary.

In the sequel, we will deal with two-dimensional Hamiltonians satisfying the
following conditions:

(H1) Hn(u) =
n∑

i,j=−n
λ2
nh
(
uij−ui±1j

λn
, u

ij−uij±1

λn

)
, where uij := u(iλn , jλn ). In

this context, the ±-signs denote that h depends on both the quantities with
the − and + signs.

(H2) h is rotation invariant,
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(H3) h ∈ C1 has a super-linear, polynomial growth and satisfies

h

(
uij − ui±1j

λn
,
uij − uij±1

λn

)
& dist

(
∇uij , SO(2)U0 ∪ SO(2)U1

)p
for some p ∈ (1,∞). Here, ∇uij is used as an abbreviation for the restriction
of ∇u to the domain Ωij , which is the union of the four triangles having one
common vertex [iλn , jλn ]T . The inequality is assumed to hold uniformly in
Ωij .

(H4) The zero level set of the density h is prescribed: On any domain Ωij the
equation

h

(
uij − ui±1j

λn
,
uij − uij±1

λn

)
= 0

is equivalent to u = Q0U0x+ c0 or u = Q1U1x+ c1. Here U0, U1 are rank-one
connected matrices such that for each matrix U ∈ SO(2)Ui, i ∈ {0, 1}, there
exist exactly two rank-one connected matrices in the respective other well,
Q0, Q1 ∈ SO(2) are arbitrary rotations and c0, c1 ∈ R2 are constant off-set
vectors. We further assume that det(U0) = det(U1) = 1.

The Hamiltonians satisfying the properties (H1)-(H4) are aimed at modeling a
martensitic square-to-rectangular transformation in R2 (which is a direct analog of
cubic-to-tetragonal transformations in R3). One can easily show that the property
(H3) implies that for all sufficiently small η

h

(
uij − ui±1j

λn
,
uij − uij±1

λn

)
≤ η ⇒

(
dist(∇uij , SO(2)U0) . η1/p

or dist(∇uij , SO(2)U1) . η1/p
)
.

(2.2)

In particular, estimate (2.2) holds uniformly in Ωij .

As an example of such an Hamiltonian we have the following atomistic two-well
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energy, Hn(u), in mind:

Hn(u) :=

n∑
i,j=−n

λ2
nh

(
uij − ui±1j

λn
,
uij − uij±1

λn

)

=

n∑
i,j=−n

λ2
n

((uij±1 − uij

λn

)2

− a2

)2

+

((
ui±1j − uij

λn

)2

− b2
)2

+

((
uij±1 − uij

λn

)
·
(
ui±1j − uij

λn

))2
]
×

×

((uij±1 − uij

λn

)2

− b2
)2

+

((
ui±1j − uij

λn

)2

− a2

)2

+

+

((
uij±1 − uij

λn

)
·
(
ui±1j − uij

λn

))2
]
, (2.3)

where the parameters a, b ∈ R+, a 6= b, are chosen such that ab = 1 (this corre-
sponds to volume preserving transformations). In the above definition and below,
we use a summation agreement: the sign ± in a term indicates that the latter
should be replaced by the sum of the terms with all possible sign combinations,
e.g. (

(uij±1 − uij)2 − (λn a)2
)2

:=
(
(uij+1 − uij)2 − (λn a)2

)2
+
(
(uij−1 − uij)2 − (λn a)2

)2
,

(uij±1 − uij) · (ui±1j − uij) := (uij−1 − uij) · (ui−1j − uij)
+(uij−1 − uij) · (ui+1j − uij)
+(uij+1 − uij) · (ui−1j − uij)
+(uij+1 − uij) · (ui+1j − uij).

We remark that, in particular, our functional (2.3) satisfies a condition similar to
(H3):

Hn(u) & min{dist(∇u, SO(2)U0 ∩ SO(2)U1)2, dist(∇u, SO(2)U0 ∩ SO(2)U1)4}.

As will become evident from our proof of Theorem 1, we are mainly interested in
the behavior of the Hamiltonian on a bounded set in gradient space. Hence, for
this Hamiltonian the lower bound effectively turns into a quartic estimate (with
p = 4) with respect to the distance function. Thus, our special Hamiltonian (2.3)
essentially satisfies the growth bounds required for the class of Hamiltonians defined
via (H1)-(H4).
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Moreover, the zeros of the first and second square brackets in (2.3) are given by all
possible rotations of two rank-one connected affine deformations that are produced
by the transformation matrices

U0 :=

[
a 0
0 b

]
and U1 :=

[
b 0
0 a

]
,

respectively. Each matrix within one of the wells SO(2)U0 or SO(2)U1 is connected
via two rank-one connections with the respective other well: There exist Q, Q̃ ∈
SO(2) such that

U0−QU1 =
√

2
a2 − b2

a2 + b2

(
a
−b

)
⊗ 1√

2

(
1
1

)
, U0−Q̃U1 =

√
2
a2 − b2

a2 + b2

(
a
b

)
⊗ 1√

2

(
1
−1

)
.

(2.4)
Thus, it is possible for the material to form twins along these normals. We remark
that for a general Hamiltonian satisfying (H1)-(H4) there is no restriction to as-
sume that U0 and U1 are of the described form as an appropriate transformation
reduces the general situation to this case. In the sequel we concentrate on this
setting.

Motivated by the structure of the wells and the example (2.3), we further restrict

the class of deformations which we study. For τ :=

(
−a
b

)
we consider in this paper

an additional constraint u ∈ An,τ , where

An,τ :=
{
u ∈ An

∣∣∣ ui+1j − uij+1 = −λn τ i+j+1 for all (i, j) ∈ Ωn

}
where τ i ∈ SO(2)τ for all i ∈ [−n, n]. (2.5)

This implies that un is represented via a 1D atomic chain on which the i-th atom
on the base layer j = 0 is (vertically) extended n (and −n) times in the direction of
the corresponding vector λn τ i, which depends on the horizontal position i. For ap-
propriate boundary conditions (see details below), this is a reasonable assumption
as in this case one expects the ground states of any Hamiltonian satisfying (H1)-
(H4) to stay locally close to laminar configurations formed by pairs of the two
martensitic variants. Note that the particular case of an atomic chain extended
uniformly by the vector τ in the vertical direction is included in the definition of
An,τ .

Returning to our model case, the restriction u ∈ An,τ allows us to reduce (2.3)
to a function on the generating 1D chain in the parallelogram Ωn. More precisely,
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Figure 1: An example of a constrained deformation.

in this case

Hn(u) =λ2
n

n∑
i,j=−n

h

(
uin − ui±1

n

λn
, τ in, τ

i±1
n , j

)

:=λ2
n

n∑
i,j=−n

((ui±1 − ui

λn
+ (j ± 1)δi±1

n ± τ in
)2

− a2

)2

+

+

((
ui±1 − ui

λn
+ jδi±1

n

)2

− b2
)2

+

((
ui±1 − ui

λn
+ (j ± 1)δi±1

n ± τ in
)
·
(
ui±1 − ui

λn
+ jδi±1

n

))2
]

×

((ui±1 − ui

λn
+ (j ± 1)δi±1

n ± τ in
)2

− b2
)2

+

((
ui±1 − ui

λn
+ jδi±1

n

)2

− a2

)2

+

((
ui±1 − ui

λn
+ (j ± 1)δi±1

n ± τ in
)
·
(
ui±1 − ui

λn
+ jδi±1

n

))2
]
,

(2.6)

where we denoted the atoms of the generating 1D chain by ui := u(iλn , 0) for
i ∈ [−n, n] ∩ Z and the corresponding discrepancy between neighboring shift vec-
tors by δi±1

n := τ i±1
n − τ in. We remark that for an arbitrary Hamiltonian satisfying

(H1)-(H4) the reduction to atomic chains, i.e. u ∈ An,τ , follows analogously. More-
over, we point out that, in passing to the atomic chains, we also restrict the un-
derlying (deformed) domain to the previously introduced parallelograms Ω and Ωn.

In this paper we investigate global minimizers of the reduced Hamiltonian (2.6)
among all deformations u ∈ An,τ satisfying Dirichlet boundary conditions pre-
scribed by a certain linear deformation having gradient F ∈ R 2×2 with det(F ) = 1.
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More precisely, we assume that u may be extended to the whole lattice Z× [−n, n]
such that for the generating chain it holds

ui = F

(
iλn

0

)
and τ i ≡ τ if i ≤ −n and if i ≥ n.

As we are mainly interested in the emergence of surface energy contributions, we
do not consider the full class of possible boundary conditions. Instead, we restrict
our attention to the case of linear boundary data leading to zero bulk energy
contributions in the continuum limit. Applying the results of [8, 11] one can prove
the existence of the zero order Γ-limit forHn. Due to these results on the derivation
of continuum limits, the zero set of the continuum elastic energies, on the one hand,
contain at least (SO(2)U0 ∪ SO(2)U1)qc – the quasiconvexification of the wells –
as the resulting continuum limits are determined by a non-negative, quasiconvex
energy density.

On the other hand, as dist(x,K) ≥ dist(x,Kqc) for each arbitrary set K ⊂
R 2×2, one deduces

Hn(un) =

n∑
i,j=−n

λ2
nh

(
uij − ui±1j

λn
,
uij − uij±1

λn

)

&
n∑

i,j=−n
λ2
ndist(∇uijn , SO(2)U0 ∪ SO(2)U1)p

&
∫
Ω

dist(∇un, SO(2)U0 ∪ SO(2)U1)pdx

&
∫
Ω

dist(∇un, (SO(2)U0 ∪ SO(2)U1)qc)pdx, (2.7)

as a result of (H3) and (H4). The estimate (2.7) then implies that the zero set of
the zero order Γ-limit is exactly given by (SO(2)U0 ∪ SO(2)U1)qc.

Within (SO(2)U0 ∪ SO(2)U1)qc affine boundary conditions inducing twin con-
figurations with zero bulk energy contributions and prescribed chain direction, τ ,
are associated with deformation gradients of the form

Fλ = (1− λ)U0 + λQU1, λ ∈ [0, 1], (2.8)

where Q ∈ SO(2) corresponds to the rotation from (2.4) and

Fλ

(
1
−1

)
=

(
a
−b

)
= −τ.

Thus, it turns out to be convenient to introduce a subspace of An,τ which incor-
porates these (Dirichlet) data into our class of functions: For Fλ ∈ R2×2 as above,
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we define

AFλn,τ := An,τ ∩ {u : Ωn → R2
∣∣u = Fλx on ∂xΩn} (2.9)

In the sequel, we investigate the limiting behavior of minimizers (n → ∞) in the
class (2.9) as well as the emergence of surface energy contributions.

3 Rigidity of Minimizers and Limiting Form for the
Surface Energy

Our first main theorem shows that minimizing sequences to (2.6) considered with
boundary conditions prescribed by (2.8) converge to piecewise affine deformations.
On each of the continuity subintervals of its gradient, the respective deformation
coincides with a rotation of one of the two martensitic variants, i.e. it corresponds
to one of the transformations in SO(2)U0 ∪ SO(2)U1. The rotations occurring
in the rigidity result are not arbitrary: The gradients of the deformation have

to satisfy a rank-one condition along the
(

1
1

)
normal direction and therefore the

rotations have to coincide either with Id or Q. Although our statements are,
for convenience, formulated for the Hamiltonian (2.3), our arguments do not use
the specific properties of this Hamiltonian. Hence, the results remain true for
the respective 1D atomic chains corresponding to any Hamiltonian satisfying the
conditions (H1)-(H4).

Theorem 1. Let Fλ, λ ∈ [0, 1], be as above. Let {un}n∈N ⊂ AFλn,τ be a sequence
of minimizers of (2.6). Then there exists a number K ∈ N such that (for a not-
relabeled subsequence)

(i) un → u in W 1,4(Ω,R2),

(ii) for each s ∈ {1, ...,K − 1} there exist ms ∈ {0, 1}, xs ∈ [−1, 1] such that

Ou(z) ≡ QmsUms

for z ∈ Ω(xs, xs+1) where Q0 := Id, Q1 := Q and x1 = −1, xK = 1.

(iii)
K−1⋃
s=1

[xs, xs+1] = [−1, 1].

Remark 3.1. The choice of p = 4 in (i) is arbitrary; in fact our proof shows that
it is possible to deduce un → u in W 1,p for any p ∈ (1,∞).
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Remark 3.2. Before proceeding with the proof, we comment on its structure. As in
most similar proofs, we first construct a comparison function in order to obtain an
upper bound on the energy. We then crucially exploit the two-well structure of the
Hamiltonian and the geometry of the rank-one connections between the wells (c.f.
Step 2). Here the key observation is that in matrix space any rank-one line between
the wells only intersects the respective other well once. This allows to extend the
control from certain particular horizontal layers jn−1, j

n
0 , j

n
1 to the whole vertical

stripe between them, c.f. the calculations following (3.12). This information then
allows to apply the Friesecke-James-Müller rigidity theorem [22].

Proof. Step 1: Constructing an appropriate comparison function. Below c > 0
denotes a constant that may vary from line to line but does not depend on any pa-
rameter of the problem. We first consider the following piecewise affine comparison
function:

u(z) =



Fλz for z ∈
{(

x
0

)
+ s√

2

(
−1
1

)
, x ∈ (−∞,−1], s ∈ R

}
∩ Ω,

U0z + c1, for z ∈
{(x

0

)
+ s√

2

(
−1
1

)
, x ∈ (−1, 1− 2λ), s ∈ R

}
∩ Ω,

QU1z + c2, for z ∈
{(

x
0

)
+ s√

2

(
−1
1

)
, x ∈ (1− 2λ, 1), s ∈ R

}
∩ Ω,

Fλz for z ∈
{(x

0

)
+ s√

2

(
−1
1

)
, x ∈ [1,∞), s ∈ R

}
∩ Ω,

(3.1)

where the constants c1, c2 ∈ R2 are chosen such that the resulting function u(z) is
continuous (which is possible due to the rank-one connections between the wells).
Let {un}n∈N be a minimizing sequence corresponding to the energies Hn(·) con-
sidered with the boundary condition (2.8). Then

Hn(un) ≤ Hn(u) ≤ cλn . (3.2)

We consider the rescaled Hamiltonian (which corresponds to surface energy contri-
butions originating from the boundaries and interfaces):

H1
n(un) :=

Hn(un)

λn
. (3.3)

From (3.2) we observe

λn

n∑
i,j=−n

h

(
uin − ui±1

n

λn
, τ in, τ

i±1
n , j

)
≤ c. (3.4)

Step 2: Estimating the number of the jumps between the wells. Let 0 < α < 1.
Then the energy bound (3.4) yields control on the energy per horizontal line and
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on the energy per lattice point:

#

{
j : λn

n∑
i=−n

h

(
uin − ui±1

n

λn
, τ in, τ

i±1
n , j

)
≥ n−α

}
. nα, (3.5a)

#

{
(i, j) : h

(
uin − ui±1

n

λn
, τ in, τ

i±1
n , j

)
≥ n−α

}
. n1+α. (3.5b)

In particular, for any sufficiently small δ > 0, (3.5a) and (3.5b) imply that for
sufficiently large n ∈ N there exist a large number of horizontal lines with good
energy estimates, i.e. it is possible to find jn−1, j

n
0 , j

n
1 such that

jn−1 ∈ [−n,−n+ 2δn], jn0 ∈ [−δn, δn], jn1 ∈ [n− 2δn, n], (3.6)

λn

n∑
i=−n

h

(
uin − ui±1

n

λn
, τ in, τ

i±1
n , jnl

)
. n−α, (3.7)

#

{
i ∈ [−n, n] : h

(
uin − ui±1

n

λn
, τ in, τ

i±1
n , jnl

)
≥ n−α

}
. δ−1nα, (3.8)

for l ∈ {−1, 0, 1}. This is a consequence of the following observations:

• Due to (3.5a) and α < 1, the number of j ∈ [−n, n] violating (3.7) is smaller
than δ

2n if n is sufficiently large.

• If (3.8) were wrong, for example, for all j ∈ [−n,−n+ 2δn], this would entail
that for any constant c > 0

#

{
(i, j) : h

(
uin − ui±1

n

λn
, τ in, τ

i±1
n , j

)
≥ n−α

}
> δ−1cnα2δn

which contradicts (3.5b).

Setting c̃ =
(

b2−a2
100(a2+b2)

)4

(note that in the general case of a Hamiltonian with
p-growth a similar choice can be made), we observe that we may further choose
jn−1, j

n
0 , j

n
1 such that there exists a number Mδ > 0, independent of n with

#

{
i ∈ [−n, n] : h

(
uin − ui±1

n

λn
, τ in, τ

i±1
n , jnl

)
≥ c̃
}
≤Mδ for l ∈ {−1, 0, 1}.

(3.9)
Indeed, if this were false for all lines in the intervals given by (3.6), this would
imply that for any M > 0 and all sufficiently large n it holds:

λn

n∑
i,j=−n

h

(
uin − ui±1

n

λn
, τ in, τ

i±1
n , j

)
≥ 1

n
Mδn = Mδ.

12



Taking M such that Mδ > c, would then contradict (3.4). Therefore, choosing Mδ

sufficiently large, the fraction of lines satisfying (3.9) becomes sufficiently large in
order to find horizontal lines satisfying (3.6), (3.7), (3.8) and (3.9) simultaneously.
Moreover, by density considerations similar to the previous ones and by potentially
enlarging the constants in (3.6), (3.7), (3.8) and (3.9) by a factor ∼ 100

δ , we may
additionally with out lost of generality assume that jn1 −jn0 = jn0 −jn−1. This follows
from the facts that

• equation (3.7) is satisfied by n− cnα choices of j ∈ [−n, n],

• equations (3.8) and (3.9) hold for n− εn different choices of j ∈ [−n, n],

and the observation that the constant ε can be made arbitrarily small by choosing
the constants in the respective estimates sufficiently large. We stress that the points
at which (3.9) holds are the only places along the horizontal lines {jn−1, j

n
0 , j

n
1 } at

which jumps between the wells can occur (later we will see that these points and
their vertical extensions are in fact globally the only points at which such large
jumps may occur). Due to the uniformity in n, estimate (3.9) will play a crucial
role in controlling the location and number of the large jumps, c.f. step 3.
As a last immediate consequence of the upper estimate on the energy (3.4), we
deduce an L∞ bound on minimizing configurations which is uniform in n: Indeed,
(3.4) directly implies

λn

n∑
j=−n

h

(
uin − ui±1

n

λn
, τ in, τ

i±1
n , j

)
≤ c.

Choosing a constant C1 of the size C1 ≥ 100c, allows to conclude that for a fixed
i ∈ [−n, n] not more than one percent of all points (i, j) have a local energy
exceeding C1. Hence, for each i ∈ (−n, n) it is possible to find vertical atoms of
distance ∼ 2n such that their local energy, h

(
uin−u

i±1
n

λn
, τ in, τ

i±1
n , j

)
, is less than

C1. Due to the chain structure of the Hamiltonian, the local energy of any vertical
point j is then bounded by 3C1. As a consequence, we obtain

|∇uijn | . c <∞ uniformly for n ∈ N and i, j ∈ {−n, ..., n}. (3.10)

We proceed by considering the points having low energy and show that for a
large fraction of points the deformation is already “approximately laminar”. For
this, we define a position i ∈ [−n, n] on the horizontal lines, to be “simultaneously
good” for jn−1, j

n
0 , j

n
1 if

h

(
uin − ui±1

n

λn
, τ in, τ

i±1
n , jnl

)
≤ n−α holds for all l ∈ {−1, 0, 1}.

Note, that due to (3.8) the number of i ∈ [−n, n] which are not “simultaneously
good” is . δ−1nα. Property (2.2) implies that for each “simultaneously good”

13
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Figure 2: In estimating the energy, we consider three “good” layers j =n
0 , j

n
±1 which

are indicated in green. Along the vertical lines (e.g. along the red line) the 1D
chain structure implies that the gradient changes along rank-one directions in the
matrix space.

position i ∈ [−n, n], one has

(dist(∇ui−j
n
l j
n
l

n , SO(2)U0) . n−α/4) or (dist(∇ui−j
n
l j
n
l

n , SO(2)U1) . n−α/4)
(3.11)

for l ∈ {−1, 0, 1}.
Next, we claim that due to the two-well structure of our Hamiltonian a stronger

property is satisfied: For sufficiently large n and each fixed “simultaneously good”
i exactly one of the inequalities in (3.11) holds for all l ∈ {−1, 0, 1}. This will then
imply that it is impossible to switch between the wells along the vertical direction
if one starts at a “simultaneously good” position. In order to prove this claim, we
argue by contradiction. Let us fix a “simultaneously good” i ∈ [−n, n] and assume,
for example, that the following holds

(dist(∇ui−j
n
0 j
n
0

n , SO(2)U0) . n−α/4) and (dist(∇ui−j
n
1 j
n
1

n , SO(2)U1) . n−α/4).
(3.12)

By definition (2.6) of our 1D chain, one has the following relations

u
i−jn1 j

n
1 ±1

n − ui−j
n
1 j
n
1

n = u
i−jn0 j

n
0 ±1

n − ui−j
n
0 j
n
0

n + (jn1 − jn0 )λn δ
i±1
n ,

u
i−jn1 ±1jn1
n − ui−j

n
1 j
n
1

n = u
i−jn0 ±1jn0
n − ui−j

n
0 j
n
0

n + (jn1 − jn0 )λn δ
i±1
n .

(3.13)

These, together with (3.12), imply that if

||∇ui−j
n
0 j
n
0

n −Q1,nU0||C(Ωi−jn0 j
n
0

) . n−α/4 for some Q1,n ∈ SO(2),

14



then necessarily there exists γn ∈ (−π/2, π/2) such that

||∇ui−j
n
1 j
n
1

n −QγnQ1,nU1||C(Ωi−jn1 j
n
1

) . n−α/4, (3.14)

where Qγn ∈ SO(2) denotes a rotation by the angle γn and the following conditions
on (jn1 − jn0 )δi±1

n and γn hold: ∣∣∣∣sin(γn)−
[
a2 − b2

a2 + b2

]∣∣∣∣ . n−α/4,∣∣∣∣(jn1 − jn0 )Q−1
1,n · δi±1

n +

(
a sin γn
−b sin γn

)∣∣∣∣ . n−α/4.

(3.15)

The inequalities (3.14)–(3.15) are connected to the fact that a deformation with
gradient in SO(2)U1 can be obtained from one of the respectively associated rank-
one connected matrices in SO(2)U0 by a shear deformation.

Next, let us suppose that

dist(∇ui−j
n
−1j

n
−1

n , SO(2)U1) . n−α/4. (3.16)

Then, analogous to the derivation of (3.15), there exists an angle γ1,n such that

||∇ui−j
n
−1j

n
−1

n −Qγ1,nQ1,nU1||C(Ωi−jn−1
jn−1

) . n−α/4,

and the following relations hold between γn and γ1,n

|a sin γ1,n + a sin γn| . n−α/4,

|2b− (a cos γn + a cos γ1,n)| . n−α/4.

For sufficiently large n and a correspondingly sufficiently small error n−α/4 the last
two inequalities become incompatible with the first one in (3.15) as soon as a 6= b.
Therefore, such an angle γ1,n cannot exist, which thus yields a contradiction to
(3.16). Consequently,

dist(∇ui−j
n
−1j

n
−1

n , SO(2)U0) . n−α/4

holds. Proceeding analogous to the considerations in (3.13)-(3.14) one concludes
in this case that

||∇ui−j
n
−1j

n
−1

n −Q1,nU0||C(Ωi−jn−1
jn−1

) . n−α/4,∣∣(jn0 − jn−1)δi±1
n

∣∣ . n−α/4. (3.17)

The last inequality, however, by (3.13) implies that

||∇ui−j
n
1 j
n
1

n −Q1,nU0||C(Ωi−jn1 j
n
1

) . n−α/4.
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Therefore, one arrives at a contradiction to the starting assumption (3.12). This
and analogous considerations in the remaining cases, prove the claim for simul-
taneously good points. Finally, we conclude that the estimates can be extended
along the whole vertical direction: For each “simultaneously good” i ∈ [−n, n] there
exists Qi,n ∈ SO(2) such that either

||∇ui−jjn −Qi,nU0||C(Ωi−jj) . n−α/4 for all j ∈ [−n, n],

or ||∇ui−jjn −Qi,nU1||C(Ωi−jj) . n−α/4 for all j ∈ [−n, n].
(3.18)

This follows from the previous argument and the second estimate in (3.17). Similar
estimates can be shown under p-growth assumptions on the two-well Hamiltonian.

Step 3: Jumps within the wells and the FJM rigidity theorem. As a consequence
of (3.18) and (3.10) we have, ||un||W 1,p(Ω) ≤ C for any p ∈ (1,∞). On passing to
subsequences, we may therefore conclude that

• there exist K ∈ N , x1, ..., xK ∈ (−1, 1) independent of n,

• and for any n there exist associated points xn1 , ..., xnK ∈ (−1, 1) and yns,1, ..., yns,Kn
s
∈

(xns , x
n
s+1)

such that

• xns → xs, s ∈ {1, ...,K},

• un ⇀ u in W 1,4(Ω), (here the choice p = 4 is arbitrary),

• as a consequence of (3.11) the following dichotomy holds in the interval
(xns , x

n
s+1): For each i with λn i ∈ (yns,l, y

n
s,l+1) ⊂ (xns , x

n
s+1) and l ∈ {1, ...,Kn

s },
either

dist(∇ui−jjn , SO(2)U0) . n−α/4 or dist(∇ui−jjn , SO(2)U1) . n−α/4

(3.19)

for all j ∈ [−n, n].

Here the points xs, s ∈ {1, ...,K}, are obtained by taking a limit of an appropriate
subsequence of the rescaled points i

n from the set in (3.9). Similarly, the points yns,l
are obtained from the points which are not simultaneously good, i.e. at least one
of the points on the vertical lines jn−1, j

n
0 or jn1 carries a local energy of less than

c̃ but larger than n−α. Since the number of the latter points can possibly increase
with growing n, there is no uniform a priori bound on it. However, our previous
considerations on the simultaneously good points lying between these allows to
deduce (3.19).
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Note, that if for a certain l ∈ {1, ...,Kn
s }, a certain λn i ∈ (yns,l, y

n
s,l+1) ⊂

(xns , x
n
s+1) and a certain j ∈ [−n, n] one has dist(∇ui−jjn , SO(2)U0) ≤ cn−α/4, then

this remains true for all l ∈ {1, ...,Kn
s }, λn i ∈ (yns,l, y

n
s,l+1) and j ∈ [−n, n]. Indeed,

firstly all atoms in Ω(xns , x
n
s+1) lying on one of the horizontal slices determined by

jn0 , j
n
1 , j

n
−1 are in a neighborhood of a single, common well, say SO(2)U0. If this

were not true, then there would necessarily exist at least two internal neighboring
points (i, j) and (i + 1, j) for some j ∈ {jn0 , jn1 , jn−1} such that ∇uij and ∇ui+1j

belong to disjoint neighborhoods of the two wells SO(2)U0 and SO(2)U1. However,
such points cannot exist as the atoms (i, j) and (i+ 1, j) have a common edge and,
by definition, have local energies smaller than c̃. In particular, there cannot be a
jump of the required size at these points. Secondly, by the argument used in the
Step 2 all atoms lying on the vertical extension of simultaneously good points on
the slices jn0 , jn1 , jn−1 belong to the same well SO(2)U0. By definition of yns,l the set
of these atoms coincides with the set of ones having λn i ∈ (yns,l, y

n
s,l+1) ⊂ (xns , x

n
s+1)

with l ∈ {1, ...,Kn
s } and j ∈ [−n, n] and the above statement follows.

Step 3a: Non-degenerate intervals. We distinguish two cases: In the first one
we consider s ∈ {1, ...,K} such that xs 6= xs+1, in the second case the jump planes
are allowed to collapse in the limit. We start discussing the first alternative. For
a fixed s ∈ {1, ...,K} there exists ms ∈ {0, 1} such that (3.19) holds with a single
matrix, Ums , for any i with λn i ∈ (yns,l, y

n
s,l+1) ⊂ (xns , x

n
s+1), l ∈ {1, ...,Ks} (as

there are no jumps between the different wells within (xns , x
n
s+1)). Thus, we obtain∫

Ω(xns ,x
n
s+1)

dist(∇un, SO(2)Ums)
4dz . n−α +

nα

n
,

as, by (3.5a), the number of “bad” vertical stripes is controlled by nα, the horizontal
length of each stripe is given by n−1 and its energy is bounded by a constant.
Therefore, ∫

Ω(xns ,x
n
s+1)

dist(∇un, SO(2)Ums)
4dz → 0 as n→∞.

Next, we apply the (non-linear) quantified Liouville (Lp-rigidity) theorem of Friesecke-
James-Müller [22]: For each n ∈ N and each interval (xns , x

n
s+1), s ∈ {1, ...,K − 1},

there exist V ns ∈ SO(2)Ums such that∫
Ω(xns ,x

n
s+1)

|∇un − V ns |4 dz ≤ c
∫

Ω(xns ,x
n
s+1)

dist(∇un, SO(2)Ums)
4dz.

Note that the constant c in the last estimate can be chosen uniformly on the
domains Ω(xns , x

n
s+1) if xs 6= xs+1. Since SO(2)Ums is compact, for each s ∈
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{1, ...,K} there exists a subsequence V ns → Vs ∈ SO(2)Ums . Due to weak lower
semicontinuity, the last two estimates and the boundedness of ∇un, we infer∫

Ω(xs,xs+1)

|∇u− Vs|4dz ≤ lim inf
n→∞

∫
Ω(xns ,x

n
s+1)∪Ω(xs,xs+1)

|∇un − V ns |4dz

≤ lim
l→∞

∫
Ω(x

nl
s ,x

nl
s+1)

|∇unl − V nls |4dz+

+ lim
l→∞

∫
Ω(xs,xs+1)∆Ω(x

nl
s ,x

nl
s+1)

|∇unl − V nls |4 dz

≤ c lim inf
l→∞

∫
Ω(x

nl
s ,x

nl
s+1)

dist(∇unl , SO(2)U0)4 dz

+ c lim
l→∞

L1(Ω(xs, xs+1)∆Ω(xnls , x
nl
s+1))

= 0, (3.20)

where {nl} ∈ N denotes the subsequence which realizes the lim inf in the second
inequality. As a consequence we deduce

∇u = Vs = QjUms in Ω(xs, xs+1),

for some fixed rotation Qj ∈ SO(2). In a similar way one can conclude that
un → u in W 1,4(Q(xs, xs+1)). Note that similar estimates hold in the general case
for Hamiltonians satisfying (H1)–(H4) with a p-growth assumption.

Step 3b: Degenerate intervals. For the case of degenerate intervals we argue
similarly. Assume that xs = xs+1 for some s ∈ {1, ...,K} but xns 6= xns+1. Without
loss of generality, let xs−1 6= xs 6= xs+2. Then, one obtains∫

Ω(xs−1,xs+1)

dist(∇un, SO(2)U0)4dz . n−α +
nα

n
+ L1((xns , x

n
s+1)).

Here the first energy contribution, n−α, originates from the “good” stripes (ynr,l, y
n
r,l+1)

with r ∈ {s − 1, s + 1} and l ∈ {1, ...,Kn
r }, respectively. The second contribution

comes from the jumps between the stripes (yns,l, y
n
s,l+1) and the third one is a sim-

ple consequence of estimate (3.4) reduced to the interval (xns , x
n
s+1). We invoke the

rigidity estimate on the interval (xns−1, x
n
s+1): There exists V ns ∈ SO(2)Ums such

that ∫
Ω(xns−1,x

n
s+1)

|∇un − V ns |4dz ≤ c
∫

Ω(xns−1,x
n
s+1)

dist(∇un, SO(2)U0)4 dz.
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Since the interval (xs−1, xs+1) has finite, non-degenerate length, the rigidity esti-
mate can be applied with a fixed constant c. As in the first case of non-degenerate
intervals, we can find a subsequence such that V ns → Vs and Vs ∈ SO(2)Ums . Us-
ing weak lower semicontinuity, the last estimate and proceeding as in (3.20) before,
one obtains∫

Ω(xs−1,xs+1)

|∇u− Vs|4dz ≤ c lim inf
n→∞

∫
Ω(xs−1,xs+1)

dist(∇un, SO(2)Ums)
4 dz → 0.

Hence,

∇u = Vs in Ω(xs−1, xs+1).

Therefore, collapsing intervals can be considered irrelevant for the gradient distri-
bution of the limiting function ∇u. The limit is determined by the non-degenerate
intervals only.

Step 4: Conclusion. We identify Vs = U0 if ms = 0 and Vs = QU1 if ms = 1.
Indeed, a combination of the growth property (H3) and the L∞ bounds from (3.10)
imply uniform Lp bounds (and strong convergence) for the gradients ∇un as n→
∞. This in turn leads to a continuous limit function, u ∈ C(Ω̄), from which one
then obtains that Vs has to be rank-one connected to Fλ. Therefore the statement
follows.

Remark 3.3. • Note, that the proof of Theorem 1 relies only on the general
assumptions (H1) − (H4) and the definition of the constrained set An,τ in
(2.5). In particular, it does not make essential use of the specific form of the
Hamiltonian (2.3).

• The converging subsequence and the resulting limiting function depend on the
choice of the interpolation.

Analogously, we obtain the following compactness statement:

Proposition 3.1 (Compactness). Let Fλ ∈ R2×2, λ ∈ [0, 1], be as above. Let
{un}n∈N ∈ AFλn,τ be a sequence such that

lim sup
n→∞

H1
n(un) <∞. (3.21)

Then there exists a number K ∈ N and a (not relabeled) subsequence such that

(i) un → u in W 1,4(Ω,R2),

(ii) for each s ∈ {1, ...,K − 1} there exist ms ∈ {0, 1}, xs ∈ [−1, 1] such that

Ou(z) ≡ QmjUms (3.22)

for z ∈ Ω(xs, xs+1), where Q0 := Id, Q1 := Q and xK = 1,
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(iii)
K−1⋃
s=1

[xs, xs+1] = [−1, 1].

Proof. This is analogous to the characterization of minimizers: Condition (3.21)
replaces the direct construction of a comparison function and yields control of the
gradient which allows to argue along the same lines as in Theorem 1.

4 First Order Γ-Limit and the Limiting Form of the
Surface Energy

4.1 Setup and Statement of the Result
In the sequel, we concentrate on an important consequence of Theorem 1: The com-
pactness results allow us to determine the limiting form of the surface energy of
the sequences satisfying (3.21) using their previously derived piecewise rigid struc-
ture. We define boundary and internal layer energies, B±(V1, V2, r

∗), C(V1, V2, r
∗),

adapted to our situation of specific rank-one connected matrices via appropriate
minimization problems. Let

Arn :=
{
u : Ωrn → R 2

∣∣∣ det(u(x2)− u(x1), u(x3)− u(x1)) ≥ 0 for all

{x1, x2, x3} ⊂ Ωrn such that diam(x1, x2, x3) =
√

2 and

det(x2 − x1, x3 − x1) ≥ 0
}

and

Arn,τ :=
{
u ∈ Arn

∣∣∣ ui+1j − uij+1 = −τ i+j+1 for all (i, j) ∈ Ωrn

}
,

where τ i ∈ SO(2)τ for all i ∈ [−n, n],
(4.1)

be rescaled versions of the sets (2.1) and (2.9).

Definition 4.1. Let V1 = Fλ, for some 0 ≤ λ ≤ 1 and V2, V3 be either U1 or QU2
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and τ :=

(
−a
b

)
. For functions in the class Arn,τ we define

B+(V1, V2, r
∗) := lim inf

n→∞
min
τi,ui

{∑
i≥0

1

n

n∑
j=−n

h
(
uin − ui±1

n , τ in, τ
i±1
n , j

)
:

u ∈ Arn,τ , u
−jj = V1

(
−j
j

)
,

ui−jj = V2

(
i− j
j

)
+ r∗, i ≥ n, |j| ≤ n

}
,

B−(V1, V2, r
∗) := lim inf

n→∞
min
τi,ui

{∑
i≤0

1

n

n∑
j=−n

h
(
uin − ui±1

n , τ in, τ
i±1
n , j

)
:

u ∈ Arn,τ , u
−jj = V1

(
−j
j

)
,

ui−jj = V2

(
i− j
j

)
+ r∗, i ≤ −n, |j| ≤ n

}
.

(4.2)

C(V2, V3, r
∗) := lim inf

n→∞
min
τi,ui

{∑
i∈Z

1

n

n∑
j=−n

h
(
uin − ui±1

n , τ in, τ
i±1
n , j

)
:

u ∈ Arn,τ , u
i−jj = V2

(
i− j
j

)
+ r1, i ≤ −n, |j| ≤ n,

ui−jj = V3

(
i− j
j

)
+ r2, r

∗ = r2 − r1, i ≥ n, |j| ≤ n
}
.

(4.3)

We remark that as in [15] our definitions of the boundary and surface energy
layers correspond to minimization problems for which the boundary conditions are
“moved to infinity”. However, in contrast to [15] we cannot eliminate the depen-
dence on the parameter n in the densities since we are dealing with two-dimensional
energies.

The definition of the boundary and internal energy layers allow to introduce a
further quantity:

Definition 4.2. Let V0 = VK = Fλ for some λ ∈ [0, 1] and let V1, ..., VK−1 belong
to the set {U0, QU1}. Then we define

EK(V0, ..., VK) := inf
r

{
B+(V0, V1, r0)+

K−2∑
s=1

C(Vs, Vs+1, rs)+B
−(VK−1, VK , rK−1)

}
,

(4.4)
where the infimum is taken over all possible off-set vectors r = [r0, ..., rK−1].
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The main theorem of this section rigorously shows the following asymptotic
decomposition of the energy of any sequence, {un}n∈N , satisfying the assumptions
of Proposition 3.1:

Hn(un) = λnE
K(Fλ, V1, ..., VK−1, Fλ) + o(λn ) as n→∞, (4.5)

for some K ∈ N and Vs ∈ {U0, QU1}, s ∈ {1, ...,K − 1}. This implies that for
perturbations of laminar configurations the leading order energy scales as O(λn ).
Hence, we may interpret the quantity (4.4) as a surface energy contribution. Cor-
respondingly, if un is a minimizing sequence to (2.6), (2.8) then

Hn(un) = λn min
K

min
{
EK(Fλ, U0, QU1, ..., Fλ), EK(Fλ, QU1, U0, ..., Fλ)

}
+ o(λn )

(4.6)
as n → ∞. Note that in (4.6) one needs to minimize an overall number, K, of
boundary and internal layers as the exact number is – a priori – not given explic-
itly by Theorem 1. As a consequence of Theorem 2 we will obtain the expected
result K = 3: Under our boundary conditions (2.8), there are, in general, boundary
energy contributions as well as a single interior interface. For the more general se-
quences from Proposition 3.1, i.e. for sequences with a finite surface energy which
need not necessarily be minimizers, a finite but arbitrary number of interior inter-
faces is possible.

With this preparation our main result in this section can be formulated as:

Theorem 2 (The limiting surface energy). Let Fλ, λ ∈ [0, 1], be as above. Let
H1
n(·) : AFλn,τ → [0,∞] be defined as in (3.3). Then one has

H1
n

Γ→ Esurf with respect to the L∞ topology .

Here, we have

Esurf (u) :=


EK(Fλ,∇u(x1−, 0), ...,∇u(x(K−1)−, 0), Fλ),

if u ∈W 1,∞
0 (Ω) + Fλx, ∇u ∈ {U0, QU1} in Ω(xj , xj+1),

s ∈ {1, ...,K − 1};u satisfies the boundary conditions
prescribed by (2.8),

∞, else,

where for a right-continuous function f we use the notation f(x−) := lim
xi↓x

f(xi)

and W 1,∞
0 (Ω) + Fλx := {u ∈W 1,∞(Ω)

∣∣u = Fλx on ∂xΩ}.

The proof of the Γ-convergence for the surface energy follows along the lines of
the strategy introduced by Braides and Cicalese in [15]. However, adaptations are
needed for our special two-dimensional chain setting: The “(1 + ε)”- dimensionality
of it causes additional technical difficulties, both in the construction of the recovery
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sequence for the Γ-lim sup inequality and in the proof of the Γ-lim inf inequality.
Thus, we start by proving an important auxiliary result in the following subsection.
It will play a major role in adapting the strategy of Braides and Cicalese [15] to
our setting.

4.2 An Auxiliary Result
In the sequel we introduce one of the crucial techniques used in proving the Γ-lim inf
and Γ-lim sup inequalities. This first technical tool consists of an observation based
on averaging and allows to pass from a large number of horizontal atomic layers to
a smaller number of these without changing the energy much.
In order to give the precise statement, we introduce the following quantity. It can be
regarded as an intermediate auxiliary functional between Hn(un) and C(V1, V2, r1):

Definition 4.3. Let m,n ∈ N , n ≥ m. Then for un ∈ Arn,τ we set

H1
n,m(un) :=

n∑
i=−n

1

m

m∑
j=−m

h
(
uin − ui±1

n , τ in, τ
i±1
n , j

)
.

With the aid of this “intermediate” energy we can prove the following central
“averaging lemma”.

Lemma 4.1 (Averaging). Let m ∈ N and ε > 0 be arbitrary but fixed. Let uijn :
Ωrn → R2 with Hn,n(uijn ) ≤ C < ∞ for all n ∈ N . Then for any n ∈ N with
n > m

(
1 + C

ε

)
there exists

uε : Ωn,m :=

{
z
∣∣ z = s

(
1
0

)
+ t

1√
2

(
−1
1

)
, s ∈ [−n, n], t ∈ [−m,m]

}
→ R2

such that the following statements hold:

(i) there exists a translation j0 ∈ N such that ui−j0j−j0ε = uijn in Ωn,m,

(ii) H1
n,m(uijε ) ≤ H1

n,n(uijn ) + ε.

Here the decisive estimate is given by the last point which allows to pass from
averaging over n points in the vertical direction to averaging over only m points
while creating at most an energy surplus of the size ε.

Proof. Fixing n > m
(
1 + C

ε

)
, we construct uε from un. For this, we subdivide the

parallelogram Ωrn into
⌊
n
m

⌋
disjoint parallelograms (possibly leaving a remainder

of height less than m) of the form [−2km, 2n− 2km]× Ik, k ∈ {0, ...,
⌊
n
m

⌋
}, where
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Ik is the interval Ik = [−n + 2km,−n + 2(k + 1)m] of the length |Ik| = 2m. We
claim that

H1
n,m

(
uijn
(
·+ τk

))
≤ H1

n,n(uijn ) + ε for some k ∈
{

0, ...,
⌊ n
m

⌋}
, (4.7)

where τk := (n− (k + 1)m)

(
−1
1

)
and uijn

(
·+ τk

)
denotes a vertically translated

version of uijn (·) by (−n + (k + 1)m) lattice layers. In order to observe (4.7), we
argue via contradiction. Assuming that the statement of the lemma were wrong,
we would obtain

H1
n,m

(
uijn
(
·+ τk

))
> H1

n,n(uijn ) + ε for all k ∈
{

0, ...,
⌊ n
m

⌋}
.

Since the strips Ik, k ∈ {0, ...,
⌊
n
m

⌋
}, are disjoint, this leads to the following esti-

mate:

nH1
n,n(uijn ) ≥

b nm c∑
k=0

mH1
n,m

(
uijn
(
·+ τk

))
>
( n
m
− 1
)
m
(
H1
n,n(uijn ) + ε

)
≥ nH1

n,n(uijn ) + (n−m)ε−mH1
n,n(uijn ).

(4.8)

As, however, by assumption H1
n,n(uijn ) ≤ C, this yields a contradiction: Since

n > m
(
1 + C

ε

)
and since H1

n,n(uijn ) ≤ C, we infer mH1
n,n(uijn ) ≤ (n−m)ε. Hence,

(4.8) cannot be true, which proves (4.7). Defining

uijε := uijn
(
·+ τk

)
with the corresponding k ∈

{
0, ...,

⌊
n
m

⌋}
, implies the claims of the lemma.

4.3 Proof of Theorem 2
With the preparation from the previous section, we address the proof of the Γ-
lim inf inequality: Apart from the “averaging procedure” introduced in the previ-
ous section a second crucial ingredient of its proof consists of a horizontal “cutting
procedure”, which allows to modify a given configuration with locally small en-
ergy by horizontally extending the configuration via an appropriate element of
SO(2)U0 ∩ SO(2)U1 after a certain point. In this sense, the “cutting procedure”
in the horizontal direction complements the averaging procedure from the previous
section since the latter can be interpreted as a “cutting” mechanism in the vertical
direction. Both tools – the “cutting” and “averaging” procedures – also play a cen-
tral role in the construction of the recovery sequence for the Γ-lim sup inequality
later on.
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Proof of the Γ-lim inf inequality. Let {un}n∈N ⊂ L∞ be a sequence such that un →
u with respect to the L∞ topology. Without loss of generality, we may assume
H1
n(un) < ∞. According to the compactness result of Proposition 3.1, un → u in

W 1,4(Ω) and there exists a sequence of points x1
n < ... < xKn , {xsn}n∈N ⊂ [−1, 1] for

all s ∈ {1, ...,K}, as well as limiting points −1 = x1 ≤ ... ≤ xK = 1, xs ∈ (−1, 1)
for all s ∈ {1, ...,K}, such that (possibly passing to subsequences)

h

(
uin − ui±1

n

λn
, τ in, τ

i±1
n , jnl

)
≤ c̃ for i 6= bnxsnc and l ∈ {−1, 0, 1},

xsn → xs as n→∞, s ∈ {1, ...,K},
∇un → Vs ∈ {U0, QU1} in L4(Ω(xs, xs+1)), (4.9)

where the vertical indexes jn0 , jn±1 are defined as in (3.6)–(3.9). In particular, the
limiting points xs, s ∈ {1, ...,K}, are the only possible jump points of the gradient
of u. Since we may always pass to the infimizing sequence of the energy, we may
further assume w.l.o.g. that the statements of (4.9) hold for the whole sequence.
We remark that the xsn are possibly degenerate in the sense that xs = xs+1 for
some s ∈ {1, ...,K}. However, in the sequel we only consider the case of non-
degenerate points xs, and briefly comment on the necessary modifications in the
case of degenerate points at the end of the proof.
In order to pass from the coordinates in Ω to the integer coordinates in Ωrn, we
keep track of the number of atoms between the respective jumps of the gradient
in the n-th iteration step by defining sequences {hsn}n∈N , hsn ∈ N , and {ksn}n∈N ,
ksn ∈ N , by setting

lim
n→∞

λn h
s
n =

xs+1 − xs
2

and ksn = −n+ 2

s−1∑
i=1

hin, (4.10)

for s ∈ {1, ...,K − 1}. This allows to rewrite the energy as

H1
n(un) = λn

n∑
i,j=−n

h

(
uin − ui±1

n

λn
, τ in, τ

i±1
n , j

)
= H1

n +

K−1∑
s=2

Hs
n +HK

n ,

with

H1
n := λn

h1
n∑

i=−n

n∑
j=−n

h

(
uin − ui±1

n

λn
, τ in, τ

i±1
n , j

)
,

Hs
n := λn

ks−1
n +hsn∑

i=ks−1
n −hs−1

n

n∑
j=−n

h

(
uin − ui±1

n

λn
, τ in, τ

i±1
n , j

)
, s = 2, ...,K − 1,

HK
n := λn

kK−1
n∑

i=kK−1
n −hK−1

n

n∑
j=−n

h

(
uin − ui±1

n

λn
, τ in, τ

i±1
n , j

)
.
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At this point, we would like to relate our energy contributions H1
n, ...,H

K
n to the

interfacial and boundary layer energies from Definition 4.1. As (rescaled versions
of) our functions un are very close to being admissible for the definition of these
energies, we only have to modify them slightly: A first ansatz would be to use un
for the region close to the expected jump and then extend this deformation by the
correct element Vs of one of the energy wells SO(2)U0 or SO(2)U1 (c.f. Braides
and Cicalese, [15]). Since, however, our gradient sequence only converges in Lp and
not uniformly, this extension might cause an error of O(1).
In order to avoid this difficulty, we use the (uniform in n) bound H1

n(un) ≤ c <∞
which allows to argue similarly as in Step 2 of Theorem 1. The result of the next
lemma implies the Γ-lim inf inequality.

Lemma 4.2. For any s ∈ {1, ...,K} it holds

Hs
n ≥

 B+(Fλ, V1, r0)− w(n) if s = 1,
C(Vs, Vs+1, rs)− w(n) if s ∈ {2, ...,K − 1},
B−(VK−1, VK , rK−1)− w(n) if s = K,

(4.11)

where w(n)→ 0 as n→∞.

We present the strategy of the proof in greatest detail for the left boundary layer.
The arguments for the interior interfaces and the right boundary layer follow along
the same lines. We indicate the main differences and how to overcome additional
difficulties.

Proof. Step 1: The left boundary layer. By the estimates on the simultaneously
good points from the proof of Theorem 1, we infer that for any 0 < α < 1 there
exists an integer rα,1n ∈ (−n,−n + nα] such that in Ω(λn r

α,1
n , λn r

α,1
n + λn ) the

function un satisfies estimates of the form (3.18), i.e. there exists a rotation Qn
such that

||∇un −QnV1||C(Ω(λn r
α,1
n ,λn r

α,1
n +λn )) . n−

α
4 ,

|nδr
α,1
n ±1
n | . n−

α
4 .

(4.12)

In particular, the first equation yields an estimate on the vertical extension vectors:

|Qnτ − τ
rα,1n
n | ≤ n−α4 .

We would like to exploit this, in order to obtain a test function for the minimization
problem (4.2). For this we use a strategy based on defining a test function as (a
rescaled version of) uijn for the first rα,1n horizontal steps and then extending it by
an appropriately translated version of the affine function V1x. However, we have
to be careful not to violate the non-interpenetration condition (2.1). In the sequel,
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we provide the details of the construction.
We start by remarking that equation (3.10) yields

|nδi±1
n | ≤ c for all i ∈ [0, rα,1n ]. (4.13)

Making use of the left boundary data, i.e. ui,0n = Fλ

(
i
0

)
for i ≤ −n, it is then

possible to deduce good closeness properties between τ and τ
rα,1n
n via a telescope

sum:

|τ − τ r
α,1
n
n | ≤

rα,1n∑
i=−n

|τ in − τ i+1
n | =

rα,1n∑
i=−n

|δi+1
n | . nα−1 . n−α−δ, (4.14)

for 0 < α < 1
2 − δ and 0 < δ � 1. We further claim, that

|V1 −QnV1| . n−
α
4 .

Indeed, from the previous estimates we obtain∣∣∣∣V1

(
1
−1

)
−QnV1

(
1
−1

)∣∣∣∣ ≤ ∣∣∣∣V1

(
1
−1

)
− τ r

α,1
n
n

∣∣∣∣+

∣∣∣∣QnV1

(
1
−1

)
− τ r

α,1
n
n

∣∣∣∣
= |τ − τ r

α,1
n
n |+ |Qnτ − τ

rα,1n
n |

. n−
α
4 .

Combining this with the fact that∣∣∣∣V1

(
1
1

)
−QnV1

(
1
1

)∣∣∣∣ =

∣∣∣∣(ab
)
−Qn

(
a
b

)∣∣∣∣
=

∣∣∣∣Q̃(ab
)
− Q̃Qn

(
a
b

)∣∣∣∣ =

∣∣∣∣( a
−b

)
−Qn

(
a
−b

)∣∣∣∣
=

∣∣∣∣V1

(
1
−1

)
−QnV1

(
1
−1

)∣∣∣∣ . n−
α
4 ,

yields the claim. Here Q̃ denotes the rotation matrix mapping the vector
(
a
b

)
to

the vector
(
a
−b

)
. In the second line we made use of the commutativity of SO(2).

Thus, this leads to

|∇ur
α,1
n 0
n − V1 ± nα(τ

rα,1n
n − τ)| ≤ n−α4 + |nα(τ

rα,1n
n − τ)|

. n−
α
4 + nαn−α−δ

. max{n−α4 , n−δ}.

(4.14’)
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Using Lemma 4.1 for m(n) := nα and (after a possible vertical translation of the
original function, which we suppress in the sequel) for −m ≤ j ≤ m, we set

ũi−jjm :=


ui−jjn

λn
for 0 ≤ i < rα,1n ,

V1

(
i− j
j

)
− V1

(
rα,1n

0

)
+

ur
α,1
n 0
n

λn
for i ≥ rα,1n .

(4.15)

Therefore, invoking Lemma 4.1 with e.g. ε(n) := n−δ, it holds

H1
n ≥ H1

n,m(ũm)− ε(n) = H1
m,m(ũm)− ε(n). (4.16)

We stress that thus ũm is an admissible test function – satisfying in particular (4.1)
– for the minimum problem defining B+(Fλ, V1, r

m
0 ) on the scale m = nα, where

r
m(n)
0 :=

u
rα,1n 0
n

λn
− V1

(
rα,1n

0

)
.

Using (4.14’), we estimate

H1
n ≥ λm

m∑
i=−m

m∑
j=−m

h

(
uin − ui±1

n

λn
, τ in, τ

i±1
n , j

)
− ε(n)

≥ H1
m,m(ũm)− w1(n)− ε(n)

≥ B+(Fλ, V1, r
m
0 )− w1(n)− ε(n), (4.17)

|w1(n)| . ‖∇un − V1‖L∞(Ω(λn r
α,1
n ,λn r

α,1
n +λn )) + o(1)→ 0

as n→∞. Thus, in the limit n→∞, estimate (4.17) implies:

lim inf
n→∞

H1
n ≥ inf

r0
B+(Fλ, V1, r0). (4.18)

Step 2: Internal layers. For the remaining intervals we argue analogously: For
each s ∈ {2, ...,K − 1} and each 0 < α ≤ 1

2 − δ as above, there exist integers
lα,sn ∈ [ksn − nα, ksn], and rα,sn ∈ [ksn, k

s
n + nα] such that ∇uijn stays O(n−α/4) close

to certain rotations of Vs and Vs+1 in the domains Ω(lα,sn λn , l
α,s
n λn + λn ) and

Ω(rα,sn λn , r
αs
n λn + λn ).

Moreover, by an argument which is similar to the one used for the left boundary
layer, we may without loss of generality assume that the deformation gradients
(and in particular the associated rotations) on the left and on the right hand side
of the boundary layer are O(n−α/4) close to Vs−1 and Vs, respectively. Indeed by
similar considerations as before, we may first assume that there exists a single rota-
tion Qsn ∈ SO(2) such that ∇uijn is O(n−α/4) close to QsnVs−1 and QsnVs on the left
and right hand side neighborhoods of the jump interface, respectively. Secondly, by
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switching from uijn to ūijn := (Qsn)−1uijn in the respective nα neighborhoods of the
interface, we may assume that the deformation is close to Vs−1 and Vs on the left
and right hand sides of the jump layer, respectively. In the sequel, we assume that
– if necessary – the appropriate rotation has already been carried out and omit the
bars in the notation.
Again invoking Lemma 4.1 and setting m(n) := nα, (after a possible vertical trans-
lation) we define a new horizontally truncated deformation by

ũi−jjm :=


Vs−1

(
i− j
j

)
+ Vs−1

(
lα,sn
0

)
+

ul
α,s
n 0
n

λn
for i ≤ lα,sn ,

ui−jjn

λn
for lα,sn < i < rα,sn ,

Vs

(
i− j
j

)
− Vs

(
rα,sn

0

)
+

ur
α,s
n 0
n

λn
for i ≥ rα,sn ,

for −m ≤ j ≤ m and note that ũm ∈ Arm,τ . Thus, ũm is an admissible test function
for the internal energy layer C(Vs−1, Vs, r

m
s−1) on the scale m = nα. Estimating

the energies thus yields

Hs
n ≥ λm

rα,sn∑
i=lα,sn +1

m∑
j=−m

h

(
uin − ui±1

n

λn
, τ in, τ

i±1
n , j

)
− ws(n)− ε(n)

= Hs
m,m(ũm)− ws(n)− ε(n)

≥ C(Vs−1, Vs, r
m
s−1)− ws(n)− ε(n), (4.19)

where

r
m(n)
s−1 := −Vs−1

(
lα,sn + 1

0

)
− u

lα,sn +10
n

λn
− Vs

(
rα,sn

0

)
+
u
rα,sn 0
n

λn
.

and

|ws(n)| . ‖∇un − Vs−1‖L∞(Ω(λnl
α,s
n ,λnl

α,s
n +λn ))

+ ‖∇un − Vs‖L∞(Ω(λnr
α,s
n ,λnr

α,s
n +λn )) + o(1)→ 0,

as n→∞.

Step 3: The right boundary layer. Finally, for the right boundary layer, we argue
as in the case of the left boundary layer. Denoting by lα,(K−1)

n , the corresponding
integer in the interval [n−nα, n], recalling Lemma 4.1 and (after a possible vertical
translation) setting

ũi−jjm :=

 VK−1

(
i− j
j

)
+ VK−1

(
l
α,(K−1)
n

0

)
+

ul
α,(K−1)
n 0
n

λn
for i ≤ lα,(K−1)

n ,

ui−jjn

λn
for i > l

α,(K−1)
n ,
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for m = nα and −m ≤ j ≤ m, implies

HK
n ≥ λm

n∑
i=n−m

m∑
j=−m

h

(
uin − ui±1

n

λn
, τ in, τ

i±1
n , j

)
− ε(n)

≥ Hn,m(ũm)− wK(n)− ε(n)

≥ B−(VK−1, Fλ, r
m
K)− wK(n)− ε(n), (4.20)

where

r
m(n)
K := VK−1

(
l
α,(K−1)
n

0

)
+
u
lα,(K−1)
n 0
n

λn
,

and |wK(n)| . ‖∇un − VK−1‖L∞(Ω(λnl
α,(K−1)
n ,λnl

α,(K−1)
n +λn ))

+ o(1) as n → ∞.
Combining the estimates (4.18)–(4.20), we finally infer the desired inequality (4.11).
Hence the lemma and therefore, the Γ-lim inf inequality in the case of non-degenerate
intervals, are proved.

In the case of degenerate intervals we mainly argue along the same lines as
above. In this case the sequence un may have more transition layers than the
limiting function u. As degenerate intervals possibly yield additional transitions
(with the length scale α possibly chosen accordingly to the degeneracy of their
lengths as n→∞ – but always keeping α bounded from below by an n-independent
constant) one may rely on the triangle inequality for the boundary layer energies,
e.g. in the form of the estimate:

inf
rs−1

C(Vs−1, Vs, rs−1) + inf
rs
C(Vs, Vs+1, rs) ≥ inf

rs−1

C(Vs−1, Vs+1, rs−1).

Hence, the Γ-lim inf inequality also holds in this setting.

Remark 4.1. For later reference, we summarize the essential modification steps
which were used in the Γ-lim inf inequality and refer to them as a “cutting proce-
dure”. As outlined in the proof of the Γ-lim inf inequality, it involves

• finding integer points close (more precisely, nα-close) to the expected jump
layers at which the configuration transforms from one of the wells to the
other well (and possibly back to the original well), c.f. equation (4.12),

• transferring the good estimates on neighboring τ in, c.f. (4.13), to the α-scale
in order to avoid self-interpenetration of the material, c.f. equations (4.14)
and (4.14’) which is possible for any α < 1/2,

• horizontally gluing the right rotation to the prescribed sequence at the respec-
tive α-close points, c.f. (4.15),
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• using Lemma 4.1 in order to pass from the original sequence, which had a
scale ∼ n, to a modified sequence which is reduced to a scale m = nα in both
the horizontal and the vertical directions.

We emphasize that both the second and the fourth steps are essential in preserving
the rescaled non-interpenetration condition (4.1), c.f. (4.14’).

Keeping the previous comments in mind, we continue with the proof of the Γ-
lim sup inequality. Again, this is slightly more involved than the strategy proposed
in [15], as we again have to preserve the admissibility conditions, i.e. un ∈ An,τ . In
particular, we are confronted with the presence of an n-dependence in the functional
which we analyze. As before, the key tools consist of a version of the averaging
lemma (Lemma 4.1) and the “cutting procedure” introduced in Lemma 4.2.

Proof of the Γ-lim sup inequality. Step 1: Preparation. Let u be such that Esurf (u) <
∞. Then there exist K ∈ N , Vs ∈ {U0, QU1}, s ∈ {1, ...,K − 1} and −1 = x1 <
x2, ..., xK−1 < xK = 1 such that

∇u(z) = Vs for z ∈ Q(xs, xs+1), s ∈ {1, ...,K − 1}.

For a fixed but arbitrary ε > 0 let r = [r0, ..., rK ] be such that

B+(Fλ, V0, r0) +

K−2∑
s=2

C(Vs−1, Vs, rs) +B−(VK−1, Fλ, rK) ≤ Esurf (u) + ε. (4.21)

By definition of the internal layer energies, for every s ∈ {2, ...,K − 2} there exist
an infimizing subsequence {nms}ms∈N ⊂ N with nms → ∞ and functions unms ∈
Arnms ,τ such that

lim
ms→∞

Hs
nms

(
λnmsunms

(
·

λnms

))
= C(Vs, Vs+1, rs). (4.22)

Analogous statements hold for the boundary layers. We would like to use the sub-
sequences {nms}ms∈N and the functions unms which realize the lim inf in Definition
4.1 in order to define a recovery sequence for the Γ-lim sup inequality. For this,
however, we have to fill the gaps in the subsequence unms in a way which does
not raise the energies contributing to lim sup

n→∞
Hn(un). In order to deal with this

difficulty, we make use of an “energy partitioning” or “averaging argument” in the
spirit of Lemma 4.1.

Step 2: Averaging and collecting properties of the layer energies. In the sequel,
we focus on a single transition layer, say on the transition layer C(V1, V2, r1). All
the other boundary and internal layer contributions can be treated analogously.
We denote the subsequence realizing the lim inf in Definition 4.1 by {nm}m∈N and
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the associated functions by unm . These functions are defined on Z × [−nm, nm]
and fulfill the rescaled admissibility condition (4.1).

We centrally use the following variant of Lemma 4.1:

Lemma 4.3 (Energy Partitioning/Averaging). Let n ∈ N and ε > 0 be arbitrary.
Then there exists n̄ ∈ {nm}m∈N with n̄ � n, n̄ = n̄(ε, n), such that there exists a
function uε : Z× [−n, n]→ R, uε ∈ Arn,τ satisfying

(i) uε
(
· −
(
l
0

))
∈ Arn,τ , for all l ∈ Z,

(ii) ui−jjε = V1

(
i− j
j

)
, i ≤ −n̄ and ui−j,jε = V2

(
i− j
j

)
+ r1, i ≥ n̄,

(iii) H1
n̄,n(uijε ) ≤ H1

n̄,n̄(uijn̄ ) + ε.

Proof. The proof of the Lemma essentially follows along the same lines as the
proof of Lemma 4.1 with Ωrn and Ωn,m replaced by Z × [−n̄, n̄] and Z × [−n, n]:
For a given n ∈ N we argue as in Lemma 4.1 and choose n̄ > n

(
1 + 2C(V1,V2,r1)

ε

)
,

n̄ ∈ {nm}m∈N . This yields the existence of uε satisfying condition (iii). Condition
(ii) follows from the definition of un̄. Finally, condition (i) is a consequence of the
fact that integer valued, horizontal translations do not change the admissibility of
the sequence.

Lemma 4.3 thus allows us to extend the infimizing subsequences {unms} in
(4.22) for each s ∈ {1, ...,K−1} to full sequences {usn}, n ∈ N , such that for ε > 0
fixed and all sufficiently large n one has

H1
n

(
λnu

s
n

(
·
λn

))
≤

 B+(Fλ, V1, r0) + cε if s = 0,
C(Vs, Vs+1, rs) + cε if s ∈ {1, ...,K − 2},
B−(VK−1, Fλ, rK−1) + cε if s = K − 1.

(4.23)

We now prepare for patching together the various usn originating from the differ-
ent internal and boundary layer energies. In this context the “cutting procedure”
summarized in Remark 4.1 plays an essential role.

The next lemma shows that after slight modifications which, however, preserve
the estimates (4.23) (up to additional O(ε) terms), the sequence {usn} can be chosen
to converge to a function us with ∇us ∈ {Vs, Vs+1} whose gradient only has a single
jump layer:

Lemma 4.4. Let 0 < α < 1
2 − δ, 0 < δ � 1 and 0 < α < β < α+ δ/2 be fixed but

arbitrary. For each s ∈ {1, ...,K− 1} it is possible to modify the sequence {usn}n∈N
given above such that for m(n) ∼ nβ the new sequence {ũsm}m∈N , ũsm ∈ Arm,τ
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remains admissible and has exactly one transition layer between Vs and Vs+1 of the
width O(nα) (see Fig. 3) which is (without loss of generality) centered at 0. More
precisely, there exists isn ∈ N and a constant c such that

isn . nα,

∇ũs,ijm = Vs for i < −isn, ∇ũs,ijm = Vs+1 for i > isn (4.24)

and −m ≤ j ≤ m. Moreover, ũsm preserves the energy estimates (4.23) and

λmũ
s
m

(
·
λm

)
→ ũs in W 1,4(Ωs) ∩ L∞(Ωs), (4.25)

with ∇ũs = Vs for x < 0 and ∇ũs = Vs+1 for x > 0. Here we use the notation
Ωs := Ω

(
xs−1−xs

2 , xs+1−xs
2

)
.

Proof. By choosing n̄ sufficiently large compared to n in the application of Lemma
4.3, we may, without loss of generality, assume that any horizontal layer, i.e. any
distance between successive “bad” points” xj,sn , j ∈ {1, ...,Ks}, is either of a size
. nα or at least of the size ∼ nβ and that usn is defined on a strip of the size n̄×n.
By an argument similar to the one used in the proof of the Γ-lim inf inequality,
for each element usn of the sequence, one may choose integers lα,sn ∈ Z, rα,sn ∈ Z
which are in an nα neighborhood of an interface between Vs and Vs+1 and where
∇usn is O(n−α/4) close to Vs and Vs+1, respectively. Indeed, in order to obtain this
reduction we argue as in Step 2 of the proof of Lemma 4.2: By the considerations
carried out in the proof of Lemma 4.2 we may firstly assume that the gradient is in a
neighborhood of QnVs and QnVs+1 on the left and right sides of the jump interface
for some Qn ∈ SO(2); secondly by defining ũij := Q−1

n uij we may then assume
Qn = Id without violating the admissibility of the sequence. At such positions we
cut usn and extend it by a deformation gradient given by Vs or Vs+1 as in the proof
of the Γ-lim inf-inequality. More precisely, (after a possible vertical translation) we
define

ũs,i−jjm :=


Vs

(
i− j
j

)
+ Vs

(
lα,sn
0

)
+

ul
α,s
n 0
n

λn
for i ≤ lα,sn + 1,

ui−jjn

λn
for lα,sn < i < rα,sn ,

Vs+1

(
i− j
j

)
− Vs+1

(
rα,sn

0

)
+

ur
α,s
n 0
n

λn
for i ≥ rα,sn ,

for a certain m(n) ∼ nβ and −m ≤ j ≤ m. Thus, we consider a transition layer
of the size O(nα) but instead of cutting out a square of the size nα, we work on
a square of the size O(nβ). This allows to obtain the desired L∞ convergence
in (4.25). By adapting the exact value of m (i.e. possibly correcting it by a
multiplicative constant), it is possible to satisfy (4.25) on the domain Ωs. Under
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the stated constraints on α, β and by invoking Lemma 4.1, the construction remains
admissible (in particular (4.1) can be satisfied). Moreover, its energy is controlled
by (4.26) given below, i.e. it satisfies an analog of the energy bound (4.23) for
the modified functions ũsm (with possibly additional O(ε) error contributions). As
any further transition from Vs+1 to Vs costs an additional finite amount of energy,
we have thus obtained a construction which does not deteriorate the energy of the
original construction (i.e. satisfies the estimate (4.26)) and its gradient attains an
appropriate deformation from the wells SO(2)U0 ∪ SO(2)U1 on the right and left
boundaries of the domains.

Finally, we can translate the function ũsm such that the internal layer [lα,sn , rα,sn ]
is shifted to [−isn, isn], where isn := (rα,sn − lα,sn )/2. This does not change the energy.
Therefore, all statements of the lemma follow.

Remark 4.2. We remark that the modified sequence of Lemma 4.4 which was ob-
tained via the “cutting procedure” summarized in Remark 4.1 does not necessarily
preserve the shift rs in the definition of the boundary layer C(Vs, Vs+1, rs). How-
ever, for our further purposes it is only necessary that the resulting energy does not
exceed an estimate of the form (4.23).

Step 3: Conclusion. Applying the previous step with an appropriate choice of
α, β, we obtain a sequence {ũsm}m∈N which satisfies the desired energy estimate

H1
m

(
λmũ

s
m

(
·
λm

))
≤

 B+(Fλ, V1, r0) + cε if s = 0,
C(Vs, Vs+1, rs) + cε if s ∈ {1, ...,K − 2},
B−(VK−1, Fλ, rK−1) + cε if s = K − 1.

(4.26)

As the gradients of ũsm only deviate from the deformations Vs, Vs+1 or the boundary
data Fλ on horizontal transition layers of the size O(nα), we may further translate
and patch together the functions ũsm such that the resulting function um

• is continuous and attains the desired boundary data,

• still contains translated versions of the boundary and internal layers in the
stripes [−isn, isn]× [−m,m],

• the individual jumps in its gradient converge to the respective jumps of the
gradient of u,

• due to (4.23) satisfies the overall energy bound

H1
m(um) ≤ Hsurf (u) + cε

for all sufficiently large m.
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More precisely, we define

ui−jjm :=



Fλ

(
(i− j)λm
jλm

)
for i ≤ −m,

λmũ
0
m

((
i− j
j

)
+

(
m
0

))
+D0

m for −m ≤ i ≤ −m+ h0
m,

λmũ
s
m

((
i− j
j

)
−
(
ksm
0

))
+Ds

m for ksm − hs−1
m ≤ i ≤ ksm + hsm

and s ∈ {1, ...,K − 2},

λmũ
K−1
m

((
i− j
j

)
−
(
m
0

))
+DK−1

m for m− hK−1
m ≤ i ≤ m,

Fλ

(
(i− j)λm
jλm

)
+DK

m for i ≥ m.

Here, the off-sets Ds
m are defined by

D0
m := Fλ

(
−1
0

)
− λmũ0

(
0
0

)
,

Ds
m := λmũ

s−1
m

(
hs−1
m

0

)
− λmũsm

(
−hs−1

m

0

)
+Ds−1

m for s ∈ {1, ...,K − 1},

DK
m := λmũ

K−1
m

(
0
0

)
− Fλ

(
1
0

)
+DK−1

m .

Due to the fixed boundary data on the left lateral side of the parallelogram Ω,
i.e. um(x) = Fλx for x ≤ −1, the L4 gradient convergence and the fundamental
theorem of calculus, i.e. for almost every y ∈ [−1, 1]

um(1− y, y)− um(−1− y, y) =

1∫
0

∇um(t(1− y)− (1− t)(1 + y), y) ·
(

2
0

)
dt,

1∫
0

∇u(t(1− y)− (1− t)y, y) ·
(

2
0

)
dt = Fλ

(
2
0

)
and ∇um → ∇u in L4(Ω),

we infer that um → u in L∞. In particular, the value of DK
m can be estimated by

o(1) as m → ∞. Thus, changing the volume fractions of V1, V2 slightly (i.e. on a
set of measure o(1)), it is possible to arrange DK

m = 0. Since this can be obtained
via a slight extension/ shortening of one of the domains on which ∇um = V1

or ∇um = V2, it does not change the energy. As this preserves the convergence
um → u in L∞, the above modification of the domains Ωs allows us to chose the
associated, slightly modified function um ∈W 1,∞

0 (Ω)+Fλx as the desired recovery
sequence. Since this construction can be achieved for any ε > 0 and as any m ∈ N
can be obtained via the procedure introduced in Lemma 4.4, the claimed Γ-lim sup
inequality follows from a diagonal argument.
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cn
β

Vs Vs+1

Figure 3: During the construction of the recovery sequence in Lemma 4.4, we only
keep an inner core of the scale O(nα) of the original function un̄ and paste the
deformations Vs and Vs+1 to the left and right of it on the length-scale m(n) =
O(nβ).

As a corollary we obtain

Corollary 4.1. Let {un}n∈N be a minimizing sequence of Hn(·) corresponding to
admissible boundary data (2.8). Then the total number of boundary and internal
layers is equal to three if λ /∈ {0, 1}. The internal layer is either positioned at the
horizontal coordinate x = 1− 2λ or at x = −1 + 2λ.

Proof. This follows from the previous Γ-convergence result, in particular it is im-
plicitly present in Lemma 4.3. For a fixed λ the position of the internal layer is
uniquely prescribed by the points x = 1− 2λ or x = −1 + 2λ.

5 Comparison with Numerics
In this section we present the results of our numerical simulations finding local min-
imizers to (2.6) considered with fixed τi ≡ τ (i.e. the minimization was done only
among chains that are uniform in the vertical direction) and boundary conditions

ui = U0

(
i
0

)
if i ≤ −n and and ui = QU1

(
i
0

)
if i ≥ n. (5.1)

The numerics are based on a local optimization Newton type algorithm. Starting
with a deformation un ∈ An,τ corresponding to a martensitic twin, i.e. a configu-
ration such that

uin = U0

(
i
0

)
if i ≤ 0 and uin = QU1

(
i
0

)
if i ≥ 0, (5.2)

36



0 10 20 30 40 50 60 70
−2

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140
−5

0

5

10

15

20

25

Figure 4: Twins appearing as local minimizers (n = 40 and n = 100).

we initially preoptimize the position of the middle atom i = 0 in (5.2). Namely,
we optimize its position w.r.t. (2.6) considered with τi ≡ τ without changing the
configuration of the other atoms.

Next, the resulting preoptimized configuration is used as an initial guess for the
Newton algorithm and thus, a nearby lying local minimizer of (2.6) considered with
(5.1) is found.

The results in Fig. 4 show such a minimizer possessing a straight twinning
interface coinciding with that of (5.2) and prescribed by the vector τ . The figure
shows that the deviation from the the twinned configuration quickly decreases as
the number of atoms, n, tends to infinity. In Fig. 5 we plot the absolute deviation
in the atom positions of our local minimizer from the rank-one twin configuration
(5.2). One finds that the deviation decreases exponentially starting from the middle
atom lying on the twinning interface. Note, that the decay is not given exactly by
a simple exponent but nevertheless is nicely approximated by it. Surprisingly, the
middle atoms of our local minimizer and the initial guess for the Newton algorithm
lying on the twinning interface coincide (deviation between them is zero). This
might appear due to the initial preoptimization of the position of the middle atom
in (5.2) which was described above. This simple preoptimization step seems to find
the right position of the middle atom on the twinning interface.
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Figure 5: Absolute deviation from the rank-one connected twin configuration (5.2)
(n = 100 and n = 200). Square points– the computed numerical deviation, round
points– its approximation by an exponential profile.

6 Summary and Discussion
In this article we introduced a general type of two-well Hamiltonian defined on
a two-dimensional sublattice of Z2 by imposing the assumptions (H1)-(H4). Af-
ter restricting the set of possible deformations to the special case of 1D chains,
non-uniformly extended in the vertical direction and considered with the boundary
conditions (2.8), we were able to show piecewise asymptotic rigidity of sequences
whose energy scales as surface energy. The corresponding compactness and Γ-
convergence arguments allowed us to rigorously derive the continuum limit of the
surface energy concentrating on the line interfaces between twin configurations.
Finally, a numerical minimization of the discrete problem reflected our analytical
results and showed an interesting exponential decay in the boundary layer profiles
between arising twins.

Keeping these results in mind, we conclude by briefly commenting on the under-
lying physical assumptions, possible generalizations and some interesting related
questions:

Since low energy states are expected to remain close to laminar configurations,
our class of constrained configurations, i.e. atomic chains, seem to be natural ob-
jects – even though they impose restrictions on the model. An immediate – though
less natural – generalization to the three-dimensional two-well problem is possible:
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Considering configurations in which a chain of atoms (i.e. the atoms on the (i,0,0)-
line with i ∈ [−n, n]) is freely deformed while the atoms on the corresponding
orthogonal two-dimensional planes are deformed with a variable elongation, τ in, in
one direction and a fixed extension, τ , in the other planar direction, (basically) re-
duces this 3D situation to our 2D situation. Indeed, under these assumptions (and
appropriate Dirichlet boundary conditions) the 3D setting corresponds to rank-
one perturbations of a “one-dimensional” configuration. As in our two-dimensional
framework this then allows to conclude that in the in-plane directions all deforma-
tions have to be close to a single well – jump! s between the wells are impossible in
this direction. This again relies on the fact that there are at most two intersections
with the wells along any arbitrary rank-one direction in the matrix space.
As our arguments rely on the one-dimensionality in the direction vertical to the
generating chain, it is at the moment neither clear how to extend our results to
the full two-dimensional setting nor to the three-dimensional case with variable
elongations in both of the planar directions (i.e. which in a sense would correspond
to a “(1 + 2ε)-dimensional” argument).

In the case of general boundary conditions one expects that minimizers reflect
the microstructure predicted in continuum theories and determine a length scale
for the microstructures. For an investigation of this question one would need to
proceed to the full two-dimensional setting which seems to be a very difficult open
problem which is not even fully understood in the continuous framework.

Finally, an analytical identification of the minimizing sequences in the defini-
tions of the boundary and internal layers (4.2)–(4.3) poses a further interesting
problem. It seems impossible to find explicit solutions of the underlying Euler-
Lagrange systems – even for our model Hamiltonian (2.3). Nevertheless, it could
be possible to justify the exponential decay of the boundary and internal layers
found numerically in Fig. 4–5 following e.g. approaches outlined in [14, 18]. From
an analytical side already the “cutting procedure” introduced in Lemma 4.2 and
Remark 4.1 shows that the width of the internal and boundary layers in the corre-
sponding infimizing sequences can be made arbitrarily algebraically small, i.e. of
the size O(nα) for any 0 < α < 1/2. This again suggests that the width of the
layers should decay exponentially with n.
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