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Abstract

We are concerned with computable estimates of the distance to
the set of divergence free fields, which are necessary for quantitative
analysis of mathematical models of incompressible media (e.g., Stokes,
Oseen, and Navier–Stokes problems). These estimates are connected
with the so-called Inf-Sup condition (or Aziz–Babuška-Ladyzhenskaya–
Solonnikov inequality) and require sharp estimates of the respective
constant, which are known only for a very limited amount cases. We
consider a way to bypass this difficulty and show that for a vide class
of domains (and different boundary conditions) computable estimates
of the distance to the set of divergence free field can be presented in
the form, which includes the LBB constant for a certain basic problem.
In the last section, we apply these estimates to problems in the theory
of viscous incompressible fluids and deduce fully computable bounds
of the distance to generalized solutions.
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1 Introduction

Let Ω be a bounded connected domain in Rd (d ≥ 2) with Lipschitz boundary
Γ. We consider estimates of the distance between a function

v ∈ V := W 1,q
0 (Ω,Rd) := {v ∈ W 1,q(Ω,Rd) | v = 0 on Γ} 1 < q < +∞

and the space S1,q
0 (Ω,Rd), which is the closure (with respect to the norm of

V ) of smooth divergence free fields having compact supports in Ω. Also, we
consider similar estimates for vector valued functions vanishing only on a
measurable part ΓD ⊂ Γ and the set of divergence free fields satisfying the
same boundary condition.

Throughout the paper, {f}Ω denotes the mean value of f in Ω, ‖ · ‖ω
denotes the L2 norm of a scalar or vector valued function over the set ω (if
ω coincides with Ω, then the subindex is omitted).

If q = 2, then an estimate of the distance between v ∈ W 1,2
0 (Ω,Rd) and

the set of divergence free fields is based on the following principal result.

Theorem 1 For any f ∈ L2(Ω) such that {f}Ω = 0, there exists a function

wf ∈ W 1,2
0 (Ω,Rd) such that

divwf = f and ‖∇wf‖ ≤ κΩ‖f‖, (1.1)

where κΩ is a positive constant depending on Ω.

We refer to [2, 11] for the proof of Theorem 1, which has several important
applications. It was used by O. A. Ladyzhenskaya and V. A. Solonnikov for
proving existence of a generalized solution to the Stokes problem (see, e.g.,
[10, 11]).

Theorem 1 implies the key relation in the mathematical theory of in-
compressible fluids (which is often called the Inf–Sup (or LBB) condition):
there exists a positive constant cΩ such that

inf
p∈L2(Ω)

{p}Ω=0, p 6=0

sup
w∈V0

w 6=0

∫
Ω p divw dx

‖p‖ ‖∇w‖
≥ cΩ. (1.2)

In view of (1.1), the condition (1.2) holds with cΩ = (κΩ)
−1.

Also, (1.2) can be justified by means of the Nečas inequality [13]:

‖p‖2 ≤ ‖p‖2−1,Ω +

d∑
i=1

∥∥∥∥ ∂p

∂xi

∥∥∥∥2
−1,Ω

∀ p ∈ L2(Ω),

where ‖ζ‖2−1,Ω := supη∈H1
0 (Ω)(ζ, η)/‖η‖H1 . For domains with Lipschitz bound-

aries a simple proof can be found in [3].
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In [1] and [6], the LBB condition was introduced, proved, and used
in order to justify the convergence of the so–called mixed approximation
methods, in which a boundary–value problem is reduced to a saddle–point
problem for a certain Lagrangian. Conditions analogous to (1.2) written for
various pairs of finite dimensional spaces are often used for proving stability
and convergence of numerical methods developed for viscous incompressible
fluids (see, e.g., [12]).

Theorem 1 can be extended to Lq spaces (1 < q < +∞). These general-
izations were obtained in ([4, 5]).

Theorem 2 Let f ∈ Lq(Ω). If {f}Ω = 0, then there exists vf ∈ W 1,q
0 (Ω,Rd)

such that

divvf = f and ‖∇vf‖q,Ω ≤ κΩ,q‖divvf‖q,Ω, (1.3)

where κΩ,q ( κΩ,2 = κΩ) is a positive constant, which depends only on Ω.

This theorem implies an estimate of the distance between a vector function
v ∈ W 1,q

0 (Ω,Rd) and the subspace S1,q
0 (Ω,Rd) ⊂ W 1,q

0 (Ω,Rd) containing
divergence free functions if the distance is measured in terms of the quantity

d(v, S1,q
0 (Ω,Rd)) := inf

v0∈S1,q
0 (Ω,Rd)

‖∇(v − v0)‖q,Ω.

Lemma 1 For any v ∈ W 1,q
0 (Ω,Rd),

d(v, S1,q
0 (Ω,Rd)) ≤ κΩ,q‖divv‖q,Ω. (1.4)

This result directly follows from Theorem 2 if we set f = divv. Then, a
function vf ∈ W 1,q

0 (Ω,Rd) exists such that (1.3) holds. We set

v0 := v − vf ∈ S1,q
0 (Ω)

and obtain

‖∇(v − v0)‖q,Ω = ‖∇vf‖q,Ω ≤ κΩ,q‖divv‖q,Ω.

Hence, the distance between v ∈ W 1,q
0 (Ω,Rd) and the set of divergence

free fields is easily estimated from above provided that the constant κΩ,q (or
a suitable upper bound of it) is known. Regrettably, the latter requirement
generates a very difficult problem. Even for the most simple case q = 2
estimates of the constant are known only for a restricted amount of special
(simple) domains (see, e.g., [7, 14, 15, 22]). In particular, for d = 2 it
is known that the constant cΩ can be expressed throughout the constant
L in the inequality ‖u‖2 ≤ L‖v‖2, which holds for an analytic function
u + iv provided that {u}Ω = 0 (see [8]). It was shown (see [22]) that
cΩ = 1√

1+L
≤ 1√

2
. For star shaped domains estimation of the constant L is
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based on simple geometrical properties of Ω and, in particular, leads to the

conclusion that cΩ = 1√
2
for the circle, sin π

8 ≤ cΩ ≤
√

π−2
2π for the square

and sin π
16 ≤ cΩ ≤

√
π−2

√
2

2π for the isosceles right triangle. Analogous
constants can be found analytically or computed numerically for certain
basic three dimensional domains.

However, in general, the constants κΩ,q are unknown. Moreover, so far
we do not know any method able to compute guaranteed and realistic bounds
of these constants for arbitrary three dimensional Lipshitz domains or, at
least, for polygonal 3D domains. This fact imposes the question, which often
arises in quantitative analysis of incompressible media: how to estimate the
distance between a function v ∈ W 1,q

0 (Ω,Rd) and the set of divergence free
fields for a sufficiently wide class of domains? Moreover, it is necessary
to answer the same question in the case where the functions are vanishing
only on a part of the boundary. Below we show that the estimates can be
obtained provided that estimates of the respective constants associated with
some basic (elementary) domains are known or precomputed.

In Section 2, we deduce estimates of the distance to the set of divergence
free fields for functions vanishing on a part ΓD of the boundary and show that
regardless of the particular form of ΓD the corresponding estimate holds with
the same constant as for ΓD = Γ provided that the function has divergence
with zero mean (this result generalizes Lemma 6.2.1 in [19]). Then, a more
sophisticated estimate is derived, which provides an upper bound of the
distance to the set of divergence free fields without this zero mean condition.
Section 3 presents the estimate based on domain decomposition. It can
be useful for polygonal domains, which can be decomposed into simplicial
and polyhedral cells. If the constants κΩ,q for these cells are known, then
Lemma 4 shows that the distance to the set of divergence free fields is easy
to estimate. Finally, in Section 4 we discuss applications of these results to
a posteriori estimates for problems in the theory of viscous incompressible
fluids.

2 Estimates for functions vanishing on a part of
the boundary

Assume that Γ consists of two measurable non-intersecting parts ΓD and
ΓN , measd−1ΓD > 0, and

v ∈ W 1,q
0,ΓD

(Ω,Rd) := {v ∈ W 1,q(Ω,Rd) | v = 0 on ΓD}.

We define the set

Kµ(Ω,ΓD) :=

w ∈ W 1,q
0,ΓD

(Ω,Rd) |
∫
Ω

divw dx = µ ∈ R

 .
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Our goal is to find an upper bound of

d(v, S1,q
0,ΓD

(Ω,Rd)) := inf
v0∈S1,q

0,ΓD
(Ω,Rd)

‖∇(v − v0)‖q,Ω, (2.1)

where
S1,q
0,ΓD

(Ω,Rd) =
{
v ∈ W 1,q

0,ΓD
(Ω,Rd) | divv = 0

}
,

and to show that the estimate (1.4) holds for the functions vanishing only
on ΓD with the same constant κΩ,q as in (1.4).

Lemma 2 Let v ∈ K0(Ω,ΓD). Then,

d(v, S1,q
0,ΓD

(Ω,Rd)) ≤ κΩ,q‖divv‖q,Ω. (2.2)

Indeed, the function f = divv has zero mean, so that Theorem 2 guarantees
existence of vf ∈ W 1,q

0 (Ω,Rd) such that (1.3) holds. Since

v0 := v − vf ∈ S1,q
0,ΓD

(Ω,Rd),

we arrive at (2.2).
Now we consider estimates of the distance, which use the same constant

κΩ,q and hold without the condition
∫
Ω

divv dx = 0.

We begin with the most interesting case q = 2 and first of all deduce an
upper bound of the quantity

inf
ṽ∈K0(Ω,ΓD)

‖∇(ṽ − v)‖. (2.3)

Since any function ṽ ∈ K0(Ω,ΓD) can be represented in the form ṽ = v− w̃,
where w̃ ∈ Kµ(Ω,ΓD), this task leads to the auxiliary variational problem

inf
w̃∈Kµ(Ω,ΓD)

J(w̃), J(w̃) :=
1

2
‖∇w̃‖2, (2.4)

which is equivalent to the minimax problem

inf
w∈W 1,2

0,ΓD
(Ω,Rd)

sup
λ∈R

 1

2
‖∇w‖2 + λ

∫
Ω

divwdx− µ

 .

The corresponding dual problem generated by the functional

G(λ) = inf
w∈W 1,2

0,ΓD
(Ω,Rd)

1

2
‖∇w‖2 + λ

∫
Ω

divwdx

− λµ, (2.5)
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which contains a well posed convex minimization problem. Let u∗ denote
the minimizer of this problem for λ = 1. It meets the integral identity∫

Ω

∇u∗ : ∇w dx+

∫
ΓN

n · w ds = 0 ∀w ∈ W 1,2
0,ΓD

(Ω,Rd) (2.6)

and solves the problem

∆u∗ = 0 inΩ,

u∗ = 0 onΓD,

∇u∗ n+ n = 0 onΓN .

It is easy to see that λu∗ is the minimizer of the problem (2.5) and

‖∇u∗ ‖2 +
∫
Ω

divu∗ dx = 0. (2.7)

We obtain

G(λ) =
1

2
λ2‖∇u∗ ‖2 + λ

λ

∫
Ω

divu∗ dx− µ

 = −1

2
λ2‖∇u∗ ‖2 − λµ.

Therefore, sup
λ

G(λ) is attained at λ = λ∗ := − µ
‖∇u∗ ‖2 . By (2.6) we conclude

that ‖∇u∗ ‖ 6= 0 so that λ∗ is a finite real number and

G(λ∗ ) =
1

2

µ2

‖∇u∗ ‖2
.

Note that

λ∗

∫
Ω

divu∗ dx = µ. (2.8)

Hence, λ∗ u∗ ∈ Kµ(Ω,ΓD). Since

J(λ∗ u∗ ) =
1

2
‖∇λ∗ u∗ ‖2 =

1

2

µ2

‖∇u∗ ‖2

we see that the values of the primal and dual functionals associated with
the auxiliary problem coincide and, therefore, λ∗ u∗ is the minimizer of the
auxiliary problem (2.4).

We set in (2.3) ṽ = v∗ := v − λ∗ u∗ and find that

inf
ṽ∈K0(Ω,ΓD)

‖∇(ṽ − v)‖ =
1

‖∇u∗ ‖

∣∣∣∣∣∣
∫
Ω

divv dx

∣∣∣∣∣∣ . (2.9)
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Now

inf
v0∈S1,2

0,ΓD
(Ω,Rd)

‖∇(v − v0)‖ ≤ inf
v0∈S1,2

0,ΓD
(Ω,Rd)

‖∇(v∗ − v0)‖+ ‖λ∗∇u∗ ‖

≤ κΩ‖divv − λ∗ divu∗ ‖+
1

‖∇u∗ ‖

∣∣∣∣∣∣
∫
Ω

divv dx

∣∣∣∣∣∣ . (2.10)

In view of (2.8), we arrive at the following result.

Lemma 3 For any v ∈ W 1,2
0,ΓD

(Ω,Rd),

d(v, S1,2
0,ΓD

(Ω,Rd)) ≤

κΩ
| {divu∗ }Ω |

‖ {divu∗ }Ωdivv − divu∗ {divv}Ω ‖+ 1

‖∇u∗ ‖

∣∣∣∣∣∣
∫
Ω

divv dx

∣∣∣∣∣∣ .
(2.11)

It is easy to see that this estimate converts into (2.2) if {divv}Ω = 0.

Corollary 1 (2.10) implies a somewhat different estimate:

d(v, S1,2
0,ΓD

(Ω,Rd)) ≤ κΩ‖divv‖+ C∗

∣∣∣∣∣∣
∫
Ω

divv dx

∣∣∣∣∣∣ , (2.12)

where

C∗ =
1

‖∇u∗ ‖

(
κΩ

‖divu∗ ‖
‖∇u∗ ‖

+ 1

)
.

A similar estimate can be derived for q ∈ (1,+∞). Let u∗ be the mini-
mizer of the problem

inf
w∈W 1,q

0 (Ω,ΓD)

1

q
‖∇w‖q + λ

∫
Ω

divwdx

 , (2.13)

which meets the integral identity∫
Ω

(
|∇u∗ |q−2∇u∗ : ∇w + divw

)
dx = 0 ∀w ∈ W 1,q

0 (Ω,ΓD).

Then,

‖∇u∗ ‖qq,Ω +

∫
Ω

divu∗ dx = 0.
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We set v∗ = v − λ∗ u∗ , where

λ∗ =

∫
Ω

divv dx∫
Ω

divu∗ dx
= −

∫
Ω

divv dx

‖∇u∗ ‖qq,Ω
.

We obtain

inf
v0∈S1,q

0,ΓD
(Ω,Rd)

‖∇(v−v0)‖q,Ω ≤ inf
v0∈S1,q

0,ΓD
(Ω,Rd)

‖∇(v∗−v0)‖q,Ω+‖λ∗∇u∗ ‖q,Ω

≤ κΩ,q‖divv − λ∗ divu∗ ‖q,Ω +
1

‖∇u∗ ‖q−1
q,Ω

∣∣∣∣∣∣
∫
Ω

divv dx

∣∣∣∣∣∣
≤ κΩ,q‖divv‖q,Ω + C∗,q

∣∣∣∣∣∣
∫
Ω

divv dx

∣∣∣∣∣∣ , (2.14)

where

C∗,q =
1

‖∇u∗ ‖q−1
q,Ω

(
κΩ,q

‖divu∗ ‖q,Ω
‖∇u∗ ‖q,Ω

+ 1

)
.

Remark 1 The constant C∗ depends on the solution u∗ of the auxiliary
boundary value problem (2.6) (or problem (2.13)). In general, this function
is unknown. It can replaced by a finite dimensional approximation u∗,h ,
which solves the problem∫

Ω

(∇u∗,h : ∇wh + divwh) dx = 0 ∀w ∈ Kh
0 (Ω,ΓD),

where Kh
0 is a certain finite dimensional subspace of K0(Ω,ΓD). Then,

repeating above arguments, we find that

inf
ṽ∈K0(Ω,ΓD)

‖∇(ṽ − v)‖ ≤ ‖∇(v − u∗,h )‖ =
1

‖∇u∗,h ‖

∣∣∣∣∣∣
∫
Ω

divv dx

∣∣∣∣∣∣ .(2.15)

and (2.12) holds with the fully computable constant

C∗,h =
1

‖∇u∗,h ‖

(
κΩ

‖divu∗,h ‖
‖∇u∗,h ‖

+ 1

)
.

By applying known argumentation of the approximation theory one can prove
that u∗,h tends to u∗ provided that standard regularity assumptions on the
structure of subspaces K0(Ω,ΓD) are satisfied. Then, C∗,h tends to C∗.
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3 Estimates based upon decomposition of Ω

A generalization of (2) is obtained if Ω is divided into a collection of non-
overlapping Lipschitz subdomains Ωi, i = 1, 2, ...N and the corresponding
constants κΩi,q are known.

Lemma 4 Let v ∈ W 1,q
0,ΓD

(Ω,Rd) and

{divv}Ωi
= 0 i = 1, 2, ..., N. (3.1)

Then,

dq(v, S1,q
0 (Ω,ΓD)) ≤

N∑
i=1

κqΩi,q
‖divv‖qΩi

. (3.2)

Proof. Since
∫

∂Ωi

v · nds = 0, we know that (see, e.g., [9], III.3) there exists

a vector field u(i) ∈ W 1,q(Ωi,Rd) such that divu(i) = 0 in Ωi and u(i) = v on
∂Ωi in the sense of traces.

In all Ωi, we define w(i) := v − u(i). Note that wi ∈ W 1,q
0 (Ωi,Rd). Now,

we set gi = divw(i) and apply Theorem 2, which guarantees existence of

w
(i)
g ∈ W 1,q

0 (Ωi,Rd) such that

divw(i)
g = gi = divv in Ωi, (3.3)

‖∇w(i)
g ‖q,Ωi ≤ κΩi,q‖g‖q,Ωi . (3.4)

Let wg be the vector valued function that coincides with w
(i)
g in each Ωi. It

is continuous and belongs to W 1,q
0 (Ω,Rd). From (3.4), it follows that

‖∇wg‖qq,Ω ≤
N∑
i=1

κqq,Ωi
‖g‖qq,Ωi

. (3.5)

We set v0 = v − wg ∈ S1,2
0,ΓD

(Ω,Rd) and find that

‖∇(v − v0)‖q,Ω = ‖∇wg‖q,Ω =

N∑
i=1

κqq,Ωi
‖g‖qq,Ωi

‖∇(wg − v + v)‖q,Ω,

which implies (3.2). 2
For q = 2, Lemma 4 has been proved in [20]. It gives the following answer

to the question stated in the introduction: if a domain is decomposed into
a set of ”simple” subdomains (for which the constants κΩ,q are known),
then an upper bound of the distance is easy to compute provided that mean
values of the divergence in each subdomain are zero.

It should be noted that satisfaction of a certain amount of integral con-
ditions (3.1) can be performed without essential difficulties unlike the meth-
ods based on constructing a sufficiently wide subspace of divergence free

9



functions and computing the estimate directly (especially in the three di-
mensional case). Indeed, if v does not satisfy (3.1), then the corresponding
correction can be done be changing N parameters in the representation of
this function. Since∫

Ωi

divv dx =

∫
∂Ωi

v · ni ds i = 1, 2, ..., N,

where ni is the outward normal to the boundary ∂Ωi, changing the param-
eters should be done such that all the boundary integrals vanish. If N is
not very large, then this requirement do not lead to essential difficulties
(especially if v is presented by edge based approximations such as, e.g.,
Raviart–Thomas elements).

Moreover, we can deduce fully computable estimates of the distance,
which are valid without the conditions or (3.1). Indeed, let µi =

∫
Ωi

divv dx

and w ∈ W 1,q
0 (Ω,ΓD) be a “correction function” such that∫

Ωi

divw dx = µi for i = 1, 2, ..., N.

Then

d(v, S1,q
0 (Ω,ΓD)) ≤ d(v − w,S1,q

0 (Ω,ΓD)) + ‖∇w‖q,Ω

and (3.2) yields a simple estimate

d(v, S1,q
0 (Ω,ΓD)) ≤

(
N∑
i=1

κqΩi
‖div(v − w)‖qΩi

)1/q

+ ‖∇w‖q,Ω. (3.6)

This estimate provides an upper bound of the distance to the set of di-
vergence free fields for any w ∈ W 1,q

0 (Ω,ΓD). In order to obtain the best
estimate, w should be selected in such a way that the right hand side of
(3.6) be minimal. For this purpose, we should use a generalized version of
the method exposed in Lemma 3.

4 Estimates of the distance to the exact solutions
of boundary value problems

Finally, we consider applications of the above derived estimates to quan-
titative analysis of mathematical models arising in the theory of viscous
incompressible fluids. For the sake of simplicity, we consider only stationary
models with Dirichl’et boundary conditions (i.e., u = u0 on Γ, where u0 is a
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given divergence free vector function). For this class of problems, a gener-
alized solution u is defined as a divergence free field satisfying the integral
identity∫

Ω

(ν∇u− η(u)) : ∇w dx =

∫
Ω

f · w dx ∀w ∈ S1,2
0 (Ω,Rd), (4.1)

where ν is a positive constant (viscosity), η(u) = 0 for the Stokes problem,
η(u) = a⊗u for the Oseen problem (where a is a certain bounded divergence
free vector function), and η(u) = u ⊗ u for the Navier–Stokes problem (in
the latter case, we assume that u is a certain weak solution).

Let v ∈ S1,2
0 (Ω,Rd) be a function satisfying the Dirichlét boundary con-

ditions, which we view as an approximation of the generalized solution u. In
order to get an estimate of the error e = u− v, we rewrite (4.1) as follows:∫

Ω

(ν∇(u− v) + η(v)− η(u)) : ∇w dx = Lv(w), (4.2)

where

Lv(w) =

∫
Ω

(f · w − ν∇v + η(v) : ∇w) dx

is the residual functional associated with v. This relation yields the general
error identity

m (e) := sup
w∈S1,2

0 (Ω,Rd)

∫
Ω

(ν∇(u− v) + η(v)− η(u)) : ∇w dx

‖∇w‖
= | Lv | . (4.3)

Here, m (e) is the error measure and | Lv | is the norm of the residual func-
tional. Since the latter quantity contains all the available information con-
cerning the quality of the exact solution, we see that m (e) is the measure
to be used (see also a discussion in [20]).

For the Stokes problem, m (e) = ν‖∇e‖. For the Oseen problem, we
have∫

Ω

(a⊗ w) : ∇w dx = −
∫
Ω

Div(a⊗ w) · w dx =

= −
∫
Ω

(a · ∇w) · w dx = −1

2

∫
Ω

a · ∇(|w|2) dx = 0. (4.4)

Therefore,

sup
w∈S1,2

0 (Ω,Rd)

∫
Ω

(ν∇e : ∇w − (a⊗ e) : ∇w) dx

‖∇w‖
≥

∫
Ω

ν∇e : ∇e dx

‖∇e‖
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and m(e) ≥ ν‖∇e‖.
In general, such a simple bound does not take place for the Navier–Stokes

problem. We can only prove (see [18]) that m (e) is bounded from below
by µ‖∇e‖ (where µ is a positive multiplier) provided that ∇v is sufficiently
small.

The residual functional can be decomposed into two physically meaning-
ful parts by means of known methods based on suitable integration by parts
relations (see [19]). Let q ∈ L2(Ω) and

τ ∈ H(Ω,Div) :=
{
τ ∈ L2(Ω,M2×2) | Divτ ∈ L2(Ω,R2)

}
.

Then,

Lv(w) =

∫
Ω

(f − Divτ) · w +

∫
Ω

(ν∇v + η(v) − τ − qI) : ∇w dx. (4.5)

Hence, we find that

|Lv| ≤ ‖ν∇v + η(v)− τ − qI‖+ CFΩ‖f −Divτ‖, (4.6)

where CFΩ is a constant in the Friedrich’s type inequality

‖v‖ ≤ CFΩ‖∇v‖ ∀v ∈ W 1,2
0 (Ω,Rd).

It is easy to see that (4.3) and (4.6) yield an upper bound for m (e) for any
v ∈ S1,2

0 (Ω,Rd).
Using the results of Sections 2 and 3, we can extend this estimate to

functions, which do not satisfy the divergence free condition.
Let v ∈ W 1,2

0 (Ω,Rd) but v 6∈ S1,2
0 (Ω,Rd). Note that

m (e) := sup
w∈S1,2

0 (Ω,Rd)

∫
Ω

(ν∇(u− v0) + η(v0)− η(u)) : ∇w dx

‖∇w‖
+Υ(v−v0),

(4.7)

where v0 is an arbitrary function in S1,2
0 (Ω,Rd) and Υ is a nonnegative

functional defined by the relation Υ(v−v0) := ν‖∇(v0−v)‖+‖η(v)−η(v0)‖.
In view of (4.6), we find that

m (e) ≤ ‖ν∇v + η(v)− τ − qI‖+ CFΩ‖f −Divτ‖
+ 2 inf

v0∈S1,2
0 (Ω,Rd)

Υ(v − v0). (4.8)

For the Stokes problem Υ(v − v0) = ν‖∇(v − v0)‖ and we obtain

ν‖∇(u− v)‖≤ ‖τ+p̃I−ν∇v‖+
+ CFΩ‖Divτ+f‖+ 2νd(v, S1,2(Ω,Rd)), (4.9)
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where q is an approximation of the pressure p and τ is an approximation of
the stress σ = ν∇u− pI.

If the constant κΩ is known, then d(v, S1,2(Ω,Rd) ≤ κΩ‖divv‖ and we
obtain a fully computable upper bound of the error (cf. [17, 16, 19]). If the
constant κΩ is unknown, then we can split Ω is a union of ”simple” non-
overlapping domains Ωi for which the respective constants κΩi are known.
Let v satisfy the conditions∫

Ωi

divũ dx = 0, i = 1, 2, ..., N.

Then,

ν‖∇(u− v)‖≤ ‖τ+p̃I−ν∇v‖+CFΩ‖Divτ+f‖+2ν

(
N∑
i=1

κ2Ω,i‖divv‖2Ωi

)1/2

.

(4.10)
Analogously, for the Oseen problem

inf
v0∈S1,2

0 (Ω,Rd)
Υ(v − v0) ≤ COs d(v, S

1,2(Ω,Rd)) ≤ COsκΩ‖divv‖, (4.11)

where COs = (ν+‖a‖∞,ΩCFΩ). If the constant κΩ is unknown, then instead
of (4.11) we can use the estimate

inf
v0∈S1,2

0 (Ω,Rd)
Υ(v − v0) ≤ COs

(
N∑
i=1

κ2Ω,i‖divv‖2Ωi

)1/2

, (4.12)

which together with (4.8) yields an error majorant.
For the Navier–Stokes problem, we need more sophisticated estimates.

First, we note that ‖η(v)− η(v0)‖2 ≤ 2
∫
Ω

(|v|2|v− v0|2+ |v− v0|4) dx, which

due to embedding of H1 to L4 (which holds the respective inequality with
the constant µ(Ω)) yields the estimate

inf
v0∈S1,2

0 (Ω,Rd)
Υ(v − v0)

≤ µ(Ω)d(v, S1,2(Ω,Rd))
(
2‖v‖24,Ω + µ2(Ω)d2(v, S1,2(Ω,Rd))2

)1/2
. (4.13)

Then, (4.8) yields the corresponding error majorant, in which the term re-
lated to the distance to the set of divergence free field is either estimated by
a single global constant of by means of a collection of local constants κΩ,i.
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