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Abstract

The usual derivation of the Lagrangian of a model for massive vector bosons,
by spontaneous symmetry breaking of a gauge theory, implies that the prefactors
of the various interaction terms are uniquely determined functions of the coupling
constant(s) and the masses. Since, under the renormalization group (RG) flow, dif-
ferent interaction terms get different loop-corrections, it is uncertain, whether these
functions remain fixed under this flow. We investigate this question for the U(1)-
Higgs-model to 1-loop order in the framework of Epstein-Glaser renormalization.
Our main result reads: choosing the renormalization mass scale(s) in a way cor-
responding to the minimal subtraction scheme, the geometrical interpretation as a
spontaneously broken gauge theory gets lost under the RG-flow. This holds also for
the clearly stronger property of BRST-invariance of the Lagrangian. On the other
hand we prove that physical consistency, which is a weak form of BRST-invariance
of the time-ordered products, is maintained under the RG-flow.
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1 Introduction

The classical geometrical concepts of fibre bundles and group theory have been crucial
for the development of quantum gauge theories, and the Higgs mechanism was the key to
incorporate the electroweak interaction into the framework of renormalizable field theory.

However, to the best of our knowledge, the Higgs mechanism is not well understood
on a purely quantum level. And it is not needed: starting with massive BRST-invariant
free fields, making a general renormalizable ansatz for the interaction and requiring
physical consistency (PC) [KOT79, mﬁm or perturbative gauge invariance (PGI)
DS99, [ADS99! [Sch01l [DGBSV10, [Sch10]Y one obtains a consistent perturbative quantum

theory of massive vector bosons. (Some obvious properties as Poincaré invariance and
relevant discrete symmetries are also taken into account.) PC is the condition that the
free BRST—Chargeé, commutes with the “S-matrix” in the adiabatic limit, in order that
the latter induces a well-defined operator on the physical subspace; PGI is a refinement
of this condition which is formulated independently of the adiabatic limit — a sufficient
(but in general not necessary) condition for PC. If the ansatz for the interaction contains
only trilinear and quadrilinear ﬁeldsﬁ the resulting Lagrangian is essentially unique and
agrees with what one obtains from spontaneous symmetry breaking of a gauge theory; in
particular the presence of Higgs particles and chirality of fermionic interactions can be
understood in this way without recourse to any geometrical or group theoretical concepts
[Sto97, [DS99]. These derivations of the interaction from basic QFT-principles use PGI
(or PC) only on the level of tree diagrams (PGlI-tree).

'PGI was first introduced in [DHKS94]; in [DGBSVI0] it is called causal gauge invariance’.

2That is the charge implementing the BRST-transformation of the asymptotic free fields.

3Throughout this paper we use the words bilinear, trilinear and quadrilinear in the sense of bi-, tri-
and quadrilinear in the basic fields.



In the literature the geometrical interpretation of the Standard Model of electroweak
interactions as a spontaneously broken gauge theory is frequently used at several (or even
all) scales. This is evident for the cosmological models relying on the “electroweak phase
transition”. Or, looking carefully at the geometrical derivations of a value for the Higgs
mass of Connes et al. (JCCMO0T7| and references cited therein) and Tolksdorf [T'T07], we
realized that in these papers the geometrical interpretation is used at two very distinct
scales: at the Z-mass and at the unification scale.

This paper was initiated by serious doubts about the geometrical interpretability at
all scales, which rely on the following: this interpretation is possible iff the prefactors
of the various interaction terms (i.e. of the vertices) are prescribed functions of the
coupling constant(s) and masses. Since different vertices get different loop-corrections it
is uncertain, whether these functions remain fixed under the RG-flow.

Similarly to the conventional literature [Sib], our RG-flow depends strongly on the
renormalization scheme. Naively one might think that this is not so, because we define
the RG-flow by a scaling transformation [HWO03, [DF04] BDF09]H But the scheme de-
pendence comes in by the choice of the renormalization mass scale(s) M: the scaling
transformation may act on M or it may not, and different choices for different Feynman
diagrams are possible.

An important result of this paper is that PC is maintained under the renormaliza-
tion group (RG) flow (Sect. []). It is well known that also renormalizability (by power
counting) is preserved. But, our original hope that these two properties yield enough
information about the running interaction to answer the geometrical interpretability,
turned out to be too optimistic. Due to the presence of bilinear fields, PC and renor-
malizability are much less restrictive than in the above mentioned calculations involving
only tri- and quadrilinear fields.

For this reason we proceed in a less elegant way: we answer the geometrical inter-
pretability by means of a lot of explicit 1-loop computations of the RG-flow (Sect. [)).
Since, up to a few scalar field examples in [DF04] BDF09], such calculations have not yet
been done in the framework of Epstein-Glaser renormalization, we explain them quite
detailed (see Sects. and Appendices [AB]).

To get information about the important question whether PGI is maintained under
the RG-flow, we analyze PGI-tree for the running interaction (Sec. [T).

BRST-invariance of the Lagrangian is a property which is truly stronger than the
geometrical interpretabilty and also stronger than PGI-tree. We investigate whether it
can be preserved under the RG-flow by a suitable renormalization prescription (Sects. 3l
and [0]).

We assume that the reader is familiar with the formalism for Epstein-Glaser renor-
malization (also called “causal perturbation theory”) given in [DF04], in particular we
will use the Main Theorem, which is the basis for our definition of the RG-flow, and the

4This seems to be the obvious way to introduce the RG-flow in the Epstein-Glaser framework [EGT73].
Namely, in this framework renormalization is the extension of distributions (see footnote B) and, as long
as the adiabatic limit (I7)) is not performed, renormalization in this sense cannot be interpreted as a
redefinition of fields, masses and coupling constants depending on a mass scale.



scaling and mass expansion [HWO02l [Dit14].

2 Precise formulation of the question

The Lagrangian of the model: to simplify the calculations we study only one massive
vector field A¥, the corresponding Stiickelberg field B, a further real scalar field ¢ (usually
called “Higgs field”) and the Fadeev-Popov ghost fields (u, ). We work with the free
Lagrangian

1 m? 1 m2 A
LA = P24 T (A-A)+ (0B -0B) — —B B? — —(0A)?
1 m?2 9 9
+§(890-6¢)——2Hg0 + 0t - Ou — mi au (1)

where F? := (9" AY — 0V A*) (9, A, — 0, A,), m := (m,mp, my, mp) denotes the masses
of the various basic fields and A is the gauge-fixing parameter.

For the moment we do not care about any notion of gauge symmetry and admit
interactions of the form

2
)\10 my,

Lﬁm’S\A = /<;<m(A cA)p — aup + A\ B(A - dp)

A3m? Aygm?
— Np(A - 0B) - PTGy SUL )

2m 2m
A A Aym?
2( N5 2 6 2 g 4
—(A-A —(A-A)B” —
th < 2 ( Jo" + 2 ( ) 8m?2
- B2 B A-4))
am2 ¥ 8m?2 A ( )
+ (M2 = I)m + VAmp) (A-0B) , (2)
where k is the coupling constant and A\ := ()\1,...,\12) are arbitrary real parameters.

Apart from the last, bilinear term, each field monomial in Lﬁmg\A has its own, independent

coupling constant k\; or /-@2)\]'. The reason for the complicated definition of Ao will
become clear below in (@)-(7). The free Lagrangian is parametrized by m and A; the
interaction L has 13 additional parameters: s and the dimensionless coupling parameters
A. We point out that at the present stage we do not assume the usual mass relations

mp = My, = %, we consider m, mpg and m,, as independent parameters.

The set of monomials appearing in L, )\A (@) is the minimal set with the following
properties:

m,
)

. (Lan’A +me5\A) contains all monomials which appear in the Lagrangian of the U(1)-
Higgs model;

e computing the RG-flow for the model given by (Lgl’A —i—LKmAA), there do not appear
any new field monomials in the running interaction, except for a constant field
k € C (see (), i.e. the set of field monomials appearing in (L™ + L™Y) is
stable under the RG-flow. 7



We point out that each term in Ly and L is even under the field parity transformation
(A,B,gpauaﬂ) = (—A,—Ba%%@) . (3)

Setting @ := 0 and u := 0 and ignoring the A0B-term, the set of monomials appearing
in ([2) can be characterized as follows: apart from BpdA = 0(BpA) — BAdp — pAIB,
these are all trilinear and quadrilinear field monomials which are Lorentz invariant, have
mass dimension < 4 and respect the symmetry (3]).

Geometrical interpretation: by the “classical version” of the model Ly + L we
mean Lo + L — Lgt — Lgnost, where

is the gauge-fixing term and

2
_ _ - KAigm
L = 0t - Ou — m?2 Gy — ———4

ghost kKA10 ﬁu{‘o (5)

m

is the ghost term, which is the sum of all terms in Ly + L containing the ghost fields u, u.

There is a distinguished choice of the parameters A: by straightforward calculation
we find that the classical version of Ly + L can be geometrically interpreted as a spon-
taneously broken U(1)-gauge model iff the parameters A\ have the values

AM=.=Xd=1, A1=A2=0. (6)

Explicitly, these values of the parameters are equivalent to

1 1
Lo+ L — Lyt — Lgpost — VAmp 8,(A*B) = -3 F? 4 5 (D'®)' D, —V(®),  (7)
where m
b:=iB+—+¢, DF:=0!—ikA! (8)
K
and 2,,2 2 2 2
V(@) = Z (@0 )2 — T () 4 T (9)

8m?2 4 8k2
The minima of the potential V(@) are on the circle ® = 2 ¢* | o € [0,27). The choice
of a minima, usually one takes ®pi, = ™, breaks the U(1) symmetry ’spontaneously’
and the fields ¢ and B are the deviations from ®.;, in radial and tangential direction.
Besides m, my, k and A, also the parameters mp, m, and Ao are not restricted by
the geometrical interpretation (7). The latter are usually fixed as follows:

e the bilinear mixed term ~ A0B in Lg+ L hampers the particle interpretation. For
A12 = 0 (as required by the geometrical interpretation (), the condition that the
AOB-term vanishes is equivalent to the mass relation

mp — ﬁ . (10)



e In the next section we will see that BRST-invariance of the total Lagrangian Lg +
L implies the geometrical interpretation (7)), however it restricts also the ghost
parameters. Explicitly, BRST-invariance of the total Lagrangian is equivalent to
the parameter values ([6l) and

2 mpm
mi = i and Ao=1; (11)
note that this holds also in the presence of an A9B-term, i.e. the validity of ([I0)
is not assumed here.

The main aim of this paper is the following: we will start with the U(1)-Higgs model,
i.e. with the parameter values (@), (I0) and (II), and with that we will investigate whether
the parameter values (@) are stable under the RG-flow generated by scaling transforma-
tions, i.e. we study the question whether the geometrical interpretation ([ is possible “at
all scales’.

Definition of the RG-flow: from now on we will use the just mentioned initial
values (@), (I0) and (II). With that we have only two independent masses m := (m, mg),

and the interaction L = L™ = L™ is of the form

L=kLi +K>Ly. (12)

In view of Epstein-Glaser renormalization [EG73|, we introduce an adiabatic switching
of the coupling constant by a test function g € D(R*):

Llg) = 17(9) = [ do (gl Li(@) + (n9(a))” Law)) (13)

Following [HW03, [DF04, BDF09| we define the RG-flow by means of a scaling trans-
formation of the fields

o, (¢(x)) = polpz) , ¢=A"Bpua, p>0, (14)

'm = (p~tm, p~tmpy); see [DF04] for

and a simultaneous scaling of the masses m — p~
the precise definition of o,. Under this transformation the classical action is invariant
(up to a scaling of the switching function g¢); namely, due to 0;1 LP™(z) = p* L™ (px)

and the same for Ly, we have

[ oL@+ L) = o) ([ e ™) + 10n))  gpla) = alpr) . (15)

where the parameters A,k are suppressed since they are not affected by the scaling
transformation.
In QFT scaling invariance is broken by quantum effects. To explain this more detailed,
we introduce the generating functional S(iL(g)) of the time ordered products of L(g),
ie.
dn

To(L(g)®") = - d)\"‘)‘zo S(iAL(g)) or more generally T, = S 0) , (16)




which we construct inductively by Epstein-Glaser renormalization [EGT3]|. We use that,
for a purely massive model and with a suitable (re)normalization of S(iL(g)), the adia-
batic limit

S[L] = lim SGL(.)) » 92(a) = glex) (17)

exists, where ¢g(0) = 1 is assumed [EGT3], EG?G]E Now, computing S[L] for the scaled
fields o' (¢(x)) () and transforming the result back by o,, we obtain a result which
differs in general from S[L] by a change of the renormalization prescription. The Main
Theorem of perturbative renormalization [PS82, [DF04, [HWO03| implies that the transfor-
mation Sy, [L™] — 0,(S p_1m[0p_1(Lm)]) can equivalently be expressed by a renormaliza-
tion of the interaction L™ — z,(L™), explicitly

0p(Sy-1mlo,  (L™)] = Sz, (L™)] (18)

where the lower index m of Sy, denotes the masses of the Feynman propagators. This is
explained more detailed in sect. Bl

The form of the running interaction: in Sect. [f] we will see that, with a slight
restriction on the (re)normalization of S(iL(g)), the new interaction z,(L) has the form

1 2
2 (L) ~ L (kp — —ag, F* + m?alp(A CA) - %(&4 -9A)

4
1 m? 5 1 m 9
"’ §b0p(8B . aB) — ﬁ blpB —|— 500[) (8@0 . 880) — TClp QD

m2
- TCQPﬂu—Fbgpm(A-@B)

+ ﬂ<(1 +lop) m(A - A)p — = G + (1+11,) B(A - 9p)

VA

(L+lp)mey 5 (L+lp)mdy o
(L+1z) p(A - 0B) = =20 S o)

of A +1sp) o, (I+le) o (+lg)my 4
K ( S (A A) P (A A) B 2
(L+isp)m¥y 50 (L+lop)my 4 2
- T 2R T B, (A A) )) , (19)

where k, € hC[[h]] is a constant field (it is the contribution of the vacuum diagrams)
and ~ means 'equal modulo the divergence of a local field polynomial’ (which vanishes
in the adiabatic limit). It is a peculiarity of this model that a term ~ dadu does not
appear in z,(L) (if not added “by hand” — see Remark [6.2) and that there are also no
trilinear and quadrilinear terms in (z,(L) — L) containing tu.

5In this paper we treat the adiabatic limit on a heuristic level, for a rigorous treatment we refer to
the mentioned papers of Epstein and Glaser, in which it is shown that for purely massive models the
adiabatic limit (7)) exists (in the strong operator sense) and is unique (i.e. independent of the choice of
9)-



The dimensionless, p-dependent coefficients k,, a;,, bj,, ¢, and [;, will collectively
be denoted by e,. In principle these coefficients are computable — at least to lowest
orders (see the 1-loop computations in Sects. and Appendices [AHB]); however,
at the present stage they are unknown. The e,’s are of order O(h) (i.e. they are loop
corrections), more precisely they are formal power series in x2h with vanishing term of
zeroth order,

oo
ep = Zeg") (K°R)", e=k,aj, bj, cj, 1 . (20)

n=1

Due to z,—1(L) = L/h, all functions p — e, have the initial value 0 at p = 1.

Proof of (20): That e, is a formal power series of the form (20) can be seen as follows.
To every e, there corresponds a class of Feynman diagrams with external legs according
to (I9). For example, the diagrams contributing to by, have 2 external legs, both are
B-fields with 0 or 1 partial derivative. The vertices are given by L (2)), i.e. we have
trilinear vertices ~ x and quadrilinear vertices ~ k2. For each vertex there is a factor
ii~! and for each inner line a factor 4. A diagram with r trilinear vertices, s quadrilinear

vertices, p inner and ¢ external lines satisfies
3r+4s—2p=gq (21)
and, hence, its contribution to z,(L) (I9) is

~ 728 hr/2+sfq/2 ) (22)

If ¢ is odd, ¢ = 2qp + 1, also 7 is odd, r = 2rg + 1 (go, 70 € No), and with that we obtain
the factor
kR~ (/-;2h)r°+s . (23)

If ¢ is even, g = 2qq, also r is even, r = 2ry (g0, 70 € Np), and with that we get
B (k2R)Tots (24)

The contributing diagrams satisfy n :=rg+s>1forg=2,3andn:=rg+s—-12>1
for ¢ = 4. With that we obtain (20) — the additional factors A~! (for ¢ = 2), h~!x (for
g = 3) and h™'k? (for ¢ = 4) in (23)-24) agree precisely with the prefactors in z,(L)
(@9). O

Renormalization of the wave functions, masses, gauge-fixing parameter
and the coupling constants: except for the AJB-term, all bilinear terms of z,(L) do
not appear in L. However, introducing new fields, which are of the form

bp(x) = folp) d(x) , & =A, B, o, (25)

where fy : (0,00) — C is a ¢-dependent function, and introducing a running gauge-
fixing parameter A,, running masses m, = (m,, mp,, Mup, MHp) and running coupling
constants k,, Aj,, we can achieve that Lo + z,(L) — k, has the same form as Lo + L, in
particular we absorb the novel bilinear interaction terms in the free Lagrangian:

(L™ + 2, (LY = k) (A, Bog,u @) = (LY + L2 (Ay, By, g u,@) . (26)

KpsAp



We will use the shorthand notation
Lo+ z,(L) —k,=L§+ L”

for this equation. Since every new field is of the form (25]), the condition (20) is an
equation for polynomials in the old fields; equating the coefficients the implicit definition
([26) of the running quantities turns into the following explicit equations:

- for the wave functions

A/‘;:\/l—i—aopA“, By, =+\/1+by, B, ¢,=+/1+copp; (27)

- for the gauge-fixing parameter
(28)

- for the masses

m, = 1+a1pm myg, = 1+clpm
P 1—|—a0p ’ Hp 1+Cop Ho
mp, = LA by m m :
Bp 1‘i‘bOp\/K7 P

- for the coupling constant

K, = L+ lop K
’ \/(1 + agp) (1 + a1p) (1 + cop) ’ 30

and the running coupling parameters A, are implicitly determined by

K2l (A A)? = koM, (A, - Ap)?
bopm (A-0B) = ((Map — 1)m, + /A, mp,) (4, - 0B,) . (31)
The renormalizations (27))-(B1I) are not diagonal (as one naively might think): the

new fields/parameters depend not only on the pertinent old field /parameter, because the
coefficients a;,, bj,, ¢jp, lj, are functions of the whole set {m, A, x} of old parameters.



The renormalization of the wave functions can be interpreted as follows: the field mono-
mials appearing in Lo+2,(L) can be viewed as a basis of a vector space. The redefinitions
7)) are then a change of the “unit of lenghts on the various coordinate axis”.

Due to e,—1 = 0, the running parameters have the initial values

mjp=1=mMj , Ap:1 =A s Rp=1 =K, )\pzl =\. (32)

Remark 2.1 (“Perturbative agreement”). By the renormalization of the wave functions,
masses and gauge fixing-parameter, we change the splitting of the total Lagrangian L+
2p(L) into a free and interacting part, i.e. we change the starting point for the perturbative
expansion. To justify this, one has to show that the two pertubative QFTs given by the
splittings Lo + 2z,(L) and L§ + L”, respectively, have the same physical content. This
statement can be viewed as an application of the “Principle of Perturbative Agreement” of
Hollands and Wald, which is used in [HWO05] as an additional renormalization condition.

The proof that the “old” perturbative QFT (given by Lo + 2,(L)) and the “new” one
(given by Lf + LP) are physically equivalent is beyond the scope of this paper. For the
wave function and mass renormalization in a scalar field theory, the following conjecture
has been formulated (by using the framework of algebraic QFT) and verified for a few
examples [BDE]: given a renormalization prescription (i.e. an S-functional (I6)) for the
old perturbative QFT, there exists a renormalization prescription for the new pertur-
bative QFT, such that the pertinent nets of local observables in the algebraic adiabatic
limit (see [BF00] or [DE04, BDF09]) are equivalent. The corresponding isomorphisms
can be chosen such that local fields are identified with local fields modulo the free field
equation.

For models with spin 1 fields, the gauge-fixing parameter has also to be renormalized;
and there is the difficulty that in general the new free theory (given by Lf) is not BRST-
invariant, see Remark

Geometrical interpretation at an arbitrary scale: since we have written the
running Lagrangian Lo + z,(L) — k, in the form L{ + L”, the equivalence of () and (@)
can be applied to it: Lf + L can be geometrically interpreted iff the \;, have the values

Mp=Ayp=...=Xgp =1, AM1p=2A12,=0. (33)
To be precise: by 'geometrical interpretation’ we mean here that
m,,A m,,A - 1 1
(Lo + L3 7) (Aps Byy 0py us ) = -7 F2+ 5 (D5 ®0) D) = Vy(®))
+ Lgf + Lghost + \//Tp mMBp au(Ang) ) (34)

where Fj" := 0" Ay — 0V A}y,

. m .
o, ::zBp+K—p—|—gop, Dy = 0t — ik, Al

1Y
I‘sz%{ m2 m2 m2
V,(®,) = L e (*p )2 - He (o ¢ Ho p 35
o (®)) Sm2 (;0,) 1 (%) + 82 (35)

10



and

A mp 2
- ——”(8-A +MBe g )
f p pl >
LA /A,
Kp A10p M2
Lghost = 0u - Ou — mip fu — —221% Tue aup, . (36)

mp

Our main question is whether ([B3]) holds true when starting with the U(1)-Higgs-
model; for simplicity we also assume that initially we are in Feynman gauge: A,—; = 1.

With these initial values, the geometrical interpretability (33) is equivalent to the
following relations among the coefficients e,:

1+1 140
A1p =1 gives The _ J2 00 ) (37)
1 +l0p 1 —|—a1p

)\Qp =1 gives lgp = llp s (38)
. 1+ l3 14+

A3, =1 gives e L 39

3p & 1+ l(]p 1+ a1p ( )

A, =1 gives = , 40
=8 1415, 1+ co (40)
. 1415 1
A5, = 1 gives P = , 41
% & (L4+1op)*  1+ay, )
141 1+
Xep = 1 gives Tl _ 2T Doy , (42)
1+ l5p 1+ Cop
141 1
A7, =1 gives R VI (43)

(L+10p)* (1 +a1p)?
. 1+ 1g 1+ by
Ag, =1 gives e L. 44
8p g 141, 1+cop (44)

. Lfly,  (L+byy\2
X, = 1 P _ ( p) 45
% BIves 1+ l7p 1+ Cop ’ ( )
)‘llp =0 giVGS lllp =0 s (46)
Mzp =0 gives by = /(L +az)(L+by,) — /(L +ag)(L+bo,) . (47)

Searching all values for the coefficients e, which solve this system of equations, we
find that this is quite a large set: neglecting k,, 9 coefficients can freely be chosen
(e.8. aops G1ps 25, bop, b1p, Cop, C1p, C2p and ly,), the other 11 coefficients are then uniquely
determined by the 11 equations (B7)- (7).

Combining the equations ([39), (@Il and (@3] we obtain

1+l7p . 1+l5p
1—{-13[, 1+l0p.

(48)

It will turn out that the conditions (A7) and (48)) are crucial for the geometrical inter-
pretability.

11



For later purpose we mention that, with the considered initial values, the explicit
formula for Ajg, reads

1+a1,
1 + CQp)(l + lOp) ’

A10p = ( (49)

3 BRST-invariance of the Lagrangian

The main result of this Section is that BRST-invariance of the Lagrangian is a sufficient
(but not necessary) condition for the geometrical interpretation — for both, the initial
Lagrangian Lo + L and the running Lagrangian Lo + z,(L).

The BRST-transformation s = sg = so++x/3 51 is a graded derivation which commutes
with partial derivatives and is given on the basic fields by

sA¥ =0%u, sB=mu+rBup, sp=-—kBBu,

- mp
su=0, su=—-A(0A+—=B). 50
04+ "2 B) (50)
Since it is a priory not clear which of the coupling constant x, kA; in L (@) is equal to
the k in the BRST-transformation, we have introduced the parameter g in s.
BRST-invariance of the initial Lagrangian: explicitly this property reads

sg(Lo+ L) ~0 (51)

(where again ~ means ’equal modulo the divergence of a local field polynomial’); it is
equivalent to
B =1 and the parameter values (6)) and (II]). (52)

That the parameter values (52) imply (&I can be seen by formally interpreting the
BRST-transformation of A* and (p, B) as an infinitesimal gauge transformation,

d
s(A*, @) = 7

oo (A" + @ D, €21 ) (53)

and by taking into account that D* is a pertinent covariant derivative. With that we
immediately see that s(F?) =0, s((D*®)*D,®) =0, s(V(®)) = 0, and by using (7
and a simple calculation we obtain

s(Lo+ L) = VAmp sO(AB) + 5(Lgt + Lghoss) = (9H(\/Km3 s(A*B) + (si)(sA*)) . (54)

The proof that (B]]) is also sufficient for the parameter values (52)), is a straightforward
calculation: inserting (d) and (2) into (5I)) one obtains (after some work) these parameter
values. The relations ([II) are precisely the condition that s(Lgf 4+ Lghost) =~ 0, where we
assume that 8 = 1 is already obtained from other parts of the calculation.
BRST-invariance of the running Lagrangian (Lo + z,(L)): the property

sg(Lo + 2zp(L)) ~ 0, (55)

12



where sg = s is given by (B0), determines z,(L) — k, uniquely in terms of the three
coefficients

ap:=agy , bp:=boy, l,:=ci1p, (56)

which can freely be chosen. More explicitly, the condition (B3] is equivalent to § = 1
and the following form of z,(L):

1 2 1 1 2
2p (L) = by = 70, F2 4 by (5= A2 = m ADB + 5 (0B)? + 5 (99)?) — I, L &

+ n(—%awp + (14 b,) (m A% + B Adp — o ADB)

-~ + Lp)miy (P +B2go)>

2m

2
ﬁ(@(/ﬁ 02+ A2 B%) - % (0 + 20282 + 34)) . (57)
One verifies easily that with these relations among the coefficients e,, the equations
B7)-({T) are satisfied, that is, (B5) implies indeed the geometrical interpretation (34]).
However, due to the presence of bilinear terms in z,(L), the difference between BRST-
invariance of the Lagrangian (B3] and the geometrical interpretation (B4)) does not only
concern the ghost sector, as for Lo+ L (see (II)), it is clearly bigger — the number of free
coefficients e, is 3 versus 9.
The proof that the set of solutions of the condition (55 is given by 8 = 1 and (57), is
a somewhat lengthy and straightforward calculation, which is quite boring. More instruc-
tive is the following understanding of the parameter values (57): the above derivation
[B3)-(B4) of BRST-invariance of Ly + L, by using the geometrical interpretation, can
only be applied to Lf + LP(= Lo + z,(L) — k,) , if the BRST transformation s (E0)
expressed in terms of the p-fields, has the same form as for the original fields, up to a
global prefactor v. Explicitly this requirement reads

SAg:\/mSAM:’}/aMU,
sB, = \/1+by, s B="(myu+r,up,),
5o =\/1+cop 5 = —7 (K Byu)

mpg,

st=—yA,(0A, + —=£ B,) (58)

/A,

and su = ~v0 = 0 is trivially satisfied. From the first equation we obtain

v =+/1+ag (59)

and with that the further equations are equivalent to

bp := bop = a1p = cop = lop and b1, =0 =ay, . (60)
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To take the demand for validity of the geometrical interpretation into account, we insert

(60) into (B7)-@T), this yields

bp = l1p = lap = l5p = lgp = —bop
lp =Clp = lgp = l4p = l7p = lgp = lgp
li1,=0 . (61)

In addition, the derivation (53)-(B4) needs BRST-invariance of (Lf; + L, ) (0], which

ghost
2 mBp Mp

is equivalent to m,, = Vv and Ajg, = 1 (similarly to (IJ)); both equations give
P

CQP =0 (62)

by using (60) (and the formulas (28], ([29), (@9) for the running quantities). The param-

eter relations (60), (6I) and (62) agree precisely with (57).
As usual, the BRST-transformation s (B0) is nilpotent modulo the field equations

of Ly + L; we point out that this holds also for s expressed in terms of the p-fields
(ie. (B8)-(B9)) w.r.t. the field equations of the new Lagrangian Lf + L*:

§ [dx (L5 + LP)
ou

me
VA,

where we use the preceding relations, i.e. we assume that (55]) holds true.

20 = —-A,(1+ay) <Du + (mpu + K, ugpp)> =A,(1+a)) , (63)

4 Perturbative gauge invariance (PGI)

For the initial model S(iL(g)) we admit all renormalization prescriptions which fulfil the
Epstein-Glaser axioms [EGT73| [DF04] and a suitable version of BRST-invariance. The
latter should be well adapted to the inductive Epstein-Glaser construction of the time-
ordered products and to our definition of the RG-flow. We will see that PGI [DHKS94,
DS99 fulfills these criteria.

Physical consistency (PC). To motivate PGI we start with PC, which is a some-
what weaker condition [KO79l [DS00, [Gri00]. Let @ be the charge implementing the free
BRST-transformation sy := s|,—o, explicitly

[Q7¢]f%ih$0¢7 ¢:AM7BHP7U7717 (64)

where [-, -|J denotes the graded commutator w.r.t. the x-product and ~ means ’equal
modulo the free field equations’. The nilpotency Q2 ~ 0 reflects 5% ~ 0. For our model
with Feynman gauge A = 1, the charge @ is given by the somewhat heuristic formul

Q= d*z ((0A +mB) 0"u — 0°(0A + mB) u) . (65)

20=constant

A rigorous definition of Q is given in [DF99].
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For the asymptotic free fields, the “subspace” of physical states can be described as

ker )
ran@

The operator S[L] (I7) induces a well defined operator from Hppys into itself iff

[Q,S[L]]*|kerQ ~0,

Hpnys =

see e.g. [DS0Q]. This is the reason to require

physical consistency (PC): 0= [Q,S[L]]x = hﬁ)l[@, S(iL(ge)/h))x - (66)

Perturbative gauge invariance (PGI): to fulfill PC in the inductive Epstein-
Glaser construction of time-ordered products, we need a version of PC before the adia-
batic limit g — 1 is taken: precisely for this purpose PGI was introduced in [DHKS94].

PGI is the condition that to a given local interaction

Llg) = ht Yk / 0 (g(2))* £y (@) - (67)
k=1

there exists a “@Q-vertex”
Pgif) = Yot [ dolg@)* 9, () £(0) (63)
k=1

(where g, f € D(R?) and Ly, Py are local field polynomials) and a renormalization of
the time-ordered products such that

Q.51 L))  7l-0 (1 £(0) + 1P (5:0.0)) (69)

That PGI implies PC, is easy to see (on the heuristic level on which we treat the
adiabatic limit in this paper): the r.h.s. of (69) vanishes in the adiabatic limit, since it
is linear in the @Q-vertex, the latter is linear in d,¢ and 0, 9. ~ €.

For time-ordered products T;, of order n > 2, PGI is a renormalization condition — it
is a particular case of the 'Master BRST Identity’, which is the application of the "Master
Ward Identity’ to the conservation of the free BRST-current, see [DB02, [DF03].

It is well-known that the U(1)-Higgs model is anomaly-free. Hence, our initial model
can be renormalized such that PGI (69) holds to all orders in x, where £(g) := L(g) is

given by (I3) and
P(gi) = [ do(w PV ) + R(0) P (@) S0, (70)

with
Pl =mA’up — 8" Buyp + Bud’p Py = AYugp?® + AYuB? | (71)
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where Ly (I3) and P} are (k 4+ 2)-linear in the basic fields and Feynman gauge A =1 is
chosen.

To apply PGI to the running interaction z,(L), we insert the power series (20) for
the coefficients e, into z,(L) [I9), to write the latter as a power series in &,

L)=h"1Y"zn(L) &* . (72)
k=1

So, for this interaction, £(g) (67) is given by

£lg) - =Y [ D) o) (73
Explicitly, with A,—1 = 1 we have
Loy=Li, Lo =Lo+hL{’, L =hL", Lu=nLy +PLY  (14)

etc., where L(j ) is (k + 2)-linear in the basic fields and the upper index j denotes the
order in A, exphcitly

()

Ly = - Zaf{,} F? 4 = ag} A = 22(94) + 5 Lo oB)? - by B

2 . . .
(J) (agp) m2H ngp) 302 —m? ngp) au+m b(]) A0B

LY :ngﬁA%HgﬁB(Aa@)—N) p(A0B) - 1 (l(j)(p +1§) B%)

ng) :_<léjp) A2 +l((;]p) AZBQ) _ (Z(J)(P +2l(]) 2 g2 —i—l(]) BY) +l(]) (A2)? (75)

2 8m?

for j > 1. The pertinent Py in (G8) must have a similar structure

Poy=Pi. Poy=P+hP", Py =0P", Py =nP"+r2P®  (76)

etc., where the indices of Plij ) )

have the same meaning as for Lg .

5 Stability of physical consistency under the renormaliza-
tion group flow

Stability of PC: it is hard to find out whether PGI is maintained under the RG-
flow, i.e. whether PGI for £(g) = L(g) (I3) implies PGI for £(g) = 2,(L)(g) (@3). In
Sect. [0 we show that PGI for S(iz,(L)(g)) can be fulfilled on the level of tree diagrams

(with vertices z,(L)(g)), if one takes only the 1-loop contributions eg) (20) to z,(L) into
account. But this depends on the renormalization prescription for S (zL(g)) : using a
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prescription corresponding to the minimal subtraction scheme, PGI gets lost under the
RG-flow, already at the level of tree diagrams.

However, the somewhat weaker property of PC is maintained under the RG-flow;
more precisely we will prove that

[Q,S[L]], =0 = [Q,S[z(L)], ~0. (77)

Hence, at least in this weak form, BRST-invariance of the time-ordered products is stable
under the RG-flow.

Construction of z,(L): to proof (77), we need to understand precisely how z,(L)
is constructed. We use the formalism of [DEF04] (see also [BDEF09]), in particular we
apply the Main Theorem [DF04, HWO03]: assuming that S fulfills the axioms of Epstein-
Glaser renormalization, this holds also for the scaled time-ordered products 0,05 o o, 1
therefore, there exists a unique map Z, = Z, , from the space of local interactions into
itself such that [1

0,08, 1y © Up_l =Sm©°Zym (78)

(the lower index m on S and Z, denotes the masses of the underlying x-product, i.e. the
masses of the Feynman propagators).

In addition Z, is of the following form [DE04, Prop. 4.3]: let P be the space of local
field polynomials, h € D(R*) and A(h) = [dx A(z)h(z) for A € P. Given Z,, there
exist linear and symmetric maps dj, , : P®" — P for n > 2, a = (ay,...,a,) € (NJ)",
such that

Z,(A(h)) )+ Z — Z / dx df) ,(A®™)( ﬁ O h(x (79)
=1

The expressions df, o(A®™) are uniquely determined modulo the addition of a divergence
of a local field polynomial.

Applying ([T to A(h) = iL(g)/h = (i/h) Xy_1.5 [ dx (rg(x))) Lj(z) @3), we get
Z,(iL(g)/h) = /;—H_Z 'hnz Z et tin

a jiyjn=12

n

-/dm di o (Ljy ® @ Ly, ) (@) []o" (g(x))" . (80)

=1
In view of the adiabatic limit and dg.(x) = O(e), we cut off the terms with derivatives
of g:

Zp(iL(ge)/h) = izp(L)(ge) + O(e) , (81)
where
zp(L)(g) = < )+ Z " Z /dm d? L ®--® Lj)(z) (,{g(x))jl'f'""i‘jn) )
Ji1=1,2
(82)

"We use the convention for Z, given in [BDF09], which differs by factors i from the definition Zy(F) :=
D, (k) in [DF04], namely: Z,(iF) =i Z,(F) .
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Hence, z,(L)(g) is indeed of the form ([Z3)) with

k n—1
1
zpk(L) :LR+ZW Y ALy @0 L), (83)

where Ly := 0 for k£ > 3. Finally, z,(L) is obtained from (83) by means of (Z2)).

From (RBI) we conclude that the adiabatic limit of (78] applied to iL(g) gives indeed
(@3):
Up(sp—lm[o-;l(l’m)]) = 151?01 Op© Sp_lm © U;l(iLm(ge)) = lalﬁ)l Sm (Zp(iLm(gs)))

= lim Sun (1 (L) (02)) = Sz (L) (s4)

Here we assume that Sy, (iL(g)) is renormalized such that the adiabatic limit € | 0 exists
and is unique for 0,0 5,-1,, 0 J;l(iL(gE)) for all p > 0; hence, this limit exists also for

S((i 20(L)(92))-
Proof of stability of PC (77)): by using the Main Theorem, the relations

o L L™ (g)) = L ™(g1/,)  (again gr(z) := g(\z)) (85)
and
0p(F %y G) = 0p(F) *m 0p(G) ;,  p0p0Q 1 = Qm (86)
we obtain
[Qms S (Zo (L™ (9))sm = [Qums 79 © Syt (iLP ™ (92 /p))kom
= 00, (1Qp1ms SpimGL” ™ (gefpDle, ) - (8)

Now, assuming that Sy, (iL™(g)) fulfills PC (@6)) for all values m, mg > 0 of the masses,
we conclude that the adiabatic limit € | 0 of the last expression in (87) vanishes. (Here

we use that it does not matter whether we perform the adiabatic limit with g or gy,
since it is unique.) With that and with (8I)) we obtain the assertion (7):

0~ 1im [Q, 5(Z,(iL(92)))} = m [Q, S(i 2,(L) (@) = [QS5(D]], . T (89)

Completion of the derivation of the form of z,(L): having given the construc-
tion of z,(L) (83) (see also Sect. 5 of [DE04]), we are able to explain why on the r.h.s. of
(I9) precisely these field monomials appear and no others:

e cach term appearing in z,(L) is Lorentz invariant, has ghost number = 0 and its
mass dimension is < 4 (see formula (5.5) in [DF04]).

e Since the only interaction term containing @u is mauy, each term in (z,(L) — L)
which is bilinear in the ghost fields has a factor m? and, hence, its mass dimension
is < 2. This excludes a 0@ Ju-term and non-trivial trilinear and quadrilinear terms
containing uu.
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e The property that L is even under the field parity transformation (3]) goes over to
each diagram contributing to S(iL(g)) and, hence, each term appearing in z,(L)
has also this property. This reduces the number of possible terms in z,(L) quite
strongly.

o To discuss the appearance of one-leg terms ) ., cq 0“¢ in 2,(L) (where ¢ = A*, B, ¢
and ¢, € C), we write (78) to n-th order, by using the chain rule:

Z5n(L(92)®™) =0 © Trmyp (05 L(9))®") = Trom (L(92)®")

I
- > Tipim (©1epZi(L(g-)®1)) . (89)
PePart({1,...,n},n>|P|>1

where Z,(,n) = ,S")(o) is the n-th derivative of Z,(F') at F' = 0 and the two terms
with |P| = n and |P| = 1, resp., are explicitly written out. Taking (80) into
account, we see that each one-leg term appearing on the r.h.s. of (89) is a sum of
terms of the form

/dxl . dzy Gh(ex) ... Grlexy) Z Po(xp)ty(z1 — Ty Tpe1 — 1), (90)
b

where k = n or k = |P|, the testfunctions G; are of the form G;(z) = [[2, 0%'g(z)
and t, = wy (Tk( . )) is the vacuum expectation value of a time-ordered product.
The expression (@) can be written as an integral in momentum space: up to a
power of (27) as prefactor it is equal to

/dpl o dp Gi(pr) .. Gre(pr) d(—e(p1 + ... + i)

-Z(—z’a(pl 4+ ) ty(—ep1, ..., —EPr_1) - (91)
b

From [EGT3| we know that #(p) is analytic in a neighbourhood of p = 0, since all
fields are massive. Hence, in the adiabatic limit € | 0 of (@IJ), the (|b] > 0)-terms
vanish and, hence, do not contribute to z,(L).

To avoid the appearance of a (b = 0)-term in z,(L), we first mention that we only
have to consider the case in which the singular order of ¢ := t;—¢ is w(t) > OE for
the following reason: a term with w(t) < 0 is non-local, i.e. supp(t) ¢ {0}. But
the Lh.s. of (89) is local; hence, the (w(t) < 0)-terms appearing on the r.h.s. of
(B9) must cancel, when restricted to D(R* \ Ap) (where Ay, := {(x1,...,71) €

8 For t € D'(R) or t € D'(R"\ {0}), the singular order is defined as w(t) := sd(t) — I, where
sd(t) is Steinmann’s scaling degree of ¢, which measures the UV-behaviour of ¢ [Ste71]. In the Epstein-
Glaser framework, renormalization is the extension of a distribution t°> € D'(R*\ {0}) to a distribution
t € D'(RY), with the condition that sd(t) = sd(t°). In the case sd(t°) < I, the extension is unique, due
to the scaling degree requirement, and obtained by “direct extension”, see [BF00, Theorem 5.2|, [DEF04],
Appendix B| and [DFKR14, Theorem 4.1].
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R*% |2y = ... = x1}). Since for these terms, the extension to D(R*) is unique,
they cancel also on D(R*¥).

Obviously, the finite renormalization

t(p) = i(p) —1(0) , t=ty0, (92)

which is admitted due to w(t) > 0, removes the possible one-leg terms in z,(L).
This renormalization preserves PGI, because of

(Q,¢] = i0,¢] , where ¢§ =0, —‘%7“, g"u for ¢ =, B, A ,resp.;  (93)
in detail:

k
(Q, 1(0) (ay,) S(z1—p, . apr—ap)] =0y O <£(0) & () S(z1—2p, .. - ,xk,l_mk)) .
=1

(94)
We point out that when we perform the finite renormalization ([92)) for a t belonging
to Ty, m, then the corresponding ¢ belonging to 0,07}, 1y /,0 (0;1)@’" is automatically
modified by precisely the same finite renormalization, because the renormalization

condition #(0) = 0 is scaling invariant.

If one does not perform the finite renormalization (02), one-leg terms may appear
in z,(L); however, only in second and higher loop orders. Namely, they fulfill (23]
with go = 0 and n := 79 + s > 1, hence they appear in ([I9) as

zp(L) = h! (/-{_1 Z eg") (K2R ¢+ .. ) . (95)
n=2

6 Geometrical interpretation at all scales to 1-loop order

In this section we explain, how one can fulfill the geometrical interpretation at all scales,
i.e. the equations ([B7)-(T), on 1-loop level. For this purpose we derive a lot of results
about the 1-loop coefficients eg) (20)) of the running interaction z,(L) (I9). Throughout
we choose Feynman gauge A = 1 for the initial U(1)-Higgs model. The conventions for
the signs and factors i, 27 are fixed in (208]).

6.1 The two ways to renormalize

Renormalizing a 1-loop Feynman diagram, there are two crucially different methods to
choose the renormalization mass scale. We explain this in terms of the computation of

(1)

5 1 which is the one that is most easily to compute.

glp): we recall that Z,(i L(g)/h) is a formal Taylor series,

the 1-loop coefficient ¢

Computation of c

Z'n

Z,(i L(g)/h) =i L(g)/h+ o Z8(L(9)®") ; (96)
n=2
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according to (89) the (n = 2)-term is obtained by

ZP(L™(9)*?) = 0p 0 Ty prim (0, (L™ (9))?) = Tom (L™ (9)%7) - (97)
To compute cg)) we select the term with external legs @u, which is ~ x:
TQm(Ll(xl) ® L1($2)) =m? (tf‘#(ml - xg) &(xl)u(xg) + (231 S $2) + ) , (98)
where i
tm (21 — 22) 1= wo (Tom (u(z1)p(z1) © @(22)p(22)) (99)
and wy denotes the vacuum state. The corresponding contribution to Z,(h~1i L(g)) reads
K2 m?
Z,(i L(g)/h) =h"'i L(g) — s dzy dry g(w1)g(w2)
(o tgl‘lm(p(ml — x9)) — tad(m1 — x2)) @z )ulz2) + ... . (100)
We will see that i i
P (py) =t (y) = B? Crisn log p 6(y) (101)

with a constant Cggy € ¢R. Inserting (I0I) into (I00) and using (80), (83), we end up
with

cglp) = —iCgen log p . (102)

To derive (I0I]) and to compute the number Chgg,, we start with the unrenormalized
version of t%%: the restriction of t%%(y) to D(R*\ {0}) agrees with

F () = W b ()t (0) = A5 () AL () € DRI\ {0}),  (103)

where AF is the Feynman propagator to the mass m. Due to p? Af_lm(py) = AL (y),

the unrenormalized distribution #%%° scales homogeneously,
P (py) =t (y) - (104)

The question is, whether this property can be maintained in the process of renormaliza-
tion (i.e. extension, see footnote [)).

To construct the extension t2% € D’(R*) we use the scaling and mass expansion
(shortly ’sm-expansion’) [Diit14]; in the present case this means that we split t2%°(y)
into the corresponding massless distribution —h2t2, (y) and a remainder g, (y), which is
of order 79, = O(m?,m%):

tw *(¥) = Pt (1) + (W) » than(¥) = (DT())?,  sd(tha) =sd(t,) =4, (105)

where Df' := Ai:o is the massless Feynman propagator. The remainder r_, has a unique
extension ry, € D'(R*Y) with sd(rm) = sd(rS,) = 2, which is obtained by direct extension;
it preserves the homogeneous scaling (104).

The unrenormalized massless part tg, scales homogeneously in y, but this property
cannot be preserved: the extension needs a mass scale M > 0 and with that homogeneous
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scaling in y is broken at least by a logarithmic term. All extensions with such a minimal
breaking can be obtained by differential renormalization:

-1 log(—M?(y* — i0))
N =L
64 4 y2 —i0

M (y) ) e D'(RY), M > 0 arbitrary, (106)
see e.g. appendix B in [DF04].

The two methods to choose the renormalization mass scale. Whether homo-
geneous scaling in y and m~! (I04)) is maintained depends on the following choice:

(A) If we choose for M a fixed mass scale, which is independent of m, my, homogeneous
scaling is broken:

P (py) =t (y) =0 (0" then (py) — i (1))
—1
=h? Chsn log p 5(9) , Chsh i= W s (107)

by using D(yQ—iiO) = i47%6(y) . The breaking term is unique, i.e. independent
of M; therefore, we may admit different values of M for different ¢-distributions,

however, all M’s must be independent of m, mg.
(B) Homogeneous scaling (I04) can be maintained by choosing M := aym + asmy,
where (a1, az2) € (R?\ {(0,0)}) may be functions of T

. - —1
P (py) — ti(y) = =1 (p* 0, ™ (py) — thh (1)) =0 . (108)

With that, 2% does not contribute to the RG-flow: cg)) =0.
Conjecture: If we renormalize all t-distributions in all inductive steps of the Epstein-

Glaser construction by the choice (B), i.e. we use as renormalization mass scales through-
out m or mp, then the RG-flow is trivial:

2(L) =L Yp>0. (109)

Proof. We prove this Conjecture for massless, primitive divergent diagramsﬁ This cov-
ers all massive 1-loop diagrams with singular order w = 0 or 1, because for these dia-
grams, only the leading term of the sm-expansion, which is the corresponding massless
distribution, contributes to the RG-flow. However, note that also the (w = 2)-diagrams
(IR2)-([IR3]) are covered, because their scaling behaviour can be traced back to the scaling
behaviour of the massless fish-diagram, see Appendix [Al

Let y == (y1,...,u), Y¥j == yj2 — 40; for the considered diagrams the unrenormalized
distribution ¢° € D'(R* \ {0}) scales homogeneously:
P (py) = °(y) - (110)

9That is massless diagrams T with singular order w(T") > 0 (see footnote B]) which do not contain any
subdiagram I'y C I" with less vertices and with w(I'1) > 0. For example, the setting sun diagram is a
primitive divergent 2-loop diagram.
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We work with an analytic regularization [Hol08]:
£9(y) 1= £°(y) (Vi . Vi) | (111)

where ¢ € C\ {0} with |(] sufficiently small, and M > 0 is a renormalization mass scale.
t¢° scales also homogeneously — by the regularization we gain that the degree (of the
scaling) is (w + 4l — 2[¢), which is not an integer. Therefore, the homogeneous extension
t¢ € D'(R*) is unique and can be obtained by differential renormalization [DFKRI4,
Sect. IV.D|:

1

C(y) = 5
t(y) = NPTy > Oy Oy (Y U 1)) (112)

1. Tw+1

where >~ 9y, (yr...) ==, 04 (y¥ ...) and the overline denotes the direct extension. In
order that the limit ¢ — 0 exists, we subtract from the Laurent series ¢¢ its principle
part. According to [DFKR14] Corollary 4.4] the term ~ ¢° (“minimal subtraction”) is an
admissible extension t* of °:

—1)” 1
tM(y):% > 3%“---5;/”[2[(2/7»1- Yrua 1°(y) log (MY .. Yz))

1. -Tw+1

w

Z% (yrl---%+1 t°(y))} ; (113)

J=1

see [DFKR14, formula (104)]. The second term is of the form 7, _, Cq9?6(y). The
first term breaks homogeneous scaling in y logarithmically, but we explicitly see that

—1
P M (py) = M (y) ; (114)
this proves the Conjecture. U

Remark 6.1. We only admit renormalizations of the initial U(1)-Higgs model which
fulfill PGI. This requirement is neither in conflict with method (A) nor with method
(B), for the following reason: we require PGI only for the initial model, i.e. only at one
fixed scale. Now, working at one fixed scale, the renormalization constant M appearing
in (I06) may have any value M > 0 for both methods (A) and (B) and, hence, one may
choose it such that PGI is satisfied. These methods only prescribe how M behaves under
a scaling transformation: using (A) it remains unchanged, using (B) it is also scaled:
M p~ M

Computation of b((];): The purpose of this computation is to illustrate the methods
(A) and (B) for a 1-loop coefficient having contributions from more than one Feynman
diagram; in addition this computation is also a preparation for the following Subsection.

To compute b( ) we have to take the following terms of Tgm(Ll(xl) ® Ll(xQ)) into
account:

o208 (w1 = w2) 0 B(21)0" B(ws) + (507 (w1 — 22) B@1)0" B(wz) + (@1 > 72) ) , (115)
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where (x1 ¢ 3) refers only to the tB9B_term and

toas (21— 22) = wo (T2m(<PAA(901) ® wAu(xz))> )

il (21— 2) 1= —wo(Tom (@0 Ar (1) © 9 A, (22)) ) - (116)
The unrenormalized ¢-distributions read

tow *(y) = =1 g AL (y) AL, (y) € D'(R*\ {0})

t *(y) = B2 AL () 0,45, (y) € D'(R*\ {0}) ; (117)

both scale homogeneously, e.g. p° tf,aﬁnfy(py) = tB9Bo(y).

We renormalize both diagrams by using method (A). Since t?B9B°

with t%°, we know from (I07) that

essentially agrees

P 0P (py) = tonsy () = —h? gaw Crign log p 6(y) - (118)

“Imiv m v
To extend tB28° we use again the sm-expansion

(e} (e} (e} (e} h2 (o]
tBB°(y) = v3(y) + 2, (y) , vi(y) = h? DF(y)8,DF (y) = 5 Outian(y),  (119)

the statements in the preceding example about the remainder rp,, and its extension

rmy € D'(R?) hold true also in the present case, with the exception that now sd(rS,,) =
3. All extensions of v{ with a minimal (i.e. logarithmic) breaking of homogeneous scaling
in y can be obtained by differential renormalization:

hZ

=3 ot (y) € D'(RY), M > 0 arbitrary. (120)

v (y)

Choosing M according to method (A) we get

(o] [e) hz
Pt (0y) =t () = 0 0y (py) — 0} (y) = 5 Can logp D0(y) . (121)

Taking (97)) into account we see that the terms (I1H) give
Z§2)(L(9)®2) = Cfisn K° I° logp/dxldxz g(z1)g(x2)

. <3y5($1 — 1‘2) B(m‘l)aVB(.%'z) — O 5(1‘1 — .%'2) ({9>\B(.%'1)3VB(.%'2) + .. ) + ...,

(122)
which yields
. h 2
(L) =1 (L - wﬁ% logp (14 1) (9B)” + ... (123)
by using ([@6) and (83). We end up with
1 ) -1
b(()p) = —2i Chepn log p = 12 log p . (124)
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The conjecture can explicitly be verified: renormalizing t298° or t989B° by means of

method (B) the pertinent expressions (II8) and (I21), respectively, vanish. Hence, also

the values bg;) = 87712 log p and b(();)

Note that

= 0 can appear.

wo (Tgm(Aagp(xl) ® Aago(xg))> B(a1)B(z2)

contributes only to b&) and not to b(()lp), see (2I3)) and (2I8]).

6.2 Equality of certain coefficients

In this subsection we explain how some of the equations (B7)-(@7) (which express the
geometrical interpretability at all scales) can be fulfilled on 1-loop level, by renormalizing
such that certain Feynman diagrams, which go over into each other by exchanging B «>
¢ for some lines, give the same contribution to the RG-flow (up to possibly different
combinatorial factors).

How to obtain c(();) = b((];): The terms contributing to cg;) are obtained from (I15))-
(II6) by exchanging B <+ ¢ throughout. The corresponding unrenormalized distributions
00 0 : : F F : :
t7¢9%° and t¥9%° are given by (II7)) with A;,  replaced by Aj;. However, this modi-
fication does not show up in the pertinent massless parts —gy, t5,, (I05) and vy (I19),

respectively. Since only the latter contribute to the RG-flow, we conclude that

1 1
cg; — bgg (125)

can be obtained in the following way:

(%) Corresponding t-distributions (or more precisely their massless parts) have to be
renormalized all with method (A) or all with method (B). For the various t-distributions
we may choose different renormalization mass scales M when using method (A);
or different linear combinations M = aym + aempy when using method (B).

Taking Remark into account, we see that this renormalization prescription is
compatible with PGI of the initial U(1)-Higgs model.

Having obtained (I25]), the equations ([@Q]), ([@2]) and (@4)-@3) simplify to

1 1 1 1 1 1 1
z§p>:z§1p>, zg;:zgg, z;g:zgg:zg; (126)

on 1-loop level.

Obtaining analogously l&) = lélp) [B8): There are contributions to l&) coming

from Ty (L1 ® Ls), more precisely only the part L} := BAdp — 9AOB of L; contributes.
These terms read

Q(wo <T2 (AxB(z1) ® AVB(@))) 9 (1) A" (20) B(x2)

— wo <T2 (A0B(z1) @ A,,B(xQ))) gp(ml)A”(xg)B(xg)) + (21 ¢ 22) - (127)
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The corresponding contributions to l;)) are obtained by exchanging B <+ ¢ through-
out. Proceeding similarly to the derivation of ([I23]) (in particular the renormalization
prescription (%) is used), we find that the contributions of these terms to ZS)) and lg;)
agree.

Note that similarly to (2I5)-(2I6]), there is neither a contribution to l&) nor to l;))

coming from the following T5(L} ® Lo)-term:

- %%wo <T2((Ba>\§0 — @O\B)(r1) ® B(P($2))) AA(xl)B(xg)gp(xz) + (z1 ¢ ) . (128)

The contributions to lg p), lé;) coming from T3(L?3) use only the part Li of Ly, the

relevant terms of T3(L%®3) are triangle diagrams with 2 or 3 derivatives, they are of the
form

)

( U1 yby? +T{\1V(ylay2

(vit

(U yla y2 + T{\Zy (yla Y2
(031 (y1,92) + 721 (y1, o)
—(

~— — —

03y (Y1, Y2) + 195 (Y1, y2)
(129)

where y; := x; — x3 and we have inserted the sm-expansion. The remainders r,; (k,l €
{1,2}) do not contribute to the RG-flow, since they are renormalized by direct extension.
The unrenormalized versions of the massless parts vy agree pairwise: vy, := vy, = vy €
D'(R®\ {0}); explicitly they read

0" °(y1,y0) = h° <—3”DF(?/1) D (y2) *D* (y1 — y2) + 0°9” D" (y1) D" (y2) D (31 — yz)) :
v3°(y1,y2) = —h* 99, DF (y1) 8" D¥ (y2) DF (1 — y2) (130)

Obviously these v°-distributions scale homogeneously in (y1,y2). Renormalization breaks
this symmetry by terms of the form

PP o (py1, pya) — v (y1,y2) = 12 log p C1 g™ §(y1,92)
p° v (py1, py2) — vay(y1,y2) = 1P log p (Cn0), + C220,,)6(y1,12) (131)

where Lorentz covariance is taken into account [\ According to the prescription (x) we
have to choose the renormalization mass scales for vi; and vgo by the same method.
Inserting these results into

ZENIP(9)*?) = 050 T3 po1m (0, (LF(9)®?) = Tm (L (9)%%) + - (132)

%Tn terms of the invariants Cja computed in Appendix [Al we have C; = —Cia + Con = —2C1a.
The computation of the invariants C2; and Ca2 is a more difficult task — for our purposes, we do not
need to know these numbers.
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where L™(g) := [ dx L¥(z) g(z), we obtain the following contributions to l&) and lélp),
respectlvely using method (A) throughout, we get

l§,) = (=C1 — Co1 + Cp — 3i Cpepn) log p = lép) , (133)

where the Cggp-term is the contribution from (I27). When using (B) for v§ or v§ (or for

both), the constant Cy or (—C9; + Ca2), resp., (or both) is/are replaced by zero, and
analogously for the contribution from (I27). In all these cases l&) = lg;) remains true.

Obtaining analogously lélp) = lélp) and l%}) = lélp) ([I26): the terms contributing to
1Y and 1Y are listed in Appendix [Bl The corresponding terms contributing to lé;) and

o

9p respectively, are obtained by replacing B <> ¢ throughout. Proceeding as above, the

renormalization prescription (%) implies lg;) = léi)) and l%}) = lé;).

Obtaining analogously lé;) = lé(l;) and l%)) = lé;) ([I26): here, the combinatorics
is somewhat involved — there is not a (1 : 1)-correspondence of terms. In Appendix
[Bl these two equations are verified by explicit computation of the pertinent coefficients,
under the assumption that all contributing terms are renormalized by method (A). From

the calculations given there, we see that lé;) = lé(i)) and l%)) = lé;) hold true, also if the
method (B) is used for corresponding terms. For example, if we switch to method (B) in

@27) and [232)), Cy 4 is replaced by zero in (229) and (234]), but lé;) = ZEJ)) remains true.

6.3 Vanishing of the A*-term due to maintenance of PC

In this short subsection we explain, why the identity (46]) holds true to 1-loop order.
A byproduct of the calculations in Appendix [Cl is the following (see Remark [C.2)):
working out stability of PC under the RG-flow,

i [, S(125(L)(g:)))e ~ 0. (134
to order x*, we obtain — among other relations — the equation
0~ 1}, lim / dz (g (x))? [Q, (A%)2(x)] = 1}, 4i lim / dz (9= (2))2 A2Adu(z) . (135)
&

Using results of Appendix A of [DS00] we may argue as follows: since there does not
exist a local field polynomial W* such that A% Adu = §,WH, the equation (I35]) implies

I, =0. (136)

6.4 Changing the running interaction by finite renormalizations

To continue the fulfillment of the identities (B7)-(T) on 1-loop level, we take into ac-
count that the following finite renormalizations are admitted by the axioms of causal
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perturbation theory [EGT3| [DF04] and that they preserve PGI of the initial model: to
T (Ll(xl) ® Ll(xg)) we may add
K2 §(x1 — x9) log i (a1 (09)2(x1) + asm¥ (1) + a3 F2(x1) 4+ g (OA + mB)?
+ ag (—m? B*(z1) + (0B)*(z1)) + ag(m?* A*(z1) — (04)*(21))
+ arm? (=2au(r1) + A%(21) — Bz(acl))> , (137)

where a1,...,a7 € C are arbitrary.

The compatibility with PGI is obvious for the a;-, as-, az- and ay-term, because the
commutator of ) with the pertinent field polynomials is ~ 0. For the other terms, the
PGl-relation

Q. To (L (21) ® Ly (w2))]x ~ i(angg (PY (1) ® La(w)) + (1 4> xQ)) (138)
is maintained, if we simultaneously renormalize T5(Py (z1) ® L1(z2)) by adding
B2 §(z1 — x3) log o <a5 2mud” B(z1) + (ag + az) 2m? A”u(m1)> . (139)

Proceeding analogously to the computation (@6])-(I02]) of cgl)

0
malizations (I37) modify the 1-loop coefficients eg) appearing in z,(L) ([I39) as follows:

(1) (1)

, we find that the renor-

ap, — ag, +2iag logp (140)
aﬁ) = aﬁ) —i(ag + ar) logp , (141)
GSJ) = GSJ) +i (a4 — ag) logp (142)
by, - by —ias logp (143)
bﬁ) = bﬁ) + iy —as —ay) logp, (144)
bg;) > bg;) +iaylogp, (145)
c&) — c((];) —iaq logp, (146)
CS)) — cglp) +iag logp, (147)
cglp) — cglp) —iaylogp, (148)

the other coefficients remain unchanged.

Remark 6.2. There are further, linearly independent (w.r.t. ~) possibilities for finite
renormalization which preserves PGI:

o to Th (Ll(wl) ® Ll(xg)) we may add
K2 §(x1 — 29) log o By (20u0u(xr) — (0A)*(z1) + ((9B)2(3:1)) , (149)
since [Q, (20u0u — (0A4)% + (0B)?)], ~ —2i 0*(0Ad,u);
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o toTh (Lg(xl) ® Ll(xQ)) we may add
2 m m%—[ 3
h*6(x1 — x2) log 17 <ﬁ2 o ©° (1)

2 2
+ Bs|m A% — miug + B(Adp) — p(A9B) — ZHL o — TH B20) (ay))

2m 2m
(150)
since [...] = Ly and [Q, L], = i 9, P} (P is given in (71));
o toTh (Lg(:cl) ® Lg(ﬂ:Q)) we may add
2 m m%—[ 4
h* 0(x1 — 2) 10gﬁ544—m280 (z1) - (151)

However, the ;- and Bs-renormalization add “by hand” novel kind of terms ~ dudu
and ~ mauep, respectively, to (z,(L) — L) [I9) - therefore, we do not take them into
account. And, even if we would admit a dudu- and a (muugp)-term in (z,(L) — L), the
B1- and Bs-renormalization cannot be used to fulfill the crucial identities (I56) or (I52)),
because they do not change aglp) — bglp) or léz) — léi)), respectively.
We may not use the fB2- and f4-renormalization: they would destroy the relations

lélp) = lgj)) and l%}) = lélp) = lgl) since they would modify only lél) and 11V

P o 7p » Tespectively.

6.5 Geometrical interpretation at all scales

There are two necessary conditions for the geometrical interpretation at all scales, which
are crucial, since they cannot be fulfilled by finite renormalizations.
Verification of the first crucial necessary condition: The condition (48] reads

to 1-loop level
a4
3

1 1
o ) =V lf)p) . (152)

P 2

As discussed in Remark [6.2] there is no possibility to fulfill this equation by finite renor-
malizations. Therefore, we investigate its validity by explicit calculation: using the
renormalization method (A) for all contributing terms, the results of Appendix [Blyield:

ORI 2

_ m?
'YPITJ :401A+m—28(202[] —CQA) , (153)
H
HORICY
D00 _8CyA —4iChp ; (154)
log p

where cancellations of fish- with triangle-, fish- with square- and triangle- with square-
diagrams are not used so far. Using now relations among the invariants C;a and Cjn

(derived in Appendix [Al), we find that (I52]) holds indeed true:
W —il) =400 =15) 1) . (155)
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The fact that we need cancellations of square- and triangle-contributions shows that
([I52)) is of a deeper kind than the equalities derived in Sect.

The identity (I52) holds also if certain terms are renormalized by method (B), e.g. all
contributing triangle and square-diagrams with (B) and all contributing fish diagrams
with (A), or vice versa.

A further example, for which both sides of (I52]) vanish, is given below under the
subtitle “How to fulfill BRST-invariance of the running Lagrangian”.

How to fulfill the second crucial necessary condition: the condition ([47)) reads
to 1-loop order

B = 10D 450 — ol ) (156)

Performing the finite renormalizations (I37)), i.e. 1nsert1ng (I40)- ([I48])) into ([I56]), we find
that all a; drop out — that is, the condition (I56]) cannot be fulfilled by means of these
finite renormalizations.

Inserting the explicit values (124]), [2I7) and (2I8]) for the coefficients a( ) o com-

jp > Vip
puted by using method (A), we obtain
10 o g _ ) @) (1) 2 4
2( +b, —ay, bo/))_b2p) - 1 Mg _ 1 My, 1
o p :Zcﬁsh((2_z+1_3)+—2(§_Z)‘FW(_i)) :

(157)
Hence, using method (A) throughout, we have g, # 0, i.e. the geometrical interpreta-
tion is violated by terms ~ AJB.
To fulfill the condition (I5]), we may proceed as follows: we use

e method (B) for the terms 212))-(213)) [i.e. b&)] and (209) [i.e. aélp) and part of a&)];

e and method (A) for (II6) [i.e. b ] 11D [i.e. part of al ] and (214) [i.e. b ]

With that the values ([2I7)-(21I8) are modified:
a(();) =0, aﬁ)) = —4iCggp logp and b( ) (158)
and a(i)) b(()lp), b( ) remain unchanged.
Fulfilling the remaining conditions by finite renormalizations: to complete

the fulfillment of the identities ([B17)-(@T) to 1-loop order, we show that we can reach by
finite renormalizations that the numbers D1, Do, D3, defined by

Dilogp:= 1) —1§) — 1 (b)) —al)) | (159)
Dy log p = l(” _l(” — () —alDy (160)
Ds log p := l(” —21(1) atl) | (161)

(1)

vanish. For the coefficients e, ’ appearing in these definitions we use values which fulfill

the equations (8), (125), (I26), (I36), (152) and (I56).
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If cglp), l(()lp), li(,,lp) and léi)) are renormalized by method (A) (see Appendix [B]) and a&)
as in (I58), we have D3 = 0 and Dy = O However, to be as general as possible, we
admit arbitrary values of Dy, Do, D3 in the following.

Using (I40)- (I48]), we see that we have to solve the following system of linear equa-

tions:

)
D1+§(Oé5—(0é6+017)):0 AN D2—i(0[2—|—(0[6+0é7)):0 VAN D3—i(0[6—}—047)20.

(162)
There is a unique solution for (ag, as, (ag+ar)). To preserve b&) = célp) we have to choose
a1 = ay ([[40). There remains a 3-dimensional freedom of renormalization: «s, ay and
(¢ — a7) are unrestricted.

As a summary we explicitly give a particular solution for the coefficients 65,1), which
fulfills the geometrical interpretation at all scales: using the method (B) only for the
terms specified before (I58]) (in order that we have the values (I58])) and renormalizing
all other terms with method (A), and then performing the as-renormalization with oy =
2i Dy = 2il; — 4 Cggn, (I62) and the pertinent ajg-renormalization with a; = a5, we end
up with:

(1) (1) lﬁ) —0 (1) _

ay, = Gy, = by, = aj, = —4iChen logp
bt = cb) = (2 Cagn +211) logp . by = (4i e, +211) log p

2 2
1 . 1 . m m 1 .
bgp) = 3i Cgsp logp cgp) = —3 <6 —m%{ +5 —mgl) Csgen logp cgp) = —iCggen logp

I§) = —3i Caan logp . 11) =15) =11 logp ,
2 2
W _ 0 _ m m W _ 0 _ o
1 =1 —z<1—6m—%{—5m—g> Chisn log p . 18) = 1Y) = —2i Gy, log p
2 2
W _ 1) 0 m my
l7p _l8p _lgp _2(2_67771—%{_5?) Cﬁsh logp, (163)

where [ is the number which one obtains on computing l&) =:1; log p by method (A) —
from (I33) and footnote [0 we have

. o7
li = =3iChep +2C1A — Co1 + Cop = —Ez Chsh — Co1 + Ca . (164)

How to fulfill BRST-invariance of the running Lagrangian (B3)): we start
with the values ([63)), except that we do not perform the finite renormalization with
a1 = a5 = —4 Cggp + 2011, with that we have bﬁ)) =0 and b(();) = cg;) = —21 Cggp-

To fulfill the BRST-condition

1 1 1 1 1 1 1 1 1
b = b)) = cf) = all) = —b5) = 15) =1f) =15) = 1f) = 1) (165)

"Since we have not computed lﬁ) (see footnote[I0), we cannot make a corresponding statement about
the value of D;.
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(see (B0)-(61)), there is the trivial possibility bg) = 0, which is obtained by renor-
malizing all contributing terms by method (B). However, there is also the solution

bE,l) = —3i Cggh log p which can be obtained from our starting values as follows: we
perform finite renormalizations with a3 = a5 = Cﬁsh and a7 = —Cfgp; this yields
b(()p) = c&) = agp) = —bglp) l(()p) —3i Csp log p and cg =0 (62), and does not change

Y and b(l) =0= ag)). In order that l&) = lg;) nd lép) = lép) also get the value

1p
—3i Cggh log p we switch the method from (A) to (B) in the triangle terms of l&) = lél)

(i.e. in (I29)) and in the term(s) 237) (or alternatively (238]) and (240)) of lé;) = l(l)
The condition l(l) (1) l( : l(l) lgp) = l( : l(1 (@I can non—trwlally be

satisfied by replacing the terms O((2-)9) by zero in the expressions for 1Y) = 1V
3p 4p
H

and l(l) l(lp) lélp), that is, we switch the method from (A) to (B) in the terms (227,
232). @) and (13).

Taking into account that a(();) is not restricted by BRST-invariance (i.e. the finite
renormalization parameter ag can freely be chosen), we get the following particular so-

lution for the parameters (50):

(1) m2 m2,
€ C arbitrary , b(pl) = —3i Cggn logp ll()l) = <6 — + 5 ) Chsh logp .

log P miy
(166)

Remark 6.3. We discuss whether there is a non-trivial renormalization of the gauge-
fixing parameter to 1-loop order (28]):

e if we fulfill the geometrical interpretation as described (i.e. (I58)) and (IG2) are
satisfied) and choose a3 = 0 and oy = ag, we have aél) = 0 and aé ) = 0 which
yields

A, =1+ 0(R*k") . (167)

e In contrast, if we use the renormalization method (A) throughout and do not
perform any finite renormalization, the values (2I7)) give

1
1 — — logp hw? + O(h%kY) . (168)

A =
P 2472

(1)

However, we recall that even BRST-invariance of Lo + z,(L) (55) does not restrict a;,

(1)

in any way; hence, we are free to modify ag, by a finite renormalization (I40]) and this
changes A, to 1-loop order.

7 PGI for tree diagrams for the running interaction

Besides the geometrical interpretability at all scales and BRST-invariance, there is a
further property which we will investigate for the running Lagrangian: PGI-tree. Its re-
strictive power for a general renormalizable ansatz for the interaction and the importance
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of that are pointed out in the Introduction. In [Diit05] it is generally proved that BRST-
invariance of the Lagrangian (that is (B3] in our case) implies PGI-tree. For interactions
which are only tri- and quadrilinear in the fields, it has turned out that PGI-tree restricts
the interaction as strong as BRST-invariance of the Lagrangian; however, we will see that
for z,(L), which contains also bilinear terms, PGI-tree is much less restrictive.

Definition of PGI-tree: to study PGI-tree, it suffices to consider the connected tree
diagrams. To select the latter from the S-functionals appearing in the PGI-condition (69),
we first introduce the connected time-ordered products (7)%),cn, by the (usual) recursive
definition

TR ®.0F)=T.Fe..eF)-Y [[T9F. . ..eF,, (169)
|P|>2 JEP
where {j1,...,j.y} = J, j1 < ... <jj, the sum runs over all partitions P of {1,...,n}

in at least two subsets and [ [ means the classical product. Analogously to (I6]), let S¢ be
the generating functional of the connected time-ordered products. PGI (69) is equivalent
to PGI for S¢, i.e.

Q520 ~ 4o 5°(i £(0) + 19" (5:0,9)) (170)

this can be verified straightforwardly by using that [Q, - ], is a graded derivation w.r.t. clas-
sical product, see [Diit05, Lemma 1].

For a connected time ordered product 75 (L(g)®"), the tree diagrams are the terms of
lowest order in A, if the interaction £(g) is homogeneous in £, see e.g. [DEOI]. If, as usual,
L(g) ~ ! and P(g; dg) ~ hO, the tree diagrams of S°(i £(g)) [or d%|77=0 S¢(izp(L)(g)+
nP(g; 89))] are precisely the terms ~ i~! [or ~ h°, resp.], and all connected loop diagrams
are of higher orders in A. Taking into account that [Q, F], ~ & if F ~ h? (see again
IDt05, Lemma 1]), we define: PGI-tree is the equation (IZQ) to lowest order in h, which
is hO.

But z,(L) is by itself a formal power series in h. Therefore, we use a trick to select the
tree diagrams from S¢(iz,(L)(g)) and d%]nzo S¢(i2p(L)(g9) + nP"(9;0v9)). Namely, in
all coefficients e, ([20) (and nowhere else) we replace h by another parameter T; however,
in particular the factors 2! for each vertex (see (I9)) and A for each propagator remain
untouched. Note that this substitution concerns also the pertinent Q-vertex: h is replaced
by 7 in (T4) and in (T6). With that, we have z,(L) ~ i1 and P(g;dg) ~ h?, and we
can apply the above given definition of PGI-tree to S(iz,(L)(g)). After the selection of
the tree diagrams we reset 7 := h.

Remark 7.1. Writing the interaction £(g) = z,(L)(g9) and the pertinent Q-vertex
P(g; f) by means of the 7-trick, the proof in [Diit05] that BRST-invariance of the La-
grangian implies PGl-tree applies to Lo + 2,(L) (B5). In addition this proof yields an
explicit expression for the Q-vertex [Dut05 formula (3.23)]), which gives

PV =0, PO =00 (m ATup—0" Bupt Budp), Py = b (ATup?+ A uB?
(17
if (B5) holds true. (bgl) is defined by (60).)
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Restrictions on the 1-loop coefficients of z,(L) coming from PGI-tree: here
we assume that the coefficients e, of z,(L) are unknown. In Appendix (it is worked out
that PGI-tree for £(g) = 2,(L)(g) can be fulfilled to order 7! iff the following relations

among the 1-loop coefficients eﬁ)l) hold true:

1 1 1 1 1 1
a® B0 B DD

1 1 1 1 1 1 1 1 1 1 1
ay) =0, 1), =0, af) =) +2c0) — o) bl =) = i) + ) — bl

l&) are arbitrary ,

1p > 0p — 1p >
e O % .
KD = 1)+ )+ 360 — e — b — 2 = 1)+ (oY) — o)
) =) o) il =2l o) =18 + @) — )y

(1 _ 1) n _ @ (1) _ (1) n _ @

l8p - Yp + (bOp - cOp) ) lgp - l7p + 2(bOp - cOp)

BV
Be). (172)
Let us compare these PGI-tree relations with the geometrical interpretability at all scales
on I-loop level (i.e. equations (B7)-(@T) to first order in /ix?): from the number of free
parameters (7 versus 9) we immediately see that the geometrical interpretability cannot
imply PGI-tree. Also the reversed statement does not hold true: in order that (I'72) im-
plies the geometrical interpretability, precisely one additional relation is needed, namely

1 1 1 Y 1 m2 (1 1
& =1 1 2e8) + 4ol — A i) + 371—;1(5§p) — b +

1 1 pH
)=o) — A (173)

However, note that (I72]) implies the two crucial necessary conditions for the geometrical
interpretability, (I56]) and (I52), without this additional relation (I73]). Note also that
the geometrical interpretability does not imply ([I73).

One verifies straightforwardly, that the particular solution (IG3]) for the 1-loop co-
efficients egl), generalized by an arbitrary finite renormalization of a(();) ([I40), solves
the system of linear equations ([72)-(I73)), i.e. there exists a way to renormalize such
that PGIl-tree and the geometrical interpretability are satisfied. In contrast to the latter,
the system (I72)-(I73) fixes the values of the finite renormalization parameters as and
(g — av7) uniquely (cf. the discussion after (I62])), this reflects that (I72])-(I73)) is more
restrictive.

Relation to minimal subtraction: dimensional regularization with minimal sub-
traction is a widespread scheme in conventional momentum space renormalization, which
generically fulfills BRST-invariance of the time-ordered products and, hence, most prob-
ably also PGI of our initial model. In this scheme the mass scale(s) is/are chosen in a
way which belongs to the class “use always method (A) and do not perform any finite
renormalization”. Using the latter prescription, neither PGI-tree nor the geometrical in-
terpretability are maintained under the RG-flow, because the second crucial necessary
condition (I50) is violated. Weakening this prescription by admitting the finite PGI-
preserving renormalizations (I40)-(I48]), the violation of (I56]) cannot be removed [

12 An alternative, simple argument that PGI-tree (and, hence, also PGI) can get lost under the RG-flow
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Remark 7.2. For an ansatz for the interaction containing solely trilinear and quadri-
linear terms it has been worked out for various models that PGI-tree determines the in-
teraction essentially uniquel (see e.g. [Sto97, DS99l [ADS99, [Sch01l [DGBSV10]). But
here, for an ansatz containing also bilinear terms, we obtain crucially different results

e BRST-invariance of the total Lagrangian does not determine the interaction uniquely

(see (B1);

e PGI-tree is truly weaker than BRST-invariance of the Lagrangian. (Compared with
(B7)), the relations (I72)) leave 4 additional parameters to be freely chosen.)

This can be understood as follows: PGI presupposes that the free theory is BRST-
invariant: soLg ~ 0. If we try to trace back the case of an interaction including
bilinear terms to the case with solely tri- and quadrilinear terms, by renormalization
of the wave functions and parameters (27)-(31)), BRST-invariance of the free theory
may get lost. Explicitly we obtai

SoLp ~0 < b(]p =0= azp N aQ1p = blp = C2p - (174)

To 1-loop order we can simultaneously fulfil this condition and BRST-invariance
of the Lagrangian (B3)): by using the renormalization method (B) for the relevant
diagrams, we can reach that in the particular solution (I66) of (B3] the value for

b(pl) is replaced by 0. But in general (I'74]) does not hold true, see e.g. the particular
solution ([I63)) of the geometrical interpretability. Moreover, there is the additional
obstacle that, after the renormalization of the wave functions and parameters, the
interaction still contains the bilinear term by,m A0B.

e In [DS00] it is worked out for the model of three massive vector fields that, making
a general renormalizable ansatz for the interaction, the condition of PC for tree
diagrams (PC-tree) restricts the interaction to the same extent as PGI-tree — the
essentially unique solution is the SU(2)-Higgs-Kibble model. However, for our
S(izp(L)(g)), which contains also bilinear terms, PC-tree is significantly weaker
than PGI-tree. This follows from our results: we have proved that PC (and, hence,
also PC-tree) holds true, but in general PGI-tree is violated.

is the following: The «ai-renormalization (I46]) maintains PGI of the initial model, but it can be used to
violate the PGI-tree equations (I72]), since it modifies only c(();) — this argumentation works also for the
ae-renormalization (I47]).
;L) =0, b;;) = 0 and cﬁ) = 0 (for all j), the
restrictions from PGl-tree (I72)) and (290) yield ll(;p) =0 (for all k).

“We are not aware of any other paper in which PGI has been studied for an interaction containing
bilinear terms.

5Since L5 = Lo + zp(L)bilinear; where z,(L)bilinear is the bilinear part of z,(L) (I9) without the ADB-
term, the easiest way to obtain the equivalence (I74) is to work out the condition so z,(L)bilinear = 0.

13This holds also for our model. Namely, setting a
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8 Summary and concluding remarks

Defining the RG-flow by means of a scaling transformation [HWO03|, [DE04, BDF09| one
can easily show that PC is maintained under the RG-flow. Hence, the U(1)-Higgs model
is a consistent QFT-model at all scales. However, the somewhat stronger property of
PGI gets lost in general, and in particular if one uses a renormalization prescription
corresponding to minimal subtraction.

Using the Epstein-Glaser axioms [EGT73, [DF04], completed by the requirement that
the initial model fulfills PGI, the RG-flow contains quite a large non-uniqueness, due to
the following two facts:

e whether a certain Feynman diagram contributes to the RG-flow, depends on whether
one chooses as renomalization mass scale a fixed mass (method (A)), or a mass
which is subject to our scaling transformation — e.g. the mass of one of the basic
fields (method (B)).

e By finite renormalizations (I37), which preserve PGI of the initial model, one can
modify the RG-flow.

To 1-loop level we have shown that, by using this non-uniqueness, one can achieve that
the geometrical interpretation is possible at all scales; one can even achieve that the much
stronger condition of BRST-invariance of the running Lagrangian is satisfied. But this
requires a quite (geometrical interpretation) or very (BRST-invariance) specific prescrip-
tion for the choice of the renormalization method ((A) or (B)) for the various Feynman
diagrams, and for the finite renormalizations. If one uses always method (A) — min-
imal subtraction is of this kind — the geometrical interpretation is violated by terms
~ AOB; relaxing this prescription by admitting finite PGI-preserving renormalizations,
these A0B-terms cannot be removed.

Instead of a state independent renormalization scheme, as e.g. minimal subtraction,
one may use state dependent renormalization conditions: e.g. in the adiabatic limit
the vacuum expectation values of certain time ordered products must agree with the
“experimentally” known values for the masses of stable particles in the vacuum, and
analogous conditions for parameters of certain vacuum correlation functions. With such
a scheme, quite a lot of diagrams are renormalized by method (A). To 1-loop level, the
geometrical interpretability at all scales amounts then mainly to the question, whether
it is nevertheless possible to fulfill the second crucial necessary condition (I56]), which
requires to renormalize certain diagrams by method (B), see (IE7)-([I58]). We postpone
this question to future work, and we do so also for the dependence of our results on the
initial value of the gauge-fixing parameter.

Returning to the fundamental question, already touched in the Introduction, whether
masses are really generated by the Higgs mechanism, we may say that our results sow a
germ of doubt.

Or — one can keep the Higgs mechanism as a fundamental principle explaining the
origin of mass at all scales (although it is not understood in a pure QFT framework),

36



then our results forbid quite a lot of renormalization schemes, in particular minimal
subtraction!
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A Breaking of homogeneous scaling for some 1-loop dia-
grams

In Sect. it is derived that the violation of homogeneous scaling of the massless fish
diagram is

(y0, + 4) thh (y) = Caan d(y)  with Chg, = ydy = 1yr0;) | (175)

—i
872’

and that for the fish diagram ¢ (I03) (with different masses m,mg) it holds

m,my

(yOy + 4 — MmOy — MEOmy ) by () = Chsn 6(y) (176)

where M > 0 is a renormalization mass scale.
In this appendix we compute the breaking of homogeneous scaling for some massless
triangle diagrams,

70 (y) = 0" D" (y1) 8” D" (y2) D" (y1 — y2) € D'(R®\ {0}) , (177)
th2°(y) == DF(y1) DF (y2) 90" DF (y1 — y2) € D'(R*\ {0}) , (178)

some massless square diagrams,

0 (y) == 020" DF (y1 — y2) 0,DF (y2 — y3) D¥ (y3) 0D (y1) € D'(R™?\ {0}) , (179)
5 (y) = D" (y1 — y2) V0, D" (y2 — y3) DF (y3) 020" D (1) € D'(R™\ {0}) , (180)
32 (y) = O D (y1 — y2) 0”0, D" (32 — y3) DF (y3) 9D (1) € D'(R™?\ {0}) , (181)
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and for some massive fish-like diagrams,

o ) = Ap(y) 940" AL (y) € D'(R*\{0}) (182)
oy () = O AL () 0" AL L (y) € D'(R\{0}) (183)

by using the renormalization method (A) (see Sect. [6I]). The point is that these com-
putations can be traced back to the result (I'75)).
Massless triangle diagrams: first note that contraction of 5" with g, yields

tonp = —10(y1 — y2) then (v1) (184)

by using OD¥ (z) = —id(x). Hence, for an arbitrary pair of almost homogeneous exten-
sions to D'(R®), the difference is of the form

755&#(?/) +i6(y1 —y2) tasn(y1) = Cé(y), CeC; (185)
such a term scales homogeneously. We conclude that

(y0y + 8) tgAﬂ(y) = —iCgsn 0(y) , where yd, = y)'04" +y,o . (186)

Due to Lorentz covariance, the expression (ydy, + 8) thX (y) must be ~ ¢g”; therefore, we
obtain

v v . —1i
P° thi(py) = thA(y) = Can g™ 0(y) logp  with  Cop = — Can . (187)
To compute the violation of homogeneous scaling for ¢/, we introduce
i (y) := 8"D (y1) D" (y2) D" (11 — vo) (188)

which exists in D’(R®) by the direct extension (see footnote ) and scales homogeneously:

(yOy + 7) ¥ (y) = 0. In D'(R®\ {0}) we find

(0, + )R () = 151 (1 — y2, —y2) + 0 (v) - (189)
Therefore, arbitrary almost homogeneous extensions fulfill
(0, + 04 )T (y) = thi (y1 — y2, —yo) + 4% () + C'6(y) (190)

for some C' € C. We conclude
0= (ydy +8) (9y, + 0y, TA(y) = (yOy + 8) thx (y1 — Y2, —y2) + (ydy + 8) 1A (y) . (191)
Taking (I87) into account we end up with
v v . i
P A (py) = A (W) = C1a 6" 0(y) logp with  Cia = =Cha = 7 Chan - (192)
Massless square diagrams: proceeding analogously, we use that

I 15 (y) = —i8(y1 — y2) i3, (y1, 91 — u3) (193)
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and obtain
P 1 (py) — i (y) = Cio g™ 8(y) logp with Cip = —iCip = icﬁsh - (194)
Taking into account that in D’(R'2\ {0}) it holds
0, (9D (4 — 2) 0,DF (02 — us) DF () 9D () =~ () + 135°) . (195)
we conclude that
P2 % (py) — 135 (y) = Cso g™ 6(y) logp  with Cspn = Cio . (196)
Finally, by means of
0 (DF (o~ 12) 99,07 (2 — ) D" (1) 9 DF (1)) = 5 () + 5 (w) . (197)
we derive that
P 15 (py) — 13 (y) = Cong™ 8(y) logp with Con = —Can=—Cig . (198)

Similarly to the massless fish diagram (I07]), the following holds also for the massless
triangle diagrams (I77)-(I78]) and for the massless square diagrams (I79)-(I81)): the
breaking of homogeneous scaling is equal for all almost homogeneous extensions. This
must be so, because two almost homogeneous extensions differ by a term of the form
Z|a\:w C, 0%, C, € C, which scales homogeneously. (See footnote [§ for the definition
of w; for the examples in hand we have w = 0.)

Massive fish-like diagrams: as a preparation we first compute the violation of
homogeneous scaling of the renormalized version t’QWM of the massless distribution

t5”°(y) = 9" D (y) 9"D" (y) € D'(R*\ {0}) . (199)

This computation can be traced back to the result (I75]) in the following way: first we
write th”° as

#7°() = L 0,050, () € DR\ {0)) (200

which follows from the explicit formula D (y) = ) by straightforward calcula-

—1
4m2 (y2—i0
tion, taking into account that “y # 0”. Then, by differential renormalization we get

v M y'y”
() = g O, 0ythen(v) € D'(RY) (201)

where M > 0 is a fixed mass scale (method (A)). From this relation we conclude that

y Chish
Yty DyDyé(y) = 128

(y) = Szt

(ydy, + 6) 5 M (y I ("0, +2000;)0(y) ;  (202)

the second equality is obtained by straightforward calculation.
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We renormalize the massive fish-like diagrams (I82]), (I83]) by using the sm-expansion
[Diit14]. Due to that we know that the violation of homogeneous scaling is of the form

(9, + 6 =y — miad ) 10, () = (o1 g 0, + Ca040) o)
+ g (m2 Pj1(log 4%, log ) + m3; Pja(log 4%, log %)) 5(y), j=1,2, (203)

where Pj;(21,22) is a polynomial in 2 and zo. The term O(m°) can be computed by
setting m := 0 =: mpy; hence, we know the values of the numbers (Cy;);=1 2 from (202]).
We renormalize such that the relations

Mote, () =te (y) + i )+t ()t ()

1mmpyg 1mpg,m 2m,mp 2mpg,m
2
G W emy W) = =Mty (y)  and 150 (y) = toh 0 (y) (204)

are maintained up to (local) terms which are in the kernel of the operator (yd, + 6 —
MOy, — MO, ); for the first and the last relation this is a term of the form

(Crg"™ Oy + C2010y) 6(y) + g™ (m*Cs5+m3; Cy)6(y), Cy € C arbitrary.

Due to the sm-expansion, this renormalization prescription restricts only the local terms
O(m?, qu) without this prescription the numbers C'5 and Cy may be replaced by poly-
nomials in log 77 and log =4

By using the renormalized version of the relations (204) and (I76) and (202]), we
determine the numbers Cy; and the polynomials Pj;. It results

v M v M
p6 tlllm/p,mH/p(py) o tlllm,mH (y)
1 v v g,ul/ 2
= Cran [ 5 (—9 Oy + 400y ) — Lo m3] 6y) o, (205)
v M v M
p6 tlfm/p,mH/p(py) - tl{m,mH (y)
1 Ky
= Chish [E <9“V Oy + 23533’/') + g? (m? + m%)} d(y) logp . (206)

B Computation of some 1-loop coefficients of the running
interaction
In this appendix we compute some 1-loop coefficients e of z,(L), defined by ([I9), (20)

and
e logp:= egl) , (207)

by using the results of Appendix [Al We assume that for all contributing terms the
renormalization mass scale M is chosen according to method (A), see Sect. Working
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in Feynman gauge, we may use the following conventions:

wo (T2(B B(y) )) =hAL(z-y), wo (Tz(w(w) ® w(y))) =hAL (x—y),
wo(Le(u(@) @ a(y)) ) = hAL@—y) . w(Ta(a() @ uly)) = —hAL (@ —y).
wo (T (wa) ® A”(y))) = —hg" Al(e—y) . (O+m)AL@) = ~is(@) . (208)

Coefficients of some bilinear fields: to compute ag, a1, a2, b1, by, we have to take
into account the following terms of TQ(L%@)Q) where L? := m A%p + BAOp — pAOB —

% B2%p: the most complicated is
oo (To((BO"o — 0" B) (1) @ (BO" — 00" B)(x2)) ) A(a1) Ay ()
= (L ) = )+ )+ ) Au(a) Au(es) , (209)

where y := x1 —x9. Using (205])-(204]), we find that (209) gives the following contribution
2
to 2, (L(9)*?) @D:

KD Cﬁsh/dxlde g(@1)g(x2) (% (90 — 0y8y) + 5 ¢ (m* + m%{)>5(y) Ap(z1) Ay (22)
= K212 cﬁsh/dx (g(x))? (% F2(z) + 1 (m? + m%) AQ(x)) T (210)

where the dots stand for terms with derivatives of g, which do not contribute to the
adiabatic limit. The further contributing terms are

m? 4w (T2 (APgp(z1) @ A”cp(mg))) A (1) Ay (x2) | (211)
m4

T 4w (T2 (By(z1) @ Bgo(:vg))) B(a1)B(xs) | (212)
wo <T2 (Adp(z1) ® Aa@(ﬂh))) B(x1)B(2) = g tramy, (¥) B(x1)B(x2) | (213)

—m2w0<T2(A“ (1) ®@ A% ) w(21)0y B(x2) + (21 ¢ x2)

2))
+m2w0<T2(A“ (x1) @ Adp(x2) )
2

— 52 2w, <T2((B(9“g0 — pO"B)(z1) ® ng(@))) Ap(z1)B(x2) + (w1 ¢ 22) . (215)

) p(@1)B(22) + (21 ¢ 72) | (214)

The last term does not contribute to the RG-flow, because in the sm-expansion of the per-
tinent unrenormalized expression the leading terms (which are the corresponding massless
distributions) cancel,

A () AL, () = O An (YA, (y) = 0+ O(m®, mi) (216)

and the terms O(m?,m?%) have singular order w < —1.
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Now from (2I0) and (2I1]) we obtain
2

7 1 m
ao:§Cﬁsh7 a1=2<§(1+m—g)—4> Chsh » a2 =0, (217)
and from (212)), (213) and 214) we get
rm? mi .
b= i( = ) Con s b =31 Cla .

the computation of by is analogous to the computation of by given in Sect.
There are 5 terms contributing to ¢;: one term is obtained from (2I3]) by ¢ + B and

four terms are ~ wy <T2 (p(z1) ® ¢(m2))> o(z1)p(x2) where ¢ = %, B?, A? and ¢ = .

We find

m2 2

. miy
C1 = —1 (6 m—%{ +5 W) Cﬁsh . (219)

Coefficients of some trilinear fields: the contributions to Iy, I3 and l4 come from
fish diagrams (without derivatives) belonging to To(LY ® L) and from triangle diagrams
2
(with two derivatives) belonging to T3(Li®*® L), where LY := m A%p — J1 (¢° + B2p)
and L} := BA9y — pAIB. To compute Iy we have to take into account the terms

4m wy (T2 (Axp(z1) ® Aygp(ﬂ:Q))) AMx1)A¥p(x9) 4 1 permutation | (220)
2
_m .
4mH wo (3 Ty (9% (21) © @*(22)) + T (B*(z1) @ BQ(@))) (1) A% (22) + 1 permutation ,
(221)
2
-m
oo (T3((Boe — 0 B)(a1) © (B¢ — 90" B)(a) © (3¢” + B?)(13)) )
- Au(x1) Ay (22)p(x3) + 2 permutations | (222)
— 2mwy (Tg (A“cp(wl) ® AJOB(z2) ® (Ba)‘go — <p8)‘B)(m3))>
- Ap(x1)p(x2)Ax(z3) + 5 permutations | (223)
where permutations of the vertices are meant. These terms yield
lo = —43 Cﬁsh + W (—2Z Cﬁsh) + W 2(3 + 1) CIA + 401A =—-3 Cﬁsh s (224)
where in the first step only Coa = —Cja is used, and the k-th summand comes from
P y )

the k-th term in (220)-@223) (k = 1,2,3,4). In (229),234), 241), 246) and [251) the

summands are ordered correspondingly.
Turning to I3, the terms

% “o <T2 (Az(xl) ® AQ(”))) o(21)9? (22) + 1 permutation | (225)
% «o (9 Ty (902@1) ® 902@2)) + 15 (BQ(xl) ® BQ(xz))) go(xl)goz(xg) + 1 permutation ,

(226)
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2
_mH

il (Tg (A0B(z1) ® ADB(z2) ® BQ(xg))> o(x1)p(z2)p(x3) + 2 permutations |
(227)
mwo (T3 (AOB(x1) ® AOB(x2) ® AQ(QU3))) o(x1)p(x2)p(r3) + 2 permutations , (228)

give
m2 . m%{ . m2
l3 :m—%{ (—8Z Cﬁsh) + W (—5Z Cﬁsh) +4Cip + m—%{ (—8 CQA)
| m? _mk

The contributions to {4 come from the terms

% wo (T2 (A%(21) ® A2($2))) ¢(z1)B?(x2) + 1 permutation , (230)

% o (3 Ty (*(21) @ 9*(x2)) + 3 T2 (B (1) ® BZ(@))) @(x1)B%(x2) + 1 permutation
+ ;n% 8wo (T2 (¢B(x1) ® pB(x2)) B(x1)@B(x2) 4 1 permutation (231)

_217:?{ 3wo (T3 (Adp(21) ® Adp(x2) @ 902@3))) B(z1)B(z2)p(x3) + 2 permutations

m2
+ # 2wo <T3 (A0B(z1) ® Adp(zs) ® goB(:cg))) o(x1)B(x2)B(73) + 5 permutations ,
(232)
mwo (Tg (Adp(z1) @ Adp(z2) @ AQ(mg))) B(x1)B(x2)p(x3) + 2 permutations , (233)

which yield

m2 m2 m2
ly = —5 (=8i Chsh) + —o (—(3+2)i Ciign) + (12 =8) Cip + —5 (—8Chn) =3 . (234)
my; m my;
Coefficients of some quadrilinear fields: the contributions to l5, [7 and lg come
from fish diagrams (without derivatives) belonging to T5(Ly® Lo), from triangle diagrams
(with two derivatives) belonging to T3(L1 ®? ® Ls) and from square diagrams (with four
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derivatives) belonging to Ty(Li ®*). The following terms contribute to I5:

i [3 wo (T2 (¢*(z1) ® 902(562)))

8m?
+ wo (T2 (BQ(:cl) ® BQ(:cg)))] A?(x1)p%(29) + 1 permutation , (235)
too (To (A (1) © A”p(22) ) Apsp(w1) Avip(s) (236)

%wo (Tg (A0B(x1) ® AOB(z2) ® B2(x3))> o(x1)p(x2) A%(23) + 2 permutations , (237)

— 2wy <T3 (ADB(z1) @ (Bd"p — 00" B)(2) ® Av¢(x3)))

~p(x1)Au(x2)Ayp(xs) + 5 permutations | (238)

2

L g (T3((BO"p — 0" B) (1) © (B”p — 00" B)(w2) © (3¢ + B)(w3)) )

- A1) Ay (72)? (23) + 2 permutations |, (239)
wo <T4€((B6”go — 0’ B)(x1) ® (B p — 08" B)(x2) ® AIB(x3) ® A&B(x4))>
- Ay (21)Au(z2)p(x3)p(xs) + 5 permutations | (240)

where the upper index ’c’ means connected. We obtain

2 2(3 + 1) m?
ls = ~H (<2i Con) = 4i Con +4C1a +8Cia + A3+ 1) my tn; T Cyp — 4i Cip = ~2i g
(241)
and in the first step only Con = —Ch1a and Cig = —Cog = (3 are used.
The contributions to I; come from
1 A2 A2 m3;\2 2 2
7 wo TQ( (1) ® (1'2)) + 36 (8m2) wo [ T2 (<P (1) ® ¢ (.%'2))
m2
+ (5%)” wo <T2 (B*(z1) @ B2($2)))] P? (21)¢? (x2) (242)

% wo <T3 (A0B(z1) ® ADB(z2) ® A2($3))> o(x1)p(z2)p* (23) + 2 permutations , (243)
_m%{

4m?

wo <T3 (A0B(z1) ® AOB(x2) ® BQ($3))> o(x1)p(z2)p*(23) + 2 permutations |
(244)

wo (T4c (A0B(z1) ® ADB(z2) ® AOB(z3) ® A@B(m))) o(x1)p(z2)p(xs)e(xg) 5 (245)

it results
. m? 9+1) m? m? m? .
l7 = — i Cgen <8—2—|-( )—§)+—2(—1602A)+8C1A+—281C2D
mi 2 m mi mi
| m? _m
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Finally, to compute lg we have to take account of

(1) B (w2) [ o (T (43(21) @ A%(22)))

+ 78 ’njfjrﬂ 6 wo (T2 (@2($1) ® @2($2)) + 15 (Bz(xl) ® BZ($2))>} +1 permutation
mZ
+ ¢B(z1)pB(x2) 16 (_47;;)2 wo <T2 (¢B(x1) ® goB(x2))) , (247)

% {wo <T3 (A0B(z1) ® AOB(z2) @ A2(x3))> o(x1)p(x2) B?(23)
+ wo <T3 (Adp(z1) ® Adp(z2) ® A2(x3))) B($1)3($2)@2($3)} + 2 permutations ,

(248)
8:&12‘] 6 {wo (Tg (ABB(xl) ® AOB(x2) ® B2(ac3))> o(x1)@(x2) B?(3)
+ wo (Tg (Adp(z1) @ Adp(z2) @ @2(363))) B(ml)B(xg)goz(xg)} + 2 permutations
m2
+ 71{2 4wy <T3 (A0B(z1) ® Adp(zs) ® ng(azg))) o(x1)B(x2)eB(x3) + 5 permutations ,

4
(249)
wo <T4€° (A0B(z1) ® ADB(x2) ® Adp(zs) @ A&p(m)))
- @(x1)p(z2)B(xs)B(x4) + 5 permutations , (250)
and we get
m2 m2 m2 m2
ls = —i Chan <8—2+(3+2) —5)——2 (8+48) Con+(124+12—16) Cyp+—o- 8i Cory = I7 .
m3, m m3, m3,
(251)

Note that ([228), 233)), 243) and ([248]) can be viewed also as fish diagram con-
tributions, since their unrenormalized versions are ~ —g,,, 0*9" DF (1 — acg)DF (x1 —
23)DF (20 — m3) = i6(z1 — x2) 13, (71 — x3); however in Sect. we treat them as
triangle diagram contributions.

C Working out PGI-tree for the running interaction

In this appendix we work out PGI-tree for the interaction £(g) = z,(L)(g), as defined
after (I70). We use that £(g) is of the form (67) with the explicit expressions (74]) and

([735), with unknown coefficients egj) in the Lg) (k =0,1,2) for j > 1. About the Q-

vertex P¥(g; f) ([68) we only know that it is of the form (76]), the field polynomials P,gj )
are completely unknown.

It is well-known (see e.g. [DS99, [Sch01, DGBSV10Q]) that in the inductive Epstein-
Glaser construction of the time ordered products, PGI can be violated only by local
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terms. Hence, we need to study only the local contributions. However, in principle
the splitting of a distribution into a local and a non-local part is non-unique; hence,
some caution is called for. Let z1, ..., z,, be the vertices of the considered connected tree
diagram. Everywhere in our calculations we replace (0)JAL by (—-m?(9)AE —i(9)d).
Then, outside the total diagonal 1 = x92 = ... = xz, only terms with at least one
propagator AL 9, Al 0,0,AL and 0,0,0\ AL (with no contraction of Lorentz indices)
contribute. Since these terms cancel outside the total diagonal, they cancel also on the
total diagonal. The remaining terms are the local terms, they are linear combinations
of 0%6(x1 — Ty, ooy Tno1 — Tp). We write Tipee for the contribution of the connected tree
diagrams and T'(...)|joc means the selection of the local terms. The latter is a rather
delicate issue. Considering

0y Tivee (P (2) @ L(Y)) lioc (252)

there appear the following possibilities how the divergence 07 generates local terms

(cf. [DS99, DGBSVI0]):

Type 1 f PY =90Y¢F +--- and L = ¢ E + - - -, then the contraction of 9" ¢(x) with ¢(y)
gives a propagator hd"AL (z —y), and on computing its divergence we find the
local contribution —ihd(x — y) F'(z)E(x).

Type 2 If P” is as before and L = 0#*¢ E + -- -, then analogously to type 1 we obtain the
local contribution ik 0*§(x — y) F(x)E(y).

Type 3 If P¥ = AYF +--- and L = (0,A") E + - - -, then the contraction of A”(x) with
0, A" (y) gives a propagator hg” “8MA5L(1‘ —y), and we get the local contribution
—ihd(x —y) F(x)E(zx) .

Remark C.1.

(1) Usually interactions for spin-1 fields do not contain a 0, A#-field; hence, the type 3
mechanism is non-standard, however it has been used already in the application of PGI
to spin-2 gauge theories [Sch01].

(2) In the literature about PGI mostly a different normalization of the time ordered
products is used (denoted by T in the following). Considering S(i£(g)), where £(g)
is of the form (67), the arguments of TV are only the vertices £1(z;) which are of first
order in g. A higher order vertex [ dx (g(x))" L) () (n > 2) is taken into account as a
local contribution

n! (_Z’)nil 6($1 — Ly ey Tpn—1 — xn) L(n) ('In) to Té\,[tree(@?:lﬁ(l) (x])) . (253)

Analogously a higher order Q-vertex [ dz (g(x))"~Y Pl (z) f(x) (n > 2) appears as a
local contribution

(=11 (=0)" 1 8(@1 =y s Tpo1 =) Py (20) 10 Tee (Pry (1) @ (2] 0L (1) (7))
(254)
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integrated out with f(z1) [[j_5 g(x;). The relation between the time ordered products

TV and T can generally be described in terms of the Main Theorem, see [Diit05, formula

(2.29)].

Now we are going to work out PGI-tree. Selecting the local terms which are of order

70 and of a certain order in 7 and k, we obtain the following equations:

hOT1/€4

ROt Q. Li(g)]l = —(9P1)(g) (255)
ROr9%2 . %[ 2( ) ~ ——(8P2)( %)
dzdy g(2)g(y) Oz Tivee (P1(z) @ L1(y)) lioc (256)

70 0m —4 [ dedyg(@)(9(y)? (92 Three (Pr(2) © La()) hoe

+ %ay Tiree (Ll(x) ® P2(y)) |loc) ) (257)
Ol QLG (6] ~ 5 (R (o) (258)
Rrtet s 110, LY (6%) ~ —(0P)(g)

— i [ dody (60900 (300 Tiee (P (2) © L) e
+ 0, Tioo (L1 () © PL(3)) hoc)

~ g5 [ dody (9(0)(9(0))* (0 T (P (@) © La(w) o
+ 0, oo (LG () © Pa(y)) hoc)

+ 5 / dydzydes g(y) (9(21))%9(22) By Three (P1(y) ® LS (21) ® L1(22)) fioe »
(260)
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hOTll'iS

0 —4 [ dody (9@))*(9(0))? (30 Tien (P (2) © L)) i
+ 10y Trvee (1 (2) © Po(3) e
i / dady 9() (9(9))* (O Tiee (P (2) © L5 (1) hoe
+ 30, Tiree (L1(2) @ P (9)hoc)
)

b [ dydorde ) (9(e0) (020, Tien (PL(5) L7 (00) © L))o -
(261)

This list contains all local terms of (IZ0) which are of order h%7%! or KOr'x! for [
arbitrary. On computing the terms appearing in this list, we replace [lg by —mi @.

o PGl-equations [255)-@257). The 7%-equations express PGl-tree for the (p = 1)-

theory, they have a unique solution for Py and P given in (71 (cf. [ADS97,IGB11]).

PGl-equation [258). (Tree diagrams with 2 external lines.) Throughout this ap-

pendix we use the notation e logp := ep @07). With that ([258) is equivalent
to
a1 —as+by—co=0 A by+by—bi+c=0 (262)

.

and a non-unique expression for P
%Pél)y = (c3 + az) m? A%u+ (by + bo)(cmud’B + (1 — o)m Bd"u) ,  (263)
where o € C is an arbitrary number.

PGl-equation [259). (Tree diagrams with 3 external lines.) A type 3 term appears
only in Oy Tiree (L(()l) (2)®@P1(y)) |loc- The equation ([253) is equivalent to the following

relations: Pl(l) is of the form

%Pl(l)y =apBdu+ Bpud’B+yuBd o+ AmA up, a,B,7,A€ C; (264)

and
m Aduyp : 0:—2l0+l2+)\—%(b2+b0)—§b2, (265)
m Audyp : 0:—l1+)\—i—%’(b2+b0)—§b2, (266)
moAup : 0:)\+2U(b2+b0)—a2+%b2, (267)
Boudp: 0=-lLi+a+v+3c, (268)
OBOup: 0=lp+a+8—2b, (269)
OBudp: 0=B+~v+2c—32b, (270)
uByp: O:m%{(l4—'y—a(b2+b0)—cl—i—%co)
+m?(—a— B—(1—0)(ba+bo) + b1 — L bg) . (271)
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The equations (263)-(27]]) are obtained by setting the coefficient of the indicated
field monomial to zero.

PGI-equation (260). (Tree diagrams with 4 external lines.) A type 3 contribution
appears only in 0y Tiree (L((]l)(x) ® P4(y)) lloc- There is only one type 1 contribution

coming from a contraction of du with 4, namely in 0, Ttree (Pl(l)(x) ® Ll(y))hoc.
The last term in (260) is the most difficult one; we explain the computation: the
local contributions come from terms of the form

w [ dydaidzs g(y)(9(21))*g(22) 0% Tivee (GO ) (1) @3 (00) (1) R (Fr07 ) (22)) hoc »

(272)
where ¢ = B or ¢ = ¢. The contraction of 0”¢(y) with 0*¢(x1) is of type 2; the
contraction of d,¢(z1) with 97¢(z2) gives a propagator ihd,0" A (z1 — z5). With
that ([272)) is equal to

=- i/dydwldxz 9()(g(x1))?g(x2) G(y) 0"8(y — 1) 0,07 AT (21 — 22) Fr (22) 1oc
. Ol (a(y))? PAF(

=i [ dydws ==5= g(x2) G(y) 9,07 A" (y — 22) Fr(x2) 1o

=3 [ dydwa (9(y))° g(w2) G(y) 07 8(y — w2) Fr (w2)

4 [y (30:(66))! GO ) + (90) ! 0" G- w))

= [ dy 9w (5760 ) - GO E ) (213)
where non-local terms are omitted. If the xo-vertex is of the simpler form (F¢)(z2),
then O"AY(x1 — x3) Fr(x2) is replaced by —AF (21 — x5) F(x2) and it results

3 [dy(g(w)* G)F(y) .

Proceeding as for (259]), the PGI-equation (260) is equivalent to the following: P2(1)
is of the form
L — Y yp?A¥ + EuB?A”, Y,E€C, (274)
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and

A2A8u : 0= l11 5 (275)
Bo?u: 0= —ma+ %(Zg —3l3+2ly —o(ba+by) —3y—28+cy— %bo) ,
(276)
mA’Bu: 0= —lg+1lo+0(by+by) +7— 2cp (277)
2
S B3 0=1lg—1ly—o(by+bo) — v+ 1o, (278)
Ap*u: 0="—1I5s+3l— 18— Lbo, (279)
OAQ*u: 0="—1211—Lay+ 35+ 1b, (280)
2Aupdp s 0="+3l— 3 + 38+ 1by , (281)
AB?0u: 0=E—1ls+ 3l + 37— 15¢0 , (282)
OAB*u: 0=E-1l —iay—3v+1c, (283)
2AuBOB: 0=E+ 3l1 — §ly — 37+ o - (284)
o PGl-equation [261)). (Tree diagrams with 5 external lines.) Note that
ayTtree (Lgl) (x) ® P (y)) |loc =0= ayTtree (Ll (x) ® Pg(l) (y)) |loc ) (285)

since A”(y) (appearing in P (y) and PQ(I)(y)) has no partner field 0, A*(z) which
is needed for a type 3 contribution. Proceeding as above we get

uBA*p: 0=1I5s—ls+ B+7+ 5(bo — co) (286)
m2
shug’B: 0=1g—I7—B—v+(co—bo) , (287)
m2
slbupB®: 0=1lg—ls — B — v+ 2(co— bo) - (288)

The system of equations (262)), ([265)-271), 275)-(284) and ([286])-(288) contains a

lot of redundancies; the most general solution is given in (I72]). To complete this result

we add
Oé:O, B:_l1+%7 7:11_2%7 A:bO"i_CZ_bl_%,

Y= -3 == -3 (289)

and the relation determining o,
J(bl—Cg):ll—b0+b1—Cg . (290)

The most general solution of the BRST-condition (55) (given in (60)-(62) and for the
pertinent Q-vertex see (I71])) is a true subset of the PGI-tree solution computed here, due
to Remark [T.I] This subset property is a good check of the calculations in this appendix.

The result (I72]) gives the restrictions from PGI-tree on the 1-loop coefficients eg).

The corresponding restrictions on the higher loop coefficients 622), 65,3), ... can be ob-
tained by continuing the calculations in this appendix: one has to select the local terms

of (I70) which are of order h°7"«! for | arbitrary and r = 2,3, ... .
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Remark C.2. We now are able to see, why the claim (I35) holds true. First note that
PC for S(iz,(L)(g)) ([I34) implies PC for the connected time-ordered products:

Eﬁ)l [Q, S¢(i2,(L)(g:)) ]« ~ 0, (291)
this follows analogously to (I70). Now, using the 7-trick in this equation, the terms ~ 79
vanish separately, because they are the U(1)-Higgs model, which fulfills PGI and, hence,
also (291)). Therefore, taking 7 = & into account, there cannot be a cancellation of terms
~ RO71k* with terms ~ hl794; hence, the terms ~ h971k* (which are tree-terms) must
fulfill (291)) separately. Moreover, as explained above, the non-local connected tree terms
fulfill PGI separately and, hence, they fulfill also (291]) separately. Now, as we see from

(275)), there is only one local connected (tree) term ~ h%71x* A2A0u contributing to the
Lh.s. of (291)), namely the r.h.s. of (I30); therefore, the latter must be ~ 0 individually.
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