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Abstract. Let Q = (0, 1)2 be the unit square in R
2. We prove that in a suitable

complete metric space of BV homeomorphisms f : Q → Q with f|∂Q = Id, the
generical homeomorphism (in the sense of Baire categories) maps a null set in a
set of full measure and vice versa. Moreover we observe that, for 1 ≤ p < 2, in
the most reasonable complete metric space for such problem, the family of W 1,p

homemomorphisms satisfying the above property is of first category, instead.
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1. Introduction

Denote by | · |∞ the norm on R
4 given by

|(a, b, c, d)|∞ = max{|a|, |b|, |c|, |d|}.
Let Q = (0, 1)2 be the open unit square in R

2. Consider a BV map f : Q→ Q
let us denote by f1, f2 : R

2 → R its components, relative to the usual coordinates
in R

2.
Denote the variation1 of f in Q by

V ar(f,Q) := sup

{
∫

Q
(f1divφ1 + f2divφ2)dx : |φ(x)|∞ ≤ 1 for all x ∈ Q

}

,

where φ = (φ1, φ2) ∈ C1
c (Q,R

2 × R
2) and the integration is with respect to the

Lebesgue measure. Fix a constant M > 2. We introduce the set

X := {f : Q→ Q : f is a BV homeomorphism, f|∂Q = Id, V ar(f,Q) < M},
and the distance on X

d(f, g) := ‖f − g‖∞ + ‖f−1 − g−1‖∞ +

∣

∣

∣

∣

1

M − V ar(f,Q)
− 1

M − V ar(g,Q)

∣

∣

∣

∣

.

We will prove in Section 1 that (X, d) is a complete metric space. Now let us
consider the following subset of X:

A := {f ∈ X : ∃E ⊂ Q, |E| = 0, |f(E)| = 1}
1Compare with [1] Definiton 3.4. We do not use the usual notation V (f,Q), because we

do not compute the norm of φ in the standard way. This will simplify some computations in
Section 3.
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The main result of the present paper is the following

1.1. Theorem. The set A is residual in X, i.e. it contains the intersection of

countably many open dense subsets of X.

The Baire theorem (see for instance [8]) implies that the set A is non-empty
and, more precisely, that it is dense in X.

To prove Theorem 1.1, we introduce the following family of subsets of X. For
every n ∈ N, we denote

An := {f ∈ X : ∃E ⊂ Q, |E| < 1/n, |f(E)| > 1− 1/n},
where the set E is a union of finitely many pairwise disjoint open triangles (the
number of such triangles may depend both on n and on the function f).

Since it is easy to see that the set A contains the intersection of the An’s (see
Section 4), to prove Theorem 1.1 it is sufficient to show that the sets An are open
and dense in X. The openness is an easy issue (see Lemma 4.1), while density is
more delicate (see Lemma 4.2), so we will give here a sketch of the proof of the
second property. The actual proof of both properties is postponed to Section 4.

Fix n ∈ N, f ∈ X and ε > 0. We want to find fε ∈ An with d(f, fε) < ε.
Firstly we use a result of [7] to find an orientation preserving, (finitely) piecewise
affine homeomorphism gε ∈ X with

d(f, gε) < ε/4.

Then we take a finite triangulation of Q such that gε is affine on each triangle.
If necessary, we can refine such triangulation in order to obtain a new finite
triangulation τ such that the diameter of all triangles T ∈ τ and of their images
through gε do not exceed2 ε/8.

Finally we modify the homeomorphism gε inside each triangle T ∈ τ in order
to obtain a new orientation preserving homeomorphism fε ∈ X with the following
properties:

(1) fε is (finitely) piecewise affine on each triangle T ∈ τ ;
(2) for every T ∈ τ

fε|∂T = gε|∂T ;

(3)
∣

∣

∣

1
M−V ar(fε,Q) − 1

M−V ar(gε,Q)

∣

∣

∣
≤ ε/2;

(4) for every T ∈ τ there exists a set F ⊂ T which is the union of finitely
many disjoint open triangles and satisfies

Area(F )

Area(T )
< 1/n;

Area(fε(F ))

Area(fε(T ))
> 1− 1/n.

2This ensures that any perturbation h of gε, which agrees with gε on ∂T for every T ∈ τ ,
satisfies

‖h− gε‖∞ + ‖h−1 − g−1

ε ‖∞ ≤ ε/4.



BV homeomorphisms 3

Clearly the property of the triangulation τ implies that

= ‖fε − gε‖∞ + ‖f−1
ε − g−1

ε ‖∞ < ε/4

and, together with property (3), this implies that d(f, fε) < ε. Moreover proper-
ties (1),(2) and (4) imply that fε ∈ An.

The construction of fε starting from gε uses a piecewise affine homeomorphism
φn (defined in Section 3), which maps a square Q to a parallelogram P and
coincides with an affinity on the boundary. This map is similar in spirit to the
“basic building block” used in [3]. The main difference between the two maps
is that, although in both cases the aim is to map a small subset F of Q in a
(proportionally) much larger set F ′, with a small cost in the variation3, we want
in addition that F ′ is almost a set of full measure in P .

Acknowledgements. The author is indebted to Guido De Philippis, Simone
Di Marino, Philippe Logaritsch and Aldo Pratelli for valuable suggestions and
helpful comments.

2. The metric space X

In this section we prove that the pair (X, d) defined in the Introduction actually
identifies a complete metric space. Since there are no doubts that d defines a
metric on X, we will focus on the completeness.

2.1. Proposition. The metric space (X, d) is complete.

Proof. It is a well known result in functional analysis that a sequence (fi)i∈N
of BV maps which is Cauchy with respect to the supremum norm and such that
the variations V ar(fi, Q) < M are equi-bounded converges to a BV map f with1

V ar(f,Q) ≤ M . We need to prove that if the sequence is Cauchy with respect
to the distance d, then the limit f remains a homeomorphism, and moreover
V ar(f,Q) < M . To prove that f is a homeomorphism it is sufficient to observe
that the sequence of continuous functions (f−1

i )i∈N is Cauchy with respect to the
supremum norm and therefore it converges to a continuous function g which is
the inverse2 of f .

Assume now by contradiction that V ar(f,Q) =M . The lower semicontinuity
of the variation with respect to the uniform convergence implies that

lim
i→∞

V ar(fi, Q) =M,

which implies that, for every fixed m ∈ N the quantity
∣

∣

∣

∣

1

M − V ar(fm, Q)
− 1

M − V ar(fj, Q)

∣

∣

∣

∣

3The main reason for our choice of the norm |·|∞ on R
4, instead of the more natural Euclidean

norm, is to be able to compute easily the variation of such map.
1See e.g. propositions 3.6 and 3.13 of [1]. Clearly our renorming of R4 does not affect the

validity of such statements.
2The fact that g = f−1 is a trivial fact of general topology.
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is unbounded in j, hence (fi)i∈N is not Cauchy with respect to d. �

The completeness of the metric space (X, d) is necessary to be able to apply
the Baire theorem. A non-strict inequality on the variation in the definition
of X would be probably a more natural choice (in particular we could drop
the last term in the definition of d). Nevertheless we introduced such metric
space, because in order both to perform the piecewise affine approximation of
[7] and to modify such approximation using the homeomorphism φn, we may
need to increase the variation of a small quantity. It is actually possible to
circumvent this issue even in the setting mentioned above, i.e. when we just
require V ar(f,Q) ≤M : indeed it is sufficient to approximate preliminarily a BV
homeomorphism f by homeomorphisms having smaller variation. This can be
always achieved if V ar(f,Q) > 2, by “interpolating” a contraction of the original
homeomorphism f in a square concentric to Q and the identity on the outer
frame.

3. The homeomorphism φn

Let (x, y) denote the usual coordinates on the plane and let Q denote the unit
square [0, 1] × [0, 1]. Consider a linear map

A :=

(

a b
c d

)

with det(A) > 0. Clearly A identifies the linear, orientation preserving homeo-
morphism ψ which maps the points (0, 1) and (1, 0) in (a, c) and (b, d) respec-
tively. Fix n ∈ N, n > 2. We will define a piecewise affine, orientation preserving
homeomorphism φn such that

V ar(φn, Q) ≤ (1 + (2/n1/2))V ar(ψ,Q)

and φn|∂Q = ψ|∂Q. Moreover we construct φn in such a way that there exists a
set F ⊂ Q which is a union of finitely many disjoint open triangles, satisfying

|F | < 1

n1/2
; |φn(F )| ≥

(

1− 1

2n

)

(1− (1/n1/2)) det(A). (3.1)

For i = 0, . . . , n2 − 1, let Ri be the rectangle

Ri := [0, 1] × [i/n2, (i + 1)/n2].

Denote

R′ := [1/n, 1 − (1/n)] × [0, 1/n5/2] ⊂ R0

and

R′′ := [1/n, 1− (1/n)] × [1/n5/2, 1/n2] ⊂ R0.

Finally consider R0 \ (R′ ∪R′′). We define a partition of the left rectangle

R′′′ := [0, 1/n] × [0, 1/n2]
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and on the right rectangle we define the symmetric partition with respect to the
axis x = 1/2. Let us write

R′′′ = T1 ∪ T2 ∪ T3 ∪ T4,
where (see Figure 1):

• T1 has vertices in (0, 0), (1/n, 0) and (0, 1/n5/2),

• T2 has vertices in (0, 1/n5/2), (1/n, 0) and (1/n, 1/n5/2),

• T3 has vertices in (0, 1/n5/2), (1/n, 1/n5/2) and (1/n, 1/n2),

• T4 has vertices in (0, 1/n5/2), (1/n, 1/n2) and (0, 1/n2).

✚
✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩
❩✘✘✘✘✘✘
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R′

R′′

T1
T2

T4

T3

1/n

1/n5/2

1/n2

Figure 1. Tiling of the square Q.

Now we will define the homeomorphism φn in the rectangle R0, such that

φn|∂R0
= ψ|∂R0

. (3.2)

Then we will be able to extend φn to the square Q, requiring its continuity and
defining, for every (x, y) ∈ int(Ri),

φn(x, y) = φn((x, y)− (0, i/n2)) + i/n2(b, d) (3.3)
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Figure 2. Representation of the map φn.

(notice that the point ((x, y)− (0, i/n2)) belongs to int(R0)). We define φn on R′

as the linear map φn(x, y) = A′(x, y)t, where

A′ :=

(

a (n1/2 − 1)b

c (n1/2 − 1)d

)

.

The map φn is now uniquely defined on Q by the conditions (3.2), (3.3) and
by the requirement that φn is continuous on Q and affine on R′, R′′ and on the
triangles T1, . . . , T4 (and on their symmetric copies).

In particular on R′′ there holds

∇φn =

(

a (1/(n1/2 − 1))b

c (1/(n1/2 − 1))d

)

.

Denoting F the set1

F :=

n2−1
⋃

i=0

(int(R′) + (0, i/n2)),

it is easy to see that (3.1) holds. Notice also that φn = ψ on T1 and T4.

1More precisely, in order that F is the union of disjoint open triangles, one should replace
the set int(R′) with the union of two disjoint open triangles such that the closure of this union
is R′.
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We now want to compute the variation V ar(φn, Q). Since φn is piecewise
affine, this is equivalent to compute the energy

E(φn) :=

∫

Q
|∇φn|1dx,

where we denoted by | · |1 the norm on Mat(2× 2) given by
∣

∣

∣

∣

(

a b
c d

)
∣

∣

∣

∣

1

= |a|+ |b|+ |c|+ |d|.

By construction, we have
E(φn) = n2E(φn|R0

).

Moreover, by the 1-homogeneity of the energy, it is easy to compute

n2E(φn|R′) = (3.4)

n2(1− (2/n))(1/n5/2)

∣

∣

∣

∣

(

a (n1/2 − 1)b

c (n1/2 − 1)d

)∣

∣

∣

∣

1

=

(1− (2/n))

∣

∣

∣

∣

(

(1/n1/2)a (1− (1/n1/2))b

(1/n1/2)c (1− (1/n1/2))d

)∣

∣

∣

∣

1

and analogously
n2E(φn|R′′) = (3.5)

n2(1− (2/n))((1/n2)− (1/n5/2))

∣

∣

∣

∣

(

a (1/(n1/2 − 1))b

c (1/(n1/2 − 1))d

)
∣

∣

∣

∣

1

=

(1− (2/n))

∣

∣

∣

∣

(

(1− (1/n1/2))a (1/n1/2)b

(1− (1/n1/2))c (1/n1/2)d

)
∣

∣

∣

∣

1

.

Combining (3.4) and (3.5) we have that

E(φn|(R′∪R′′)) = E(ψ|(R′∪R′′)). (3.6)

Regarding the energy of φn in the triangles T1, . . . , T4, we have, trivially

E(φn|T1
) = E(ψ|T1

)

and
E(φn|T4

) = E(ψ|T4
).

Moreover it is easy to compute that, on T2, we have

∇φn =

(

a+ ((1/n) − 2/n3/2)b (n1/2 − 1)b

c+ ((1/n) − 2/n3/2)d (n1/2 − 1)d

)

and therefore
|∇φn|1 ≤ n1/2|∇ψ|1. (3.7)

Finally on T3, we have

∇φn =

(

a+ ((1/n) − 2/n3/2)b (1/(n1/2 − 1))b

c+ ((1/n)− 2/n3/2)d (1/(n1/2 − 1))d

)

and therefore
|∇φn|1 ≤ 2|∇ψ|1. (3.8)
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Combining (3.6) with2 (3.7) and (3.8), we have

E(φn) ≤ (1 + (2/n1/2))E(ψ).

Let us summarize the conclusions of the above computations in the following3

3.1. Proposition. For every affine homeomeorphism φ defined on a square

Q with edges parallel to the coordinate lines and for every n ∈ N there exists

piecewise affine map φn on Q and a set Fn which is a finite union of disjoint

open triangles such that

(1) |V ar(φn, Q)− V ar(φ,Q)| ≤ (1/n)V ar(φ,Q);
(2) φn|∂Q = φ|∂Q;

(3)
Area(Fn)

Area(Q)
< 1/n;

Area(φn(Fn))

Area(φ(Q))
> 1− 1/n.

4. Proof of Theorem 1.1

We have to prove that the sets An defined in the Introduction are open and
dense in (X, d).

4.1. Lemma. For every n ∈ N the set An is open.

Proof. Take f ∈ An. Let 1/n > ε > 0 and let T1, . . . , Tm be pairwise disjoint
open triangles in Q such that, denoting E =

⋃

i Ti, there holds

(1) |E| < 1/n − ε;
(2) |f(E)| > 1− 1/n + ε.

Since the image of each triangle Ti is open, then there exists η > 0 such that,
denoting for every open set B

Bη := {x ∈ B : dist(x,BC) > η},
there holds

|f(Ti)η| ≥ (1− ε)|f(Ti)|,
for every i = 1, . . . ,m.

Consider now g ∈ X with d(f, g) < η, In particular ‖f − g‖∞ < η, hence
g(Ti) ⊃ f(Ti)

η, for every i = 1, . . . ,m. Therefore

|g(E)| =
m
∑

i=1

|g(Ti)| ≥
m
∑

i=1

|f(Ti)η| ≥ (1− ε)|f(E)| > 1− 1/n.

Hence g ∈ An. �

4.2. Lemma. For every n ∈ N the set An is dense in X.

2With similar computations, one can verify that the equations (3.7) and (3.8) are satisfied
also on the symmetric copies of T2 and T3, respectively.

3In order to obtain a simpler statement, we denote by φn the map we constructed above
relative to a parameter which is actually larger than n.
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Proof. Fix f ∈ X and ε > 0. We want to find fε ∈ An with d(f, fε) <
ε. By1 the result of [7], we can find a sequence of (finitely) piecewise affine
homeomorphisms (gi)i∈N : Q→ Q such that2

(1) gi|∂Q = Id;

(2) ‖gi − f‖∞ tends to 0 for i→ ∞;
(3) ‖g−1

i − f−1‖∞ tends to 0 for i→ ∞;
(4) limi→∞ V ar(gi, Q) ≤ V ar(f,Q).

We deduce that there exists a piecewise affine homeomorphism gε ∈ X with3

d(f, gε) < ε/4. (4.1)

In particular we can assume
∣

∣

∣

∣

1

M − V ar(f,Q)
− 1

M − V ar(gε, Q)

∣

∣

∣

∣

< ε/8. (4.2)

Now we take a finite triangulation of Q such that gε is affine on each triangle.
If necessary, we can refine such triangulation in order to obtain a new finite
triangulation τ such that the diameter of all triangles Ti ∈ τ and of their images
through gε are less than ε/8.

By (4.2) we can take m ∈ N, m > 2n such that
∣

∣

∣

∣

1

M − V ar(f,Q)
− 1

M − CV ar(gε, Q)

∣

∣

∣

∣

< ε/2, (4.3)

for every C ∈ [1− (1/m), 1 + 1/m]. We define the homeomorphism fε as follows.

For every Ti ∈ τ take finitely many closed squares Qj
i with pairwise disjoint

interiors and with edges parallel to the coordinate lines such that Qj
i ⊂ Ti and

∣

∣

∣

∣

∣

∣

⋃

j

Qj
i

∣

∣

∣

∣

∣

∣

≥ (1− (1/m))|Ti|. (4.4)

For every i, j, define fε on Qj
i as the map obtained by replacing the map gε

with the map (gε)m given4 by Proposition 3.1. For every i, define fε := gε on

Ti \ (
⋃

j Q
j
i ).

1The result is clearly independent on our renorming of R4.
2Given (2), the validity of (3) is a simple consequence of the uniform continuity of f−1.

Indeed such property implies that if ‖gi − f‖∞ is small, then ‖g−1

i − f−1‖∞ is also small. To
prove it, fix ε > 0 and let δ > 0 be such that if |x − y| < δ then |f−1(x) − f−1(y)| < ε. Now
take i ∈ N such that ‖gi − f‖∞ < δ. We want to prove that ‖g−1

i − f−1‖∞ < ε. Assume by
contradiction there exists x0 such that |g−1

i (x0) − f−1(x0)| > ε. Denoting x1 := g−1

i (x0) and
x2 := f−1(x0), we have |gi(x1)−f(x1)| < δ. Hence, denoting x3 := f(x1), we have |x3−x0| < δ,
but |f−1(x3)− f−1(x0)| > ε, which is a contradiction.

3Here we are also using the lower semicontinuity of the variation w.r.t. the uniform
convergence.

4We apply such proposition with n = m and φ = gε|Qj
i

.
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By (4.1),(4.3), point (1) of Proposition 3.1 and the property of the triangula-
tion, we have

d(f, fε) ≤ d(f, gε) + d(fε, gε) < ((ε/4) + (ε/2)) + (ε/4) = ε.

By point (3) of Proposition 3.1 and (4.4) we have that, denoting by F the set5

F :=
⋃

i,j

(F j
i )m,

there holds |F | < 1/m and

|fε(F )| > (1− (1/m))(1 − (1/m)) > 1− (2/m) > 1− (1/n),

hence fε ∈ An. �

Proof of Theorem 1.1. The only thing left to show is that A ⊃ ⋂

n∈NAn.
Fix f ∈ ⋂

n∈NAn. In particular, for every j ∈ N, we have f ∈ ⋂

i>j A2i , hence

for every i ∈ N with i > j there exists a set Ei with |Ei| < 2−i such that
|f(Ei)| > 1 − 2−i. Therefore denoting Ej :=

⋃

i>j Ei, we have |Ej | < 2−j and

|f(Ej)| = 1. Since the countable intersection of sets of full measure is a set of
full measure we deduce that, denoting E :=

⋂

j∈NE
j, we have that |E| = 0 and

|f(E)| = 1, hence f ∈ A. �

5. Final remarks and open questions

5.1. W 1,p homeomorphisms. In [3], Hencl proves that for 1 ≤ p < 2 there
exists a homeomorphism f : Q → Q in W 1,p with f|∂Q = Id satisfying Jf = 0
a.e. It turns out immediately that the set of such homemomorphisms is dense in
W 1,p with respect to the C0-distance. Therefore a natural question is whether
in a suitable complete metric space of W 1,p homeomorphisms, these maps are
residually many. For p > 1 the most natural setting to answer this question, i.e.
the most reasonable choice of a complete metric space of W 1,p homeomorphisms
is the set

X :=

{

f : Q→ Q : f is aW 1,p homeomorphism, f|∂Q = Id,

∫

Q
|Df |p ≤M

}

for an arbitrary constant M > 1, with the distance1

d(f, g) := ‖f − g‖∞ + ‖f−1 − g−1‖∞.
In [6] the authors prove that it is possible to approximate aW 1,p homeomorphism
(p > 1) uniformly and in the W 1,p norm by piecewise affine homeomorphisms.
Nevertheless, there is no hope that homeomorphisms with zero Jacobian almost
everywhere are residual in the metric space (X, d), since they are not even dense.
Indeed, take a homeomorphism f ∈ X with Jf > 0 on a set of positive measure

5We denote by (F j
i )m the set given by Proposition 3.1 applied to n = m and φ = gε|Qj

i

.
1Clearly one cannot consider as distance the natural norm of W 1,p, because the convergence

in such norm would also imply the convergence of the Jacobians, almost everywhere.
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and satisfying
∫

Q |Df |p =M . Assume that there exist homeomorphisms fn in X

with d(fn, f) → 0 as n→ ∞. Since the quantity
∫

Q |Df |p is lower semicontinuous

with respect to the uniform convergence, this would force
∫

Q
|Dfn|p →M =

∫

Q
|Df |p, (5.1)

as n → ∞. In turn, since the norm on W 1,p is uniformly convex, the uniform
convergence and (5.1) imply the convergence in norm2, which forces the conver-
gence of the Jacobians, too. In particular we can deduce that it is not possible to
extend Proposition 3.1 to the setting of W 1,p homeomorphisms: roughly speak-
ing, in this class there is a positive minimal cost in the energy to approximate an
affine homeomorphism with homeomorphisms that map a small set in a large one.
Notice that, since the subset of homeomorphisms f ∈ X satisfying

∫

Q |Df |p =M

is residual in X, then we have actually proved that the set of W 1,p homeomor-
phisms with zero Jacobian almost everywhere is of first category in X. Indeed we
have proved that the set of homeomorphisms f ∈ X satisfying

∫

Q |Df |p =M and

Jf > 0 on a set of positive measure is relatively open. To prove that it is dense,
we can use the same construction described at the end of Section 2. Moreover the
result is independent on the dimension of the ambient space: let us summarize
all these observations in the following

5.2. Theorem. Let Qn := (0, 1)n. Fix 1 < p < n, M > 1. Define

X :=

{

f : Qn → Qn : f is aW 1,p homeomorphism, f|∂Qn = Id,

∫

Qn

|Df |p ≤M

}

and the distance on X

d(f, g) := ‖f − g‖∞ + ‖f−1 − g−1‖∞.
Then the set A of all homeomorphisms f ∈ X with Jf = 0 a.e. is of first category

in X, i.e. X \ A is residual in X.

5.3. W 1,1 homeomorphisms. In [4] the authors prove that it is possible to
approximate a W 1,1 homeomorphism uniformly and in the W 1,1 norm by piece-
wise affine homeomorphisms. Moreover in Proposition 3.1 (1), it is equivalent
to consider the variation V ar(φ,Q) or the energy E(φ), hence if one considers
the metric space (X, d) as defined in the previous subsection, for p = 1, it is not
difficult to adapt the arguments presented in Section 4, to prove that the set of
W 1,1 homeomorphisms mapping a set of measure smaller than 1/n in a set of
measure larger than 1− 1/n are open and dense. The issue here is that (X, d) is
not complete3 and the countable intersection of open dense sets might principle
be empty. The completion of such space is a space of BV homeomorphisms,
with a uniform bound on the variation. However, such metric space is too large

2In every uniformly convex space, if xn ⇀ x and ‖xn‖ → ‖x‖ then ‖xn − x‖ → 0. See
proposition 3.32 of [2].

3A sequence of W 1,1 maps converging uniformly and with equi-bounded energies may con-
verge to a map which is in BV but not in W 1,1.
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for W 1,1 homeomorphisms with zero Jacobian almost everywhere to be residual.
Indeed in Theorem 5.4, we show that in such metric space any subset of the set
of W 1,1 homeomorphisms is of first category4. Therefore it seems that Theorem
1.1 is the best possible result of this type.

5.4. Theorem. Let (X, d) be the metric space defined in the Introduction.

Then the set A of all W 1,1 homeomorphisms in X is of first category.

Proof. Define

An := {f ∈ X : ∃E ⊂ Q, |E| < 1/n, V ar(f,E) > 1/2− 1/n},
where E is the union of finitely many pairwise disjoint open triangles. Clearly the
intersection of the An’s does not contain any W 1,1 homeomorphism, therefore, to
prove the proposition it is sufficient to show that the An’s are open and dense.
The openness is just a consequence of the lower semicontinuity of the variation
with respect to the uniform convergence. The density can be achieved as in
Lemma 4.2: it is sufficient to observe, from (3.4) that the maps φn, ψ and the set
F constructed in Section 3 satisfy5

V ar(φn, F ) > (1/2 − 1/
√
n)V ar(ψ,Q). (5.2)

�

5.5. Higher dimension and final remark. In the present paper we do not
deal with dimension higher than 2. The reason is that at the moment the result of
[7] is available only on the plane. A possible obstruction to carry out our strategy
in higher dimension is presented in [5], where the authors prove that there are
W 1,1 homeomorphisms in R

4 which cannot be approximated in the W 1,1 norm
by piecewise affine homeomorphisms.

Theorem 5.2 and 5.4 are not really the end of story. Indeed they do not ex-
clude, in principle, that it is possible to define some “artificial” complete metric
on the set of Sobolev homeomorphisms with respect to which the set of all home-
omorphisms with Jf = 0 a.e. is residual.
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