
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

Solution of linear systems in high spatial

dimensions

by

Wolfgang Hackbusch

Preprint no.: 5 2015

Solution of Linear Systems in High Spatial Dimensions

Wolfgang Hackbusch
Max-Planck-Institut für Mathematik in den Naturwissenschaften,

Inselstr. 22-26, 04103 Leipzig, Germany
wh@mis.mpg.de

Abstract

We give an overview of various methods based on tensor structured techniques for the solution of
linear systems in high spatial dimensions. In particular, we discuss the role of multi-grid variants.

1 Introduction

In the standard setting, linear systems
Ax = b (1.1)

are described by a regular matrix A ∈ Rn×n and vectors x, b ∈ Rn. Often we are interested in large-scale
problems with n about 100 000 to 100 000 000. In that case, vectors and matrices are represented differently.
Vectors of this size can be described explicitly in the full format, i.e., each entry is stored. Matrices of the size
n× n must be represented by less than n2 units. In the fortunate case of sparse matrices, the sparse format
is an easy remedy. For fully populated matrices one can use, e.g., the technique of hierarchical matrices
resulting in a storage requirement of1 O(n log∗ n) (cf. [14, 17]).

The situation changes if n becomes much larger. A concrete example is the Lyapunov matrix equation.
Consider a parabolic problem yt = Ly + Bu with the elliptic operator L discretised by a matrix A ∈ Rn×n
as considered above. The right-hand side contains the control variable u. Linear-quadratic optimal control
problems leads to a description of the control involving the solution X ∈ Rn×n of a quadratic matrix Riccati
equation (cf. Grasedyck–Hackbusch–Khoromskij [11]). For simplicity we consider its linearisation, the linear
Lyapunov equation

AX +XA = B (B ∈ Rn×n given, X ∈ Rn×n sought) (1.2)

(cf. Benner–Breiten [3]). Even if A and B are sparse, the solution X is a fully populated matrix. Equation

(1.2) is an unusual notation for a linear system with n2 equations involving a matrix A ∈ Rn2×n2

:

Ax = b, x,b ∈ Rn
2

, A ∈ Rn
2×n2

. (1.3)

Now the full representation of the vector x ∈ Rn2

is as problematic as the full representation of the fully
populated matrix X ∈ Rn×n. This shows that for much larger sizes N := n2 the treatment of a linear system
(1.1) must be changed substantially.

Concerning the spatial dimension, we add the following remark. Let L be a differential operator of a 3D
problem, while A is the discrete version of L. Then the matrix A in (1.3) discretises a six-dimensional pde.
The matrix A can be defined by means of the tensor product (here also called Kronecker product):

A = I ⊗A+A⊗ I .

2 Tensors

The tensor space V :=
⊗d

j=1 Vj exists for all vector spaces Vj (details in Hackbusch [15, 16]). In the
following, we discuss the tensor space for particular vector spaces Vj .

1The asterix in log∗ n replaces a variable exponent. This factor also contains the bound of the local rank of the hierarchical
method, which usually depends indirectly on n.

1

2.1 Grid functions (Vj = Rnj)

Consider a regular grid in d spatial dimensions. More precisely, let ωj = {x(j)
1 , . . . , x

(j)
nj } be a regular grid

consisting of nj nodal points and define the product grid ω = ω1×ω2× . . .×ωd. The nodal points x ∈ ω are

indexed by a d-tuple (i1, . . . , id) with 1 ≤ ij ≤ nj : x[i1, . . . , id] =
(
x

(1)
i1
, . . . , x

(d)
id

)
. Grid functions u defined

on ω are characterised by the nodal values u[i1, . . . , id], i.e., u belongs to RN with N := #ω =
∏d
j=1 nj . The

d-dimensional structure is described by the tensor product Rn1 ⊗Rn2 ⊗ . . .⊗Rnd which is isomorphic to RN :

RN ' Rn1 ⊗ Rn2 ⊗ . . .⊗ Rnd .

The tensor product of vectors v(j) ∈ Rnj is defined by d⊗
j=1

v(j)

 [i1, i2, . . . , id] :=

d∏
j=1

v(j)[ij].

Usually, the dimension N := nd (for nj = n) exceeds the available storage by far.

2.2 Functions (Vj = L2(Ωj))

Also functions f defined on a Cartesian product Ω = Ω1 × Ω2 × . . . × Ωd are tensors. For instance, L2(Ω)
can be considered as the tensor space

L2(Ω) = L2(Ω1)⊗ L2(Ω2)⊗ . . .⊗ L2(Ωd).

The tensor product of univariate functions is defined by d⊗
j=1

fj

 (x1, x2, . . . , xd) :=

d∏
j=1

fj(xj). (2.1)

Differently from the finite-dimensional case, the (topological) tensor space depends on the chosen norm.

2.3 Matrices (Vj = Rnj×mj)

A tensor space can also be generated by matrices, since the set of matrices in Rnj×mj is a particular vector
space. Let Aj : Vj →Wj (1 ≤ j ≤ d) be linear mappings and form the tensor spaces V = V1 ⊗ V2 ⊗ . . .⊗ Vd
and W = W1 ⊗W2 ⊗ . . .⊗Wd. The tensor product (Kronecker product)

A = A1 ⊗A2 ⊗ . . .⊗Ad

can be interpreted as the linear map A : V→W defined by

A : v(1) ⊗ v(2) ⊗ . . .⊗ v(d) 7→ A1v
(1) ⊗A2v

(2) ⊗ . . .⊗Adv(d) (2.2)

for all v(j) ∈ Vj . Using matrices Aj ∈ Rn×n of moderate size, one can construct huge matrices A ∈ Rnd×nd

.

2.4 r-Term Format (Canonical Format)

By definition, any algebraic tensor v ∈ V = V1 ⊗ V2 ⊗ . . .⊗ Vd has a representation

v =

r∑
ν=1

v(1)
ν ⊗ v(2)

ν ⊗ . . .⊗ v(d)
ν (2.3)

with v
(j)
ν ∈ Vj and suitable r ∈ N. Fixing some r ∈ N, we set

Rr :=

{
r∑

ν=1

v(1)
ν ⊗ v(2)

ν ⊗ . . .⊗ v(d)
ν : v(j)

ν ∈ Vj

}
.

2

The number r is called the representation rank2 of v ∈ Rr. Obviously, the storage size for any v ∈ Rr is
bounded by rdn, where n = maxj dimVj . If r is of moderate size, this format is advantageous. Often, a
tensor v requires a high rank, but there is some approximation vε ∈ Rr with moderate r = r(ε). An example
will follow in §3.1.

Note that (2.3) holds for all vector spaces Vj . In the case of matrix spaces, the r-term representation of
a matrix reads as

A =

r∑
ν=1

d⊗
j=1

A(j)
ν , A(j)

ν ∈ Rnj×mj . (2.4)

2.5 Numerical Tensor Calculus

The numerical treatment of tensors is called ‘numerical tensor calculus’. Besides the representation and
storage of tensors, the efficient performance of the tensor operations is required. Since the tensor space V is
a vector space, the addition is fundamental:

v + w, A + B. (2.5a)

Using operands of the form (2.3) or (2.4), the result has the same structure with increased representation
rank. Note that this implementation of the addition requires no computational work.

Let 〈·, ·〉j be the scalar product in Vj . Then the canonical scalar product 〈·, ·〉 in V =
⊗d

j=1 Vj is defined
via 〈 d⊗

j=1

v(j)

 ,

 d⊗
j=1

w(j)

〉 =

d∏
j=1

〈
v(j), w(j)

〉
j
. (2.5b)

For instance, the Euclidean scalar products 〈·, ·〉j lead to the Euclidean scalar product 〈v,w〉 =
∑

i v[i]w[i]
in V. Using the tensor constructions for matrices and vectors, the matrix-vector multiplication is defined by d⊗

j=1

A(j)

 d⊗
j=1

v(j)

 =

d⊗
j=1

A(j)v(j) (2.5c)

(cf. (2.2)). The formulae (2.5b,c) show that the tensor operation applied to elementary tensors can easily be
computed by operations related to the simpler vector spaces Vj . The same statement holds for further opera-
tions as the Hadamard product (entrywise product) and the convolution u = v?w with ui =

∑
0≤k≤i vi−kwk.

2.6 Truncation

The representation rank3 r is the critical quantity in the storage size rdn. Unfortunately, all operations have
the property that their result has a (much) larger representation rank than their operands. As an example
we consider the matrix-vector multiplication, where the matrix A has the representation rank rA, while the
vector v uses the representation rank rv:

w := Av =

 rA∑
ν=1

d⊗
j=1

A(j)
ν

 rv∑
µ=1

d⊗
j=1

v(j)
µ

 =

rA∑
ν=1

rv∑
µ=1

d⊗
j=1

A(j)
ν v(j)

µ .

Obviously, the product w has enlarged the representation rank to r := rArv. Repeating the operations,
the calculations become more and more costly. A remedy is the rank truncation: the result w has to be
approximated by w′ with a much smaller rank r′. This truncation should be controlled, i.e., we should be
able to estimate the truncation error.

2The representation rank has to be distinguished from rank(v), the rank of the tensor v, which is the minimal r such that
v ∈ Rr. Since the determination of rank(v) is in general NP hard (cf. H̊astad [20]), the representation rank used in practice
will be larger than the rank(v).

3The upper theoretical bound r ≤ O(nd−1) is useless, since then rdn = O(nd) is not better than the full representation by
all entries.

3

Unfortunately, truncation within the formatRr is a difficult procedure. Moreover, instabilities may occur.
The reason is that Rr is not closed and any approximation of v ∈ Rr\Rr by a sequence Rr 3 vn → v leads
to numerical cancellation problems (cf. [15, §9.4.3]). Because of these shortcomings one is looking for other
tensor representations.

In spite of the negative statement from above, we have to emphasise that the format Rr is perfect if, by
some method, we are able to find a suitable r-term representation. Here ‘suitable’ means stable and with
moderate representation rank r. In (3.1) we shall see such an example.

2.7 Other Tensor Representations

An alternative traditional representation is the subspace representation or Tucker format (cf. Tucker [30]).
Instead of a scalar representation rank we have a d-tuple r = (r1, . . . , rd) of integers. In each vector space
Vj we choose rj vectors (usually, linearly independent ones):

b
(j)
1 , b

(j)
2 , . . . , b(j)rj ∈ Vj (2.6)

with the intention that rj � nj := dim(Vj). Then we try to represent or approximate a tensor by

v =
∑

1≤`1≤r1

. . .
∑

1≤`d≤rd

a[`1, . . . , `d] b
(1)
`1
⊗ . . .⊗ b(d)

`d
(2.7)

This approach was originally introduced for the case of d = 3. For large d, this approach is rather costly
since the involved core tensor a ∈ Rr1 ⊗ Rr2 ⊗ . . . ⊗ Rrd requires the storage size

∏d
j=1 rj . On the other

hand, this format has very favourable properties. The basis (2.6) can be chosen orthonormal and, using the
so-called matricisation, the core tensor a can be isomorphically mapped into a matrix. This allows us to use
matrix techniques like the singular value decomposition. The arising ‘higher order SVD’ (HOSVD, cf. [6],
[15, §8.3]) is a perfect tool for the truncation as required in §2.6.

A more recent format is the hierarchical format (cf. Hackbusch–Kühn [19] and [15, §11]). It provides an
easy truncation, while the storage size dr3 + dnr is linear in d (r is the maximum of a rank tuple). As long
as r is bounded, a tensor size of nd for n = d = 1000 is harmless, since only the product dn appears. For
later purpose, we mention that the typical tensor operations cost amounts to

O(dr4 + dnr2) (2.8)

elementary floating-point operations (r defined as above).

3 Linear Systems

3.1 Model Problem: Laplace Operator

We consider the d-dimensional Laplace operator in a cube,

−∆ = −
d∑
j=1

∂2

∂x2
j

in Ω = [0, 1]d ⊂ Rd,

with Dirichlet condition u = 0 on ∂Ω, and discretise by a finite difference scheme with the grid size h =
1/ (n− 1) in a regular product grid. Let Aj be the (positive definite) tridiagonal matrix built by the (one-
dimensional) negative second divided differences. Then the system matrix has the form

A = A1 ⊗ I ⊗ I ⊗ . . .⊗ I + I ⊗A2 ⊗ I ⊗ . . .⊗ I + I ⊗ I ⊗A3 ⊗ . . .⊗ I + . . . ,

i.e., it is a d-term representation of the form (2.4). A similar result can be obtained for finite elements using
a regular grid, but then the identity I is replaced with the mass matrix. The following considerations hold
also for other positive definite matrices Aj .

One may be afraid that the huge system Ax = b has a huge condition number. This is not the case;
instead, the condition is determined by the one-dimensional problems:

min
1≤j≤d

cond(Aj) ≤ cond(A) ≤ max
1≤j≤d

cond(Aj).

4

Obviously, the spectrum of A is contained in [a,∞) for a :=
∑d
j=1 λ

(j)
1 , where λ

(j)
1 is the smallest

eigenvalue of Aj . Using a suitable scaling, we may assume that a = 1.

Lemma 3.1 There are (computable) coefficients αν , βν > 0 such that

A−1 ≈ Br :=

r∑
ν=1

αν

d⊗
j=1

exp(−βνAj) ∈ Rr

with ∥∥A−1 −Br

∥∥
2
≤ C1 exp(−C2r

1/2).

Even
∥∥A−1 −Br

∥∥
2
≤ C1 exp(−C2r) holds, if σ(A) ⊂ [1, R], R <∞ (C1, C2 depend on R).

The proof uses the approximation of 1
x in [a,∞) by the exponential sum Er(x) =

∑r
ν=1 αν exp(−βνx).

Choosing the optimal coefficients αν , βν , one proves the following error with respect to the maximum norm:∥∥ 1
x − Er(x)

∥∥
∞,[1,∞)

≤ O(exp(−cr1/2))

(cf. Braess–Hackbusch [4, 5]). For positive definite matrices A with σ(A) ⊂ [1,∞), Er(A) approximates
A−1 with the same bound:

∥∥Er(A)−A−1
∥∥

2
≤ ‖ 1

x − Er(x)‖∞,[1,∞). In the case of A = A1 ⊗ I ⊗ . . .⊗ I +
. . .+ I ⊗ . . .⊗ I ⊗Ad one has to evaluate exp(−βνA) and obtains

Br = Er(A) =

r∑
ν=1

αν

d⊗
j=1

exp(−βνAj) ∈ Rr. (3.1)

3.2 Solution of Linear Systems

Consider a linear system
Ax = b,

where x,b ∈ V =
⊗d

j=1Vj and A ∈
⊗d

j=1L(Vj , Vj) ⊂ L(V,V) are represented in one of the formats. The
general form of a linear iteration is

xm+1 = xm −B (Axm − b)

with any matrix B (cf. [12, (3.2.4)]). If this algorithm is applied. e.g., with the starting value x0 = 0, the
representation ranks of xm would blow up. Therefore, according to §2.6, a truncation T must be applied.
This yields the ‘truncated iteration’

xm+1 = T (xm −B (T (Axm − b))) .

The cost per step is nd times powers of the involved representation ranks.

Remark 3.2 Let A∆ be the discretisation of ∆ from above and Br ∈ Rr the approximation of A−1
∆ by

(3.1). If the matrix A corresponds to an elliptic pde of order 2, A and A∆ are spectrally equivalent (cf. [12,
Lemma 8.4.1]). Therefore B : = Br ∈ Rr is an appropriate preconditioner.

The approach from above is, e.g., considered by Khoromskij [22].

3.3 cg-Like Methods

The exact cg recursion yields a sequence of conjugate (i.e., A-orthogonal) vectors. It is well known that
because of the floating point errors, the orthogonality is lost after several iterations. This effect is even worse
for the conjugate gradient algorithm combined with tensor rank truncations, since the relative truncation
errors are usually larger than the machine precision. There are two remedies:

1. The cg method is restricted to few iterations so that the loss of orthogonality is still weak enough.

2. As soon as necessary, a re-orthogonalisation is performed.

5

The first approach requires fast convergence, i.e., a very good preconditioning. The second approach has
a drawback which will be discussed next. First we mention the following articles about conjugate gradient
methods in the context of tensor methods: Tobler [29], Kressner–Tobler [23, 24, 25], and Savas–Eldén [28].

Assume that uk (1 ≤ k ≤ m) are tensors belonging to Rr for a fixed r. The orthonormalisation changes
u2 into a linear combination ũ2 = αu1 + βu2. Obviously, the result ũ2 belongs to R2r. In general, the
orthonormalisation process produces ũk ∈ Rkr with increasing representation rank kr. A reduction of the
rank by a truncation is not possible without losing again orthonormality.

To avoid this increase of the rank, Ballani–Grasedyck [2] propose a variant of the GMRES method with
tensor truncation and without orthonormalisation. Nevertheless, the iterates are built in such a way that
the residuals are decreasing.

4 Multigrid Approach

First we transfer the setting of the geometric multigrid method to the tensor case. In §4.7 we discuss the
pros and cons of the method.

4.1 Grid Hierarchy

Since the tensors directly correspond to grid functions associated to product grids (cf. §2.1), the traditional
geometric multigrid structure is appropriate.

Let V 0
j , V

1
j , . . . , V

`
j , . . . be a one-dimensional grid hierarchy. In the case of a difference scheme, V `j = Rn

(j)
`

corresponds to a grid with n
(j)
` points, where n

(j)
0 < n

(j)
1 < In the case of a finite element discretisation,

V `j may be the space of piecewise linear functions defined on a grid of n
(j)
` points.

The d-dimensional grid hierarchy is given by the tensor spaces

V0,V1, . . . ,V`, . . . with V` :=

d⊗
j=1

V `j .

In the case of the difference scheme, the elements of V` are grid functions on a d-dimensional grid with

N :=
∏d
j=1 n

(j)
` nodal points (cf. §2.1), while, in the finite element case, V` consists of piecewise d-linear

functions on the cubical grid of the dimension N :=
∏d
j=1 n

(j)
` (cf. §2.2). Note that the corresponding finite

element basis functions are elementary tensors of the form (2.1).

4.2 Prolongation, Restriction

Let pj : V `j → V `+1
j be the one-dimensional linear prolongation (cf. [13, §3.4.2]). The d-linear prolongation

p : V` → V`+1 is the elementary (Kronecker) tensor product of the one-dimensional linear prolongations:

p = p1 ⊗ p2 ⊗ . . .⊗ pd .

Similarly, the restriction satisfies
r = r1 ⊗ r2 ⊗ . . .⊗ rd .

Note that usually r is the adjoint of p (cf. [13, §3.5]).
An important observation is the fact that the application of p and r does not increase the representation

ranks. Let δx`−1 be the correction obtained from the coarse grid. Then the multigrid iteration determines
the new iterate by x` ← x`−p δx`−1. To restrict the representation rank, we have to replace this assignment
by the truncated version

x` ← T (x` − p δx`−1) .

6

4.3 Coarse-Grid Matrices

Let AL be the fine-grid matrix (L is the level number of the finest grid). The auxiliary matrices A` (` < L)
can be defined by the Galerkin approach (cf. [13, §3.7]):

A`−1 := rA`p for ` = L,L− 1, . . . , 1.

Assume that the fine-grid matrix AL has the representation

AL =

rA∑
ν=1

d⊗
j=1

AL,jν .

The Galerkin approach leads to

A` =

rA∑
ν=1

d⊗
j=1

A`,jν

with the same representation rank rA involving

AL,jν := rj A
`,j
ν pj .

The defect d(`−1) := A`−1x`−1 −b`−1 computed in the coarse grid has an increased rank because of the
matrix-vector multiplication (see the example in §2.6). Hence, this step has to be replaced by the truncated
version

d(`−1) := T (A`−1x`−1 − b`−1).

4.4 Smoothing

4.4.1 Richardson Iteration

The exact Richardson iteration is

x`new := x`old − ω`
(
A`x`old − b`

)
.

As discussed in §3.2, this approach is not advisable in the tensor case because of the increasing representation
ranks. Instead, the truncated Richardson iteration

x`new := T
(
x`old − ω`

(
A`x`old − b`

))
is the method of choice.

A possible improvement is the semilinear variant of the truncated Richardson iteration (cf. [13, §3.3.5]).

4.4.2 Jacobi Iteration

The damped Jacobi iteration is an often applied smoothing iteration. However, in the tensor case, the
performance of this iteration is already too complicated as pointed out below.

The diagonal of the (Kronecker) matrix A` =
rA∑
ν=1

d⊗
j=1

A`ν,j is given by

D` := diag{A`} =

rA∑
ν=1

d⊗
j=1

D`
ν,j with D`

ν,j := diag{A`ν,j}.

In the tensor case, diagonal matrices may be called sparse because of the many zero entries, but in fact
they are not sparse since the number of nonzero elements is still huge. The number of nonzero entries of

D` ∈ RN×N is N =
∏d
j=1 n

(j)
` , which is far too large for practical use. Instead one may try to use an

approximation

(D`)−1 ≈ Br := Er(D
`) =

r∑
µ=1

αµ exp(−βµD`)

as in (3.1). However, Kronecker exponentials of the form exp
(⊗d

j=1Dj

)
are not easy to evaluate or to apply

to a tensor. The only exception arises when at most one Dj is different from the identity I.

7

4.5 Treatment of the Coarsest Grid

We recall that dim(V`) =
∏d
j=1 n

(`)
j with n

(`)
j := dim(V `j). Since the dimension of the coarsest grid is∏d

j=1 n
(0)
j , a direct solution of the system at the lowest level requires

• either n
(0)
j = 1,

• or n
(0)
j and d so small that also

∏d
j=1 n

(0)
j is sufficiently small.

The choice n
(0)
j = 1 is possible for positive definite problems (cf. [13, §7.2]). Only if n

(0)
j = 1, the coarse-

grid problem has a size
∏d
j=1 n

(0)
j = 1 not depending on d. Otherwise, some other method from §§3.2–3.3

must be applied.

4.6 Convergence

Choosing the multigrid parameters as above, we can apply the standard convergence results (e.g., [13,
Theorems 7.2.2 and 7.2.3]), provided that no tensor truncation is applied. The additional truncation effect
is similar to the truncated iteration analysed by Hackbusch–Khoromskij–Tyrtyshnikov [18] (see also [14,
§14.3.2] or [17, §15.3.2]).

Numerical examples for the use of a tensor multigrid iteration can be seen in Ballani–Grasedyck [2,
Example 7.5]. These examples with nfine := n(L) = 1023 and dimensions up to d = 32 demonstrate that the
convergence behaviour does not depend on d.

In (1.2) we mention the Lyapunov equation. A multigrid solution of the more general Sylvester matrix
equation AX −XB = C is described in Grasedyck–Hackbusch [10]. A nonlinear multigrid approach to the
quadratic Riccati equation is given in [9].

4.7 Cost

A disadvantage is the following effect. In traditional 3D multigrid applications, computations at level `− 1
with the step size h`−1 = 2h` cost only 1

8 of the computations at level `. This explains why the cost of one
V- or W-cycle is dominated by the operations spent on the finest grid.

In tensor applications, the cost of operations is described in (2.8): O(dr4 + dnr2). In the multigrid case,

n has to be replaced with n(`) := max{n(`)
j : 1 ≤ j ≤ d}. For the finest grid, we use the notation nfine := n(L).

Assuming n
(`)
j ≈ 2n

(`−1)
j , we obtain the following work per V- or W-cycle:

V-cycle: O(dr4L+ dnfiner
2),

W-cycle: O(dr42L + dnfiner
2L) = O(dr4nfine + dnfiner

2L).

This result can be interpreted in different ways. On the negative side, the portion of the work corresponding
to the auxiliary grids ` < L is larger, but on the positive side, even for the W-cycle, the cost is less than
O(n1+ε

fine) for all ε > 0 with respect to nfine. Nevertheless, the factor r4 may become more problematic than
nfine.

A possible reduction of the cost may be obtained by choosing different representation ranks r for the
finest grid and for the auxiliary problems at the levels ` < L. For ` = L a possibly larger rank rfine is needed
to approximate the solution of the discretised pde. The size of rfine depends on the nature of the solution.
However, for ` < L only corrections are to be represented and the rank required by the corrections is not
related to rfine.

4.8 Parabolic Problems

Since the dimensions in the sense of number of coordinates are no limitation, space-time simultaneous
discretisations with the additional time variable are not disadvantageous. In this respect, the results of
Andreev–Tobler [1] are of interest. In the latter paper, a BPX preconditioner is used.

8

5 Variational Approach

Finally we mention a quite different approach to solving Ax = b approximately. If A is positive definite,
we may minimise the quadratic cost function

Φ(x) := 〈Ax,x〉 − 2 〈b,x〉 .

In the general case of a regular A, define

Φ(x) := ‖Ax− b‖2 or Φ(x) := ‖B (Ax− b)‖2

with a suitable preconditioner B and try to minimise Φ(x). The minimisation over all tensors x is not
feasible because of the huge dimension. Instead one fixes a certain format for the representation of x and
minimises over all representation parameters of x. In practice, this works quite well although the theoretical
understanding of the convergence properties is still incomplete. Another difficulty is that Φ has many local
minima and the minimisation is nonconvex.

Concerning the variational approach we refer to the following papers: Espig–Hackbusch–Rohwedder–
Schneider [7], Falcó–Nouy [8], Holtz–Rohwedder–Schneider [21], Mohlenkamp [26], Osedelets [27] and others
cited in these papers.

References

[1] Andreev, R., Tobler, C.: Multilevel preconditioning and low-rank tensor iteration for space-time simul-
taneous discretizations of parabolic PDEs. Numer. Linear Algebra Appl. (2014). Published on-line

[2] Ballani, J., Grasedyck, L.: A projection method to solve linear systems in tensor format. Numer. Linear
Algebra Appl. 20, 27–43 (2013)

[3] Benner, P., Breiten, T.: Low rank methods for a class of generalized Lyapunov equations and related
issues. Numer. Math. 124, 441–470 (2013)

[4] Braess, D., Hackbusch, W.: Approximation of 1/x by exponential sums in [1,∞). IMA J. Numer. Anal.
25, 685–697 (2005)

[5] Braess, D., Hackbusch, W.: On the efficient computation of high-dimensional integrals and the approx-
imation by exponential sums. In: R.A. DeVore, A. Kunoth (eds.) Multiscale, Nonlinear and Adaptive
Approximation, pp. 39–74. Springer, Berlin (2009)

[6] De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J.
Matrix Anal. Appl. 21, 1253–1278 (2000)

[7] Espig, M., Hackbusch, W., Rohwedder, T., Schneider, R.: Variational calculus with sums of elementary
tensors of fixed rank. Numer. Math. 122, 469–488 (2012)

[8] Falcó, A., Nouy, A.: Proper generalized decomposition for nonlinear convex problems in tensor Banach
spaces. Numer. Math. 121, 503–530 (2012)

[9] Grasedyck, L.: Nonlinear multigrid for the solution of large-scale Riccati equations in low-rank and
H-matrix format, Numer. Linear Algebra Appl. 15, 779–807 (2008)

[10] Grasedyck, L., Hackbusch, W.: A multigrid method to solve large scale Sylvester equations, SIAM J.
Matrix Anal. Appl. 29, 870–894 (2007)

[11] Grasedyck, L., Hackbusch, W., Khoromskij, B.: Solution of large scale algebraic matrix Riccati equa-
tions by use of hierarchical matrices. Computing 70, 121–165 (2003)

[12] Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations, Springer, New York (1994)

[13] Hackbusch, W.: Multi-grid Methods and Applications, SCM, vol. 4. Springer, Berlin (2003)

9

[14] Hackbusch, W.: Hierarchische Matrizen - Algorithmen und Analysis. Springer, Berlin (2009)

[15] Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus, SCM, vol. 42. Springer, Berlin (2012)

[16] Hackbusch, W.: Numerical tensor calculus. Acta Numerica 23, 651–742 (2014)

[17] Hackbusch, W.: Hierarchical Matrices - Algorithms and Analysis. Springer, Berlin (2015). To appear

[18] Hackbusch, W., Khoromskij, B., Tyrtyshnikov, E.E.: Approximate iterations for structured matrices.
Numer. Math. 109, 365–383 (2008)

[19] Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15,
706–722 (2009)

[20] H̊astad, J.: Tensor rank is NP-complete. J. Algorithms 11, 644–654 (1990)

[21] Holtz, S., Rohwedder, T., Schneider, R.: The alternating linear scheme for tensor optimization in the
tensor train format. SIAM J. Sci. Comput. 34, A683–A713 (2012)

[22] Khoromskij, B.: Tensor-structured preconditioners and approximate inverse of elliptic operators in Rd.
Constr. Approx. 30, 599–620 (2009)

[23] Kressner, D., Tobler, C.: Krylov subspace methods for linear systems with tensor product structure.
SIAM J. Matrix Anal. Appl. 31, 1688–1714 (2010)

[24] Kressner, D., Tobler, C.: Low-rank tensor Krylov subspace methods for parametrized linear systems.
SIAM J. Matrix Anal. Appl. 32, 1288–1316 (2011)

[25] Kressner, D., Tobler, C.: Preconditioned low-rank methods for high-dimensional elliptic PDE eigenvalue
problems. Comput. Methods Appl. Math. 11, 363–381 (2011)

[26] Mohlenkamp, M.J.: Musing on multilinear fitting. Linear Algebra Appl. 438, 834–852 (2013)

[27] Oseledets, I.V.: DMRG approach to fast linear algebra in the TT-format. Comput. Methods Appl.
Math. 11, 382–393 (2011)

[28] Savas, B., Eldén, L.: Krylov-type methods for tensor computations I. Linear Algebra Appl. 438,
891–918 (2013)

[29] Tobler, C.: Low-rank tensor methods for linear systems and eigenvalue problems. Doctoral thesis, ETH
Zürich (2012)

[30] Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311
(1966)

10

