A Novel Approach to Canonical Divergences within Information Geometry

by

Nihat Ay and Shun-ichi Amari

Preprint no.: 73 2015
A Novel Approach to Canonical Divergences within Information Geometry

Nihat Ay1,2,3 \quad Shun-ichi Amari4

October 27, 2015

1Max Planck Institute for Mathematics in the Sciences, Germany
2Faculty of Mathematics and Computer Science, University of Leipzig, Germany
3Santa Fe Institute, USA
4RIKEN Brain Science Institute, Japan

Abstract

A divergence function defines a Riemannian metric g and dually coupled affine connections ∇ and ∇^* with respect to it in a manifold M. When M is dually flat, that is flat with respect to ∇ and ∇^*, a canonical divergence is known, which is uniquely determined from (M, g, ∇, ∇^*). We propose a natural definition of a canonical divergence for a general, not necessarily flat, M by using the geodesic integration of the inverse exponential map. The new definition of a canonical divergence reduces to the known canonical divergence in the case of dual flatness. Finally, we show that the integrability of the inverse exponential map implies the geodesic projection property.

Keywords: information geometry, canonical divergence, relative entropy, α-divergence, α-geodesics, duality, geodesic projection.

Contents

1 Introduction: divergence and dual geometry 2
2 A new approach to the general inverse problem 3
3 Natural connections for positive and probability measures 6
 3.1 The Fisher metric and its gradients 6
 3.2 The mixture and the exponential connections 7
 3.3 The α-connections 9
1 Introduction: divergence and dual geometry

A divergence function $D(p \parallel q)$ is a differentiable real-valued function of two points p and q in a manifold M. It satisfies the non-negativity condition

$$D(p \parallel q) \geq 0$$

with equality if and only if $p = q$. But it is not a distance and it can be an asymmetric function of p and q. When a coordinate system $\xi : p \rightarrow \xi_p = (\xi_1^p, \ldots, \xi_n^p) \in \mathbb{R}^n$ is given in M, we pose one condition that, for two nearby points ξ_p and $\xi_q = \xi_p + \Delta\xi$, D is expanded as

$$D(p \parallel q) = \frac{1}{2} g_{ij}(p) \Delta \xi^i \Delta \xi^j + O(\|\Delta\xi\|^3)$$

and $g_{ij}(p)$ is a positive definite matrix. Here, the Einstein summation convention is used, so summation is taken with respect to indices repeated twice in a term, one as upper and the other as lower indices. Throughout the paper, we apply this convention or explicitly use the summation sign. A Riemannian metric $\tilde{g} = (\tilde{g}_{ij})$ is defined from (2). A pair of dual affine connections are also introduced from it [3]. We also use the following simplified notations of differentiation with respect to coordinates $\xi_p = (\xi_1^p, \ldots, \xi_n^p)$ of p and coordinates $\xi_q = (\xi_1^q, \ldots, \xi_n^q)$ of q in $D(\xi_p \parallel \xi_q)$ as

$$\partial_i = \frac{\partial}{\partial \xi_i^p}, \quad \partial'_i = \frac{\partial}{\partial \xi_i^q}. \quad (3)$$

Then, the Riemannian metric is written as

$$\tilde{g}_{ij}(p) = -\partial_i \partial'_j D(\xi_p \parallel \xi_q)|_{q=p} = \partial'_i \partial'_j D(\xi_p \parallel \xi_q)|_{q=p}. \quad (4)$$

The two quantities

$$\Gamma_{ijk}(p) = -\partial_i \partial_j \partial'_k D(\xi_p \parallel \xi_q)|_{q=p}, \quad (5)$$

$$\Gamma^*_{ijk}(p) = -\partial'_i \partial'_j \partial_k D(\xi_p \parallel \xi_q)|_{q=p} \quad (6)$$
give coefficients of a pair of dual affine connections [3]. They define two co-
variant derivatives $D \nabla$ and $D \nabla^*$. They are dual with respect to the Riemannian
metric, since they satisfy the duality condition [1]
\[
X \langle Y, Z \rangle = \left\langle D \nabla_X Y, Z \right\rangle + \left\langle Y, D \nabla^* X Z \right\rangle
\]
(7)
for three vector fields X, Y and Z. Here, the brackets $\langle \cdot, \cdot \rangle$ denote the inner
product with respect to the metric $D g$.

The inverse problem is to find a divergence D which generates a given
geometrical structure (M, g, ∇, ∇^*). Matumoto [7] showed that a divergence
exists for any such manifold. However, it is not unique and there are in-
finitely many divergences that give the same geometrical structure. When
a manifold is dually flat, a canonical divergence was introduced by Amari
and Nagaoka [1], which is a Bregman divergence. Extensions of the canoni-
cal divergence within conformal geometry have been studied by Kurose [5]
and Matsuzoe [6]. The canonical divergence has nice properties such as the
generalized Pythagorean theorem and geodesic projection theorem. It is an
important problem to define a canonical divergence in the general case. The
present paper gives an answer to this problem by using the inverse exponen-
tial map. This divergence coincides with the original canonical divergence
in the dually flat case.

2 A new approach to the general inverse problem

We begin with a motivation in terms of a simple example where the manifold
is \mathbb{R}^n equipped with the standard Euclidean metric and connection (here,
the Levi-Civita connection): Let p be a fixed point in \mathbb{R}^n, and consider the
vector field pointing to p, that is
\[
\mathbb{R}^n \rightarrow \mathbb{R}^n, \quad q \mapsto p - q.
\]
(8)
Obviously, the vector field (8) can be seen as the negative gradient of the
squared distance
\[
D_p : \mathbb{R}^n \rightarrow \mathbb{R}, \quad q \mapsto D_p(q) := D(p \parallel q) := \frac{1}{2} \| p - q \|^2 = \frac{1}{2} \sum_{i=1}^{n} (p_i - q_i)^2,
\]
as potential function, that is
\[
p - q = - \text{grad}_q D_p.
\]
(9)
Here, the gradient grad_q is taken with respect to the canonical inner product
on \mathbb{R}^n.

3
We shall now generalise the relation (9) between the squared distance D_p and the difference of two points p and q to the more general setting of a differentiable manifold M. Given a fixed point $p \in M$, we want to define a vector field $q \mapsto X(q,p)$, at least in a neighbourhood of p, that corresponds to the difference vector field (8). Obviously, the problem is that the difference $p - q$ is not naturally defined for a general manifold M. We need an affine connection ∇ in order to have a notion of a difference. Given such a connection ∇, for each point $q \in M$ and each direction $X \in T_q M$ we consider the geodesic $\gamma_{q,X}(t)$, with the initial point q and the initial velocity X, that is $\gamma_{q,X}(0) = q$ and $\dot{\gamma}_{q,X}(0) = X$. If $\gamma_{q,X}(t)$ is defined for all $0 \leq t \leq 1$, the endpoint $p = \gamma_{q,X}(1)$ is interpreted as the result of a translation of the point q along a straight line in the direction of the vector X. This straightness is expressed in terms of the local coordinates $\xi(t) := (\xi_1(t), \ldots, \xi_n(t)) := \xi(\gamma_{q,X}(t))$ of the geodesic $\gamma_{q,X}$ by the following set of differential equations:

$$\ddot{\xi}_i(t) + \Gamma^i_{jk}(\xi(t)) \dot{\xi}_j(t) \dot{\xi}_k(t) = 0, \quad i = 1, \ldots, n. \quad (10)$$

The translation of points along geodesics defines a map, the so-called exponential map:

$$\exp_q : U_q \to M, \quad X \mapsto \gamma_{q,X}(1), \quad (11)$$

where $U_q \subseteq T_q M$ denotes the set of tangent vectors X, for which the domain of $\gamma_{q,X}$ contains the unit interval $[0,1]$.

Given two points p and q, one can interpret any X with $\exp_q(X) = p$ as a difference vector X that translates q to p. Throughout this paper we assume existence and uniqueness of such a difference vector, denoted by $X(q,p)$ (see Figure 1). This is a strong assumption, which is, however, always locally satisfied. On one hand, we are mainly interested in local properties. On the other hand, this property, although quite restrictive in the general case, will be satisfied in our information-geometric context, where g is given by the

![Figure 1: Illustration of (A) the difference vector $p - q$ in \mathbb{R}^n pointing from q to p, and (B) the difference vector $X(q,p) = \dot{\gamma}_{q,p}(0)$ as the inverse of the exponential map in q.](image)
Fisher metric and ∇ is given by the m- and e-connections and their convex combinations, the α-connections.

If we attach to each point $q \in M$ the difference vector $X(q,p)$, we obtain a vector field that corresponds to the vector field (8) in \mathbb{R}^n. In order to interpret this vector field as a negative gradient field of a (squared) distance function $D_p = D(p \parallel \cdot)$, we need a Riemannian metric g on M. Given such a metric, we can generalise the equation (9) by

$$X(q,p) = -\text{grad}_q D_p,$$

where the Riemannian gradient is taken with respect to g. That is, $\text{grad}_q D_p$ is a contravariant vector given in terms of local coordinates by

$$\text{grad}_q D_p = g^{ij}(\xi_q) \partial_i D(\xi_p \parallel \xi_q) \partial_j,$$

where we put

$$D_p(q) = D(\xi_p \parallel \xi_q).$$

Obviously, if such a D_p exists, then it is up to a constant unique, and we can therefore assume $D_p(p) = 0$. In order to recover D_p from equation (12) we consider any curve $\gamma(t)$ that connects q and $p : \gamma : [0,1] \to M$ with $\gamma(0) = q$ and $\gamma(1) = p$. We compose the inner product of the curve velocity $\dot{\gamma}(t)$ with the inverse of the exponential map $X(\gamma(t),p)$ in $\gamma(t)$ and integrate this along the curve:

$$\int_0^1 \langle X(\gamma(t),p), \dot{\gamma}(t) \rangle \, dt = -\int_0^1 \langle \text{grad}_{\gamma(t)} D_p, \dot{\gamma}(t) \rangle \, dt$$

$$= -\int_0^1 (d_{\gamma(t)} D_p)(\dot{\gamma}(t)) \, dt$$

$$= -\int_0^1 \frac{dD_p \circ \gamma}{dt}(t) \, dt$$

$$= D_q(\gamma(0)) - D_p(\gamma(1))$$

$$= D_p(q) - D_p(p) = D_p(q).$$

(15)

In particular, we can apply this derivation to the geodesic connecting q and p even when the integrability (12) of X is not guaranteed and obtain the definition of a general canonical divergence, discussed in more detail in Section 5. Before we treat the general definition of a canonical divergence, however, we discuss important special cases of divergence within the cone of positive measures and probability simplexes included in it. In particular, we verify that the well-known relative entropy (KL-divergence) and the α-entropy (α-divergence) can be derived in terms of (15).
3 Natural connections for positive and probability measures

3.1 The Fisher metric and its gradients

We represent measures on the set \(\{1, \ldots, n\} \) as elements of \(\mathbb{R}^n \). In this representation, the Dirac measures \(\delta_i, i = 1, \ldots, n \), form the canonical basis of \(\mathbb{R}^n \). We consider the \(n \)-dimensional cone of positive measures on the set \(\{1, \ldots, n\} \), defined by

\[
M_n := \mathbb{R}_+^n = \left\{ p = \sum_{i=1}^n p_i \delta_i \in \mathbb{R}^n : p_i > 0 \text{ for all } i \right\},
\]

and the corresponding \((n-1) \)-dimensional simplex of normalized measures (probability measures) \(S_{n-1} \subset M_n \):

\[
S_{n-1} := \left\{ p = \sum_{i=1}^n p_i \delta_i \in \mathbb{R}^n : p_i > 0 \text{ for all } i, \text{ and } \sum_{i=1}^n p_i = 1 \right\}.
\]

There is a natural Riemannian metric on \(M_n \), called the Fisher metric:

\[
g_{p}(X,Y) := \sum_{i=1}^n \frac{1}{p_i} X_i Y_i, \quad X,Y \in T_p M_n.
\]

In theoretical biology, the Fisher metric is also known as Shahshahani metric (see [4], equation (7.48)). Given a point \(p \in S_{n-1} \) and a vector \(X \in T_p M_n \), its projection onto \(T_p S_{n-1} \) with respect to \(g_p \) is given by

\[
\Pi^\top_p X = \sum_{i=1}^n \left(X_i - \frac{p_i}{\sum_{j=1}^n X_j} \sum_{j=1}^n X_j \right) \delta_i, \quad \text{(16)}
\]

and the corresponding projection onto the orthogonal complement of \(T_p S_{n-1} \) is given by

\[
\Pi^\perp_p X = \sum_{i=1}^n \left(\frac{p_i}{\sum_{j=1}^n X_j} \sum_{j=1}^n X_j \right) \delta_i. \quad \text{(17)}
\]

Given a function \(V : M_n \to \mathbb{R} \), this metric gives us the Riemannian gradient

\[
\text{grad}_p V = \sum_{i=1}^n \left(\frac{\partial V}{\partial p_i} (p) \right) \delta_i. \quad \text{(18)}
\]

Given a vector field

\[
X_p = \sum_{i=1}^n p_i f_i(p) \delta_i, \quad p \in M_n, \quad \text{(19)}
\]
it is the gradient of a function \(V \) if and only if it satisfies for all \(i,j \)
\[
\frac{\partial f_i}{\partial p_j} = \frac{\partial f_j}{\partial p_i}.
\] (20)

If we consider a function that is defined on \(S_{n-1} \), for instance the restriction of \(f : M_n \rightarrow \mathbb{R} \) to \(S_{n-1} \), then the vector (18), evaluated in \(p \in S_{n-1} \), will not necessarily be an element of \(T_p S_{n-1} \). Therefore, in order to evaluate the gradient on \(S_{n-1} \), we have to project the vector (18) onto \(T_p S_{n-1} \) with respect to the metric \(g \) by using (16). This leads to the following gradient formula for functions on \(S_{n-1} \):
\[
\nabla_p V = \sum_{i=1}^{n} p_i \left(\frac{\partial V}{\partial p_i}(p) - \sum_{j=1}^{n} p_j \frac{\partial V}{\partial p_j}(p) \right) \delta_i , \quad p \in S_{n-1}.
\] (21)

This gives rise to consider general vector fields of the form
\[
X_p = \sum_{i=1}^{n} p_i \left(f_i(p) - \sum_{j=1}^{n} p_j f_j(p) \right) \delta_i , \quad p \in S_{n-1}.
\] (22)

Such a vector filed is integrable, in the sense that it is the gradient (21) of a potential function \(V \), if and only if the following condition holds for all \(i,j,k \) (see [4], equation (19.23)):
\[
\frac{\partial f_i}{\partial p_j} + \frac{\partial f_j}{\partial p_k} + \frac{\partial f_k}{\partial p_i} = \frac{\partial f_i}{\partial p_k} + \frac{\partial f_k}{\partial p_j} + \frac{\partial f_j}{\partial p_i}.
\] (23)

3.2 The mixture and the exponential connections

After having introduced the Fisher metric and corresponding gradient fields, we now define natural notions of straight lines on \(M_n \) and \(S_{n-1} \) respectively, induced by corresponding affine connections. Let us start with the so-called mixture connection on \(M_n \). Given a point \(p \in M_n \) and a direction \(X \in T_p M_n \), the most natural way to define a straight line that starts in \(p \) and has velocity \(X \) is given by the the so-called \(m \)-geodesic
\[
\gamma(t) = p + t X.
\] (24)

If we set \(t = 1 \), we obtain the exponential map, which is, in this simple example, the translation:
\[
\exp_p^{(m)}(X) = p + X.
\]

The inverse, therefore, maps a point \(q \) to the difference vector that translates \(p \) into \(q \):
\[
X^{(m)}(p,q) := \left(\exp_p^{(m)} \right)^{-1}(q) = q - p.
\]
If we choose this difference as X in (24), we obtain the geodesics that connects p with q:

$$
\gamma(t) = p + t(q - p).
$$

(25)

If we choose a point $p \in S_{n-1}$ and $X \in T_p S_{n-1}$, or two points $p, q \in S_{n-1}$, then the corresponding geodesic (24) and (25) will stay in S_{n-1}. Therefore, the restriction of the exponential map to $T_p S_{n-1}$ and its inverse are trivial:

$$
\exp_p^{(m)}(X) = p + X, \quad \overline{X}(p, q) := \left(\exp_p^{(m)}\right)^{-1}(q) = q - p,
$$

where we use a bar over symbols in order to denote the restriction of corresponding objects to S_{n-1}.

Now let us come to the notion of e-geodesic and the corresponding exponential map. Given a point $p \in M_n$ and a direction $X \in T_p M_n$, we consider the geodesic

$$
\gamma(t) = \sum_{i=1}^{n} p_i \exp\left(t \frac{X_i}{p_i} \right) \delta_i.
$$

(26)

The exponential map is given for $t = 1$:

$$
\exp_p^{(e)}(X) = \sum_{i=1}^{n} p_i \exp\left(\frac{X_i}{p_i} \right) \delta_i
$$

with the inverse

$$
X^{(e)}(p, q) := \left(\exp_p^{(e)}\right)^{-1}(q) = \sum_{i=1}^{n} p_i \ln\left(\frac{q_i}{p_i} \right) \delta_i.
$$

This implies that the e-geodesic connecting p with q is given by

$$
\gamma(t) = \sum_{i=1}^{n} p_i \left(\frac{q_i}{p_i} \right)^{t} \delta_i.
$$

(27)

Clearly, if we start in a point $p \in S_{n-1}$ and go along the e-geodesic (26) in a direction X that is tangential to S_{n-1}, we will not stay in S_{n-1}. Analogously, if we connect a point $p \in S_{n-1}$ with a point $q \in S_{n-1}$ in terms of the e-geodesic (27), then the intermediate points will in general not be in the set S_{n-1}. It turns out that, in order to obtain the right exponential map of the e-connection defined on S_{n-1}, we have to normalize the geodesic, which leads to:

$$
\overline{\exp}_p^{(e)}(X) = \sum_{i=1}^{n} \frac{p_i \exp\left(\frac{X_i}{p_i} \right)}{\sum_{j=1}^{n} p_j \exp\left(\frac{X_j}{p_j} \right)} \delta_i,
$$

$$
\overline{X}^{(e)}(p, q) := \left(\overline{\exp}_p^{(e)}\right)^{-1}(q) = \sum_{i=1}^{n} p_i \left(\ln\left(\frac{q_i}{p_i} \right) - \sum_{j=1}^{n} p_j \ln\left(\frac{q_j}{p_j} \right) \right) \delta_i.
$$
3.3 The \(\alpha \)-connections

Given \(\alpha \in [-1, 1] \), we define the following convex combination of the mixture connection \(\nabla^{(m)} \) and the exponential connection \(\nabla^{(e)} \) on \(M_n \):

\[
\nabla^{(\alpha)} := \frac{1 - \alpha}{2} \nabla^{(m)} + \frac{1 + \alpha}{2} \nabla^{(e)} = \nabla^{(m)} + \frac{1 + \alpha}{2} \left(\nabla^{(e)} - \nabla^{(m)} \right).
\]

The differential equation for the \(\alpha \)-geodesic with initial point \(p \in M_n \) and initial velocity \(X \in T_pM_n \) is given by

\[
\dddot{\gamma}_i - \frac{1 + \alpha}{2} \frac{\dot{\gamma}_i^2}{\gamma_i} = 0, \quad \gamma(0) = p, \quad \dot{\gamma}(0) = X.
\]

One can show that the geodesics with initial point \(p \in M_n \) and initial velocity \(X \in T_pM_n \) is given by the following curve:

\[
\gamma(t) = \sum_{i=1}^{n} p_i \left(1 + t \frac{1 - \alpha}{2} \frac{X_i}{p_i} \right)^{\frac{1-\alpha}{2}} \delta_i.
\]

By setting \(t = 1 \), we can define the corresponding \(\alpha \)-exponential map:

\[
\exp_p^{(\alpha)}(X) = \sum_{i=1}^{n} p_i \left(1 + \frac{1 - \alpha}{2} \frac{X_i}{p_i} \right)^{\frac{1-\alpha}{2}} \delta_i,
\]

and the corresponding inverse

\[
X^{(\alpha)}(p, q) := \left(\exp_p^{(\alpha)} \right)^{-1}(q) = \frac{2}{1 - \alpha} \sum_{i=1}^{n} p_i \left(\frac{q_i}{p_i} \right)^{\frac{1-\alpha}{2}} - 1 \right) \delta_i.
\]

Finally, the \(\alpha \)-geodesic with initial point \(p \) and endpoint \(q \) is given by

\[
\gamma(t) = \sum_{i=1}^{n} \left(p_i^{\frac{1-\alpha}{2}} + t \left(q_i^{\frac{1-\alpha}{2}} - p_i^{\frac{1-\alpha}{2}} \right) \right)^{\frac{2}{1-\alpha}} \delta_i.
\]

The \(\alpha \)-connection \(\nabla^{(\alpha)} \) on \(S_{n-1} \) is defined as the projection of \(\nabla^{(\alpha)} \) with respect to the Fisher metric \(g \). The corresponding geodesic equation is a modification of (29):

\[
\dddot{\gamma}_i - \frac{1 + \alpha}{2} \left\{ \frac{\dot{\gamma}_i^2}{\gamma_i} - \gamma_i \sum_{j=1}^{n} \frac{\dot{\gamma}_j^2}{\gamma_j} \right\} = 0, \quad \gamma(0) = p, \quad \dot{\gamma}(0) = X.
\]

It is reasonable to make a solution ansatz by normalisation of the unconstrained geodesics (30) and (33). However, it turns out that, in order to solve the geodesic equation (34), both normalised curves have to be
reparametrised. More precisely, it has been shown in [8] (Theorems 14.1.
and 15.1.) that, with appropriate reparametrisations \(\tau_{p,X} \) and \(\tau_{p,q} \), we have
the following form of the \(\alpha \)-geodesic in the simplex \(S_{n-1} \):

\[
\gamma_{p,X}(t) = \sum_{i=1}^{n} p_i \left(1 + \tau_{p,X}(t) \frac{1-\alpha X_i}{2} \right)^{\frac{2}{1-\alpha}} \frac{1}{\tau_{p,X}(1)} \delta_i, \quad (35)
\]

and

\[
\gamma_{p,q}(t) = \sum_{i=1}^{n} \left(\frac{1-\alpha}{p_i^2} + \tau_{p,q}(t) \left(\frac{1-\alpha}{q_i^2} - \frac{1-\alpha}{p_i^2} \right) \right)^{\frac{2}{1-\alpha}} \frac{1}{\tau_{p,q}(1)} \delta_i. \quad (36)
\]

Here, the conditions

\[
\gamma_{p,X}(0) = p, \quad \dot{\gamma}_{p,X}(0) = \dot{\tau}_{p,X}(0) X = X, \quad \text{and}
\gamma_{p,q}(0) = p, \quad \gamma_{p,q}(1) = q,
\]

imply

\[
\tau_{p,X}(0) = 0, \quad \dot{\tau}_{p,X}(0) = 1, \quad \text{and} \quad \tau_{p,q}(0) = 0, \quad \tau_{p,q}(1) = 1.
\]

Now let us couple \(X \) and \(q \) by assuming \(\gamma_{p,X}(1) = q \). Together with the condition \(\sum_i X_i = 1 \), this implies

\[
X = \frac{1}{\tau_{p,X}(1)} \frac{2}{1-\alpha} \sum_i p_i \left(\frac{q_i}{p_i} \right)^{\frac{1-\alpha}{2}} \frac{1}{\tau_{p,X}(1)} \delta_i. \quad (37)
\]

Furthermore, if the initial and endpoints of the two curves are identical, then \(\gamma_{p,X}(t) = \gamma_{p,q}(t) \) for all \(t \). In particular,

\[
X = \dot{\gamma}_{p,X}(0) = \dot{\gamma}_{p,q}(0)
\]

\[
= \dot{\tau}_{p,q}(0) \frac{2}{1-\alpha} \sum_i p_i \left(\frac{q_i}{p_i} \right)^{\frac{1-\alpha}{2}} - \sum_j p_j \left(\frac{q_j}{p_j} \right)^{\frac{1-\alpha}{2}} \delta_i. \quad (38)
\]

A comparison of the equations (37) and (38) yields

\[
\dot{\tau}_{p,q}(0) \sum_j p_j \left(\frac{q_j}{p_j} \right)^{\frac{1-\alpha}{2}} = \frac{1}{\tau_{p,X}(1)}.
\]
4 Canonical divergences for positive and probability measures

4.1 The relative entropy (KL-divergence)

Now we apply the ansatz (12) in order to define divergence functions for the \(m \)- and \(e \)-connections on the cone \(M_n \) of positive measures. The inverse maps of the corresponding exponential maps are given by

\[
X^{(m)}(q, p) = \sum_{i=1}^{n} (p_i - q_i) \delta_i, \\
X^{(e)}(q, p) = \sum_{i=1}^{n} q_i \ln \frac{p_i}{q_i} \delta_i.
\]

We can easily verify that the corresponding vector fields

\[
q \mapsto X^{(m)}(q, p), \quad q \mapsto X^{(e)}(q, p)
\]

are gradient fields: The functions

\[
f_i(q) := \frac{p_i}{q_i}, \quad g_i(q) := \ln \frac{p_i}{q_i}
\]

trivially satisfy the integrability condition \(\frac{\partial f_i}{\partial q_j} = \frac{\partial f_j}{\partial q_i} \) and \(\frac{\partial g_i}{\partial q_j} = \frac{\partial g_j}{\partial q_i} \) for all \(i, j \). Therefore, for both connections, there are divergence functions that solve the corresponding equation (12). We derive the divergence function first for the \(m \)-connection. We consider two positive measures \(q \) and \(p \) and the corresponding geodesic connecting them:

\[
\gamma(t) = q + t(p - q).
\]

This implies

\[
\langle X^{(m)}(\gamma(t), p), \dot{\gamma}(t) \rangle = \sum_{i=1}^{n} \frac{1}{\gamma_i(t)} (p_i - \gamma_i(t)) \dot{\gamma}_i(t),
\]

and

\[
D_p^{(m)}(q) = \int_{0}^{1} \langle X^{(m)}(\gamma(t), p), \dot{\gamma}(t) \rangle \, dt
\]

\[
= \sum_{i=1}^{n} \int_{0}^{1} \frac{1}{\gamma_i(t)} (p_i - \gamma_i(t)) \dot{\gamma}_i(t) \, dt
\]

\[
= \sum_{i=1}^{n} \left[p_i \ln \gamma_i(t) - \gamma_i(t) \right]_{0}^{1}
\]

\[
= \sum_{i=1}^{n} (p_i \ln p_i - p_i - p_i \ln q_i + q_i)
\]

\[
= \sum_{i=1}^{n} (q_i - p_i + p_i \ln \frac{p_i}{q_i}).
\]
We now do similar calculations for the e-connection. We consider an e-geodesic, connecting q and p:

\[
\gamma(t) = \sum_{i=1}^{n} q_i \left(\frac{p_i}{q_i} \right)^t \delta_i. \tag{43}
\]

This implies

\[
\left\langle X^{(e)}(\gamma(t), p), \dot{\gamma}(t) \right\rangle = \sum_{i=1}^{n} \dot{\gamma}_i(t) \ln \frac{p_i}{\gamma_i(t)} \tag{44}
\]

and

\[
D^{(e)}_p(q) = \int_0^1 \left\langle X^{(e)}(\gamma(t), p), \dot{\gamma}(t) \right\rangle \, dt
= \sum_{i=1}^{n} \int_0^1 \dot{\gamma}_i(t) \ln \frac{p_i}{\gamma_i(t)} \, dt
= \sum_{i=1}^{n} \left[\gamma_i(t) \left(1 + \ln \frac{p_i}{\gamma_i(t)} \right) \right]_0^1
= \sum_{i=1}^{n} \left(p_i - q_i \left(1 + \ln \frac{p_i}{q_i} \right) \right)
= \sum_{i=1}^{n} \left(p_i - q_i + q_i \ln \frac{q_i}{p_i} \right)
= D^{(m)}(p).
\]

These calculations give rise to the following definition:

Definition 1. The function $D : M_n \times M_n \to \mathbb{R}$ defined by

\[
D(p \parallel q) := \sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i} \tag{45}
\]

is called the relative entropy or Kullback-Leibler divergence. Its restriction to the set of probability distributions is given by

\[
D(p \parallel q) := \sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i}. \tag{46}
\]

Proposition 1. The following holds:

\[
X^{(m)}(q, p) = -\text{grad}_q D(p \parallel \cdot), \quad X^{(e)}(q, p) = -\text{grad}_q D(\cdot \parallel p). \tag{47}
\]

Furthermore, D is the only function on $M_n \times M_n$ that satisfies the conditions (47) and $D(p \parallel p) = 0$ for all p.

12
Proof. We first compute the partial derivatives

\[
\frac{\partial D(p \parallel \cdot)}{\partial q_i}(q) = -\frac{p_i}{q_i} + 1, \quad \frac{\partial D(\cdot \parallel p)}{\partial q_i}(q) = -\ln \frac{p_i}{q_i}.
\]

With the formula (20), we obtain

\[
(\text{grad}_q D(p \parallel \cdot))_i = q_i \left(-\frac{p_i}{q_i} + 1\right) = -p_i + q_i,
\]

\[
(\text{grad}_q D(\cdot \parallel p))_i = -q_i \ln \frac{p_i}{q_i}.
\]

A comparison with (39) proves (47). The equations (47) uniquely characterise \(D(p \parallel \cdot)\) as well as \(D(\cdot \parallel p)\), up to a constant depending on \(p\). With the additional assumption \(D(p \parallel p) = 0\) for all \(p\), this constant is fixed.

One can now ask whether the restriction (46) of the Kullback-Leibler divergence to the manifold \(S_{n-1}\) is the right divergence function in the sense that (47) also holds for the exponential maps of the restricted \(m\)- and \(e\)-connections. It is easy to verify that this is indeed the case. Let us elaborate on the geometric reason for this. To this end, we consider a general Riemannian manifold \(M\) and a submanifold \(N\) in it. Given an affine connection \(\nabla\) on \(M\), we can define its restriction \(\nabla\) to \(N\). More precisely, denoting the projection of a vector \(Z\) in \(T_p M\) onto \(T_p N\) by \(\Pi^\top(Z)\), we define

\[
\nabla_X Y \big|_p := \Pi^\top \left(\nabla_X Y \big|_p\right),
\]

where \(X\) and \(Y\) are vector fields on \(N\). Furthermore, we denote the exponential map of \(\nabla\) by \(\exp_p\) and its inverse by \(X(p, q)\). Now, given \(p \in N\), we consider a function \(D_p\) on \(M\), which satisfies the equation (12). With the restriction \(D_p\) of \(D_p\) to the submanifold \(N\), this directly implies

\[
\Pi^\top_q (X(q, p)) = -\text{grad}_q D_p.
\]

However, in order to have \(\nabla X(p, q) = -\text{grad}_q D_p\), which corresponds to the equation (12) on the submanifold \(N\), the following equality is required:

\[
\nabla X(q, p) = \Pi^\top_q (X(q, p)).
\]

This is the case for the \(m\)- and \(e\)-connections on \(M\) and its submanifold \(S_{n-1}\), which implies the following proposition.

Proposition 2. The following holds:

\[
X^{(m)}(q, p) = -\text{grad}_q D(p \parallel \cdot), \quad X^{(e)}(q, p) = -\text{grad}_q D(\cdot \parallel p),
\]

where \(D\) is given by Definition 1. Furthermore, \(D\) is the only function on \(S_{n-1} \times S_{n-1}\) that satisfies the conditions (49) and \(D(p \parallel p) = 0\) for all \(p\).

The objects and derivations of this section represent a special case of a general dually flat manifold \(M\), which will be studied in Section 5.
4.2 The α-divergence

We now extend the method of Section 4.1 to the α-connections, leading to generalisation of the relative entropy, the so-called α-divergence. From the definition of the α-exponential map on the manifold M_n of positive measures, given in (31), we obtain the inverse

$$X^{(\alpha)}(q,p) := \left(\exp_q^{(\alpha)}\right)^{-1}(p) = \frac{2}{1-\alpha} \sum_{i=1}^{n} q_i \left(\frac{p_i}{q_i} \right)^{\frac{1-\alpha}{2}} \delta_i. \quad (50)$$

The geodesic from q to p is given by

$$\gamma(t) = \sum_{i=1}^{n} \left(\frac{1-\alpha}{2} q_i - t \left(\frac{1-\alpha}{2} p_i - q_i^{\frac{1-\alpha}{2}}\right)\right) \delta_i. \quad (51)$$

This implies

$$\langle X^{(\alpha)}(\gamma(t),p), \dot{\gamma}(t) \rangle = \frac{2}{1-\alpha} \sum_{i=1}^{n} \dot{\gamma}_i(t) \left(\frac{p_i}{\gamma_i(t)} \right)^{\frac{1-\alpha}{2}} - 1 \quad (52)$$

and

$$D^{(\alpha)}_p(q) = \int_0^1 \langle X^{(\alpha)}(\gamma(t),p), \dot{\gamma}(t) \rangle \, dt = \sum_{i=1}^{n} \int_0^1 \frac{2}{1-\alpha} \dot{\gamma}_i(t) \left(\frac{p_i}{\gamma_i(t)} \right)^{\frac{1-\alpha}{2}} - 1 \, dt$$

$$= \sum_{i=1}^{n} \left[\frac{4}{1-\alpha^2} \gamma_i(t)^{\frac{1+\alpha}{2}} p_i^{\frac{1-\alpha}{2}} - \frac{2}{1-\alpha} \gamma_i(t) \right]_0^1$$

$$= \sum_{i=1}^{n} \left(\frac{2}{1+\alpha} p_i - \left(\frac{4}{1-\alpha^2} q_i^{\frac{1+\alpha}{2}} p_i^{\frac{1-\alpha}{2}} - \frac{2}{1-\alpha} q_i\right) \right)$$

$$= \sum_{i=1}^{n} \left(\frac{2}{1-\alpha} q_i + \frac{2}{1+\alpha} p_i - \frac{4}{1-\alpha^2} q_i^{\frac{1+\alpha}{2}} p_i^{\frac{1-\alpha}{2}} \right).$$

Obviously, we have

$$D^{(-\alpha)}_p(q) = D^{(\alpha)}_q(p). \quad (53)$$

These calculations give rise to the following definition:

Definition 2. The function $D^{(\alpha)} : M_n \times M_n \to \mathbb{R}$ defined by

$$D^{(\alpha)}(p \parallel q) := \frac{2}{1-\alpha} \sum_{i=1}^{n} q_i + \frac{2}{1+\alpha} \sum_{i=1}^{n} p_i - \frac{4}{1-\alpha^2} \sum_{i=1}^{n} q_i^{\frac{1+\alpha}{2}} p_i^{\frac{1-\alpha}{2}} \quad (54)$$
is called the α-divergence. Its restriction to probability measures is given as

$$D^{(\alpha)}(p \parallel q) = \frac{4}{1 - \alpha^2} \left(1 - \sum_{i=1}^{n} \frac{q_i^{1+\alpha/2} p_i^{1-\alpha/2}}{q_i^{1+\alpha/2} - p_i^{1-\alpha/2}} \right).$$

Proposition 3. The following holds:

$$X^{(\alpha)}(q, p) = -\text{grad}_q D^{(\alpha)}(p \parallel \cdot). \quad (55)$$

Furthermore, $D^{(\alpha)}$ is the only function on $M_n \times M_n$ that satisfies the condition (47) and $D^{(\alpha)}(p \parallel p) = 0$ for all p.

Proof. We compute the partial derivative

$$\frac{\partial D^{(\alpha)}(p \parallel \cdot)}{\partial q_i}(q) = \frac{2}{1 - \alpha} \left(1 - \frac{q_i^{1+\alpha/2} - 1}{p_i^{1-\alpha/2}} \right).$$

With the formula (20), we obtain

$$(\text{grad}_q D^{(\alpha)}(p \parallel \cdot))_i = q_i \cdot \frac{2}{1 - \alpha} \left(1 - \frac{q_i^{1+\alpha/2} - 1}{p_i^{1-\alpha/2}} \right) = \frac{2}{1 - \alpha} \left(q_i - \frac{q_i^{1+\alpha/2} - 1}{p_i^{1-\alpha/2}} \right).$$

A comparison with (50) proves equation (55). This equation uniquely characterise $D^{(\alpha)}(p \parallel \cdot)$, up to a constant depending on p. With the additional assumption $D^{(\alpha)}(p \parallel p) = 0$ for all p, this constant is fixed. \qed

In what follows, we use the notation $D^{(\alpha)}$ also for $\alpha \in \{-1, 1\}$ by setting $D^{(-1)}(p \parallel q) := D(p \parallel q)$ and $D^{(1)}(p \parallel q) := D(q \parallel p)$. This is consistent with the definition (28) of the α-connections, where we have the m-connection for $\alpha = -1$ and the e-connection for $\alpha = 1$. Note that $D^{(0)}$ is closely related to the Hellinger distance

$$d^H(p, q) := \left(\sum_{i=1}^{n} \left(p_i^{1/2} - q_i^{1/2} \right)^2 \right)^{1/2}.$$

More precisely, we have

$$D^{(0)}(p \parallel q) = 2 \left(d^H(p, q) \right)^2. \quad (56)$$

In fact, the derivation of $D^{(\alpha)}$ was based on the idea to associate a distance-like function to the α-connections through the general equation (12). However, it turns out that, although being naturally motivated, the functions
$D^{(\alpha)}$ do not share all properties of the square of a distance, except for $\alpha = 0$. The symmetry and the triangle inequality are obviously not satisfied. On the other hand, we have $D^{(\alpha)}(p \parallel q) \geq 0$, and $D^{(\alpha)}(p \parallel q) = 0$ if and only if $p = q$.

We now ask whether the restriction of $D^{(\alpha)}$, which is defined for positive measures, to the simplex S_{n-1} of probability distributions is the canonical divergence for the α-connections on S_{n-1}. We have seen that this is the case for the m- and e-connections, that is for $\alpha \in \{-1, +1\}$. However, for general α, the situation is more complicated. From (38) we obtain

$$X^{(\alpha)}(q,p) = \dot{\tau}_{q,p}(0) \Pi_q^\top \left(X^{(\alpha)}(q,p) \right).$$

This equality deviates from the condition (48) by the factor $\dot{\tau}_{q,p}(0)$, which proves that the restriction of the α-divergence to S_{n-1} does not coincide with the canonical α-divergence on the simplex. As an example, we consider the case $\alpha = 0$, where the α-connection is the Levi-Civita connection of the Fisher metric. As we will see in the next section, the canonical divergence in that case equals $D^{(0)}(p \parallel q) = \frac{1}{2} \left(d^F(p,q) \right)^2$, where d^F denotes the distance with respect to the Fisher metric (see equation (65)). Obviously, this divergence is different from the divergence $D^{(0)}$, given by equation (56), which is based on the distance in the ambient space M_n, the Hellinger distance.

5 General canonical divergence and its consistency

5.1 Canonical divergence

We have derived a canonical divergence when the vector field of the inverse exponential map satisfies the integrability condition (12). We now define a canonical divergence in a general n-dimensional dual manifold (M, g, ∇, ∇^*). Consider a ∇-geodesic $\gamma_{q,p} : [0, 1] \rightarrow M$ connecting q and p. We define a tangent vector field $X_t(p,q)$ along this geodesic:

$$X_t(q,p) := X(\gamma_{q,p}(t), p).$$

(57)

Obviously,

$$X_0 = X(q,p),$$

(58)

$$X_1(q,p) = 0.$$

(59)

Definition 3. A canonical divergence from p to q is defined by the path integral

$$D(p \parallel q) = \int_0^1 \langle X_t(q,p), \dot{\gamma}_{q,p}(t) \rangle \ dt.$$

(60)
Note that in the case of integrability (12), for each \(p \) we have \(D_p (q) = D(p \parallel q) \). Before stating the main result that the canonical divergence defined by (60) induces the same Riemannian metric \(g \) and the same pair of affine connections \(\nabla \) and \(\nabla^* \), we show some of its properties. Since the geodesic connecting \(\gamma_{q,p} (t) \) and \(p \) is a part of the geodesic connecting \(q \) and \(p \), corresponding to the interval \([t, 1]\), the inverse exponential map at \(\gamma_{q,p} (t) \) satisfies

\[
X_t(q,p) = (1 - t) \dot{\gamma}_{q,p}(t) .
\]

Hence, we have

\[
D(p \parallel q) = \int_0^1 (1 - t) \| \dot{\gamma}_{q,p}(t) \|^2 \, dt , \tag{62}
\]

where

\[
\| \dot{\gamma}_{q,p}(t) \|^2 = \langle \dot{\gamma}_{q,p}(t), \dot{\gamma}_{q,p}(t) \rangle .
\]

This already proves \(D(p \parallel q) \geq 0 \), and \(D(p \parallel q) = 0 \) if and only if \(p = q \). If we replace the parameter \(t \) by \(1 - t \) and use \(\gamma_{q,p}(t) = \gamma_{p,q}(1 - t) \), we directly obtain the following representation of the canonical divergence:

Proposition 4. The divergence of Definition 3 is given by

\[
D(p \parallel q) = \int_0^1 t \| \dot{\gamma}_{p,q}(t) \|^2 \, dt , \tag{64}
\]

where \(\gamma_{p,q} \) denotes the geodesic from \(p \) to \(q \).

Remark 1. In the special case where \(M \) is self-dual, \(\nabla = \nabla^* \) is the Levi-Civita connection with respect to \(g \). In that case the velocity field \(\dot{\gamma}_{p,q} \) is parallel along the geodesic \(\gamma_{p,q} \), and therefore

\[
\| \dot{\gamma}_{p,q}(t) \|_{\gamma(t)} = \| \dot{\gamma}_{p,q}(0) \|_p = \| X(p,q) \|_p = d(p,q) ,
\]

where \(d(p,q) \) denotes the Riemannian distance between \(p \) and \(q \). This implies that the canonical divergence corresponds to the energy of the geodesic \(\gamma_{p,q} \), that is

\[
D(p \parallel q) = \frac{1}{2} d^2(p,q) . \tag{65}
\]

In the general case, where \(\nabla \) is not necessarily the Levi-Civita connection, we obtain the energy of the geodesic \(\gamma_{p,q} \) as the symmetrized version of the canonical divergence:

\[
\frac{1}{2} (D(p \parallel q) + D(q \parallel p)) = \frac{1}{2} \int_0^1 \| \dot{\gamma}_{p,q}(t) \|^2 \, dt . \tag{66}
\]
Remark 2. Let us compare the canonical divergence D of the affine connection ∇ with the canonical divergence D^* of its dual connection ∇^*, both defined by (64). In the special case of the α-connection $\nabla = \nabla^{(\alpha)}$, we have $D^*(p \parallel q) = D(q \parallel p)$ (see equation (53)). In Section 5.3, we will prove that this kind of symmetry holds in the general case of a dually flat manifold. However, our canonical divergence does not necessarily have this property, when the space is not dually flat. This is contrary to most other approaches where the symmetry is considered to be a natural property of any divergence. In order to have that property also in our setting, we can consider the mean canonical divergence

$$D_{mcd}^\nabla(p \parallel q) := \frac{1}{2} \left(D(p \parallel q) + D^*(q \parallel p) \right),$$

which obviously satisfies

$$D_{mcd}^{(\nabla^*)}(p \parallel q) = D_{mcd}^\nabla(q \parallel p).$$

As we will prove in the next section, the canonical divergence D induces the metric g and the connections ∇ and ∇^*. The same holds for the mean canonical divergence D_{mcd}^∇. However, if ∇ is integrable, then it is not generally true that $X(q, p) = -\text{grad}_q D_{mcd}^\nabla(p \parallel \cdot)$, which is inconsistent with the main motivation of our canonical divergence (see equation (12)).

5.2 Main consistency result

Let g, ∇ and ∇^* be the geometrical quantities derived from the canonical divergence D as defined in (60). We recall the corresponding definitions from Section 1 in terms of a local coordinate system $\xi = (\xi^1, \ldots, \xi^n)$:

$$\frac{D}{\partial \xi^i} g_{ij}(p) = \partial'_i \partial'_j D(\xi_p \parallel \xi_q)\big|_{q=p},$$

$$\frac{D}{\partial \xi^i} \Gamma^k_{ij}(p) = -\partial_i \partial_j \partial'_k D(\xi_p \parallel \xi_q)\big|_{q=p},$$

$$\frac{D}{\partial \xi^i} \Gamma^*_{ijk}(p) = -\partial'_i \partial'_j \partial'_k D(\xi_p \parallel \xi_q)\big|_{q=p}.$$

We have defined our canonical divergence D based on a metric g and an affine connection ∇. It is natural to require that this divergence is consistent in the sense that $\left(\frac{D}{\partial g}, \frac{D}{\partial \nabla}, \frac{D}{\partial \nabla^*} \right)$ coincides with the original geometry (g, ∇, ∇^*) of M, where ∇^* is the dual affine connection of ∇ with respect to g. Since the geometry is determined by the derivatives of $D(\xi_p \parallel \xi_q)$ at $p = q$, we consider the case where p and q are close to each other, that is

$$z^i = \xi^i_q - \xi^i_p$$

is small for all i. We evaluate the divergence by Taylor expansion up to $O(\|z\|^3)$. Note that $X(p, q)$ is of order $\|z\|$.
Proposition 5. When \(\|z\| = \|\xi_q - \xi_p\| \) is small, the canonical divergence is expanded as

\[
D(p \parallel q) = \frac{1}{2} g_{ij}(p) z^i z^j + \frac{1}{6} \Lambda_{ijk}(p) z^i z^j z^k + O \left(\|z\|^4 \right),
\]

where

\[
\Lambda_{ijk} = 2 \partial_i g_{jk} - \Gamma_{ijk}.
\]

Proof. We obtain the local coordinates \(\xi(t) \) of the geodesic \(\gamma_{p,q}(t) \) in Taylor series as

\[
\xi^i(t) = \xi^i_p + t X^i - \frac{t^2}{2} \Gamma^i_{jk} X^j X^k + O \left(\|tX\|^3 \right),
\]

where \(X^i = X^i(p,q) \). When \(z \) is small, \(X \) is of order \(O(\|z\|) \). Hence, we regard (75) as Taylor expansion with respect to \(X \), and \(t \in [0, 1] \) when \(z \) is small.

When \(t = 1 \), we have

\[
z^i = X^i - \frac{1}{2} \Gamma^i_{jk} X^j X^k,
\]

where the higher-order terms are neglected. This in turn gives

\[
X^i = z^i + \frac{1}{2} \Gamma^i_{jk} z^j z^k.
\]

We calculate \(D(p \parallel q) \) by using (64). The velocity at \(t \) is given as

\[
\dot{\xi}^i(t) = X^i - t \Gamma^i_{jk} X^j X^k = z^i + \frac{1}{2} (1 - 2t) \Gamma^i_{jk} z^j z^k.
\]

We also use

\[
g_{ij} \left(\xi(t) \right) = g_{ij} \left(\xi_p \right) + t \partial_k g_{ij} z^k.
\]

Collecting these terms, we have

\[
t g_{ij} \left(\xi(t) \right) \dot{\xi}^i(t) \dot{\xi}^j(t) = t g_{ij} z^i z^j + \{ t^2 \partial_k g_{jk} + (-2t^2 + t) \Gamma_{ijk} \} z^i z^j z^k.
\]

By integration, we have

\[
D(p \parallel q) = \int_0^1 t g_{ij} (\xi(t)) \dot{\xi}^i(t) \dot{\xi}^j(t) \, dt
= \frac{1}{2} g_{ij} z^i z^j + \frac{1}{6} \Lambda_{ijk} z^i z^j z^k,
\]

where indices of \(\Lambda_{ijk} \) are symmetrized because of multiplication of \(z^i z^j z^k \). This gives (73). \(\square \)
Theorem 1. (Main Theorem) The geometric quantities \tilde{D}, $\tilde{\nabla}$, and $\tilde{\nabla}^*$, derived from the canonical divergence $D(p \parallel q)$ of Definition 3, coincide with the original quantities g, ∇, and ∇^*.

Proof. By differentiating (73) with respect to ξ_p,

$$\partial_i D = \frac{1}{2} \partial_i g_{jk} z^j z^k - g_{ij} z^j - \frac{1}{2} \Lambda_{ijk} z^k,$$

(84)

$$\partial_i \partial_j D = \frac{1}{2} \partial_i \partial_j g_{kl} z^k z^l - 2 \partial_i g_{jk} z^k + g_{ij} + \Lambda_{ijk} z^k,$$

(85)

of which the indexed quantities of the right-hand side need to be symmetrized with respect to i, j. By evaluating $\partial_i \partial_j D$ at $\xi_p = \xi_q$, i.e., $z = 0$, we have

$$\tilde{D}_{ij} = g_{ij},$$

(86)

proving that the Riemannian metric derived from D is the same as the original one. We further differentiate (85) with respect to ξ_q and evaluate it at $\xi_p = \xi_q$. This yields

$$\Gamma_{ijk} = -\partial_i \partial_j \partial_k D = 2 \partial_i g_{jk} - \Lambda_{ijk}$$

(87)

$$= \Gamma_{ijk}.$$

(88)

Hence, the affine connection $\tilde{\nabla}$ derived from D is exactly the same as the original affine connection ∇. \qed

Remark 3. In the special case $\nabla = \nabla^*$, equation (65) can be rewritten as

$$D(p \parallel q) = \frac{1}{2} \|X(p, q)\|^2_p.$$

(89)

The right-hand side of equation (89) defines a divergence for a general connection, which coincides with the canonical divergence in the self-dual case. In our previous work [2], we have referred to it as standard divergence. We have shown that, although this divergence recovers g and has some consistency with the affine connections ∇ and ∇^*, it has serious limitations.

5.3 Canonical divergence in a dually flat manifold M

When M is dually flat, it has an affine coordinate system $\theta = (\theta^1, \ldots, \theta^n)$ and a potential function $\psi(\theta)$, where the dual affine coordinates $\eta = (\eta_1, \ldots, \eta_n)$ are given by

$$\eta_i = \frac{\partial \psi(\theta)}{\partial \theta^i}, \quad i = 1, \ldots, n.$$

(90)

The dual potential is then defined as

$$\varphi(\eta) = \psi(\theta) - \theta \cdot \eta,$$

(91)
where $\theta \cdot \eta = \theta_i \eta_i$ and θ is a function of η by (90). The geodesic connecting p and q, a generalisation of the e-geodesic of Section 3.2, has the form

$$\theta(t) = \theta_p + t (\theta_q - \theta_p).$$

(92)

Hence, the velocity is constant

$$\dot{\theta}(t) = z = \theta_q - \theta_p.$$

(93)

The canonical divergence from θ_p to θ_q is defined by

$$D(\theta_p \parallel \theta_q) = \int_0^1 t g_{ij}(\theta(t)) z^i z^j dt$$

(94)

Since $g_{ij} = \partial_i \partial_j \psi$, we have

$$D(\theta_p \parallel \theta_q) = \int_0^1 t \partial_i \partial_j \psi (\theta_p + t z) z^i z^j dt$$

(95)

$$= \int_0^1 t \ddot{\psi} (\theta(t)) dt$$

(96)

$$= - \int_0^1 \dot{\psi} (\theta(t)) dt + \left[t \dot{\psi} (\theta(t)) \right]_0^1$$

(97)

$$= \psi (\theta_p) + \varphi (\eta_q) - \theta_p \cdot \eta_q.$$

(98)

This shows that our canonical divergence is the same as the canonical divergence defined in terms of the Bregman divergence of M.

Now we come back to the symmetry property that we already addressed in Remark 2. We derived $D(p \parallel q)$ by using the primal affine connection ∇ and the related inverse exponential map. We can construct its dual $D^*(p \parallel q)$ by using the dual affine connection ∇^* and the dual inverse exponential map. The dual affine coordinates are η and m-geodesic connecting p and q is

$$\eta(t) = \eta_p + t (\eta_q - \eta_p).$$

(99)

Hence, the velocity is constant

$$\dot{\eta}(t) = z^* = \eta_q - \eta_p.$$

(100)

The dual canonical divergence D^* is defined by

$$D^*(p \parallel q) = \int_0^1 t g^{ij}(\eta) z_i^* z_j^* dt.$$

(101)

Here,

$$g^{ij}(\eta) = \partial^i \partial^j \varphi (\eta),$$

(102)
where
\[\partial^i = \frac{\partial}{\partial \eta_i}. \] (103)
So we have
\[D^*(p \parallel q) = \int_0^1 t \partial^i \partial^j \varphi (\eta_p + tz^*) z_i^* z_j^* dt. \] (104)
By similar calculations, we have
\[D^*(p \parallel q) = D(q \parallel p). \] (105)
This proves that \(\nabla \) and \(\nabla^* \) give the same canonical divergence except that \(p \) and \(q \) are interchanged because of the duality. Such a nice property holds when \(M \) is dually flat.

6 Geodesic projections and integrability

Given a divergence \(D(p \parallel q) \) in \(M \), we consider the set of points \(p \) that satisfy
\[D_p(q) = D(p \parallel q) = \text{const}, \] (106)
where \(p \) is fixed. This set is the surface of the equi-divergence ball centered at \(p \). When a smooth submanifold \(S \) is given, we search for a point \(\hat{p} \in S \) that minimizes \(D(p \parallel q) \), \(q \in S \). Let us consider a ball centered at \(p \). When its radius increases from 0, the point that the ball touches \(S \) for the first time gives the point \(\hat{p} \) that minimizes \(D(p \parallel q) \), \(q \in S \). When the geodesic connecting \(\hat{p} \) and \(p \) is orthogonal to \(S \) at \(\hat{p} \), \(\hat{p} \) is called a geodesic projection of \(p \) onto \(S \).

Definition 4. We say that \(D \) satisfies the geodesic projection property if every minimizer \(\hat{p} \) of the divergence is given by the geodesic projection of \(p \) to \(S \).

We know that the geodesic projection property holds when \(M \) is dually flat, but it does not hold in general. The following condition guarantees the geodesic projection property:

Proposition 6. The geodesic projection property holds when the inverse exponential map \(X(q,p) \) is in proportion to the gradient of \(D(p \parallel q) \) with respect to \(q \),
\[X(q,p) = c \cdot \text{grad}_q D(p \parallel \cdot). \] (107)
where \(c \) is a constant that may depend on \(q \) and \(p \).

Proof. Consider the geodesic connecting \(q = \hat{p} \) and \(p \). Then, the tangent vector at \(q \) is \(X(q,p) \). Assume that \(X(q,p) \) has the same direction as the gradient \(\text{grad}_q D(p \parallel \cdot) \), that is, the vector orthogonal to the surface of the ball touching \(S \). Then \(X(q,p) \) is also orthogonal to the tangent space of \(S \) in \(\hat{p} \), as the tangent space of the ball contains the tangent space of \(S \) at this point. This means that \(\hat{p} \) is a geodesic projection. \(\square \)
Obviously, when the vector field of the inverse exponential map is integrable in the sense of condition (12), the geodesic projection property holds. We have shown that this integrability is satisfied for general dually flat manifolds. In particular, the integrability is satisfied for the α-connection $\nabla^{(\alpha)}$ defined on the cone \mathcal{M}_n of positive measures, which leads to the α-divergence as canonical divergence. The restriction of the α-connection to the simplex S_{n-1} of probability distributions, denoted by $\nabla^{(\alpha)}$, still satisfies the integrability condition (12), even though S_{n-1} is not (dually) flat with respect $\nabla^{(\alpha)}$ if $\alpha \notin \{-1, +1\}$. As we have seen, the canonical divergence associated with $\nabla^{(\alpha)}$ does not coincide with the restriction of the α-divergence on \mathcal{M}_n. However, this restriction is still useful in the context of applications that require projections onto subfamilies S. The reason is that it satisfies the geodesic projection property. To be more precise, consider the restriction of the α-divergence to the simplex S_{n-1}:

$$D^{(\alpha)}(p \| q) = \frac{4}{1 - \alpha^2} \left(1 - \sum_{i=1}^{n} q_i \frac{1^+\alpha}{2} p_i \frac{1^-\alpha}{2} \right).$$

The gradient is given as

$$\text{grad}_q D^{(\alpha)}(p \| \cdot) = -\frac{2}{1 - \alpha} \sum_i q_i \left(\frac{p_i}{q_i} \frac{1^+\alpha}{2} - \sum_j q_j \left(\frac{p_j}{q_j} \frac{1^-\alpha}{2} \right) \delta_i \right).$$

Comparing this with (38) we see that

$$X(q, p) = -\bar{\tau}_{q,p}(0) \text{grad}_q D^{(\alpha)}(p \| \cdot).$$

This implies that $D^{(\alpha)}$, although not being the canonical divergence on the simplex, satisfies the geodesic projection property.

References

