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A GENERALIZATION OF CLASSICAL ACTION OF HAMILTONIAN
DIFFEOMORPHISMS TO HAMILTONIAN HOMEOMORPHISMS

JIAN WANG

ABSTRACT. In symplectic geometry, a classical object is the notion of action function,
defined on the set of contractible fixed points of the time-one map of a Hamiltonian
isotopy. On closed surfaces, we give a dynamical interpretation of this function that
permits us to generalize it in the case of a diffeomorphism isotopic to identity that pre-
serves a Borel finite measure of rotation vector zero. We define a boundedness property
on the contractible fixed points set of the time-one map of an identity isotopy, which
includes the case where the time-one map is a diffeomorphism and the simple case where
the set of contractible fixed points of the time-one map is finite. We generalize the
classical function to any homeomorphism, provided that the boundedness condition is
satisfied. Finally, we define the action spectrum which is invariant under conjugation by
an orientation and measure preserving homeomorphism.

0. INTRODUCTION

Suppose that (M, w) is a symplectic manifold with mo(M) = 0. Let I = (F})cr be a
Hamiltonian flow on M with Fy = Idj; and F; = F. Suppose that H : R x M — R, one-
periodic in time, is the Hamiltonian function generating the flow I. Denote by Fixcont, 1 (F')
the set of contractible fixed points of F', that is, € Fixcont, 7(F) if and only if z is a fixed
point of F' and the oriented loop I(x) : t — F;(x) defined on [0, 1] is contractible on M.
The classical action function is defined, up to an additive constant, on Fixcont,1(F) as
follows (see Section 3.1 for the details

)
1
Ap(z) = w—/o H(t, Fy(x))dt,

where © € Fixcont,7(F') and D, C M is any 2-simplex with 0D, = I(z). Since ma(M) =0
the integral [ p, ¥ does not depend on the choice of the disc D,.

When M is compact, among the properties of F', one may notice the fact that it preserves
the volume form w” = w A --- Aw and that the “rotation vector” par () € Hi(M,R)
(see Section 1.3) of the finite measure p induced by w™ vanishes. In the case of a closed
symplectic surface, the fact that a diffeomorphism isotopic to identity preserves an area
form w whose rotation vector is zero characterizes the fact that it is the time-one map of
a 1-periodic Hamiltonian isotopy (see Section 3.1).

Let M be a closed oriented surface with positive genus. In this case, M is an aspherical
closed surface with the property ma(M) = 0. We say that an isotopy I = (F})sc(o,1] on M
is an identity isotopy if Fy = Idps. We extend the identity isotopy I = (Ft)te[o,l] to R by
writing Fyy1 = F; o F1. If we replace the area form w by a finite Borel measure p which
is invariant by F', and the Hamiltonian flow I = (F});cr by an extended identity isotopy
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I' = (F{)ier with F| = F (the isotopy I’ is not necessary smooth and preserving the
measure for every t), which satisfies that pps (1) = 0, can we define an “action function”
which generalizes the classical one? In this article we will give a positive answer.

Furthermore, since the rotation vector is defined in the C%-case, one may naturally
ask whether there are similar results when F' is only a homeomorphism. In this case, we
define a weak boundedness property, written WB-property, which is a certain boundedness
condition about linking numbers of contractible fixed points, and which includes the case
where F' is a diffeomorphism and the simple case where the set Fixcgont,7(F') is finite.
Roughly speaking, this property prevents the dynamics to be too wild in a neighborhood
of every contractible fixed point of F' (see Section 1.5 for more details). Through the
WB-property, we define a new action function with the following desired properties and
prove that it is a generalization of the classical function. It can be naturally generalized
for

e Any homeomorphism isotopic to the identity that preserves a finite Borel measure
of rotation vector zero with full support and with no atoms on the contractible
fixed points set, provided that the WB-property is satisfied;

e Any homeomorphism isotopic to the identity that preserves a finite ergodic Borel
measure g of rotation vector zero with no atoms on the contractible fixed points
set, provided that the WB-property is satisfied.

The goal of this article is to give a precise dynamical explanation of the classical action
function that can be extended to more general cases. In addition, we investigate some
elementary properties of the new action function. In further articles, we will give more
properties and give some applications (see, e.g., [Wangll, Chapter 6 and 7]).

The main results of this article are summarized as follows.

Let M be a closed oriented surface with genus ¢ > 1 and F' be a homeomorphism on M.
Denote by Homeo(M) (resp. Diff (M), Diff!(M)) the group of all homeomorphisms (resp.
diffeomorphisms, C*!-diffeomorphisms) on M and by M (F) the set of Borel finite measures
on M that are invariant by F'. In this paper, we always assume that a measure u € M(F)
has no atoms on Fixcont,7(F"). Denote by Homeo, (M) the subgroup of Homeo(M) whose
elements are isotopic to Id;.

Theorem 0.1. Let F' € Homeo. (M) be the time-one map of an identity isotopy I on M.
Suppose that ;1 € M(F) and ppr(p) = 0. In each of the following cases

e [ € Diff(M) (not necessarily C*);
e [ satisfies the WB-property and the measure p has full support;
e [ satisfies the WB-property and the measure p is ergodic,

an action function L, can be defined, which generalizes the classical case.
. o -1

For any ¢ > 1, we define an identity isotopy I? on M: I%(z) = [[{_,I(F*(z)) for
z € M. We get the following iteration formula:
Proposition 0.2. Under the hypotheses of Theorem 0.1, for every two distinct contractible
fized points a and b of F', we have I,,(19;a,b) = qlI,(I;a,b) for all¢ > 1, where I,(I;a,b) =
L,(I;b) — L,(I;a).

Under the same hypotheses as Theorem 0.1, we define the action spectrum of I as follows
(up to an additive constant):

o(I) ={Lu(2) | z € Fixcont,1(F)} C R.
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Fix a measure v € M(F). Denote by Homeo™" (M, v) the subgroup of Homeo(M) whose
elements preserve the measure v and the orientation. We have the following conjugation
invariance property:

Proposition 0.3. The action spectrum is invariant by conjugation in Homeo™ (M, ).

The article is organized as follows. In Section 1, we first introduce some notations and
recall the precise definitions of some important mathematical objects. In particular, we
define the linking number on contractible fixed points and the boundedness properties.
In Section 2, we recall some well known results of plane or annulus homeomorphism, and
extend some results of Franks to serve as the technical preliminaries of this article. In
Section 3, we recall the definition of the classical action function in symplectic geometry
and analyze how to generalize it to a more general situation on closed oriented surfaces.
In the end of this section, our main theorem is stated. In Section 4, we extend the
definition of the linking number defined in Section 1 to positively recurrent points, which
is one of the main ingredients of this article. In Section 5, we first study the boundedness
of the extended linking number when it exists, and then study the existence and the
boundedness of the linking number in the conservative case. In Section 6, based on the
extended linking number and its properties studied in Section 4 and Section 5, we define a
new action function and prove that it is a generalization of the classical one, which is our
main theorem. In Appendix, we construct two examples to further complete our results.

Acknowledgements. I would like to thank Patrice Le Calvez for many helpful discussions
and suggestions. I am grateful to Yiming Long, Lucien Guillou and Bassam Fayad for
careful reading the manuscript and many useful remarks. I also thank Frédéric Le Roux,
Olivier Jaulent and Juliana Xavier for their explanations of their results to me.

1. NOTATION AND DEFINITIONS

We denote by | - | the usual Euclidean metric on R* or C* and by S¥~! = {z € R¥ |
|z| = 1} the unit sphere.

If A is a set, we write A for the cardinality of A. If G is a group and e is its unit element,
we write G* = G\ {e}. If (S,0,p) is a measure space and V is any finite dimensional
linear space, denote by L'(S,V, i) the set of u-integrable functions from S to V. If X is a
topological space and A is a subset of X, denote by Intx(A) and Clx(A) respectively the
interior and the closure of A. We will omit the subscript X if there is no any confusion.

1.1. Identity isotopies. An identity isotopy I = (Fy)ieo,)) on M is a continuous path

[0,1] — Homeo(M)
t — Ft

such that Fy = Idyy, the last set being endowed with the compact-open topology. We
naturally extend this map to R by writing Fyy1 = F; o F;. We can also define the inverse
isotopy of I as I~ = (F—t)te[o,l} = (Fi_t0 Ffl)te[o,u-

A path on a manifold M is a continuous map v : J — M defined on a nontrivial
interval J (up to an increasing reparametrization). We can talk of a proper path (i.e.
7~1(K) is compact for any compact set K) or a compact path (i.e. J is compact). When
v is a compact path, y(inf J) and ~y(sup J) are the ends of v. We say that a compact
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path v is a loop if the two ends of « coincide. The inverse of the path ~ is defined by
vt y(—t),t € —J. Ify1:J; — M and 73 : Jo — M are two paths such that

b = supJy € Ji, ag = inf J, € Jo, and ’71(()1) = ’72(&2),

then the concatenation v1 and 2 is defined on J = J; U (J2 + (b1 — a2)) in the classical
way, where (J2 + (b1 — a2)) represents the translation of Jy by (b1 — as):

I ’Y2(t—|—a2—bl) if te J2+(b1 —ag).

Let Z be an interval (maybe infinite) of Z. If {~; : J; — M };ez is a family of compact
paths satisfying that ~;(sup(J;)) = ~it1(inf(J;41)) for every i € Z, then we can define
their concatenation [[;.7 Vi

If {~;}iez is a family of compact paths where Z = |—|jeJ Z; and I is an interval of Z
such that Hite ~i is well defined (in the concatenation sense) for every j € J, we define
their product by abusing notations:

H%’ = H H Vi
€L JEJT i€;

The trajectory of a point z for the isotopy I = (Fi)sc[o,1) is the oriented path I(z) : t —
Fy(z) defined on [0, 1]. Suppose that {I}1<k<k, is a family of identity isotopies on M.
Write I, = (Fyt)iecpo,1))- We can define a new identity isotopy Ik, - -~ Ial1 = (Fit)ejo1] by
concatenation as follows

. k=1

(11) Ft(z) = Fk,kot—(k—l) (Fk,1,1 o Fk*?,l ©0---0 Fl’l(z)) if ko
In particular, I*(z) = H:OZ_OI I(F*(z)) when I, = I for all 1 < k < k.
We write Fix(F') for the set of fixed points of F'. A fixed point z of F' = F} is contractible

if I(z) is homotopic to zero. We write Fixcont,7(F') for the set of contractible fixed points
of F', which obviously depends on I.

<t<£
—_— _ko'

1.2. The algebraic intersection number. The choice of an orientation on M permits
us to define the algebraic intersection number I' AT” between two loops. We keep the same
notation I' A  for the algebraic intersection number between a loop and a path v when
it is defined, for example, when -y is proper or when -y is compact path whose extremities
are not in I'. Similarly, we write v A ' for the algebraic intersection number of two path
~ and 4" when it is defined, for example, when v and ' are compact paths and the ends
of v (resp. 7') are not on 7/ (resp. 7). If T' is a loop on a smooth manifold M, write
[Clar € Hi(M,Z) for the homology class of I'. It is clear that the value I' A v does not
depends on the choice of the path 7 that fixes its endpoints when [[|; = 0.

1.3. Rotation vector.

1.3.1. The definition of rotation vector. Let us introduce the classical notion of rotation
vector which was defined originally in [St57]. Suppose that F' € Homeo. (M) is the time-
one map of an identity isotopy I = (Fi)icp,1)- Let Rect(F) be the set of positively
recurrent points of F. If z € Rec™ (F), we fix an open disk U C M containing z, and write
{F"(2)}r>1 for the subsequence of the positive orbit of z obtained by keeping the points
that are in U. For any k > 0, choose a simple path ypny (). in U joining Fm(2) to z.
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The homology class [['x]n € Hi(M,Z) of the loop I'y = I"*(2)ypnk(z),. does not depend
on the choice of ygny (. .. Say that z has a rotation vector pur1(2) € Hi(M,R) if

1
lim —|T = z
Jim nkl[ k= paga(2)
for any subsequence {F"* (z)};>1 which converges to z. Neither the existence nor the
value of the rotation vector depends on the choice of U.

1.3.2. The existence of rotation number in the compact case. Suppose that M is compact
and that F' is the time-one map of an identity isotopy I = (F});co,) on M. Recall
that M(F) is the set of Borel finite measures on M whose elements are invariant by F'.
If p € M(F), we can define the rotation vector ppsr(z) for p-almost every positively
recurrent point [Lec05]. Let us explain why.

Let U be an open disk of M that is the interior of a closed topological disk. For every
couple (2/,2") € U?, choose a simple path v, .~ in U joining 2’ to z”. We can define
the first return map ® : Rect(F) N U — Rect(F) N U and write ®(z) = F7(?)(2), where
7(z) is the first return time, that is, the least number n > 1 such that F"(z) € U. By
Poincaré Recurrence Theorem, this map is defined p-almost everywhere on U. For every
z € Rect(F)NU and n > 1, define

n

Tn(Z) = T((I)i(z))’ F? = ITn(Z) (Z)’Yq)"(z),z-

i

I
—

I
o

Observe now that
n—1
Har =D Mool
=0
By the classical Kac’s lemma (see [Kac47]), we have

/Urdu—u( U Fk(U)> —u< U F'“(U))

k>0 kez

Indeed, we have the following measurable partitions (modulo sets of measure zero):

v=||v; and JFrO)=|] || F®)

i>1 k>0 1i>1 0<5<i—1

where U; = 77({i}), therefore

u(UF’“(U)>=Z S owU) = inU; /Tdu

k>0 i>1 0<5;<i—1 i>1

Hence, we get 7 € L' (U, R, u). In the case where M is compact, let us prove that the
function z — [['}]p//7(z) is bounded on Rec™ (F) N U and hence that the map z — [I'}]
belongs to LY(U, Hy(M,R), ).

Indeed, it is sufficient to prove that for every cohomology class x € H'(M,R), there
exists a constant K, such that |(k, [['}]a)| < K.7(2). Let X be a closed form that repre-
sents x. The function gy : z — f 1(2) A is well defined, since X is closed, and continuous.
It is bounded since M is compact. As Cl(U) is a closed disk, we can find an open disk
U’ containing C1(U) and a primitive hy of X on U’. This primitive is bounded on C1(U).
This implies that for every z € Rec™ (F) N U, we have
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7(2)—-1
= | > / A+ / A
1=0 I(Fl(z)) )‘<I>(z),z

< 7(2) max [gx(2)| + 2sup [hr(2)]
zeM zeU

< 7(2)(max |ga(2)| + 2sup [ha(2)]).
zeM zeU

By Birkhoff Ergodic Theorem, for u-almost every point on Rec™ (F) N U, the sequence
{mn(z)/n}n>1 converges to a real number 7*(z) > 1, and the sequence {[I'?|rr/n}n>1
converges to [['F|pr € Hi(M,R). The positively recurrent points of F' in U are exactly
the positively recurrent points of ® because U is open. We deduce that p-almost every
point z € Rect(F)NU has a rotation vector ppr(z) = [[%]a/7*(2). Since U is arbitrarily
chosen, we deduce that p-almost every point z € Rec™(F) has a rotation vector. The
function z ~— [['1]5;/7(2) is bounded on Rect (F)N U, so is the function

. Z?:—()l [Fflpi(z)]M
pMJ tz—  lim n—1 .
notoo B N T(94(2))
on Rect(F)NU. As M can be covered by finitely many such open disks, we deduce that

par is uniformly bounded on Rec™ (F). Therefore, we can define the rotation vector of
the measure

par(p) = / par,rdp € Hi(M,R).
M

1.3.3. The rotation number of an open annulus. Let A = R/Z x R be the open annulus.
Let us denote the covering map

T:R? — A
(z,y) — (z+2Z,y),
and T the generator of the covering transformation group
T:R> — R?
(z,y) — (@+1y).

When F' € Homeo,(A), we have a simple way to define the “rotation vector” given in
Section 1.3.1 if we observe that H;(A,R) = R. We will say that a positively recurrent
point z has a rotation number p, #(z) for a lift F of F to the universal cover R? of A, if
for every subsequence {F"k(z)}kzl of {F"(z)},>1 which converges to z, we have

~nk‘ —
i Do) —m(z)
k—+o0 ng

= pAﬁ(z)

for every z € 7=1(2), where p; : (x,y) — x is the first projection. We denote the set of
rotation numbers of positively recurrent points of F' for F' as Rot(F'). In particular, the
rotation number p, =(z) always exists when z is a fixed point of F'. We denote the set of

rotation numbers of fixed points of F' as Rotpiy( F)(ﬁ ).

It is well known that a positively recurrent point of F' is also a positively recurrent point
of F4 for all ¢ € N (see the appendix of [Wang14]). By the definition of rotation number,
we easily get that Rot(ﬁ) satisfies the following elementary properties.



1. Rot(Tvk oF) = ROE(FV) + k for every k € Z;
2. Rot(FY) = qRot(F) for every ¢ > 1.

1.4. Linking number of contractible fixed points.

1.4.1. We begin by recalling some results about identity isotopies, which will be often used
in the literature.

Remark 1.1. Suppose that M is an oriented compact surface and that F' is the time-
one map of an identity isotopy I = (F})eo1) on M. When z € Fixgont,r(F), there is
another identity isotopy I = (F});c[0,1) homotopic to I with fixed endpoints such that I’
fixes z (see, for example, [Jaul4, Proposition 2.15]), that is, there is a continuous map
H :[0,1] x [0,1] x M — M such that

e H(0,t,z) = Fy(2) and H(1,t,2) = F/(2) for all t € [0,1];

e H(s,0,2) =1dp(2) and H(s,1,2) = F(z) for all s € [0, 1];

e I/(z) =z for all t € [0, 1].

Lemma 1.2. Let S? be the 2-sphere and I = (Ft)te[o,l] be an identity isotopy on S2. For
every three different fized points z; (i = 1,2,3) of Fi, there exists another identity isotopy
I' = (F{)iejo,1) from Idg: to Fy such that I' fives z; (i = 1,2,3).

Proof. We identify the sphere S? to the Riemann sphere C U {oo}. The M&bius transfor-
mation M(z) = gjis maps the triple (vy,v2,v3) to the triple (w1, ws,ws) (see Chapter 3
of [Nee97] for a beautifully illustrated introduction to Mébius transformations) where

V1w Wi 1 V1w U1 w1

a=det | vows wo 1 b=det | wowo v2 wo

v3w3z w3 1 U3w3 U3 w3
V1 w1 1 V1wl V1 1
(1.2) c=det| vo wo 1 d=det | vowy vy 1
V3 Wws 1 V3w3 U3 1

If one of the points v; or w; in Formula 1.2 is oo, then we first divide all four determinants
by this variable and then take the limit as the variable approaches co. Replacing v;, w;
by vi(t) = Fi(zi) and w;(t) = z; (i = 1,2,3 and ¢ € [0, 1]) in the matrices above, we get
the matriz functions ay, by, ¢; and d;.

Let
atz + bt
CtZ + dt

M(t, z) =

and
I'(2)(t) = F/(z) = M(t, Fi(2)).
By the construction, I’ is an isotopy of S from Idg» to Fy that fixes z; (i = 1,2,3). O

As a consequence, we have the following corollary.

Corollary 1.3. Let I = (Fy).e[o,1) be an identity isotopy on C. For any two different fived
points z1 and zo of Fy, there exists another identity isotopy I' from Idc to Fy such that I’
fixes z1 and zo.
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Remark 1.4. Let z; € S% (i = 1,2,3) and Homeo,(S?, 21, 22, 23) be the identity com-
ponent of the space of all homeomorphisms of S? leaving z; (i = 1,2,3) pointwise fixed
(for the compact-open topology). It is well known that 1 (Homeo,(S?, 21, 22, 23)) = 0 (see
[Ham66, Han92]). It implies that any two identity isotopies I, I’ C Homeo.(S?, 21, 29, 23)
with fixed endpoints are homotopic. As a consequence, let Homeo, (C, z1, z2) be the iden-
tity component of the space of all homeomorphisms of C leaving two different points z;
and z9 of C pointwise fixed, we have w1 (Homeo,(C, z1, 22)) = 0.

1.4.2. Let M be a surface that is homeomorphic to the complex plane C and I = (F});¢[o,1]
be an identity isotopy on M. Let us define the linking number i;(z,2') € Z for every two
different fixed points z and 2’ of Fy. It is the degree of the map ¢ : S! — S! defined by

ho Fi(2') — ho Fi(z)

2wty
&™) = o Fy(2)) — ho Fy(z)]’

where h : M — C is a homeomorphism. The linking number does not depend on the
chosen h.

It is well known that U(1) is a strong deformation retract of Homeo,(C) (see [Kne26]
r [Ler01, Theorem 2.9]). Consider the isotopy R = (rt)ic[0,1) Where ry = et If [ =
(Ft)teo,1) is an identity isotopy and k € Z, we can define the identity isotopy RFI by
concatenation. If I = (F})ycp,1) is another identity isotopy with Fj = Fy, then there
exists a unique integer k such that I’ is homotopic to RFI.

Therefore, if I = (Fy)sejo1) and I' = (F})scp0,1) are two identity isotopies on M with
F| = F}, then there exist k € Z such that i;/(z,2') = i(z,2") + k for any distinct fixed
points 2z’ and 2’ of Fj.

1.4.3. Let F' be the time-one map of an identity isotopy I = (Ft)te[o 1] on a closed oriented
surface M of genus g > 1 and F be the time-one map of the lifted identity isotopy
I = (Ft)te[o 1) on the universal cover M of M. When g > 1, it is well known that
71 (Homeo,(M)) ~ 0 (see [Ham66]). It implies that any two identity isotopies I,I' C
Homeo, (M) with fixed endpoints are homotopic. Hence, I is unique up to homotopy, it
implies that Fis uniquely defined and does not depend on the choice of the isotopy from
Idys to F. When g = 1, m (Homeo, (M)) ~ Z2 (see [Ham65)), F depends on the isotopy
I. The universal cover M is homeomorphic to C.

Let 7 : M — M be the covering map and G be the covering transformation group.
Denote respectively by A and A the diagonal of Fixcont,r(F) X Fixcont,7(F') and the
diagonal of Fix(F) x Fix(F). Endow the surface M with a Riemannian metric and denote
by d the distance induced by the metric. Lift the Riemannian metric to M and write d

for the distance induced by the metric. N N N
We define the linking number i(F;Zz,Z") for every pair (z,z') € (Fix(F) x Fix(F)) \ A

as

(1.3) i(F;7,2") = i7(3,2).

This is a special case of the linking number that we have defined in Section 1.4.2.

We give some properties of z(l?’ ;2,2") as follows.

(P1): i(F;%,2") is locally constant on (Fix(F) x Fix(F)) \ A;



(P2): i(F;%,%’) is invariant by covering transformation, that is,
i(Fia(2), (") =i(F;%,2") for every a € G;

(P3): i(F;2,2") =0 if 7(2) = m(2");
(P4): there exists K such that i(F;%,2') = 0if d(3,2') > K.

Indeed, P1 is true by continuity. P2 is true because the linking number does not change
when you replace h by ho«a (see Section 1.4.2). By Remark 1.1, we can choose an isotopy

I' that is homotopic to I and fixes (%), then the lift I’ of I’ fixes 2 and Z’. Thus P3
holds. Finally, let

K = sup{ d(Fy(2), Fu(2)) | (t,t',%) € [0,1]? x Fix(F)}.

The value K is well defined because Fixcont, 1 (F) = W(Fix(ﬁ)) is compact and ﬁtoa = aoﬁt
for all ¢ € [0,1] and o € G. Obviously, when d(z,%') > 3K, i(F;%,%') = 0. We get P4.

1.4.4. In the rest of the paper, when we take two distinct fixed points @ and b of ﬁ, it
does not mean that m(a) and x(b) are distinct.

Fix two distinct fixed points @ and b of F. For any z € Fixcont T(F)\ W({?i,g}), we
define the linking number of z for a and b as

(1.4) i(Fiab)= > (i(ﬁ;a,z) - i(ﬁ;z,z)) .
w(2)=z
We will extend it to the case where z € Rec™ (F )\7({a, b}) in Section 4. Note here that
the linking number only depends on 7(a) and 7(b) in the case where z is a contractible
fixed point of F, but the extension of i(F; @, b, z) for z € Rect (F )\ Fixcont,r(F') in Section
4 depends on the choices of @ and b.

L.5. The weak boundedness property and the boundedness property. We can
compactify M into a sphere by adding a point oo at infinity and the lift F may be extended
by fixing this point. In all the text, we write S = M LI {oco}. If @ and b are distinct fixed
points of F', the restriction of F to the annulus A5 =8 \ {@,b} denoted by F , has a

natural lift F~~ to the universal cover A~ of A~ that fixes the preimages of oo by the

covering prOJectlon 7r~~ A~ — A~~ Denote by TaE the generator of H;(A- 7, R) defined
by the oriented boundary of a small disk centered at a. 7

If w(a) # 7(b), by Remark 1.1, there exist two identity isotopies /" and I” homotopic
to I with fixed endpoints such that I’ fixes 7(a) and I” fixes m(b). However, in general,
there does not exist an identity isotopy [ " homotopic to I with fixed endpoints such that
I" fixes both (@) and 7 (b), which is an obstacle that prevents us to generalize the action
function to a more general cases (see Section 3.3). That is a reason that we introduce the
following lemma.

Lemma 1.5. If Z is another fized point ofF whzch is different fmm a, b and 0o, then the
rotation number of z € Agy for the natural lift F is equal to i(F;a,%) —i(F;b,%), that
18,

pa i () =i(F;a,2) = i(F;b,2).
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Proof. If J and J' are two isotopies of M from Id; to ﬁ, then there exists k € Z such that
iy =1y + k (see Section 1.4.2). Therefore, if @, b and 7 are distinct fixed points of F, the
quantity i, (a,z) — i ( (b, z) is independent of J and hence equals to i(F;a,2) —i(F;b, %) if
we choose J = I where I i [ is the identity isotopy in Section 1.4.3. Suppose now that .J is an
isotopy that fixes a and b. The trajectory J(z) defines a loop in the sphere S. If v; , and

Vp.00 ATE tWO paths in S that join respectively @ and b to oo, we have i7(a,2) = Yz.00 A J (%)
and (b, 3) = Y5 oo N J(2). The loop J(2) being homologous to zero in S, we deduce that
i(F;a,2) — z(ﬁ,Z,Z) —iy(a,2) —is(b,2) = Yai N J(2), where Yz is a path in S that JOlIlS
@ to b. Note that this integer is nothing else but the rotation number of z for the lift F. .

defined by Ta,g' O

Remark here that, by the definition i(F'; @, b, z) of Section 1.4.4, we have

i(F;a,b,z) = Z i(F;a,%) —i(F;b,%) = Z PA 5P (2).
(2= (2=

Definition 1.6. We say that I satisfies the weak boundedness property at a € F1X(F)

(WB-property at @) if i(F;a,b) is uniformly bounded for all fixed point b € Fix(F) \ {a}.
We say that [ satisfies the weak boundedness~pmperty (WB-property) if it satisfies the

weak boundedness property at every a € Fix(F'). We say that I satisfies the boundedness
property (B-property) if the set of i(F'; @, b) where (a,b) € (Fix(F)xFix(F"))\A is bounded.

Let us now study the WB-property and B-property. First, we note that the set of all
WB-property points of I is dense in Fix(F') ([Lerl4]).

Lemma 1.7. Let @ and b be two distinct fized points of F. The following statements are
equivalent

(1) I satisfies the WB-property at a and 5;

(2) there exists K > 0 such that ‘pA _ 7 (6)| £ K for all fized point ¢ € Fix(F)\{a,b}.
a,b’” a,b

Proof. From Lemma 1.5, we have (1) = (2) immediately. Next we prove (2) = (1) by con-
tradiction. Without loss of generality, we suppose that there exists a sequence {¢,}n>1 C

Fix(F) \ {@,b} such that lim i(F;d,¢,) = 4oo (the case lLim i(F:a,é,) = —oo is
n—+o00 n—+too
similar). Lemma 1.5 and the hypothesis (2) imply that lir}rl i(F;b,¢y,) = +oo. The
n—-roo

property P4 implies that the sequence {¢;,},>1 is bounded. The property P1 implies that

lim ¢, =aand lim ¢, = b, which gives a contradiction. O
n—-+o0o n—-+00

Lemma 1.8. For any two distinct fixed points a and b ofﬁ if F and F~' are differentiable
at 7(@) and 7 (b), then Pa; (N) is uniformly bounded for any Z € Rec™(F) \ {a,b} if

it exists. In particular, p, _p ~(a s uniformly bounded for any fized point ¢ € Fix(ﬁ) \
3,607

{a,b}.

Proof. Let fl~~ = S~|_|A~~I_I Sy where Sz and Sy are the tangent unit circles at @ and b such

that A~ is the natural compactlﬁcatlon of A~ The maps F and F~! are differentiable
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at 7(@) and 7(b). Hence the lift F (resp. 1) of F (resp. F~!) to M is differentiable at
a and b. By the method of blowing-up, it induces a homeomorphism f : Aafg — f_lag,

F_i(u) when ue Az

DF(@).u

flu) = \DFEE;M when wu € .5;
DF(b).u .
D7) ul when u € 5;.

The universal cover of A~ is R x [0,1]. We suppose that f is the lift of f fixing the

preimages of co by the covering projection 7~ ;. For any u € A_;, we have that pl(f(ﬂ)) -
p1(@) is uniformly bounded because ‘Zlaz is compact, where u is any lift of u. There

exists NV, depending on I, such that for every z € EEE’ one has ‘pl(ﬁa 7(2)) —p1 ()| < N.
Moreover, for every n > 1, we have

p1o ng(z) —p1(2) 1 no

n

(1.5)

1
‘ploFH— () -poE ()’gN.
0

=

If 2 € Recﬂﬁag) and p Ay By (A) exists, by the definition of rotation number (see

Section 1.3.3), we deduce that ‘p A < N. We have completed the proof. O

a,57ﬁa,5(z

Observe that the proof of Lemma 1.8 gives us an information about how rotate not only
the positively recurrent points of F.+ but in fact every point in A+, we will use this fact
in Section 5.

By Lemma 1.7 and Lemma 1.8, we have the following proposition immediately.
Proposition 1.9. The WB-property is satisfied if F' € Diff(M).

Obviously, I satisfies the B-property if §Fixcont,r(F) < +o00. In Example 7.1 of Ap-
pendix, we construct an isotopy I = (Fi)o<i<i such that F' = F) is a diffeomorphism
of M but does not satisfy the B-property. In that example, we show that F' is not a
C'-diffeomorphism of M. If F is a C'-diffeomorphism of M, we have the following result

Proposition 1.10. The B-property is satisfied if F € Diff'(M).
Before proving Proposition 1.10, we need the following lemma ([BFLM13, Lemma 5.6)).

Lemma 1.11. Let h be a C'-diffeomorphism of S? and a € Fix(h). For all point z € S*
different from a and its antipodal point, demote -, the unique great circle that passes
through them and a, and denote vy, (resp. v ) the small (resp. large) arc of 7y, joining a
and z. Then there exists a neighborhood W of a on S? such that for all z € Fix(h) N W,
we have h(v;) N~y ={z,a}.

Proof of Proposition 1.10. We only need to consider the case where
ﬁFiXCOHt [(F) = +00.

To get a proof by contradiction, according to Definition 1.6, we suppose that there exist a
sequence of pairs {(dn, b ) Ins1 C (Fix(F) x Fix(F))\ A such that hm i(F3 G, by) = +00
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(the case where liI_P i(ﬁ;ﬁn,gn) = —o0 is similar). By the property P2, we can suppose
n—-roo

that the sequence {ay}n>1 is bounded by replacing @, and Zn with ay,(a,) and an(gn)
where oy, € G if necessary. The property P4 implies that the sequence {by},>1 is also

bounded. Therefore, by continuity, we can suppose that lim @, =@ and lim b, = b
n—-+o0o n—-+o00

where @ € Fix(ﬁ ) and be Fix(ﬁ ) by extracting subsequences if necessary. According to
the property P1, we deduce that a = b. Moreover, as F' is a diffeomorphism, so I satisfies
the WB-property at a. That is, there is a number Nz > 0 such that \i(ﬁ;’d, Z)| < Ny for
all z € Fix(ﬁ’) \ {a}. Hence, we can suppose that a,, # a and b, # a for all n by taking n
large enough.

For every n > 1, let I, be an isotopy that fixes @ and a,, (see Corollary 1.3). Then there
exists k,, such that

(1.6) i (3,2) = i(F;2,2) + kn

for every two distinct fixed points Z and z’ of F (see Section 1.4.2). Observing that

i7 (a,an) = 0 for every n, Equation 1.6 implies that |k,| < N and lil_}_l i7 (An,bn) =
n n—+oo in

+00. Moreover, we have i7 (@,by) = i(F; @, by) + kn, hence iz, (@,bn)| < 2N5.

Consider the annulus Az, = S\ {a,a,} and ﬁa,an. By the proof of Lemma 1.5, we
know that

pA‘d anvﬁﬁ an (517,) - ZT’VL (a’ ’I;n) B ifn (an’gn)'
Therefore,

(1.7) lim p, &» (by)=—00.

n—-+o00 a,an t'a,an

Fix ¢ > 1. We apply Lemma 1.11 to ﬁaﬁn. When n is large enough, there are two arcs
3~ and ¥ in Az, joining @ and @, that are disjoint and F7 ; (7)N3* = 0. Recall that

Taan - A\aﬁn — Az, is the universal cover of Az 7 , ﬁa:,an is the lift of ﬁa,?in that fixes the
preimages of oo by 755, and T5 3, is the generator of Hy(Az 3, ,R) defined by the oriented
boundary of small disk centered at a. Choose a connected component 5~ of 7 én (77) and
endow 7~ with an orientation from the lower end to the upper end. The arc ﬁaq o F7)
does not meet any connected component of %Z;, ilin (%) and thus meets at most a trainslated

T-Cﬁan (7). As ﬁa,an has a fixed point (the lift 50 of o0), the arc ﬁaq,an (¥ 7) can not be on
the right of T35, (7 ~) (otherwise, Fg 3, has no fixed point). Therefore, it is on the left of
the arc T2, (37). For the same reason, it is on the right of the arc T‘d_z%n (7). As ﬁa,an

and T, commute, it implies that the arc ﬁaq,’dn (T'(7 7)) is on the left of Tﬁgﬁn (77) and
on the right of T‘d_z%n (7). Consider a point Z € Rect(F) \ {@,@,} such that the rotation
number p Moz o (2) is well defined. There exists a unique lift Z' of z that is in the region
between 7~ and g, (¥~). By induction, we deduce that the point ﬁa‘l%”n(g) is in the
region between T 522” (77) and Tg’%zn (77) for all m > 1. By the definition of the rotation
number (see Section 1.3.3), we have |pAa,an,ﬁa,an (2)| < 3/q. As q can be choose arbitrarily

large, we have

(1.8) lim p, » (2)=0.

n—-4o0o a,anst a,an
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In particular, we have

nggloo pAa,anﬁa,an(b") =0
which conflicts with the limit 1.7. We have completed the proof. U

2. Disk CHAINS AND FRANKS® LEMMA

In this section, we will recall some classical results of plane or annulus homeomorphism,
and extend some results of Franks so that we can use them in Section 5.

2.1. Disk Chain. Let M be a surface and h be a homeomorphism of M. A disk chain
C of h is a family {D;}1<i<, of embedded open disks of M such that there are positive
integers {m; }1<i<n satisfying

(1) if i # j, then either D; = D, or D; N D; = 0;

(2) for 1 <i < mn, A™(D;) N Ditq # 0.
We write C' = {D;}1<i<n or C = ({D;}i<i<n, {miti<i<n) in a more detailed way. We
define the length of the chain C' to be the integer [(C) = Z?;ll m;. If D1 = D,, we say
that {D;}1<i<n is a periodic disk chain.

A free disk of h is a disk in M which does not meet its image by h. A free disk chain

of h is a disk chain C' = {D;}1<;<, such that every D; is a free disk of h.

2.2. Franks’ Lemma.

Proposition 2.1 (Franks’ Lemma [Fra88]). Let H : R? — R? be an orientation preserving
homeomorphism. If H possesses a periodic free disk chain, then H has at least one fixed
point.

Recall that A = R/Z x R is the open annulus and T": (z,y) — (z+1,y) is the generator
of the covering transformation group. Let h € Homeo, (A) and H be a lift of h to R%2. We
say that DCR?isa positively returning disk if all the following conditions hold:

o TH(DYND =0 for all k € Z\ {0};

e H(D)ND = 0;

o there exist n > 0 and k > 0 such that H"(D) N T*(D) # 0.
A negatively returning disk is defined similarly but with & < 0.

If there exists an open disk that is both positively and negatively returning, then it is
easy to construct a periodic free disk chain of H. Hence, by Franks’ Lemma, we have the
following result:

Corollary 2.2 ([Fra88]). If H has an open disk D C R2 which is both positively and
negatively returning, then there is a fized point of H.

Suppose that D C A is a free disk of h. We define the following set:
Rotp(H) = Conv{p/q |p € Z and ¢ € N\ {0}, HY(D)NT?(D) # 0}

where Conv(A) represents the convex hull of a set A and D is an arbitrary connected

component of 7~ 1(D). Observe that Rotp(H) does not depend on the choice of D. By
Corollary 2.2, it holds:

Corollary 2.3. For every k € Rotp(H) NZ, there exists a point Zy such that H(Zp) =
TF(Z).
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Proof. Choose any connected component D of 7~ 1(D). We first suppose that there is an
integer k such that H9(D) N T* (D) # (). Note that this case covers the case where k
is a boundary point of Rotp(H). Denote by H’ the lift H' = T~% o H of h. We have
H'Y(D)ND # 0 and H'(D)N D = () since D is free. According to Proposition 2.1, H' has
a fixed point Zp, that is, H(Z) = T%(%).
We now suppose that there are two rational numbers p;/q; (i = 1,2) and an integer k
such that
o p1/q1 <k <p2/q;
e H(D)NTP (D) # 0;
e H%2(D)NTP2(D) +# 0.
Considering the lift H' = T~ o H, we have
H/ql(ﬁ) N Tprtnk(f)) i)
and
' (ﬁ) N sz—qﬂc(ﬁ) £ 0.

Therefore, D is a both positively and negatively returning disk of H’. By Corollary 2.2,
H’ has a fixed point. We have completed the proof. O

Let C' = ({Di}i<i<n, {mi}ti<i<n) be a periodic disk chain of h in A. A lift of C for H
in R2 is a disk chain C' = ({Ez’}lgign, {m;}1<i<n) in R? such that 71'(152) = D; for every i.

We define the width of the lift C' of C' to be the integer w(H;C) = k such that D,, =
T*(Dy). For every p € Z, the disk chain T?(C) = ({T?(D;)}1<i<n, {mi}1<icn) is also a
lift of C' for H since H commutes with 7. The disk chain

TP . O = {f)ljTmm(ﬁQ)’Tp(m1+mz)(f)3)7 o TP l(C)(f)n)}
is a lift of C for TP o H. Therefore, the width of C satisfies
w(H;C) = w(H;T?(C))
and
w(T?P o H;TP - C) =p I(C) + w(H; C)
for every p € Z.

Using Corollary 2.2 and Corollary 2.3, we have the following lemma.

Lemma 2.4. Let h € Homeo,(A) and H be a lift of h to R?. Suppose that Rotpixn)(H) C
[=N, N]| for some N € N, and that there is a disk D in A satisfying H(D)NT*(D) # 0

if and only if k = 0, where D is any connected component of m=(D), and that a periodic
disk chain C = ({Dj}1<i<n, {mi}1<i<n) of h such that

(1) Dy = D;
(2) if D; # D then D is a free disk of h.
Then, we have
o [w(H;C)| < (N +1)I(C) for all lift C of C;
e Rotp,(H) C]—(N+1),N+1[if D; # D.
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Proof. Obviously, C' = ({D, D},{1}) is a periodic disk chain of h.

Fix a connected component D of 7~Y(D) and a lift C = {Ei}lgign of C for H that
satisfies D; = D. Define D as the family of all connected components of 7~(D;), 1 <
1< n.

Suppose first that w(H;é) > 0, consider the lift H = H o T-WN+1  we have the
following facts

e Fix(H') = 0;
o H'(E) ND =0
e there is a free disk chain C’ in D of length 1 from D to T~ O+ (D) for H' (indeed,
this disk chain is a lift of C'’ for H');
o there is a free disk chain €' in D of length {(C) from D to T~ (N+DUO)+uw(H;O) (D)
for H' (indeed, this disk chain is a lift of C for H’).
The first item follows from Rotpixs)(H) C [~N, N]. The second and third items hold by
the hypothesis of D. The last one follows from the hypothesis (1) and the property of
w(H;C).

If —(N + 1D)I(C) + w(H;C) = 0, then C is a periodic free disk chain for H'. By
Proposition 2.1, H' has a fixed point, which conflicts with the first item. If r = —(N +
1)I(C) + w(H;C) > 0, then the disk chain

CuT (C)U---uTN(C)uTWN+D (YU - uTNTL(C)
is a periodic free disk chain for H'. By Proposition 2.1 again, H' has a fixed point, which
still conflicts with the first item. Hence w(H;C) < (N + 1)I(C).

In the case where w(H; C) < 0, replacing H' = HoT~N+ by H' = HoTN*! similarly
to the case w(H;C) > 0, we get w(H;C) > —(N +1)I(C). The first conclusion is proven.

Fix adisk D; # D and p/q € Rotp,(H). For every s > 1, consider the following periodic
disk chain of h

Cy={Dy, - ,Dj,--- ,Dj,-- Dy}
—_————
s+1
with
(M1, M1y Gy 2 oMy 3 M1}
——

S

and its lift for H

58 = {513 T aﬁian(ﬁi)a T ’Tsp(ﬁi)?Tsp(ﬁiJrl)a T 7Tsp(5n)}‘
Then we have [(Cy) = I[(C) + sq and w(H;C,) = w(H;C) 4 sp. By the first conclusion,
we get |w(H; Cy)| < (N+1)I(Cy). Letting s tend to +o00, we get |p/q| < N+ 1. Moreover,
if p/¢g = N + 1 (resp. p/q = —(N + 1)), according to Corollary 2.3, then there exists a
fixed point of h with rotation number N + 1 (resp. —(N + 1)) for H, which conflicts with

the hypothesis Rotpiyn)(H) C [N, N]. Therefore |p/q| < N + 1. We have completed the
proof. O

The following Theorem is due to Franks [Fra88] when A is a closed annulus and h has
no wandering point, and it was improved by Le Calvez [Lec05] to the case where A is an
open annulus and h satisfies the intersection property (see also [Wangl4, Proposition 12)):

Theorem 2.5. Let h € Homeo,(A) and H be a lift of h to R%. Suppose that there exist
two positively recurrent points of rotation numbers v— and v (eventually equal to +o00)
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with v= < v, and suppose that h satisfies the following intersection property: any simple
closed curve of A which is not null-homotopic meets its image by h. Then for any rational
number p/q €lv™, vt [ written in an irreducible way, there exists a periodic point of period
q whose rotation number is p/q.

3. SYMPLECTIC ACTION

The action is a classical object in symplectic geometry. We will first recall it in this
Section. Then, we will explain how to generalize the action to a simple case where the
time-one map F of I is a diffeomorphism, the set Fixcont,7(F) of contractible fixed points
is finite and unlinked (we will define what it means), and pas,r(p) = 0 where pp € M(F').
At the end of the section, our main theorem will be stated.

3.1. The classical action function. Let us recall what is the action function. In this
section, we suppose that (M, w) is a symplectic manifold (not necessarily closed).

3.1.1. Symplectic and Hamiltonian. A diffeomorphism F' : M — M is called symplectic if
it preserves the form w. Symplectic diffeomorphisms form a group denoted by Symp (M, w).
Let Symp, (M,w) denote the path-connected component of the Idys in Symp(M,w).

Consider a smooth isotopy I = (F})ejo,1] in Symp, (M, w) with Fy = Idy and Fy = F.
Let & be the corresponding time-dependent vector field on M:

%Ft(:n) =&(Fy(z)) for all ze M, tel0,1].

Since the Lie derivative L¢,w vanishes, we get that the 1-forms A\; = —i¢,w are closed.
Write [A¢] for the cohomology class of A;. The quantity

1
Flux(I) = /0 [\e]dt € HY(M,R),

is called the fluxz of the isotopy I. It is well known that Flux(I) does not change under a
homotopy of the path I with fixed end points (see [MS95, Chapter 10]).

An isotopy [ is called Hamiltonian if the 1-forms A\; are exact for all ¢. In this case there
exists a smooth function H : [0,1] x M — R so that \; = dH;, where Hy(z) stands for
H(t,x). The function H is called the Hamiltonian function generating the flow I. Note
that Hy is defined uniquely up to an additive time-dependent constant.

A symplectic diffeomorphism F' : M — M is called Hamiltonian if there exists a Hamil-
tonian isotopy I = (Fy)ieo,1) With Fy = Idy and Fy = F. Hamiltonian diffeomorphisms
form a group denoted by Ham(M,w). The following theorem characterizes the relation
between flux and Hamiltonian diffeomorphisms (see [MS95, Theorem 10.12]).

Theorem 3.1. Let F' € Symp, (M,w). Then F is Hamiltonian if and only if there exists
an isotopy I = (Fy)iecpo,1) in Symp,(M,w) such that Fo = Idy, F1 = F and Flux(I) = 0.
In that case, I is isotopic with fixed endpoints to a Hamiltonian isotopy.

Suppose that (M, w) is a closed symplectic surface and I = (F});¢[o,1) is @ smooth isotopy
in Symp, (M,w). Let denote by u the measure induced by w. We have the following relation
between the Flux(Z) and pasr(pe) (see [FHO3, Proposition 2.11]): for any smooth loop o
on M, we have

(Flux(I), [o]a) = par,r(p) A o]
Hence, I is Hamiltonian if and only if pps 7(p) = 0.
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3.1.2. Action function and action difference. In this section, we suppose that (M,w) is a
symplectic manifold with mo(M) = 0 (for example, a closed oriented surface with genus
g=>1).

Let I = (Ft)se(0,1) be a Hamiltonian isotopy on M with Fy = Idy, and Fy = F. Suppose
that the function H is the Hamiltonian function generating the flow I.

Let = be a contractible fixed point of F. Take any immersed disk D, C M with
0D, = I(z), and define the action function (or action for short)

AH( :/ UJ—/ Ht Ft
Dz

The definition is well defined, that is Ag(x) does not depend on the choice of D,. It is
sufficient to prove the integral [ p, W does not depend on the choice of D,. Indeed, let D,
be another choice, the 2-chain I = D, — D!, represents an immersed 2-sphere in M, and
hence [;w = 0 since (M) = 0. Hence the claim follows.

Given two contractible fixed points z and y of F, take a path v : [0,1] — M with
7(0) = z and (1) = y. Choose two immersed disks D, and D, so that 0D, = I(x) and
0D, = I(y). Let us define A : [0,1] x [0,1] — M by A(t,s) = Fy(vy(s)) where we assume
that the boundary of the square [0,1] x [0,1] is oriented counter-clockwise and observer
that 0A = —y+ Fy—I(y) + I(z). So Fy —~v=0A+ 0D, — 0D, is a 1-cycle and is the
boundary of ¥ where ¥ is a 2-chain.

Define the action difference for x and y:

(3.1) 5(F;:U,y):/2w.

Since m(M) = 0, it does not depend on the choice of X, and hence not on D, and D,,.
Let us prove that it does not depend on the choice of ~.
Denote by &; the vector field of the flow F;. Then

A'w = w <£t(thy(s)), iF{y(S)) dt Ads

3}
= —dH, ((%F{y(s)) dt A ds.

1 1
/ w = A'w = —/ dt/ dH; <8ny(s)> ds
A [0,1]2 0 0 Js

1 1
- / Hy(Fy()) dt — / Hy(Fi(y)) dt
0 0
Finally, we have

(3.2) 6<F;x,y>:/Ew:/Aw/Dyw—/zw:AH(y)—AH<x>.

Equation 3.2 shows that the action difference does not depend on the choice of v, we
have completed our claim. Moreover, we also give a relation between the action difference
and the action function.

Hence,
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3.1.3. The action function and action difference on the universal covering space. When
I = (Fy)efo,) € Symp, (M, w) \ Ham(M, w), the action function (see Definition 3.1.2) is

not meaningful. However, observing that the universal cover M of M is simply connected,
the lifted identity isotopy I = (Ft)te[o 1 C Symp*(M w) of I to M where & is the lift

of the symplectic structure w to M is automatically Hamiltonian since H 1(M R) =0
(see Theorem 3.1). Let H be the Hamiltonian function generating the flow I. As before,
we can define the action function Az (z) for any fixed point = of F = F} and the action
difference 0 (ﬁ ; @, y) for any two distinct fixed points Z and y of F', and we have the relation
6(F;2,y) = Ap(y) — A (2).

Let us see what happens in the the particular case where I is Hamiltonian. Suppose
that H is the Hamiltonian function generating the flow I and H is its lift to M. For
any contractible fixed point 2z of F and its lift , we have A5(Z) = Ag(z) (see [Pol02,
Theorem 2.1.C] and [FHO03, Remark 2.7]). Hence, for any two distinct contractible fixed
points x and y of F', and their lifts  and ¥, we have

(3-3) S(F;7,7) = Az (y) — Ag(@) = Anly) — A (o).

3.2. A generalization of the action function in a simple case. The action difference
of two contractible fixed points x,y of F' equals to the algebraic area of any path ~
connecting = and y along the isotopy I, that is, the area of the path ~ along I swept out.
By this observation, we would like to generalize such an object to the case where w is
replaced by a finite Borel measure i and the Hamitonian isotopy by an identity isotopy [
with pasr(p) = 0.

There is a case where this can be done easily (see [Lec05]). Suppose that I = (F}).c[,1) is
an identity isotopy of M, the time-one map F' of I is a diffeomorphism, the set Fixcont, 7 (F')
of contractible fixed points is finite and unlinked, that means that there exists an isotopy
I' = (F{):e[0,1) homotopic to I that fixes every point of Fixcons,7(F), and the measure
€ M(F) satisfies par,r(p) = 0.

Let N = M \ Fixcont,1(F), by the method of blowing-up, we can naturally get a com-
pactification N of N if we replace each point = € Fixcont,7(F') by Sz, the tangent unit
circle at . The diffeomorphism F|y can be extended to a homeomorphism F on N which
is isotopic to identity and induces the natural action by the linear map DF(x) on S,.
As p does not charge any point of Fixcont,7(F), we can define a measure on N which is
invariant by F, denoted also u. Therefore, we can define the rotation vector in Hy (N, R).
The inclusion ¢ : N — N induces an isomorphism ¢, : Hy(N,R) — Hi(N,R). We denote
by pn.1(p) € Hi(N,R) the rotation vector transported by this isomorphism. Let 7 be
a simple path in N joining a € Fixcont,7(F) and b € Fixcons,7(F). We can define the
algebraic intersection number v A pn r(p). Remark here that v A pn () is independent
on the chosen v because the rotation vector parr(p) € Hi(M,R) is zero. Moreover, we
can write

YA pn,(p) = L(b) — L(a),
where L : Fixcont,7(F) — R is a function, defined up to an additive constant. We call that

L is the action function. In the proof of Theorem 0.1, you will find the reason why we call
it as action function.

3.3. Our main theorem. It is natural to ask if we can generalize the action to a more
general case. Let us first analyze what has been done above. The key points of his
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generalization are that F' is a diffeomorphism of M and that there is another identity
isotopy I’ homotopic to I that fixes all contractible fixed points of F'. The differentiability
hypothesis prevents the dynamics to be too wild in a neighborhood of a contractible fixed
point so that it provides some boundedness condition, which means one can compactify
the sub-manifold N = M \ Fixcont 1(F) by blowing-up. It seems to us that keeping the
boundedness condition is necessary and that is why we define the boundedness properties
in Section 1.5. However, in general case, there may not exist such an isotopy I’ that
fixes all contractible fixed points of F. How to deal with this obstacle? The section 3.1.3
reminds us that it will be a good idea if we consider the universal covering space M. A
key point is that we can always find an isotopy I’ from Ids; to F that fixes any two fixed
points of F , where F is the time-one map of the lifted identity isotopy Tof Ito M (see
Corollary 1.3). It makes us able to define the action difference for every two fixed points
of F and generalize the classical action.

Theorem 0.1 Let M be a closed oriented surface with genus g > 1 and F be the time-one
map of an identity isotopy I on M. Suppose that p € M(F) and ppr(p) = 0. In each of
the following cases

e F € Diff(M);

o [ satisfies the WB-property and the measure p has full support;

e [ satisfies the WB-property and the measure p is ergodic,

an action function can be defined which generalizes the classical case.

4. EXTENSION OF THE LINKING NUMBER

In this section, we will first extend the notion of linking number defined in Section 1.4.4,
then state some elementary properties about it.

4.1. Extension of the linking number for a positively recurrent point.

Recall that F' is the time-one map of an identity isotopy I = (Ft)te[o 1) on a closed
oriented surface M of genus g > 1 and F F is the time-one map of the lifted identity isotopy
I = (Ft)te[o 1 on the universal cover M of M. For every distinct fixed points @ and b of

F', by Lemma 1.2, we can choose an isotopy I 1 from Idz; to F that fixes @ and b.

Let us fix z € Rec™ (F)\7({@,b}) and consider an open disk U ¢ M\7({@,b}) containing
z. For every pair (2/,2") € U?, choose an oriented simple path 7,/ .» in U from 2 to 2”.

Denote by ® the lift of the first return map &:

7 {Rec™(F) N7 Y (U) — 7' Rec™(F))na1(U)
7 - O,

where z = 7(2) and 7(z) is the first return time in U.

For any z € 7~ 1(U), write Uz the connected component of 7~1(U) that contains Z.
For every j > 1, recall that 7;(z) = jf 7(®%(2)). For every n > 1, consider the following
curves in M: -

0 =Y 55,

11,z
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where z, € 7 1({z})NU. <I>"(“)’ and ﬁ@n@ 5 is the lift of ygn(;) . that is contained in [7‘5”(53'
We can define the following infinite product (see Section 1.1):

i = I 17 -

7(2)=z

In particular, when z € Fix(F), Fl = [I L.
17 TI'(Z):Z
When U Fnz) = [7;5, the curve f? . is a loop and hence f? is an infinite family of loops,
1,

1,

that will be called a multi-loop. When (7~n @) #+ (75, the curve f? _ is a compact path and
1,°

hence 1:7[3 is an infinite family of paths (it can be seen as a family of proper paths, that

1,

means all of two ends of these paths going to oo), that will be called a multi-path.
~ In the both cases, for every neighborhood V' of co, there are finitely many loops or paths
that are not included in V. By adding the point co at infinity, we get a multi-loop

17

on the sphere S = M LI {o0}.
In fact, F’i _ can be seen as a multi-loop in the annulus A~~ with a finite homology. As

a consequence 1f ~ is a path from a to b the intersection number 5 A I’? is well defined
1,2

and does not depend on 7. By Remark 1.4 and the properties of intersection number,
the intersection number is also independent of the ch01ce of the identity isotopy I; but
depends on U. Moreover, observe that the path (HZ 0 Yon—i(z )’(I)nfifl(z))(’ycbn(z)’z)_l is a
loop in U, we have

n—1 n—1
AT X 1
(4.1) TATE =N HFIZ,@'(Z) Z7AF11 DI (2)"
=0 =0

For n > 1, we can define the function

Ly : (Fix(F) x Fix(F)) \ A) x (Rec™(F) N U) — Z,

Lo(F3a,5,2) =7 ATY = Z Ly(F;a,b,®7(2))

where U € M \ n({@,b}). The last equation follows from Equation 4.1. The function Ly,
depends on U but not on the choice of ygn ().

Definition 4.1. Fix z € Rect(F) \ 7({a,b}). Let us say that the linking number
i(F;a,b,z) € R is defined, if

lim M — i<ﬁ§5:g7 z)

k—+o0 Tny, (Z)

for any subsequence {®"*(2)}>1 of {®"(2)}n>1 which converges to z.

Note here that the linking number z(ﬁ a, Z z) does not depend on U since if U and U’
are open disks containing z, there exists a disk containing z that is contained in U N U’
In particular, when z € Fix(F) \ 7({@,b}), the linking number i(F;a,b, z) always exists
and is equal to Ll(ﬁ; 6,5, z).
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Remark 4.2. When z € Rec™ (F) \ Fixcont,7(F), the linking number i(F;a,b, z) depends
on the choice of @ and b if it exists. Indeed, consider the following smooth identity isotopy
on R2: T = (ﬁt>te[0 1 (z,y) = (z,y +tsin(27x)). It induces an identity smooth isotopy
I = (F})iep,) on T? = R/Z x R/Z. Obviously Fix(F FY={(z,y) |z =k z=k+1/2, ke
7} and z = (1/4,0) € T? is a fixed point of F but not a contractible fixed point of F. Let
ar = (k,1/2) € R? where k € Z. It is easy to see that i(F; ag, ay, z) = k and 7(ay) = 7 (@)
where k, k' € Z.

4.2. Some elementary properties of the linking number.

For any ¢ > 1, F9 is the time-one map of the identity isotopy I¢ on M (see Formula
1.1). We know that a positively recurrent point of F is also a positively recurrent point
of F'9 so we can define the linking number i(ﬁq,'d,g, ).

Proposition 4.3. If Z(F a, b z) exists, then i(ﬁQ;a’,E, z) exists for every ¢ > 1 and
i(Fa,b, 2) = qi(F; @, b, 2).

Proof. Let 5 be any simple path from a to b and I; be an isotopy that fixes @ and b. We
suppose that z(f ;a,b, z) exists. Let U be an open disk containing z. For every ¢ > 1,
write respectively 7/(z) and ®'(z) for the first return time and the first return map of F¢
in this proof. Recall that

i
L

OEDILLLE)

-
Il
=)

and

= Tar(2) T _ T

Do o= " Dgmzz, . Tha.= [I Tz
w(2)==2
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where @ is the lift of ®' to 7 1(U), z, € 7 L({z}) N
Yo (z),. that is in Uq”"(“)

We suppose that the subsequence {®""(z)}>1 converges to z. For every k, there is
nj, € N such that 7, (2) = g7, (). By Definition 4.1, for any subsequence {®"*(2)}x>1
which converges to z, we have

Ly, (F,a,b, 2)

k——+o00 TT/Lk (Z)

5 AT

19,z

)

- ~qry, (2) o~
. Y A Hﬂ(%}:z Il (E/)’y%/"k (gj;gnk
= ¢q- lim ;
k——+00 qr, (2)
Ln’ ﬁ, Zi, g, Z)
= g¢q- lim k
k—+o0 Tn;g (Z)
= qi(ﬁ;a,g,z)
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Let H be an orientation preserving homeomorphism of M and H be a lift of H to M.
Consider the time-one map H o F o H L of the _isotopy I'=Ho I o H~! and write the
time-one map of the identity isotopy I'asHoFoH™! , where I’ is the lift of I’ to M.

Pr0p051t10n 4.4. For _every dzstmct ﬁxed points a, b of F and every z € Rect (F) \
m({a, b}) we have Ly, (HoFoH H( )H(b),H( )) = Ln(F;a,b,z) for every n. If
i(F;@,b,2) exists, then i(H o F o H™'; H(a), H(b), H(2)) also exists and

i(HoFoH ' H(a),H(b),H(z)) = i(F;a,b,z).
In particular, i(F; (@), a(b), z) = i(F;a,b, z) for all o € G.

Proof. Let 7 be any simple path from a to b. Observe that the isotopy I'=HolioH™!
fixes H(a) and H(b), 7 A thg =H®)A Ffaﬁ(z)
Ly(HoFoH ™" H(@), H(b), H(2)) = Ln(F;a,b, 2).

The proposition follows from Definition 4.1. O

for every n. Hence

Proposition 4.5. For every distinct fized points a,bandc of F, and every z € Rec™ (F)\
m({a,b,c}), we have L,(F;a,b,z) + Ly, (F b c, z) + L, (F ¢, a,z) =0 for all n. Moreover,
if two among the three linking numbers i(F;a,b,z), i(F;b,¢,z) and i(F;¢,a,z) exist, then
the last one also exists and we have

i(Fia,b,2) +i(F;b,¢2) +i(F;¢a,2) =0.

Before proving Proposition 4.5, we introduce some notations and recall some results of
annulus homeomorphism.
If {vit1<i<k and {’Yéhgjgk' are two finite families of loops or compact paths in S =

M U {oo} such that Hle i and Hflzl v; are well defined (in the concatenation sense, see
Section 1.1) and the algebraic intersection number (Hle w) A (Hflzl %) is well defined

(see Section 1.2), then we formally write

k K
(H%) A H’Y§ :Z%/\V}-
i=1 j=1 4]

Recall that A = R/Z x R is the open annulus and 7" : (z,y) — (z+1,y) is the generator
of the covering transformation group. If I = (h¢)icp,1) With hg = hy = Id, is a loop
in Homeo,(A), write [I]; € m(Homeo,(A)) for the homotopy class of I. Recall that
m1(Homeo,(A)) ~ Z. Therefore, we may write m; (Homeo*( )) = Upez € where 6, is
the class which satisfies that for every [I]i € €}, any lift I of I to the universal covering
space A satisfies k(%) — ho(2) = T*(Z) for every 7 € A.

Proof of Proposition 4.5. Suppose that 71, 2 and 73 are oriented simple paths from a to
b, bto ¢ and € to a, respectlvely We choose isotopies I ( j =0,1,2,3) such that I, fixes
a, b and o0, Ig fixes b ¢ and oo, 13 fixes ¢, a and oo, and Io fixes a, b and ¢.

For every 2 € M\ m({a, b,”}), every lift z of z, every j € {1,2,3} and every n > 1, the

p}z:th I”(N)(I"(N))_ is a loop where (E”(Z))_l is the inverse of the path 1:;”(5) We claim
that

(42) A (BE@E)T) =3 ARG -5 ATE) =n- G A Do),
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Indeed, let A; (j = 1,2,3) be respectively S \ {a,b}, S\ {b,¢} and S\ {¢,a}. For
every n € N, considering the loops ;"I C Homeo.(A;) (see Formula 1.1) where I~ !

is the inverse of fj, we have [I ”Io]l € CK = 1,2,3) where %lg is a class in

n-(3;AIo(c0)) U
m1(Homeo,(A;)). Observing that (I‘”I”)(A) = I"(A)(I”(A))*l, the claim (4.2) follows.

In the case where z € Fix(F) \ 7({a, b,E}), for every lift z of z, we have
¥ Ao(2) =3 A(E) =T Ao(0) (5 =1,2,3).

~ 3
Write C, for the set of points Z € 7~ !({z}) such that I;(Z) N |J 7; # 0 for every j.
i1

As all fj fix 0o, we know that C, is finite.
Recall that

i(F3a,0,2) =i ATE |, i(Fi0,62) = ATL - and i(Fi,a,2) =55 ATL
where

I = IJ(Z) (1=1,2,3).

Observe that

ZZ%/\I()“) ZZ%/\IO Z%/\]O —0

j=1zeC. zeC, j=1
and
%’Afiz =%uA J] LE=> 3rLE) (1=123)
7(2)==2 zeC,
We get

3
i(Fa,b,2) +i(F:0,0,2) +i(F;6a,2) = Y (%- A ’r})
j=1

= —23: > (%Afo(a—%Afj@>

Jj=1 zeC,

3
= =2 2 Aol
zeC, j=1
= 0.
Hence we have proved the proposition in this case.
In the case where z € Rect (F) \ Fix(F), recall that

[ =T E g0z (05 <3),

IJ',Z
where Z, € 7 1({z}) N cpn(“) and %5”(2) > is the lift of ygn(;) . in ﬁ~”(“)' For every
1 <7 <3, we have F? 5(I‘7; z)* is a loop where (f’li Z) is the inverse of the path F”

0, I Js

j7
Therefore, for every lift Z of z and n > 1, we have

B (B (B2 )7 =5 AT 5 ATE =rz) (G ATo(e0)) (G=1,2,3)

R
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_ 3
For every n, write C* for the set of points z € 771({z}) such that Iz .n U7 # 0.
Js j=1

Here again, we know that C is finite.
Recall that

L, (F;a, bz)—'yl/\I’hZ Ln(ﬁ;’bv,’cv,z):%/\f%’z and L, (F;¢,a,2) =33 A2

Il?
L7 . H e

Similarly to the fixed point case, we have Ln(F; a, b, z)—|—Ln(f;Z, c, z)—{—Ln(ﬁ; ¢, a,z)=0.
Hence for any subsequence {®"*(z)}>; which converges to z, we get

Lnk(ﬁ;&',g, 2) +Lnk(ﬁ;5,a 2) +Lnk(ﬁ;5,?i, 2)

where

4.3
) e 2)

= Z <7J A F )

Tn,, (2 J=1
71 ~
B
zecok j=1

= 0.

Letting £ — +o00 in Equation 4.3, we have completed the proposition. O

5. BOUNDEDNESS AND EXISTENCE OF THE LINKING NUMBER

This Section is divided into two parts. In the first part, we study the boundedness
of the linking number when it exists. In the second part, we study the existence and
boundedness of the linking number if the map F preserves a Borel finite measure on M.

5.1. Boundedness. _ _
In this section, let a and b be two distinct fixed points of F. We suppose that I satisfies
WB-property at a and b. By Lemma 1.7, there is a positive number N7 such that

ROtFix(ﬁayg)(FE,) [~ Nz Nagl

Fix an isotopy I; from Idy; to F which fixes @ and b. Let 7 be any oriented path in

M from @ to b. Fix an open dlSk W that contains oo and is disjoint from 7. We choose
an open disk V C W that contains oo such that for every zZ € V we have I (z) C w.
Observe that if 50 is a given lift of oo in Aa 5o if 1% (resp. V) is the connected component of

ﬂ_l(W) (resp. 7~ 1(V)) that contains 33, then we have ]35;5(‘7) C W, which implies that
V is free for every other lift ﬁafl} o TZ?,E where k € Z \ {0}. Let A¢ denote the complement
of a set A. For every z € M \ w({@,b}), write X, = 7~ 2({z}) N (V N ﬁa_g(f/))c Observe
that there exists K 7 € N such that X, < K3 for every z € M \ 7({a,b}).
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In the case where z € Rec™ (F) \ Fix(F'), we choose an open disk U that contains z
and is free for F'. As the value z(ﬁ’ sa, E, z) depends neither on ¥ nor on U, we can always
suppose that ¥ N7~ 1(U) = () by perturbing 7 a little and shrinking U if necessary. For
every n > 1, write

X'=7"'{z,F(2), -, F"E 1)) n((VnEZL W)

a,b
Observe that §X7 < 7,(2) K 7.

The following result is the main proposition of this section.

Proposition 5.1. The following two statements hold:
o If z € Fix(F) \ n({a,b}), we have |i(F;a,b,2)| < K.5(N.7 +1).
e If z € Rec™(F) \ Fix(F) and i(ﬁ;ﬁ,g, z) is defined, then \i(ﬁ;ﬁ,g, z)| < K_;Kuy,
where Ky € N depends only on U.

In order to prove Proposition 5.1, we consider two cases: the fixed point case and the
non-fixed point case. The first case is more easy to deal with and the second case is a
little more complicated, but the ideas are similar.

The fized point case.

When z € Fix(F) \ 7({@,b}), then 7(z) = 1 and i(F;a,b,z) = L(F;a,b, z), we have
the following results.

Lemma 5.2. If z € Fixcon,1(F) \ 7({a@,b}), then |i(F;a,b,2)| < K.3N.7.

Proof. By Definition 4.1 and Lemma 1.5, we have

i(F;,b, 2) Z pA~bF~ (2) = meb,}«tb

ZEXz

The lemma follows from the fact that 1X. < K 7 and that Roty, z (ﬁa 7) C - N5y Nag 7)-
) a,b 3
D

Lemma 5.3. If z € Fix(F) \ Fixcont,r (F), then |i(F;a,b,2)| < K.5(N.7 +1).
Proof. We have

Observe that if Z € X, then the trajectory of I(Z) is not included in V. Therefore we
can write the multi-path [[;cy. [1(2) as finitely many sub-paths:

[[ie= ] e
zZeX. 1<i<P(z)
where _ o
iz = 1 1'1(Ff;7'5(’5z‘))
0<j<mi(2)
is a path with Z; € X, NV, F (zl) € X.NVeforl<j<m!and Fm (%) € V. For every

i, we get a periodic disk chaln C; = ({V,V},{m'}) whose length l(CZ) is equal to m® (see
Section 2).
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Obviously, >, m? < K5 Let ki(z) = AT;. We have i(F;a,b,2) =7 A f%z ="k
Therefore, to get the lemma, it is sufficient to prove that [k'| <m'(N;5+1).

For every i, the path T; is lifted to a path from a point ; € V to ﬁml (z) € Tki (Y7) and
hence we get a lift C; = ({V,Takl (A)} {m?}) of C; for F ; with w1dth w(F C’) = k'
By the construction of ‘7, replacing A by Aa’b7 h by Fab, H by Fa’fg, D by 1% and C by C;
in Lemma 2.4, we get |k*'| < mZ(NFd’E + 1). We have completed the proof. O

The non-fixed point case.
Let z € Rec™(F) \ Fix(F) and U be an open free disk for F' that contains z. Recall
that, for every lift z of z and every n > 0, there is a unique connected component Uz ")

of 771(U) such that ®"(3) € Ux n(z and a unique a.n € G such that Us nE = ozzn(U ).
For convenience, we define

= (= . ~/ . n(2)—2 .
F* (~,) _ Fa,b(z )y if w(Z))e{z--,F (z~)}, N
a:n(Z) if w(F)=F"®7(2) and F.3(Z) € Ua, (3

and

~ Lz if w(z’ z, oo F(=2())
W,):{ﬂ ) &) e @)

LE Wi e H 7E) = F*O7(2) and F5(2') € Ua, )

where 7% ) @ is the lift of ygn(,) . that is in Uaz w(3)-

y Qzm

We have to consider two cases: o, = e and «, , # e. First, we consider the case where
o, 7 €. We have the following lemma.

Lemma 5.4. If o,y # e, then ]Ln(ﬁ;'af,g, 2)] < Tn(2) K5 3(No3 +1).

Proof. In this case, the curve F’I‘ is a multi-path in M. By the definition of Ln(f; a,b, z),

1,2

Lu(Fab2)=3AT2 = Y AATE.
FrexXn

we have

We can write the multi-path

(5.1) II 2= I T,

Z'eXn 1<i< Py (2)
where
(5.2) iz = 11 I(F5(%)
0<j<m}, (z)
is a path with %; € X" NV, F*J(zz) e XrNVeforl<j<mi andF ( ;) € V. Hence,

for every i, we get a periodic dlsk chain C; that satisfies the hypothesas of Lemma 2.4 with
length m?. When we lift the path FZ , we can get a lift of C; for F‘db with width k¢ .

Obviously, we have Y, m}, < 7,K_ 7. Let kl,(z) =7 A I, Hence Lo(F:d,b,z) = >k
It is sufficient to prove that |k7| < mj,(N-7+1).
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Similarly to the proof of Lemma 5.3, replacing A by ga 5, I by ﬁa 5. H by F\a 5. D by 1%
and C by Cj in Lemma 2.4, we get |k,| < m},(N-3+ 1). This proves the first case. O

As a consequence, we have the following proposition.
Proposition 5.5. We suppose that i(F;a@,b, z) and pum.1(z) exist, then
[i(F;a@,b,2)| < Ko5(Nap+1) if pari(z) #0.

Proof. If z € Fix(F') and ppr(z) # 0, then z is not a contractible fixed point and the
conclusion follows from Lemma 5.3. Suppose now that z € Rec™ (F) \ Fix(F) and U C
M \ Fix(F) is a free open disk containing z. If pasr(2) # 0, then there exists a positive
number N such that o, # e when n > N (refer to Section 1.3.2). In that case, the
conclusion follows from Lemma 5.4. O

Let us study the case where o, , = e.
Lemma 5.6. There exists a positive integer Ky which depends on U such that
Lo (F;a,0,2)| < t(2) K. 1Ky if anp = e
Before proving Lemma 5.6, we require the following lemma.
Lemma 5.7. Let U be any connected component of 7= 1(U) in ve. If
ROtﬁ(FE,E) Z]- (Nag +1), Na’g + 1],
then we have
(1) aypn=c¢ forall 2 € Rec (F)NU and alln > 1;
(2) Uzt FF(m=!(Rec™ (F))NU) C V¢
(3) Rotﬁ(ﬁaz) C]E L4 1[ for some integer | with 1 > N33 +1 orl < —(Ng3+2) where
I depends on U.

Let us prove now Lemma 5.6 supposing Lemma 5.7 whose proof will be given later.
Proof of Lemma 5.6. As «a, = e, the curve f}i ; is a multi-loop in M. Let pn(Z) =
1,

yA f%g where zZ € 77 1(2). Obviously, p,(2)/m(2) € ROtﬁg(ﬁa,E)'
Let us first analyze the possible cases that need to be considered in the proof. The

set X™ maybe contain a “whole orbit” of some lift Z of z, that means FJ(Z) € X" for all
0 < j < 7u(2), or a “partial orbit” of z. In the case where a “partial orbit” of z is contained
in X7, similarly to the proof of Lemma 5.3, we can get a periodic disk chain of ﬁa[l} that
satisfies the hypothesis of Lemma 2.4 and hence we can estimate the intersection number
of 7 and the path on which the “partial orbit” of Z lies. In the case where the “whole orbit”
of 7 is contained in X7, we can use Lemma 5.7 to get either |p,(2)/7(z)| < Nz + 1,
or | < pu(2)/7a(z) < 1+ 1 where | € Z depends on U and satisfies [ > N_7+1 or
1 < _(NH,E + 2). Finally, we only need to sum the intersection numbers of all the cases
above.

Let us begin the rigorous proof. Write
St ={zZen Yz) | FI(2) e VC for all 0<j<m(2)}

and -
Y ={F(2)]|z€8,0<j<m(2)}
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As before, we write

We can write the multi-path as follows

3) I[ neH= 11 nE)- I nEh= I e II e,

zZ'eXn z'eyp zZ'eXP\Yr 1<i<P/(z) P! (2)<i<Pp(z)
where
(5.4) e == [ TESE)
0<j<mf, (2)

for 1 <i < P! with z; € S and m{, = 7,,; and

(5.5) iz = ] &t (FZ5())
0<j<mi, (2)
for P, < i< P, with Z; € XNV, ﬁa*%(zi) e X'NVeforl<j<mi and ﬁ;?z(z) ev.

Obviously, >, m!, < 7,(2) K, 5. Let ki(z) =7 A I'7. Hence Lo(F;@,b,z) = >, ki To
prove Lemma 5.6, it is sufﬁcient to prove that there exists a positive integer Ky which
depends only on U such that |k},| < m}, K.

When 1 <4 < P}, by Lemma 5.7 and the fact that P, < K, there exists a positive
integer 7 that depends on U such that Rotg_ (F- i) C [=r,r]. Observing that k, = p,(Z;) =

a,

a,b
When P! < i < P,, similarly to the proof of Lemma 5.3, we can get |k! | < mil(Nafg—i— 1).
Let Ky = max{N.; 4+ 1,r}. We have |k/,| < m} Ky for every 1 <i < P, and hence

2k

(2

A f%%’ mé = 7,, and k. /m, = pn(Z)/ma(2) € Rotﬁ% (F.-), we have |ki| < mir.

\L(F:@,b,2)| = < 7(2) K KU

g

Proof of Lemma 5.7. (1). Suppose that there is a point 2/ € Rec™(F) N U and some
no > 1 such that o, ,, # e. Let Z’ be the lift of 2’ that is in U. Similarly to the proof of

Lemma 5.4, we can find a path
o= [ RELE)

0<j<mi, (/)

no’

which satisfies Z; € X" N v, ﬁg%(%) eX’n Veforalll <j<mi 6z = ﬁ;%’ (z;) for
some 1 < jp < mfm, and ﬁ;;%(zi) € V. Hence, we get a periodic disk chain C’ that
contains U as an element and satisfies the hypothesis of Lemma 2.4. Replacing A by AE,E’
h'by F;3, H by F;3, D by V and C by C’ in Lemma 2.4 (the second conclusion), we get
ROtU(Fa,E) c]— (Nap+ 1), Nyj+ 1[. We have a contradiction.
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(2). Suppose that there is a point 2’ € 7~ 1(z') N U where 2/ € Rect(F) and an
integer no > 1 such that Fmo (z) e V. By (1), it is sufficient to consider the case where
ay , = e for all n > 1, that means, ﬁT"(zl)(Z’) € U for all n > 1. We choose a positive
integer ny large enough such that 7, () > ng. We have F™i()=no(Fno(z")) ¢ U.
Then we get F()=m0(V) N T # () and F™(U) NV # . Therefore, the disk chain
({17,[7, YN/}, {70y (2) — no,n0}) is a periodic disk chain that satisfies the hypothesis of
Lemma 2.4. Applying Lemma 2.4 again, we get Rotﬁ(ﬁgz) Cl= (g3 +1), Ny + 1 It
is still a contradiction.

(3).  This follows from Corollary 2.3 and the hypothesis Rot . ix(F )<ﬁa,b) [Nz 5 N33l
immediately. D
Proof of Proposition 5.1. This follows from Lemma 5.2, 5.3, 5.4 and 5.6. g

At the end of this section, we study the boundedness in the case where the time-one
map I of I satisfies the differential conditions.

Proposition 5.8. For any two distinct fized points a and b of F if F _and F~ L are
differentiable at (@) and 7(b), then there exists N; 3 € R such that i(F;a,b,2)| < Ny if

1(15, Zi,g, z) exists.

Proof. We make a proof by contradiction. If it is not true, without loss of generality, we
suppose that there is a sequence {2z }x>1 C Rec™ (F) such that klim i(F;a,b, zp) = +oo.
> ame

By the proof of Lemma 5.6 and the conclusion (1) of Lemma 5.7, we have a,, , = e

for every n > 1 when k is large enough. Hence Zj, € Rect(F) \ Fix(F) when k is large
enough where Zj, € 771(2;). By the proof of Lemma 5.6 and the conclusion (2) of Lemma

5.7, we only need consider the lifts z; of z; whose whole orbit is in V¢ when k is large

enough. However, such lifts are finite (at most K_7). This implies that there exists a

sequence {Z;}x>1 with Zx € 77 1(2;) such that lim P4 -7 (2k) = +oo, which conflicts
- k——4oc0 a,b>" a,b

with Lemma 1.8. g

In Example 7.2 of Appendix, we will construct an identity isotopy I of a closed surface
such that I satisfies the B-property but its time-one map is not a dlﬂeomorphlsm and there
are two different fixed points zy and z7 of F such that the linking number Z(F 20, 21, 2) 1s
not uniformly bounded for z € Rect (F) \ w({Z20,21}).

5.2. Existence and Boundedness in the conservative case.

Proposition 5.9. Suppose that I satisfies the WB-property at @ and b. If p € M(F), then
p-almost every point z € Rect(F) has a rotation vector pyr(z) € Hi(M,R) and has a
linking number i(ﬁ;&,g, z) € R. Moreover, for all z € Rec™ (F) satisfying that i(ﬁ;&,g, z),
pu,1(z) exist and par,1(z) # 0, there exists C > 0 such that li(Fya,b,2)| < C.

Proof. According to Poincaré Recurrence Theorem, we have p(Rect (F)) = pu(M).

When z € Fix(F) \ 7({@,b}), by Section 1.3.2 and Section 5.1, par.;(z) and i(F;a,b, 2)
exist and are bounded. Thus we only need to consider the non-fixed point case.

Fix a free open disk U ¢ M \ 7({@,b}) with x(U) > 0. For any z € Rect(F) N U, by
Lemma 5.4 and Lemma 5.6, we have |Li(F;a,b,z)| < T(Z)Ka’g(Nag +1)if a,; # e and
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|LA(F;a,b, 2)| < 7(2) K, 5Ky if .1 = e. This implies that L1 (F;d,b, 2) € L'(U,R, p). By
Birkhoff Ergodic Theorem, we deduce that the sequence {L,(F;a, b, z) /n}t2S converges

to a real number L*(F,a,b, z) for p-almost every point on Rec™(F) N U. Recall that,
for p-almost every point on Rec® (F) N U, the sequence {7, (z)/n}> converges to a real
number 7(z) (see Section 1.3.2).

We can define the linking number on U as follows (modulo sets of measure zero):

L~ 1 . Ln(ﬁ7aagv Z) L*(ﬁaaagv Z)
. F:a,b,z) = 1 = .
(5.6) i(F;a,b,2) oo Tn(2) T*(2)

By Proposition 5.1, the linking number Z(F :a, b, z) has a bound Ky for p-almost every
point z € Rect ( )NU. As U is arbitrarily chosen, this implies that we can define the

function i(F;a, b, z) for p-almost every point z € M \ w({a,b}).
Finally, by Proposition 5.5, we can uniformly bound i(F;a,b, z) if parr(z) # 0. O

Remark here that, under the hypothesis of Proposition 5.9, ’L(F ;6,5, z) is bounded on
U, but does not necessarily possess a uniform bound on M \ 7({@,b}) (see Example 7.2).
However, when F is a diffeomorphism of M (see Proposition 5.8), we can get a uniform
bound. Moreover, we can get a uniform bound in the case where the support of the
measure is the whole space, as stated in the following proposition.

Proposition 5.10. With the same hypotheses as Proposition 5.9 and if furthermore p1 €
M(F) has full support, we have |i(F;a,b,2)| < K;7(N;7+ 1) if it exists.

Proof. The measure p may naturally be lifted to a (non finite) measure f on M. Since
1 does not charge m(a) and m(b), [i can be seen as a measure on A3 invariant by F

satisfying ﬁ(A~~) = 400. As the support of i is M and F.~ 57 breserves the measure [, the
homeomorphism F ; satisfies the intersection property, that is, any simple closed curve of
A~ which is not null homotopic meets its 1mage by F . Indeed, any closed curve which
goes through oo will meet its image by F.; since F ﬁxes the point oco. If the closed

curve does not pass through co, we may go back to M and consider a component enclosed
by the closed curve which contains @ or b and which has finite measure, then it will meet
its image since F preserves the measure .
In the case where z € Fix(F), it is obvious that i(F; @, b, z) is uniformly bounded.
Choose any free open disk U C M \ Fix(F'), according to Lemma 5.4, we only need to
consider the points 2z € Rec™ (F) N U such that a,, = e for n large enough. We suppose
that z is a such point and z(F sa, g, z) exists. We go to the annulus Aafl?’ for any lift z of

n
'y/\I‘I1 .

z, then we have p , L F, b(%) = nli)Too o ER

We claim that, for any € > 0, |i(F;a,b,z)| < (N3 + 1+ €)K_5. Otherwise, without
loss of generality, we can suppose that i(F;E,E, z) > (Nz3 + 1+ €)K.5. Then there
exists a number N large enough such that for every n > N, there is a lift z,, of z in Ve

/\FTL
satisfying (1 )z" > N~ + 1 4+ €. This implies that there exists a lift z of z in V¢ such

that pAg,'gﬁg,z;(N) > Nj —|— 1+€> N3+ 1. By the fact pAE,E’Fa,'B( o0) = 0 and according
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to Theorem 2.5, F ; has a fixed point whose rotation number is N~ + 1, which is a
contradiction. ThlS proves the claim. N
As e is arbitrarily chosen, we get |i(F;@,b,z)| < K_7(N.7+1). O

The function z(ﬁ ; Zi,g, z) is not necessarily u-integrable (see Example 7.2). But in some
cases, as we have stated above, where the time-one map F' is a diffeomorphism of M, or
I satisfies the WB-property at a and g, and p is ergodic (because it is constant u-a.e.) or
the support of u is the whole space, the function zu(ﬁ ;ZZ,Z, z) is p-integrable.

Suppose now the function z(ﬁ ia, g, z) is p-integrable. We can define the action difference
of a and b as follows

(5.7) in(F;a,b) = / _ i(Fa,b,2)dp.
M\ ({a,b})
From Proposition 4.3 and Proposition 4.4, we get the following corollaries immediately:
Corollary 5.11. We have iu(ﬁq;&',g) = qiu(ﬁ;’d,g) for all ¢ > 1.

Corollary 5.12. Let H be an orientation preservmg homeomorphism of M and H be a
lift of H to M. We have TH. (1 )(H oFoH Y H®@), H(®b)) = Z,u(F a,b). In particular,

i (F; (@), a(b)) = iu(F;a,b) for all a € G.

At the end of this section, we will give the integral (5.7) a geometric description when
F and F~! are differentiable at 7(a) and 7(b). Before that, let us introduce a definition.

Let A = T! x [0,1] be a closed annulus and let T be the generator of the covering
transformation group 7 : A — A where A =R x [0,1]. Suppose that J = (h¢)eo,1) is an
isotopy of A from Ida to h, v is a Borel measure (v is admitted to be an infinite measure
here) invariant by h on A. Let 7 : [0,1] — A be a simple oriented path which satisfies
7(0) € Tt x {0}, v(1) € T! x {1} and Int(y) C Int(A). Denote by ¥’ : [0,1] x [0,1] — A
the 2-chain ¥'(s,t) = h; 1 (y(t)) and by || = {z € A | z = h; 1 (v(¢)), (s,t) € [0,1] x [0,1]}
the support of /. When v(v) = 0, the intersection number v A J(z) is well defined for
v-almost every z on A. Define the algebraic area of the 2-chain ¥’ in A, that is, the
algebraic area (for v) “swept out” by sep 1) h;t(7y), as follows

/, du:/Afy/\J(z)du

When v(]X|) < 400, the integral is well defined. Indeed, there exist a number N > 0 such
that [y A J(z)| < N since A is compact. Obviously, yNJ(z) = 0if 2 ¢ U0 ) hit(y(t)).

Therefore,
/ dv
E/

Let H be the lift of i that is the time-one map of the lifted identity isotopy J of J ,
~ be a connected component of v in A and 7 be the lift of v to A. Let D’ be the closed
region between H~1(5) and T'(H (7)) which is a fundamental domain of 7. We have

(5.8) /,dy:/Av/\J(z)du:/ﬁﬁ/\f(E)dﬂ,

which does not depend on the choice of 7.

g/]’y/\J(z)|dy§y(\E’)N<+oo.
A
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Denote by ¥ = h*X': [0,1] x [0, 1] — A the 2-chain (s, t) = hyt(h(v(t))) and suppose
that v(|2]) < 4o00. Let D = H(D') be the closed region between ¥ and T'(3) which is also
a fundamental domain of T'. By Equation 5.8, we have

(5.9) /du—/ VA (2 du—/H VAT () d

Equation 5.9 tell us that the value fz: dv is equal to the algebraic area (for ) of the region

of A situated between v and its image H (7). Furthermore, if we suppose that J fixes a
point co in A, we have

(5.10) /Edl/ = /Ah(’y)/\J(z)dV
= /A’y/\(h_loj)(z)du

_ /fy/\(h_lojoh) (2)dv
A

- /AMJ(Z) dv.

Indeed, write the isotopy J' = h™lo Joh = (h_l ohto h)0<t<1. The third equation
holds because h is a homeomorphism of A and preserves the measure v. Observing that
the isotopy J~'J’ is a loop (whose base point is Idy) in Homeo.(A) and fixes the point
oo, recall that mj(Homeos(A)) = Uicz Gk (see the proof of Proposition 4.5), we get
[J=1J')1 € €y . Hence, we get the last equation. It is easy to prove that, by induction and
Equation 5.10, [ dv is equal to [, dv for every k € Z.

Remark that we can also define the algebraic area of the 2-chain > when + is not simple
if we consider the oriented domain enclosed by 7, H (%) and OA in A. However, to prove
Theorem 0.1 in the next section, it is enough to merely consider the case of a simple
oriented path.

Suppose now the measure v is defined by a symplectic form w, that is, v(A) = [ 4w for
all measurable sets A C A. Observe that & is exact in A where & is the lift of w to A.
Equation 5.9 and Stokes’ theorem imply that fz w (defined by the integral of differential
2-form on 2-chain) is nothing else but the algebraic area of the 2-chain ¥ in A, [ dv
(defined by Equation 5.9).

We now suppose that the time-one map F of I and its inverse F'~ L are differentiable at
7(@) and m(b). Let I; = (E! )telo,1) be an 1sot0py from Idg7 to F that fixes @ and b, and
1 be the lift of u to M. Let 5 5 :[0,1] — M be a simple orlented path from «a to b with
3(0) = @ and 5(1) = b. Consider the annulus Asy
in the proof of Lemma 1.8, Aa,'l} = Sz U A?i,E U 57 is the natural compactification of A’d,Z

and the annulus map Fa Recall that,

where S3 and S; are the tangent unit circles at a and b. We can identify 7 as an oriented
path in [lafg and I; as an identity isotopy of /_lafg. As the measure j; is invariant by F' and

fi(@) = fi(b) = 0, it naturally induces a measure on fla’g, denoted still by .

Suppose that 3 is the 2-chain ¥ : [0,1] x [0,1] — M defined by %(s, ) = F/"Y(F(5(t)))
whose boundary is F(7)y~!
clockwise. As I; fixes oo, the intersection number ¥ A I1(Z2) is zero when z belongs to a

with the boundary of the square [0, 1] x [0, 1] oriented counter-
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neighborhood of co. Therefore, if fi(7) = 0, we can define the algebraic area of the 2-chain
Y in M\ {a,b} as follows
[ai=[ _Frh@d= [ FAREG
> M\{@b} Ag
Remark here that if the measure p is defined by a symplectic form w, then fifu (see

Equation 3.1 and Equation 3.3) is nothing else but fi djt where w is the lift of w to M.
Moreover, we have the following result which is a key step to prove our generalized action
function defined in the next section.

Lemma 5.13. If u(y) = 0, then we have

i(F.,5) = /~ dii.
2

Proof. From Proposition 5.8, we know that i, (F,a,b) is well defined. Let
+o0o
zZ=JF*
k=0

Observe that pu(Rec™(F)\ Z) = u(M). For every z € Rec™(F)\ Z and every n > 1,
consider the following infinite family of paths in M:

F}T, =[] '®.
m(2)=2
Define the function o _
Gn(F;a,b,z) :ﬁ/\]_“L”

Let us verify that this is well defined. Consider the annulus A~ and the annulus map
ﬁab' For any z € Rect(F)\ Z, let Z be any lift of z to M (we also erte Zin Ag3), and Z be
any lift of Z to A_7. In the proof of Lemma 1.8, we have proved that [p;(F3(%)) — p1(2)]
is uniformly bounded for any z € X~ , say N as a bound, and depends on the isotopy I

but not on the choice of z. Fix an open disk w containing oo and disjoint from 7. As
I 1( ) = oo, for every n > 1, we can choose an open disk V,CW containing oo such that

for every % € V,,, we have I"'(2) € W. Write X/* = 771({z}) N V;¢. We deduce that there
is a positive integer K such that §X* < K, and

G(Fabz‘—"y/\FIIZ

~ | > Anir@| < K.

zeX!

Hence we complete the claim. As a consequence, G (F;@,b,z) € L' (M \ n({a,b}), R, 1)
Moreover, we can write G, (F’;a,b, z) as a Birkhoff sum:

n—1
Gn(F;a,b,2) = mrh /\HFI P = Gi(F;d,b,Fi(2)).

§=0
According to Birkhoff Ergodic theorem, the limit

lim M: lim ZGI FI(z2))

n—+o00 n n—+oo N
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exists for p-almost everywhere on M \ 7({@,b}). We know that

jod 7 Ln ﬁ;~>~a L* ﬁ;’v”v’
i(F;a,b,z) = lim ( abz): (F33,b,2)
n—-+o0 Tn(2) T*(2)

for p-almost every point z € M\ m({a, b}) exists (see Proposition 5.9). As i(F;a,b, z) does
not depend on the choice of U (see Definition 4.1), when z ¢ 7(¥), we can suppose that
the disk U is small enough such that U N7 (y) = 0. Therefore, {L,(F;a,b,z)/m(z ) n>1

is a subsequence of {Gn(F, a, b, z)/nin>1. We get

i(ﬁ;a,g,z): lim —Gn(F;a,b,z)

n—-+4oo n

for p-almost everywhere on M \ 7({@, b}).
By Birkhoff Ergodic theorem, we have

i(Fiab) = / i(Fab ) du
M\m({a,b})

_ /  Gi(Fd b, 2)du
M\ ({a5)

/~  FARG)dE
M\r=Y(n({a,b}))

- [dﬁ,
>

6. AcTioN FUNCTION

This section will be divided into three parts. In the first part, we will define a new
action function and prove Theorem 0.1. In the second part, we will define the action
spectrum which is invariant under conjugation by an orientation and measure preserving
homeomorphism.

6.1. Definition of the action function. In this section, we suppose that the action
difference i(F; a, b, z) is well defined for every two distinct fixed points @ and b of F.

We define the action difference as follows:
(P (Fix(F) x Fix(F))\A — R
(a, b) — z#(F;Zi,Z).
From Proposition 4.5, we have the following corollary immediately:
Corollary 6.1. For any distinct fixed points a, band ¢ of ﬁ, we have
iy (F;a,b) +iu(F;b,¢) +i,(F;¢a) = 0.

That is, i, is a coboundary on Fix(F ) So there is a function [, Fix(ﬁ) — R, defined up
to an additive constant, such that

in(F3a,b) = 1,(F;b) — 1,(F; ).
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We call the function [, the action function (or action for short) on Fix(F) defined by
the measure pu.

By Section 1.4.3, the properties of iu(ﬁ;ﬁ,g, z) (see Section 4.1) and Corollary 6.1, we
have the following proposition:

Proposition 6.2. The action difference i, (hence the action l,) only depends on the
homotopic class with fized endpoints of I. Moreover, i, only depends on the time-one map
F when g > 1 and i, depends on the homotopic class of I when g = 1. The same property
holds for 1,, (hence L, ) which defines in the case where pprr(pn) =0 (see Formula 6.1 and
Proposition 6.3 below).

Proposition 6.3. If pasr(p) =0, then ZM(F @, (a)) = 0 for every a € Fix(F) and every
a € G*. As a consequence, there exists a function L, defined on Fixcont,1(F) such that

for every two distinct fized points a and b of ]5, we have

iy(F;a,b) = L,(F; (b)) — Lu(F;7(a)).
Proof There exists an isotopy I’ homotopic to I that fixes 7(a). It is lifted to an isotopy
I’ that fixes @ and a(@). Observe that if 7 is an oriented path from @ to a(@), then the
intersection number § A F" » (see Section 4.1) is equal to the intersection between the

loop 7(7) and the loop I’ T”(Z)( Z)Yen(z),» (see Section 1.3.2). As parr(p) = papr(n) =0
and m(a) € Fixcons,r(F) (or p(r(a)) = 0), we have

in(Fid, (@) — / i(F:d, (@), 2) du
M\ @)

[y wEEe@a,,
M\{m(@)} "0 7n(2)
FATY,
= / lim —2du
M\{r@)} "t Ta(2)
m(Y) A parr (1)
0.
The second conclusion follows from Corollary 6.1. 0

We call the function L, the action on Fixcont,7(F') defined by the measure e We note
that the results above hold for the set of all such pairs (a,b) € (Fix(F) x F)\ A which the
action difference can be defined on.

As a consequence, if F' is a diffeomorphism of M (by Proposition 5.8 and 5.9), or the
isotopy [ satisfies the WB-property and Supp(u) = M (by Proposition 5.9 and 5.10) or u
is ergodic (by Proposition 5.9 and Birkhoff Ergodic theorem), then the action function is
well defined on Fix(F), but the action can be unbounded (See Example 7.1 of Appendix).

Proof of Theorem 0.1. From Corollary 6.1 and Proposition 6.3, we define the action dif-
ference I, : (Fixcont,1(F') X Fixcont,7(F)) \ A — R and the action L, : Fixcont,7(F) — R
as follows

(6.1) L(F;a,b) = i,(F;a,b) = L,(F;b) — L,(F;a),

where @ and b are any lifts of @ and b. We only need to prove that the function L, defined
in this section is a generalization of the action difference in Section 3.1.2.
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Observe that, in the classical case, I = (Ft)ejo,1) C Diff« (M) where Diff, (M) is the
set of diffeomorphisms that are isotopic to the identity. The measure u is defined by a
symplectic form w. Therefore, x is non-atomic. Comparing Equation 3.3 with Equation
6.1, it sufficient to prove that I, (F a,b) = z#(F a,b) = 0(F,a,b).

Let 4 be any oriented path from a to b. By Lemma 5.13, we have

in(F,a,b) = /i di

where ¥ is the 2-chain whose boundary is F®) -7 (i.e., identify F(7)7 ! as a 1- chain)
as defined in Lemma 5.13. As (5(F a b) does not depend on the choices of ¥ and 5 (see
Section 3.1.2), we have zM(F a,b) = 6(F,a,b). O

From Theorem 0.1 and Corollary 5.11, we get the following iteration formula of the
action function with regard to F immediately:
Proposition 0.2 Under the same hypotheses as Theorem 0.1, for every two distinct con-
tractible fized points a and b of F', we have Iu(ﬁ’q; a,b) = qIM(ﬁ; a,b) for all g > 1.

6.2. Action spectrum. We suppose that the action [, is well defined. Write F as the
lift of F' obtained by lifting I to an isotopy TtoM starting Id ;.

Define the action spectrum of I as follows (up to an additive constant):
o(F) = {l,(F;?) | z € Fix(F)} C R.

Moreover, if pps (@) = 0, we can write the action spectrum of I as (up to an additive
constant):
o(F)={Lu(F;z2) |z € Fixcont,1 (F)} C R.
Recall that Homeo™ (M, p) is the subgroup of Homeo(M) whose elements preserve the
measure i and the orientation. By Corollary 5.12, we have the following conjugation
invariance property:

Proposition 0.3 The action spectrum is invariant by conjugation in Homeo™t (M, p).

7. APPENDIX
We fix a closed surface M of genus g > 1 and a topological closed disk D on M all
examples will coincide with the identity outside of D including isotopies. Up to a diffeo-
morphism, we may suppose that D is the closed unit Euclidean disk. We will construct
an identity isotopy I = (Ft).e(o,1), we will write F' = Fy and F' = F} the time-one map
of I = (ﬁt)te[o,l] that is the lifted identity isotopy of I on the universal covering space
7w M — M.

Example 7.1. We construct an identity isotopy I of M and a measure y € M(F) such
that

o parr(p) = 0;

F € Diff(M) (and hence I satisfies the WB-property);

I does not satisfy the B-property (and hence F' ¢ Diff! (M));

there is a compact set P C M and {(Z;, % ) e>1 C (Fix(F) x Fix(F))\ A in P x P,
such that the linking numbers Z(F Zky 2 1, 2) are not uniformly bounded;

the action L, (see Section 6.1) is not bounded.
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Use the Cartesian (z, y)-coordinate system in D and suppose zp = (0,0). On the z-axis,
we suppose that By (k > 1) is a ball whose center is on z, = 1/(k + 1) + 1/(2k(k + 1))
and whose radius is 7, = 1/2(k + 1)2.

Consider a family of smooth functions ay : [0,7;] — R such that a = 0 on neighbor-
hoods of 0 and 74, ag(ry/2) = 2(—1)¥(k + 1)® and

277/0% o (r)rdr = (—=1)Fk.

Consider the following diffeomorphism F' of D which is defined by the formula:
Zr + re2im(0+ax(r))  op By;

7.1 F(zy, + re®™) =
(7.1) (21 + re*™) {Id on D\ Us, B

We construct an isotopy I = (Fi)iec[o,1) on D by replacing ay(r) with tay(r) in Formula
7.1.
Obviously, z;, and zj, = zj, + /2 are fixed points of F' and we have

i(Fi %020 = 2(= 1)k + 1)°
and
i(F;%0, 26 24) = pa. _ 5 - (G) =2(=1)F (k4 1)°

20,2, F20,7,

where 2y, 2, and z; are contained in a connected component D of 771(D). Hence I does
not satisfy the B-property and there is a compact set C1(D) and {Z; }r>1 C Fix(F) \ {Zo}
in Cl(D), such that the linking numbers i(F'; 2y, Zx, z) are not uniformly bounded.

It is easy to prove that F is a diffeomorphism of M but it is not a C'-diffeomorphism
of M: its differential DF' is not continuous at zg.

Consider a finite measure p on M satisfying that

e 4 has full support;
e /i is non-atomic;
e u restricted on By, is the Lebesgue measure with u(By) = mri for every k > 1.

Obviously, 1 € M(F) and pas,r(pe) = 0. Furthermore, we have
Lu(F; 21, 2) = i0(F; Zopr, 2) = (1P 2k + 1)
and
I(F; 20, 21) = ip(F; %0, %) = (—1)" k.

Therefore, the action L, is not bounded.

Exzample 7.2. We construct an isotopy I of M and a measure p € M(F') such that

F ¢ Diff(M);

I satisfies the B-property; N

there are two different fixed points zp and 21 of F' such that the linking number
i(F; 2o, 21, 2) is not bounded;

there are two different fixed points zp and 21 of F such that the linking number
i(F; 2o, 21, 2) is not p-integrable.



38 JIAN WANG

Now we consider the polar coordinate for D with the center zyp = (0,0) and suppose
z1 = (4/5,0). Let D,/ = {(r,0) | r €]0,p/q[} where p/q €]0,1[NQ. Consider a smooth
decreasing function « : [0,3/4] — R such that aljg;/9) = 1 and a = 0 on neighborhood of
3/4. Take a C*°-diffeomorphism p(r) of ]0,3/4[ as follows

e p(r) fixes the point 1/k for every k > 1 and p(r) = r when r € [1/2,3/4];
e p"(r) — 1/(k+1) when n — —oco for every k > 1 and r €]1/(k + 1), 1/k[;
e p"(r) — 1/k when n — 400 for every k > 1 and r €]1/(k + 1), 1/k][.

Consider the following homeomorphism F' of D defined on D by the formula:

1
2im( 0+« 27 +1

(7.2) F(re%ne): p(r)e ( (r)( 2)> on D3/4;

Id on D\ Dsy.

We construct an isotopy I = (F})4e[0,1) on D by replacing a(r)(ﬁ +3) with toz(r)(2% +1)
and p(r) with (1 —¢)r +tp(r) in Formula 7.2. It is easy to see that F' is not differentiable
at zp.

Let B, ={(r,0) | r€]1/(k+1),1/k[} and Cy = {z € D | |z| = 1/k} (k > 2). Consider
a finite measure p on M that is invariant by F as follows

W= Z 2= =Dy,

k>2

where puy is the Lebesgue probability measure on Cy.

Fix one point z € C for every k > 2. Let z (k > 0) be any lift of z; contained in a
connected component of 771(D). For any point z € By, the w-limit set of z is included in
C}, and the a-limit set of z is included in Cj1. When z € (g, the angle of the trajectory of
I(z) rotating around zg is (2¥*! + 1)7. Hence F has no contractible fixed points on Dy 5.
When z € D3y \ D /9, the angle of the trajectory of I(z) rotating around z is uniformly

bounded. Therefore, I satisfies the B-property. However, z(ﬁ 1 %0, 21, 21) = 28 4 1/2 and
i(F'; 20, 21, 2) is not p-integrable. Remark that the support of x4 is not the whole space.
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