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SOME PROPERTIES OF HAMILTONIAN HOMEOMORPHISMS ON
ASPHERICAL CLOSED SURFACES

JIAN WANG

Abstract. In this article, we generalize Schwarz’s theorem to C0-case on aspherical
closed surfaces and prove that a nontrivial Hamiltonian homeomorphism has no con-
nected contractible fixed points set, thus no connected fixed points set.

1. Introduction

1.1. Background. The famous Gromov-Eliashberg Theorem, that the group of symplec-
tic diffeomorphisms is C0-closed in the full group of diffeomorphisms, makes us interested
in defining a symplectic homeomorphism as a homeomorphism which is a C0-limit of
symplectic diffeomorphisms. This becomes a central theme of what is now called “C0-
symplectic topology”. There is a family of problems in symplectic topology that are
interesting to be extended to the continuous analogs of classical smooth objects of the
symplectic world (see, e.g., [Lec05, Lec06, Vit06, OM07, Hum11, BS13, Se13, HLecS15,
HLeRS15, BHS16]). In the theme of C0-symplectic topology, there are many questions
still open, e.g., the C0-flux conjecture (see [LMP98, On06, B14]), the simplicity of the
group of Hamiltonian homeomorphisms of surfaces (see [Fat80, OM07]).

Suppose that (M, ω) is a symplectic manifold. Let I = (Ft)t∈R be a Hamiltonian flow
on M with F0 = IdM and F1 = F . When M is compact, among the properties of F ,
one may notice the fact that it preserves the volume form ωn = ω ∧ · · · ∧ ω and that the
“rotation vector” ρM,I(µ) ∈ H1(M,R) (see Section 2.3) of the finite measure µ induced by
ωn vanishes. Let M be a closed oriented surface with genus g ≥ 1. In this case, M is an
aspherical closed surface with the property π2(M) = 0. Let I = (Ft)t∈[0,1] be an identity
isotopy on M , that is, a continuous path in Homeo(M) with F0 = IdM . We suppose
that its time-one map F preserves the measure µ induced by ω. It is well known that
the condition ρM,I(µ) = 0 is equivalent to saying that the homeomorphism F is in the
C0-closure of Ham(M, ω). In this sense, we call such I a Hamiltonian isotopy and such F
a Hamiltonian homeomorphism. In this article, we carry out some foundational studies of
Hamiltonian homeomorphisms (and a more general notion) on aspherical closed surfaces.

Let (M, ω) be a symplectic manifold with π2(M) = 0. Suppose that H : R × M →
R, one-periodic in time, is the Hamiltonian function generating the flow I. Denote by
FixCont,I(F ) the set of contractible fixed points of F , that is, x ∈ FixCont,I(F ) if and
only if x is a fixed point of F and the oriented loop I(x) : t 7→ Ft(x) defined on [0, 1] is
contractible on M . The classical action function is defined, up to an additive constant, on
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FixCont,I(F ) as follows

AH(x) =
∫

Dx

ω −
∫ 1

0
H(t, Ft(x)) dt,

where x ∈ FixCont,I(F ) and Dx ⊂ M is any 2-simplex with ∂Dx = I(x). The following
deep result was proved [Sz00] by using Floer homology with the real filtration induced by
the action function.

Theorem 1.1 (Schwarz). Let (M, ω) be a closed symplectic manifold with π2(M) = 0.
Let I = (Ft)t∈R be a Hamiltonian flow on M with F0 = IdM and F1 = F generated by a
Hamiltonian function H. Assume that F 6= IdM . Then there are x, y ∈ FixCont,I(F ) such
that AH(x) 6= AH(y).

Let M be a closed oriented surface with genus g ≥ 1 and F be a time-one map of an
identity isotopy I on M . Denote by M(F ) the set of Borel finite measures on M that are
invariant by F and have no atoms on FixCont,I(F ). Through the WB-property [Wang11a]
(see Section 2.4 for details), the classical action of Hamiltonian diffeomorphism has been
generalized to Hamiltonian homeomorphism (and more general notions) [Wang11a, page
86] (or see [Wang11b]):

Theorem 1.2. Let F ∈ Homeo(M) be the time-one map of an identity isotopy I on M .
Suppose that µ ∈M(F ) and ρM,I(µ) = 0. In each of the following cases:

• F ∈ Diff(M) (not necessarily C1);
• I satisfies the WB-property and the measure µ has full support;
• I satisfies the WB-property and the measure µ is ergodic,

an action function can be defined, which generalizes the classical case.

In the classical case, one can prove that the action function is a constant on a connected
set of contractible fixed points by applying the smoothness of the action function and the
nowhere dense property of the action spectrum. In all the generalized cases given in
Theorem 1.2, we show in this article that this property still holds.

One may ask whether Schwarz’s theorem is still true in the three cases above. We show
in this article that it is true in the second case but no longer when the measure µ has no
full support.

As an application, we show that a nontrivial Hamiltonian homeomorphism has no con-
nected contractible fixed points set, thus no connected fixed points set. We remark that
this property is a 2-dimension phenomenon. Recently, Buhovsky, Humilière and Seyfad-
dini [BHS16] have constructed a Hamiltonian homeomorphism with only one fixed point
on any closed symplectic manifold of dimension at least 4.

1.2. Statement of results. We say that a homeomorphism F is µ-symplectic if µ ∈
M(F ) and it has full support. An identity isotopy I is µ-Hamiltonian if the time-one map
F is µ-symplectic and moreover ρM,I(µ) = 0.

The main results of this article are summarized as follows.

Proposition 1.3. Under the hypotheses of Theorem 1.2, the action function defined in
Theorem 1.2 is a constant on each connected component of FixCont,I(F ).

Theorem 1.4. Let F be the time-one map of a µ-Hamiltonian isotopy I. If I satisfies the
WB-property and F 6= IdM , the action function defined in Theorem 1.2 is not constant.
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Theorem 1.4 is a generalization of Schwarz’s theorem on closed oriented surfaces. The
main tools we use in its proof are the theory of transverse foliations for dynamical systems
of surfaces inspired by Le Calvez [Lec05, Lec06] and its recent progress [Jau14].

Recall the classical version of Arnold conjecture for surface homeomorphisms due to
Matsumoto [Mat00] (see also [Lec05]): any Hamiltonian homeomorphism has at least
three contractible fixed points (see Theorem 5.1 below).

As a consequence of Proposition 1.3 and Theorem 1.4, we have the following theorem:

Theorem 1.5. Let F be the time-one map of a µ-Hamiltonian isotopy I. If the set
FixCont,I(F ) is connected, the time-one map F must be IdM . In particular, if Fix(F ) is
connected, F must be IdM .

Proof. By Theorem 5.1, FixCont,I(F ) 6= ∅. Moreover, if the set FixCont,I(F ) is connected,
the isotopy must satisfy the WB-property (see Lemma 2.8). Therefore, the action function
is well defined by Theorem 1.2. The conclusion follows by Proposition 1.3 and Theorem
1.4. Note that the connectedness of Fix(F ) implies that FixCont,I(F ) = Fix(F ) because
FixCont,I(F ) is an open and closed subset of Fix(F ). ¤

If F 6= IdM , Theorem 1.5 implies that the number of connected components of FixCont,I(F )
is at least 2, which is optimal by the following example.

Example 1.6. Let µ be the measure induced by the area form ω and D be a topological
closed disk on M . Up to a diffeomorphism, we may suppose that D is the closed unit
Euclidean disk. Let us consider the polar coordinate for D with the center z0 = (0, 0).
We suppose that the area form ω|D = rdr ∧ dθ. Consider the following isotopy (Ft)t∈[0,1]

on M which defined on D by the formula

Ft : D → D

(r, θ) 7→ (r, θ + 2πrt),

and Ft|M\D = IdM\D for all t ∈ [0, 1]. Obviously, ρM,I(µ) = 0 and FixCont,I(F ) has exactly
two connected components: {z0} and M \ Int(D), where Int(D) is the interior of D.

By Theorem 1.5 and Theorem 5.1, if FixCont,I(F ) has exactly two connected compo-
nents, its cardinality must be infinite.

Remark that neither Theorem 1.4 nor 1.5 is valid when the measure does not have full
support. We refer to Example 6.3 and Example 6.4 for counterexamples of Theorem 1.4.
Example 6.3 is also a counterexample of Theorem 1.5 on a torus. When the genus of M is
more than 2, one can choose an identity isotopy on M with exactly one contractible fixed
point z (such isotopy exists by Lefschetz-Nielsen’s formula) and the Dirac measure δz.

The article is organized as follows. In Section 2, we first introduce some notations, and
recall the linking number on contractible fixed points and the boundedness properties. In
Section 3, we explain the approach to defining the generalized action function and study
the continuity of this action function. Our main results Proposition 1.3 and Theorem 1.4
will be proved in Section 4 and Section 5, respectively. In Appendix, we provide the proofs
of the lemmas which are not given in the main sections and construct Example 6.3 and
Example 6.4.
Acknowledgements. I would like to thank Patrice Le Calvez for many helpful discussions
and suggestions. I also thank Frédéric Le Roux and Olivier Jaulent for explaining their
results to me. I am grateful to Yiming Long, Matthias Schwarz and Lucien Guillou for
reading the manuscript and many useful remarks.
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2. Notations

We denote by | · | the usual Euclidean metric on Rk or Ck and by Sk−1 = {x ∈ Rk |
|x| = 1} the unit sphere.

If A is a set, we write ]A for the cardinality of A. If (S, σ, µ) is a measure space and V is
any finite dimensional linear space, denote by L1(S, V, µ) the set of µ-integrable functions
from S to V . If X is a topological space and A is a subset of X, denote by IntX(A) and
ClX(A) respectively the interior and the closure of A. We will omit the subscript X if
there is no any confusion. If M is a manifold and N is a submanifold of M , we denote
by ∂N the boundary of N on M . If M is a smooth manifold (with boundary or not),
we denote by Homeo(M) (resp. Diff(M), Diff1(M)) the set of all homeomorphisms (resp.
diffeomorphisms, C1-diffeomorphisms) of M .

2.1. Identity isotopies. An identity isotopy I = (Ft)t∈[0,1] on M is a continuous path

[0, 1] → Homeo(M)
t 7→ Ft

such that F0 = IdM , the last set being endowed with the compact-open topology. We
naturally extend this map to R by writing Ft+1 = Ft ◦ F1. We can also define the inverse
isotopy of I as I−1 = (F−t)t∈[0,1] = (F1−t ◦ F−1

1 )t∈[0,1]. We denote by Homeo∗(M) the set
of all homeomorphisms of M that are isotopic to the identity.

A path on a manifold M is a continuous map γ : J → M defined on a nontrivial
interval J (up to an increasing reparametrization). We can talk of a proper path (i.e.
γ−1(K) is compact for any compact set K) or a compact path (i.e. J is compact). When
γ is a compact path, γ(inf J) and γ(supJ) are the ends of γ. We say that a compact
path γ is a loop if the two ends of γ coincide. The inverse of the path γ is defined by
γ−1 : t 7→ γ(−t), t ∈ −J . If γ1 : J1 → M and γ2 : J2 → M are two paths such that

b1 = sup J1 ∈ J1, a2 = inf J2 ∈ J2 and γ1(b1) = γ2(a2),

then the concatenation γ1 and γ2 is defined on J = J1 ∪ (J2 + (b1 − a2)) in the classical
way, where (J2 + (b1 − a2)) represents the translation of J2 by (b1 − a2):

γ1γ2(t) =

{
γ1(t) if t ∈ J1;
γ2(t + a2 − b1) if t ∈ J2 + (b1 − a2).

Let I be an interval (maybe infinite) of Z. If {γi : Ji → M}i∈I is a family of compact
paths satisfying that γi(sup(Ji)) = γi+1(inf(Ji+1)) for every i ∈ I, then we can define
their concatenation

∏
i∈I γi.

If {γi}i∈I is a family of compact paths where I =
⊔

j∈J Ij and Ij is an interval of Z
such that

∏
i∈Ij

γi is well defined (in the concatenation sense) for every j ∈ J , we define
their product by abusing notations:∏

i∈I
γi =

∏

j∈J

∏

i∈Ij

γi.

The trajectory of a point z for the isotopy I = (Ft)t∈[0,1] is the oriented path I(z) : t 7→
Ft(z) defined on [0, 1]. Suppose that {Ik}1≤k≤k0 is a family of identity isotopies on M .
Write Ik = (Fk,t)t∈[0,1]. We can define a new identity isotopy Ik0 · · · I2I1 = (Ft)t∈[0,1] by
concatenation as follows

(2.1) Ft(z) = Fk, k0t−(k−1)(Fk−1,1 ◦ Fk−2,1 ◦ · · · ◦ F1,1(z)) if
k − 1
k0

≤ t ≤ k

k0
.
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In particular, Ik0(z) =
∏k0−1

k=0 I(F k(z)) when Ik = I for all 1 ≤ k ≤ k0.
We write Fix(F ) for the set of fixed points of F . A fixed point z of F = F1 is contractible

if I(z) is homotopic to zero. We write FixCont,I(F ) for the set of contractible fixed points
of F , which obviously depends on I.

2.2. The algebraic intersection number. The choice of an orientation on M permits
us to define the algebraic intersection number Γ∧Γ′ between two loops. We keep the same
notation Γ ∧ γ for the algebraic intersection number between a loop and a path γ when
it is defined, for example, when γ is proper or when γ is compact path whose extremities
are not in Γ. Similarly, we write γ ∧ γ′ for the algebraic intersection number of two path
γ and γ′ when it is defined, for example, when γ and γ′ are compact paths and the ends
of γ (resp. γ′) are not on γ′ (resp. γ). If Γ is a loop on a smooth manifold M , write
[Γ] ∈ H1(M,Z) for the homology class of Γ. It is clear that the value Γ ∧ γ does not
depends on the choice of the path γ that fixes its endpoints when [Γ] = 0.

2.3. Rotation vector. Let us introduce the classical notion of rotation vector which was
defined originally in [St57]. Suppose that F is the time-one map of an identity isotopy
I = (Ft)t∈[0,1]. Let Rec+(F ) be the set of positively recurrent points of F . If z ∈ Rec+(F ),
fix an open disk U ⊂ M containing z, and write {Fnk(z)}k≥1 for the subsequence of the
positive orbit of z obtained by keeping the points that are in U . For any k ≥ 0, choose
a simple path γF nk (z),z in U joining Fnk(z) to z. The homology class [Γk] ∈ H1(M,Z) of
the loop Γk = Ink(z)γF nk (z),z does not depend on the choice of γF nk (z),z. Say that z has
a rotation vector ρM,I(z) ∈ H1(M,R) if

lim
l→+∞

1
nkl

[Γkl
] = ρM,I(z)

for any subsequence {Fnkl (z)}l≥1 which converges to z. Neither the existence nor the
value of the rotation vector depends on the choice of U .

Suppose that M is compact and that F is the time-one map of an identity isotopy
I = (Ft)t∈[0,1] on M . Recall that M(F ) is the set of Borel finite measures on M whose
elements are invariant by F . If µ ∈ M(F ), we can define the rotation vector ρM,I(z)
for µ-almost every positively recurrent point. Moreover, we can prove that the rotation
vector is uniformly bounded if it exists (See [Wang11a, page 52]). Therefore, we define
the rotation vector of the measure

ρM,I(µ) =
∫

M
ρM,I dµ ∈ H1(M,R).

2.4. The weak boundedness property and the boundedness property.

2.4.1. We begin by recalling some results about identity isotopies, which will be often used
in the article.

Remark 2.1. Suppose that M is an oriented compact surface and that F is the time-one
map of an identity isotopy I = (Ft)t∈[0,1] on M . When z ∈ FixCont,I(F ), there is another
identity isotopy I ′ = (F ′

t)t∈[0,1] homotopic to I with fixed endpoints such that I ′ fixes z (see,
e.g., [Jau14, Proposition 2.15]), that is, there is a continuous map H : [0, 1]×[0, 1]×M → M
such that

• H(0, t, z) = Ft(z) and H(1, t, z) = F ′
t(z) for all t ∈ [0, 1];

• H(s, 0, z) = IdM (z) and H(s, 1, z) = F (z) for all s ∈ [0, 1];
• F ′

t(z) = z for all t ∈ [0, 1].
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Lemma 2.2 ([Wang11a], page 54). Let S2 be the 2-sphere and I = (Ft)t∈[0,1] be an identity
isotopy on S2. For every three different fixed points zi (i = 1, 2, 3) of F1, there exists
another identity isotopy I ′ = (F ′

t)t∈[0,1] from IdS2 to F1 such that I ′ fixes zi (i = 1, 2, 3).

As a consequence, we have the following corollary.

Corollary 2.3. Let I = (Ft)t∈[0,1] be an identity isotopy on C. For any two different fixed
points z1 and z2 of F1, there exists another identity isotopy I ′ from IdC to F1 such that I ′
fixes z1 and z2.

Remark 2.4. Let zi ∈ S2 (i = 1, 2, 3) and Homeo∗(S2, z1, z2, z3) be the identity com-
ponent of the space of all homeomorphisms of S2 leaving zi (i = 1, 2, 3) pointwise fixed
(for the compact-open topology). It is well known that π1(Homeo∗(S2, z1, z2, z3)) = 0 (see
[Ham66, Han92]). It implies that any two identity isotopies I, I ′ ⊂ Homeo∗(S2, z1, z2, z3)
with fixed endpoints are homotopic. As a consequence, let Homeo∗(C, z1, z2) be the iden-
tity component of the space of all homeomorphisms of C leaving two different points z1

and z2 of C pointwise fixed, we have π1(Homeo∗(C, z1, z2)) = 0.

2.4.2. Linking number. Let M be a surface that is homeomorphic to the complex plane
C and I = (Ft)t∈[0,1] be an identity isotopy on M . Let us define the linking number
iI(z, z′) ∈ Z for every two different fixed points z and z′ of F1. It is the degree of the map
ξ : S1 → S1 defined by

ξ(e2iπt) =
h ◦ Ft(z′)− h ◦ Ft(z)
|h ◦ Ft(z′)− h ◦ Ft(z)| ,

where h : M → C is a homeomorphism. The linking number does not depend on the
chosen h.

Let F be the time-one map of an identity isotopy I = (Ft)t∈[0,1] on a closed oriented
surface M of genus g ≥ 1 and F̃ be the time-one map of the lifted identity isotopy
Ĩ = (F̃t)t∈[0,1] on the universal cover M̃ of M . Let π : M̃ → M be the covering map and
G be the covering transformation group. Denote respectively by ∆ and ∆̃ the diagonal of
FixCont,I(F ) × FixCont,I(F ) and the diagonal of Fix(F̃ ) × Fix(F̃ ). Endow the surface M
with a Riemannian metric and denote by d the distance induced by the metric. Lift the
Riemannian metric to M̃ and write d̃ for the distance induced by the metric.

When g > 1, it is well known that π1(Homeo∗(M)) ' 0 (see [Ham66]). It implies that
any two identity isotopies I, I ′ ⊂ Homeo∗(M) with fixed endpoints are homotopic. Hence,
I is unique up to homotopy, it implies that F̃ is uniquely defined and does not depend
on the choice of the isotopy from IdM to F . When g = 1, π1(Homeo∗(M)) ' Z2 (see
[Ham65]), F̃ depends on the isotopy I. The universal cover M̃ is homeomorphic to C.

We define the linking number i(F̃ ; z̃, z̃ ′) for every pair (z̃, z̃ ′) ∈ (Fix(F̃ )× Fix(F̃ )) \ ∆̃
as

(2.2) i(F̃ ; z̃, z̃ ′) = ieI(z̃, z̃ ′).

2.4.3. WB-property and B-property. In the rest of the article, when we take two distinct
fixed points ã and b̃ of F̃ , it does not mean that π(ã) and π(̃b) are distinct.

Definition 2.5. We say that I satisfies the weak boundedness property at ã ∈ Fix(F̃ )
(WB-property at ã) if there exists a positive number Nea such that |i(F̃ ; ã, b̃)| ≤ Nea for all
b̃ ∈ Fix(F̃ ) \ {ã}. We say that I satisfies the weak boundedness property (WB-property) if
it satisfies the weak boundedness property at every ã ∈ Fix(F̃ ). Let X̃ ⊆ Fix(F̃ ). We say
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that I satisfies the boundedness property on X̃ (B-property on X̃) if there exists a positive
number N eX such that |i(F̃ ; ã, b̃)| ≤ N eX for all (ã, b̃) ∈ X̃ × Fix(F̃ ) with ã 6= b̃. We say
that I satisfies the boundedness property (B-property) if X̃ = Fix(F̃ ).

In [Wang11a], we have proved that the WB-property is satisfied if F ∈ Diff(M) and
the B-property is satisfied if F ∈ Diff1(M). Le Roux [Ler14] has proved that the set of all
WB-property points of I is dense in Fix(F̃ ).

Let X be a connected component of FixCont,I(F ). Either X is contractible, that means
it is included in an open disk. In this case, the preimage of X in the universal covering
space is a disjoint union of sets X̃ such that the projection induces a homeomorphim from
X̃ to X. Or X is not contractible, and in this case every connected component of the
preimage of X is unbounded.

To prove our main results, we need the following three lemmas whose proofs are provided
in Appendix.

Lemma 2.6. If X̃ is a connected subset of Fix(F̃ ) and z̃ ∈ Fix(F̃ ), then i(F̃ ; z̃, z̃ ′) (z̃ ′

as variable, z̃ ′ 6= z̃) is a constant on X̃. Furthermore, if X̃ is not reduced to a singleton,
i(F̃ ; ·, ·) is a constant on (X̃ × X̃) \ ∆̃.

Lemma 2.7. If X̃ is a connected unbounded subset of Fix(F̃ ), then i(F̃ ; z̃, z̃ ′) = 0 for
all (z̃, z̃′) ∈ Fix(F̃ ) × X̃ with z̃ 6= z̃ ′. Consequently, if X is a connected component of
FixCont,I(F ) and X is not contractible, i(F̃ ; z̃, z̃ ′) = 0 for all (z̃, z̃ ′) ∈ Fix(F̃ ) × π−1(X)
with z̃ 6= z̃ ′.

Lemma 2.8. If X is a connected subset of FixCont,I(F ) and X is not reduced to a sin-
gleton, I satisfies the B-property on π−1(X). As a conclusion, if the set FixCont,I(F ) is
connected, I satisfies the B-property.

3. The generalized action function revisited

In this section, we explain the approach to defining the generalized action function and
study the continuity of this function.

3.1. The linking number of positively recurrent points.
Recall that F is the time-one map of an identity isotopy I = (Ft)t∈[0,1] on a closed

oriented surface M of genus g ≥ 1 and F̃ is the time-one map of the lifted identity isotopy
Ĩ = (F̃t)t∈[0,1] on the universal cover M̃ of M . We can compactify M̃ into a sphere by
adding a point ∞ at infinity and the lift F̃ may be extended by fixing this point.

For every distinct fixed points ã and b̃ of F̃ , by Lemma 2.2, we can choose an isotopy
Ĩ1 from IdfM to F̃ that fixes ã and b̃.

Fix z ∈ Rec+(F ) \ π({ã, b̃}) and consider an open disk U ⊂ M \ π({ã, b̃}) containing z.
define the first return map Φ : Rec+(F ) ∩ U → Rec+(F ) ∩ U and write Φ(z) = F τ(z)(z),
where τ(z) is the first return time, that is, the least number n ≥ 1 such that Fn(z) ∈ U .
For every pair (z′, z′′) ∈ U2, choose an oriented simple path γz′,z′′ in U from z′ to z′′.
Denote by Φ̃ the lift of the first return map Φ:

Φ̃ : π−1(Rec+(F )) ∩ π−1(U) → π−1(Rec+(F )) ∩ π−1(U)

z̃ 7→ F̃ τ(π(ez))(z̃).
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For any z̃ ∈ π−1(U), write Uez the connected component of π−1(U) that contains z̃. For

every j ≥ 1, let τj(z) =
j−1∑
i=0

τ(Φi(z)). For every n ≥ 1, consider the following curves in M̃ :

Γ̃n
eI1,ez = Ĩ

τn(z)
1 (z̃)γ̃eΦn(ez),ezn

,

where z̃n ∈ π−1({z})∩ŨeΦn(ez)
, and γ̃eΦn(ez),ezn

is the lift of γΦn(z),z that is contained in ŨeΦn(ez)
.

We define the following infinite product (see Section 2.1):

Γ̃n
eI1,z

=
∏

π(ez)=z

Γ̃n
eI1,ez .

In particular, when z ∈ Fix(F ), Γ̃1
eI1,z

=
∏

π(ez)=z

Ĩ1(z̃).

When ŨeΦn(ez)
= Ũez, the curve Γ̃n

eI1,ez is a loop and hence Γ̃n
eI1,z

is an infinite family of loops,

that will be called a multi-loop. When ŨeΦn(ez)
6= Ũez, the curve Γ̃n

eI1,ez is a compact path and

hence Γ̃n
eI1,z

is an infinite family of paths (it can be seen as a family of proper paths, that
means all of two ends of these paths going to ∞), that will be called a multi-path.

In the both cases, for every neighborhood Ṽ of ∞, there are finitely many loops or paths
Γ̃n
eI1,ez that are not included in Ṽ . By adding the point ∞ at infinity, we get a multi-loop

on the sphere S = M̃ t {∞}.
Hence Γ̃n

eI1,z
can be seen as a multi-loop in the annulus Aea,eb = S \ {ã, b̃} with a finite

homology. As a consequence, if γ̃ is a path from ã to b̃, the intersection number γ̃∧ Γ̃n
eI1,z

is
well defined and does not depend on γ̃. By Remark 2.4 and the properties of intersection
number, the intersection number is also independent of the choice of the identity isotopy Ĩ1

but depends on U . Moreover, observe that the path (
∏n−1

i=0 γΦn−i(z),Φn−i−1(z))(γΦn(z),z)−1

is a loop in U , we have

(3.1) γ̃ ∧ Γ̃n
eI1,z

= γ̃ ∧
n−1∏

j=0

Γ̃1
eI1,Φj(z)

=
n−1∑

j=0

γ̃ ∧ Γ̃1
eI1,Φj(z)

.

For n ≥ 1, we can define the function

Ln : ((Fix(F̃ )× Fix(F̃ )) \ ∆̃)× (Rec+(F ) ∩ U) → Z,

(3.2) Ln(F̃ ; ã, b̃, z) = γ̃ ∧ Γ̃n
eI1,z

=
n−1∑

j=0

L1(F̃ ; ã, b̃, Φj(z))

where U ⊂ M \ π({ã, b̃}). The last equation follows from Equation 3.1. The function Ln

depends on U but not on the choice of γΦn(z),z.

Definition 3.1. Fix z ∈ Rec+(F ) \ π({ã, b̃}). Let us say that the linking number
i(F̃ ; ã, b̃, z) ∈ R is defined, if

lim
k→+∞

Lnk
(F̃ ; ã, b̃, z)
τnk

(z)
= i(F̃ ; ã, b̃, z)

for any subsequence {Φnk(z)}k≥1 of {Φn(z)}n≥1 which converges to z.
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Note here that the linking number i(F̃ ; ã, b̃, z) does not depend on U since if U and U ′
are open disks containing z, there exists a disk containing z that is contained in U ∩ U ′.
In particular, when z ∈ Fix(F ) \ π({ã, b̃}), the linking number i(F̃ ; ã, b̃, z) always exists
and is equal to L1(F̃ ; ã, b̃, z). Moreover, if z ∈ FixCont,I(F ), we have [Wang11a, page 57]

(3.3) i(F̃ ; ã, b̃, z) =
∑

π(ez)=z

(
i(F̃ ; ã, z̃)− i(F̃ ; b̃, z̃)

)
.

3.2. Some elementary properties of the linking number [Wang11a, page 71-73].

Proposition 3.2. For every α ∈ G, every distinct fixed points ã and b̃ of F̃ , and every
z ∈ Rec+(F ) \ π({ã, b̃}), we have Ln(F̃ ;α(ã), α(̃b), z) = Ln(F̃ ; ã, b̃, z) for every n. If
i(F̃ ; ã, b̃, z) exists, then i(F̃ ;α(ã), α(̃b), z) also exists and i(F̃ ;α(ã), α(̃b), z) = i(F̃ ; ã, b̃, z).

Proposition 3.3. For every distinct fixed points ã, b̃ and c̃ of F̃ , and every z ∈ Rec+(F )\
π({ã, b̃, c̃}), we have Ln(F̃ ; ã, b̃, z) + Ln(F̃ ; b̃, c̃, z) + Ln(F̃ ; c̃, ã, z) = 0 for all n. Moreover,
if two among the three linking numbers i(F̃ ; ã, b̃, z), i(F̃ ; b̃, c̃, z) and i(F̃ ; c̃, ã, z) exist, then
the last one also exists and we have

i(F̃ ; ã, b̃, z) + i(F̃ ; b̃, c̃, z) + i(F̃ ; c̃, ã, z) = 0.

The following lemma gives the continuity property of the function Lk whose proof details
will be used in the proof of Proposition 1.3.

Lemma 3.4. Suppose that ã ∈ Fix(F̃ ) and {ãn}n≥1 ⊂ Fix(F̃ ) \ {ã} satisfying ãn → ã as
n → +∞. Then

lim
n→+∞ i(F̃ ; ãn, ã, z) = 0

when z ∈ Fix(F ) \ {π(ã)}, while

lim
n→+∞Lk(F̃ ; ãn, ã, z) = 0

for every k ≥ 1, when z ∈ Rec+(F ) ∩ U where U is an open disk of M \ {π(ã)}.
Proof. Let Ck

z = π−1({z, F (z), · · · , F τk(z)−1(z)}) where τk(z) =
∑k−1

i=0 τ(Φi(z)).
For every n, let Ĩn be the isotopy that fixes ã, ãn and ∞, which is constructed in

Lemma 2.2. Up to conjugacy by a homeomorphism h : M̃ → C, we can identify M̃ with
the complex plane C (refer to Remark 2.4 and Definition 3.1 for the reasons). Through
a simple computation (see the proof of Lemma 2.2 [[Wang11a], page 54]), we can get the
formula of Ĩn as follows

(3.4) Ĩn(z̃)(t) =
ãn − ã

F̃t(ãn)− F̃t(ã)
· (F̃t(z̃)− F̃t(ã)) + ã.

Let Ṽn be a disk whose center is ã and radius is 2|ãn− ã|. As the functions Lk(F̃ ; ãn, ã, z)
do not depend on the path from ã to ãn (see Section 3.1), we can suppose that the path
γ̃ from ãn to ã is always in Ṽn. As z 6= π(ã), the value

(3.5) c = lim inf
n≥1

min
t∈[0,1],ez∈Ck

z

|F̃t(z̃)− F̃t(ãn)|

is positive which only depends on z and k. For the constant c, we can find N > 0 large
enough such that maxt∈[0,1] |F̃t(ãn) − F̃t(ã)| < c/3 when n ≥ N . This implies that, for
every z̃ ∈ Ck

z and t ∈ [0, 1],
|Ĩn(z̃)(t)− ã| > 2|ãn − ã|
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when n ≥ N . As a consequence, we have

lim
n→+∞ i(F̃ ; ãn, ã, z) = 0

in the case where z ∈ Fix(F ) \ {π(ã)}, and

lim
n→+∞Lk(F̃ ; ãn, ã, z) = 0

in the case where z ∈ Rec+(F ) ∩ U . ¤

3.3. Definition of the generalized action function.

Suppose now the function i(F̃ ; ã, b̃, z) is µ-integrable. We define the action difference
of ã and b̃ as follows

(3.6) iµ(F̃ ; ã, b̃) =
∫

M\π({ea,eb})
i(F̃ ; ã, b̃, z) dµ.

As an immediate consequence of Proposition 3.2, we have:

Corollary 3.5. iµ(F̃ ;α(ã), α(̃b)) = iµ(F̃ ; ã, b̃) for any α ∈ G.

Let F be the time-one map of an identity isotopy I = (Ft)t∈[0,1] on M . We suppose
now that the action difference iµ(F̃ ; ã, b̃) is well defined for every two distinct fixed points
ã and b̃ of F̃ . We define the action difference as follows:

iµ : (Fix(F̃ )× Fix(F̃ )) \ ∆̃ → R
(ã, b̃) 7→ iµ(F̃ ; ã, b̃).

Note that for each of the following cases, the action difference can be defined [Wang11a,
page 86] for every pair (ã, b̃) ∈ (Fix(F̃ )× Fix(F̃ )) \ ∆̃ :

• F ∈ Diff(M);
• I satisfies the WB-property and µ has full support;
• I satisfies the WB-property and µ is ergodic.

The following corollary is an immediate conclusion of Proposition 3.3:

Corollary 3.6. For any distinct fixed points ã, b̃ and c̃ of F̃ , we have

iµ(F̃ ; ã, b̃) + iµ(F̃ ; b̃, c̃) + iµ(F̃ ; c̃, ã) = 0.

That is, iµ is a coboundary on Fix(F̃ ). So there is a function lµ : Fix(F̃ ) → R, defined up
to an additive constant, such that

iµ(F̃ ; ã, b̃) = lµ(F̃ ; b̃)− lµ(F̃ ; ã).

We call the function lµ the action function on Fix(F̃ ) defined by the measure µ.

Proposition 3.7 ([Wang11a], page 87). If ρM,I(µ) = 0, then iµ(F̃ ; ã, α(ã)) = 0 for every
ã ∈ Fix(F̃ ) and every α ∈ G \ {e} where e is the unit element of G. As a consequence,
there exists a function Lµ defined on FixCont,I(F ) such that for every two distinct fixed
points ã and b̃ of F̃ , we have

iµ(F̃ ; ã, b̃) = Lµ(F̃ ;π(̃b))− Lµ(F̃ ;π(ã)).
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We call the function Lµ the action on FixCont,I(F ) defined by the measure µ. We proved
that the function Lµ is a generalization of the classical case (Theorem 1.2, [Wang11a,
Theorem 4.3.2]).

3.4. The continuity of the generalized action function.
We have the following continuity property of the generalized action function whose proof

details will be used in the proof of Theorem 1.4.

Proposition 3.8. Suppose that F is the time-one map of an identity isotopy I on M and
that µ ∈M(F ). Let X̃ ⊆ Fix(F̃ ). If one of the following three cases is satisfied:

• I satisfies the B-property on X̃ and F ∈ Diff(M);
• I satisfies the B-property on X̃ and Supp(µ) = M ;
• I satisfies the B-property on X̃ and µ is ergodic,

then for any ã ∈ X̃ and {ãn}n≥1 ⊂ X̃ \ {ã} satisfying ãn → ã as n → +∞, we have

lim
n→+∞ iµ(F̃ ; ãn, ã) = 0.

As a conclusion, if I satisfies the B-property on X̃and the WB-property, the action lµ is
continuous on X̃. Moreover, if ρM,I(µ) = 0, the action Lµ is continuous on π(X̃).

Proof. There exists a triangulation {Ui}+∞
i=1 of M \ Fix(F ) such that, for every i, the

interior of Ui is an open free disk for F (i.e., F (Ui)∩Ui = ∅) and satisfies µ(∂Ui) = 0. By
a slight abuse of notations we will also write Ui for its interior.

According to Lemma 3.4, we have that lim
n→+∞ i(F̃ ; ãn, ã, z) = 0 for z ∈ Fix(F ) \ {π(ã)},

and that lim
n→+∞L1(F̃ ; ãn, ã, z) = 0 for z ∈ Rec+(F ) ∩ Ui, for every i.

Choose a compact set P̃ ⊂ M̃ such that ã ∈ Int(P̃ ) and {ãn}n≥1 ⊂ P̃ . As before, when
ã ′ and b̃ ′ are two distinct fixed points of F̃ in P̃ , we can always suppose that the path γ̃

that joins ã ′ and b̃ ′ is in P̃ . By the definition of B-property, we may suppose that there
exists a number N > 0 such that

N > ess sup
n≥1

{ ∣∣∣i(F̃ ; ãn, ã, z)
∣∣∣
}

,

where “ess sup” is the essential supremum1.
By Lebesgue’s dominating convergence theorem (the dominated function is N), we get

lim
n→+∞

∫

Fix(F )

∣∣∣(i(F̃ ; ãn, ã, z)
∣∣∣ dµ = 0.

It is then sufficient to prove that

lim
n→+∞

∫

M\Fix(F )

∣∣∣(i(F̃ ; ãn, ã, z)
∣∣∣ dµ = 0.

Fix any ε > 0. Since µ(
⋃+∞

i=1 Ui) = µ(M \Fix(F )) < +∞, there exists a positive integer
N ′ such that

µ(
+∞⋃

N ′+1

Ui) <
ε

2N
.

1 Refer to Proposition 4.6.9 in [Wang11a, page 82] for the first case, Proposition 4.6.11 in [Wang11a,
page 85] for the second case and Lemma 6.6 in [Wang11b, Proposition 6.8, page 46] for the third case.
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For every pair (ã, b̃) ∈ (Fix(F̃ ) × Fix(F̃ )) \ ∆̃, each i and µ-a.e. z ∈ Ui, we have the
following facts

• ∫
Ui

τ dµ = µ(
⋃

k≥0 F k(Ui)) (by Kac Lemma, see [Kac47]);

• i(F̃ ; ã, b̃, z) is the action of F , i.e., i(F̃ ; ã, b̃, F (z)) = i(F̃ ; ã, b̃, z).
Therefore,

(3.7)
∫
S

k≥0 F k(Ui)

∣∣∣i(F̃ ; ã, b̃, z)
∣∣∣ dµ =

∫

Ui

τ(z)
∣∣∣i(F̃ ; ã, b̃, z)

∣∣∣ dµ.

As L1(F̃ ; ã, b̃, z) ∈ L1(Ui,R, µ)2, the following limit exists

L∗(F̃ ; ã, b̃, z) = lim
m→+∞

Lm(F̃ ; ã, b̃, z)
m

= lim
m→+∞

1
m

m−1∑

j=1

L1(F̃ ; ã, b̃, Φj(z)).

Moreover, we also have the following inequality (modulo subsets of measure zero of Ui)

∣∣∣L∗(F̃ ; ã, b̃, z)
∣∣∣ = lim

m→+∞
1
m

∣∣∣∣∣∣

m−1∑

j=0

(L1(F̃ ; ã, b̃, Φj(z))

∣∣∣∣∣∣
(3.8)

≤ lim
m→+∞

1
m

m−1∑

j=0

∣∣∣L1(F̃ ; ã, b̃, Φj(z))
∣∣∣

=
∣∣∣L1(F̃ ; ã, b̃, z)

∣∣∣
∗
,

where the last equation holds due to Birkhoff Ergodic theorem.
Applying Birkhoff Ergodic theorem again, we get

τ∗(Φ(z)) = τ∗(z) and L∗(F̃ ; ã, b̃, Φ(z)) = L∗(F̃ ; ã, b̃, z),

where τ∗(z) is the limit of the sequence {τn(z)/n}n≥1, Φ is the first return map on Ui.
For µ-a.e. z ∈ Ui, the following limits hold

(3.9) i(F̃ ; ã, b̃, z) = lim
m→+∞

Lm(F̃ ; ã, b̃, z)
τm(z)

= lim
m→+∞

Lm(F̃ ; ã, b̃, z)/m

τm(z)/m
=

L∗(F̃ ; ã, b̃, z)
τ∗(z)

.

Therefore, i(F̃ ; ã, b̃, Φ(z)) = i(F̃ ; ã, b̃, z). Moreover, observing that τ(z)|i(F̃ ; ã, b̃, z)|
∈ L1(Ui,R, µ), we obtain

lim
m→+∞

1
m

m−1∑

j=0

(
τ(Φj(z))

∣∣∣i(F̃ ; ã, b̃, Φj(z))
∣∣∣
)

= lim
m→+∞


 1

m

m−1∑

j=0

τ(Φj(z))


 ·

∣∣∣i(F̃ ; ã, b̃, z)
∣∣∣

= τ∗(z)
∣∣∣i(F̃ ; ã, b̃, z)

∣∣∣
for µ-a.e. z ∈ Ui. This implies that

(3.10)
∫

Ui

τ(z)
∣∣∣i(F̃ ; ã, b̃, z)

∣∣∣ dµ =
∫

Ui

τ∗(z)
∣∣∣i(F̃ ; ã, b̃, z)

∣∣∣ dµ.

2 Refer to Proposition 4.6.10 in [Wang11a, page 81] for the proof.
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From the equalities 3.7, 3.9, 3.10 and Inequality 3.8 above, we obtain

∫
N′S
i=1

Ui

∣∣∣i(F̃ ; ãn, ã, z)
∣∣∣ dµ ≤

N ′∑

i=1

∫
S

k≥0 F k(Ui)

∣∣∣i(F̃ ; ãn, ã, z)
∣∣∣ dµ

=
N ′∑

i=1

∫

Ui

τ(z)
∣∣∣i(F̃ ; ãn, ã, z)

∣∣∣ dµ

=
N ′∑

i=1

∫

Ui

τ∗(z)
∣∣∣i(F̃ ; ãn, ã, z)

∣∣∣ dµ

=
N ′∑

i=1

∫

Ui

∣∣∣L∗(F̃ ; ãn, ã, z)
∣∣∣ dµ

≤
N ′∑

i=1

∫

Ui

∣∣∣L1(F̃ ; ãn, ã, z)
∣∣∣
∗

dµ

=
N ′∑

i=1

∫

Ui

∣∣∣L1(F̃ ; ãn, ã, z)
∣∣∣ dµ

As N ′ is finite, according to Lebesgue’s dominating convergence theorem (the dominated
function is Nτ(z)) and Lemma 3.4, we have

lim
n→+∞

N ′∑

i=1

∫

Ui

∣∣∣L1(F̃ ; ãn, ã, z)
∣∣∣ dµ = 0.

Therefore, there exists a positive number N ′′ such that when n ≥ N ′′,
∫

N′S
i=1

Ui

∣∣∣i(F̃ ; ãn, ã, z)
∣∣∣ dµ <

ε

2
.

Finally, when n ≥ N ′′, we obtain
∫

M\Fix(F )

∣∣∣(i(F̃ ; ãn, ã, z)
∣∣∣ dµ

=
∫

N′S
i=1

Ui

∣∣∣(i(F̃ ; ãn, ã, z)
∣∣∣ dµ +

∫
+∞S

N′+1

Ui

∣∣∣(i(F̃ ; ãn, ã, z)
∣∣∣ dµ

<
ε

2
+

ε

2N
·N

= ε.

Hence, the first statement holds.

Now we turn to prove the second statement. Let a ∈ π(X̃) and {an}n≥1 ⊂ π(X̃) \ {a}
that converges to a. By Proposition 3.7, we only need to consider a lift ã ∈ X̃ of a and
a lifted sequence {ãn}n≥1 ⊂ X̃ of {an}n≥1 that converges to ã. Then it follows from the
first statement. ¤
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4. The proof of Proposition 1.3

Suppose that X ⊆ FixCont,I(F ) is connected and not reduced to a singleton. By Lemma
2.8, I satisfies the B-property on π−1(X). If I satisfies the hypotheses of Theorem 1.2,
according to Proposition 3.8, the action function Lµ is continuous on X. Moreover, we
have the following stronger result in this case.

Proposition 1.3 Under the hypotheses of Theorem 1.2, for every two distinct contractible
fixed points a and b of F which belong to a same connected component of FixCont,I(F ),
we have Iµ(F̃ ; a, b) = 0. As a conclusion, the action function Lµ is a constant on each
connected component of FixCont,I(F ).

Given Y ⊂ M and ε > 0, let Yε = {z ∈ M | d(z, y) < ε, y ∈ Y } be the ε-neighborhood
of Y . If N is a submanifold of M , the inclusion i : N ↪→ M naturally induces a homomor-
phism: i∗ : π1(N, p) → π1(M, p), where p ∈ N .

To prove Proposition 1.3, we need the following topological lemma proved in Appendix.

Lemma 4.1. If Z is a compact subset of M and z ∈ Z, the following direct limits exist:

lim−→
ε→0+

i∗(H1(Zε,Z)) and lim−→
ε→0+

i∗(π1(Zε, z)).

Proof. Let X be a connected component of FixCont,I(F ) that is not a singleton.
Let us first consider the linking number i(F̃ ; ã, b̃, z), where z ∈ Rec+(F ) \ FixCont,I(F )

and (ã, b̃) ∈ (π−1(X)× π−1(X)) \ ∆̃.
Recall the following functions defined in Section 3.1:

Lk : ((Fix(F̃ )× Fix(F̃ )) \ ∆̃)× (Rec+(F ) ∩ U) → Z,

Lk(F̃ ; c̃1, c̃2, z) = γ̃ ∧ Γ̃k
eI1,z

=
k−1∑

j=0

L1(F̃ ; c̃1, c̃2,Φj(z)),

where z ∈ Rec+(F ) , U ⊂ M \π({c̃1, c̃2}) is an open disk containing z, and Ĩ1 is an isotopy
from IdfM to F̃ that fixes c̃1 and c̃2.

We claim that, for every z ∈ Rec+(F )\FixCont,I(F ) and k ≥ 1, there exists ε > 0 which
merely depends on z and k such that Lk(F̃ ; ã, b̃, z) = 0 when d̃(ã, b̃) < ε.

Indeed, since X is compact, z 6∈ X, and F̃t ◦ T = T ◦ F̃t for any T ∈ G, the value

c′ = min
t∈[0,1], ez∈Ck

z , ez′∈π−1(X)
|F̃t(z̃)− F̃t(z̃′)|

is positive and only depends on z and k, where Ck
z = π−1({z, F (z), · · · , F τk(z)−1(z)}).

Recall that the isotopy

Ĩ ′(z̃)(t) =
b̃− ã

F̃t(̃b)− F̃t(ã)
· (F̃t(z̃)− F̃t(ã)) + ã

fixes ã, b̃ and ∞. Let ε > 0 be small enough such that maxt∈[0,1] |F̃t(ã) − F̃t(̃b)| < c′/3
when d̃(ã, b̃) < ε and let Ṽ ′ be a disk whose center is ã and radius is 2|̃b − ã|. The claim
follows from the proof of Lemma 3.4 if one replaces Ĩn in Formula 3.4 by Ĩ ′, Ṽn by Ṽ ′, and
c in Formula 3.5 by c′.

Fix x ∈ X and a lift x̃ ∈ M̃ of x. By Lemma 4.1, there is ε0 > 0 such that

i∗(π1(Xε, x)) = i∗(π1(Xε0 , x))
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for all 0 < ε < ε0. Let X̃ε be the connected component of π−1(Xε) that contains x̃. Denote
by G eXε

the subgroup of G that is the stabilizer of X̃ε, i.e., G eXε
= {T ∈ G | T (X̃ε) = X̃ε}.

It is clear that i∗(π1(Xε, x)) ' G eXε
. Hence G eXε1

= G eXε2
for all 0 < ε2 < ε1 ≤ ε0. Let

Ỹε = X̃ε ∩ π−1(X). Recall that X is connected. We have π(Ỹε) = X for all 0 < ε ≤ ε0
since Xε is path connected. Note that Ỹε is 4ε-chain connected, i.e., for any ỹ, ỹ′ ∈ Ỹε there
exists a sequence {ỹi}n

i=1 ⊂ Ỹε such that ỹ1 = ỹ, ỹn = ỹ′, and d̃(ỹi, ỹi+1) < 4ε. Indeed,
we can find a path γ in Xε from π(ỹ) to π(ỹ′) and a lift γ̃ of γ in X̃ε from ỹ to ỹ′. On
the path γ̃, we choose a sequence {x̃i}n

i=1 ⊂ γ̃ such that x̃1 = ỹ, x̃n = ỹ′, and the disks
{D̃(x̃i, ε)}n

i=1 cover γ̃ with D̃(x̃i, ε)∩ D̃(x̃i+1, ε) 6= ∅ for all i = 1, . . . , n− 1, where D̃(x̃i, ε)
is a disk on M̃ whose center is x̃i and radius is ε. Choose a sequence {ỹi}n

i=1 ⊂ Ỹε such
that ỹ1 = ỹ, ỹn = ỹ′, and ỹi ∈ D̃(x̃i, ε) ∩ Ỹε for 2 ≤ i ≤ n − 1. Obviously, {ỹi}n

i=1 is a
4ε-chain in Ỹε from ỹ to ỹ′ by the triangle inequality.

For any y ∈ X, we claim that ỹ ∈ Ỹε for all ỹ ∈ π−1(y) ∩ Ỹε0 and all 0 < ε ≤ ε0.
Otherwise, there is 0 < ε1 < ε0 and ỹ ∈ Ỹε0 ⊂ X̃ε0 such that ỹ 6∈ Ỹε1 , and hence ỹ 6∈ X̃ε1 .
However, there is a lift ỹ′ of y such that ỹ′ ∈ Ỹε1 ⊂ X̃ε1 ⊂ X̃ε0 . On the one hand, T ∈ G eXε0

since ỹ, ỹ′ ∈ X̃ε0 , where ỹ = T (ỹ′). On the other hand, T 6∈ G eXε1
since ỹ 6∈ X̃ε1 . This is

impossible because G eXε1
= G eXε0

and hence the claim holds. This implies that Ỹε = Ỹε0

for all 0 < ε < ε0, and hence Ỹε0 is ε-chain connected for all 0 < ε ≤ ε0/4.

Recall the equality in Proposition 3.3 for any distinct points c̃1, c̃2 and c̃3 of Fix(F̃ ):

(4.1) Lk(F̃ ; c̃1, c̃2, z) + Lk(F̃ ; c̃2, c̃3, z) + Lk(F̃ ; c̃3, c̃1, z) = 0.

Applying Equality 4.1, we get that, for all distinct ã, b̃ ∈ Ỹε0 , Lk(F̃ ; ã, b̃, z) = 0 for
all k and z ∈ Rec+(F ) \ FixCont,I(F ). This implies that i(F̃ ; ã, b̃, z) = 0 for all (ã, b̃) ∈
(Ỹε0 × Ỹε0) \ ∆̃ and z ∈ Rec+(F ) \ FixCont,I(F ).

Let us now consider the case of z ∈ FixCont,I(F ) to finish our proof, which is divided
into two cases:

(1) There is a set X̃ on M̃ which is a connected component of π−1(X) and satisfies
that the covering map π : X̃ → X is surjective (this case contains the case where
X is path connected);

(2) There is no such set satisfying Item 1.

Recall the linking number of z for ã and b̃ (see Formula 3.3):

i(F̃ ; ã, b̃, z) =
∑

π(ez)=z

(
i(F̃ ; ã, z̃)− i(F̃ ; b̃, z̃)

)
,

where (ã, b̃) ∈ (Fix(F̃ )× Fix(F̃ )) \ ∆̃ and i(F̃ ; c̃, z̃) = ieI(c̃, z̃) (see Formula 2.2).
In the first case, for any z̃ ∈ π−1(z), by Lemma 2.6, i(F̃ ; z̃ ′, z̃) is a constant (which

depends on z̃) for all z̃ ′ ∈ X̃ \{z̃}. We get that i(F̃ ; ã, b̃, z) = 0 for any (ã, b̃) ∈ (X̃×X̃)\∆̃
and z ∈ FixCont,I(F ) \ π({ã, b̃}).

Note that Ỹε0 = X̃ in this case. Therefore, by the definition of the action function, we
get that iµ(F̃ ; ã, b̃) = 0 for all (ã, b̃) ∈ (X̃ × X̃) \ ∆̃. The conclusion follows from the fact
that π(X̃) = X and the hypothesis that ρM,I(µ) = 0 in this case.
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In the second case, write π−1(X) as
⊔

α∈eΛ X̃α where X̃α is a connected component of
π−1(X) on M̃ . Note that 2 ≤ ]Λ̃ ≤ +∞. It is easy to see that every such X̃α is unbounded
on M̃ by the hypotheses and the connectedness of X.

Similar to the proof of the first case, for every α ∈ Λ̃ and c̃ ∈ X̃β with α 6= β, we
have the following fact: when z ∈ FixCont,I(F ), the linking number i(F̃ ; ·, c̃, z) ∈ Z is a
constant on X̃α, and hence i(F̃ ; ã, b̃, z) = 0 for all (ã, b̃) ∈ (X̃α × X̃α) \ ∆̃. Observing that
every X̃α is unbounded, the constant is zero by Formula 3.3 and Lemma 2.7. Therefore,
i(F̃ ; ã, b̃, z) = 0 for all (ã, b̃) ∈ (π−1(X)× π−1(X)) \ ∆̃.

Finally, by the definition of the action function, we get that iµ(F̃ ; ã, b̃) = 0 for all
(ã, b̃) ∈ (Ỹε0 × Ỹε0) \ ∆̃. The conclusion the holds based on the facts that π(Ỹε0) = X and
that ρM,I(µ) = 0 in the second case. ¤

5. The proof of Theorem 1.4

To prove Theorem 1.4, we need the following theorem [Mat00, Lec05]:

Theorem 5.1. Let M be a closed oriented surface with genus g ≥ 1. If F is the time-one
map of a µ-Hamiltonian isotopy I on M , then there exist at least three contractible fixed
points of F .

Remark that Theorem 5.1 is not valid when the measure has no full support (see Ex-
ample 6.3 and Example 6.4 below).

Theorem 1.4 Let F be the time-one map of a µ-Hamiltonian isotopy I on a closed
oriented surface M with g ≥ 1. If I satisfies the WB-property and F is not IdM , the
action function Lµ is not constant.

Theorem 1.4 is proved in two cases: FixCont,I(F ) is finite and it is infinite.

Proof of Theorem 1.4 for the case ]FixCont,I(F ) < +∞.
We say that X ⊆ FixCont,I(F ) is unlinked if there exists an isotopy I ′ = (F ′

t)t∈[0,1]

homotopic to I which fixes every point of X. Moreover, we say that X is a maximal
unlinked set if any set X ′ ⊆ FixCont,I(F ) that strictly contains X is not unlinked.

In the proof of Theorem 5.1 ([Lec05, Theorem 10.1]), Le Calvez has proved that there
exists a maximal unlinked set X ⊆ FixCont,I(F ) with ]X ≥ 3 if ]FixCont,I(F ) < +∞.

There exists an oriented topological foliation F on M \X (or, equivalently, a singular
oriented foliation F on M with X equal to the singular set) such that, for all z ∈ M\X, the
trajectory I(z) is homotopic to an arc γ joining z and F (z) in M \X which is positively
transverse to F . It means that for every t0 ∈ [0, 1] there exists an open neighborhood
V ⊂ M \ X of γ(t0) and an orientation preserving homeomorphism h : V → (−1, 1)2

which sends the foliation F on the horizontal foliation (oriented with x1 increasing) such
that the map t 7→ p2(h(γ(t))) defined in a neighborhood of t0 is strictly increasing, where
p2(x1, x2) = x2.

We can choose a point z ∈ Rec+(F )\Fix(F ) and a leaf λ containing z. Proposition 10.4
in [Lec05] states that the ω-limit set ω(λ) ∈ X, the α-limit set α(λ) ∈ X, and ω(λ) 6= α(λ).
Fix an isotopy I ′ homotopic to I that fixes ω(λ) and α(λ) and a lift λ̃ of λ that joins ω̃(λ)
and α̃(λ). Let us now study the linking number i(F̃ ; ω̃(λ), α̃(λ), z′) for z′ ∈ Rec+(F ) \X
when it exists. Observing that for all z′ ∈ M \X, the trajectory I ′(z′) is still homotopic
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to an arc that is positively transverse to F . Hence, for all z′ ∈ Rec+(F ) \X, without loss
of generality, we can choose an open disk U containing z′ such that U ∩λ = ∅ by shrinking
U and perturbing λ if necessary. Then we have

Ln(F̃ ; ω̃(λ), α̃(λ), z′) = λ̃ ∧ Γ̃n
eI ′,z′ = λ ∧ Γn

I ′,z′ ≥ 0

for every n ≥ 1, where Ĩ ′ is the lift of I ′ to M̃ and Γn
I ′,z′ = π(Γ̃n

eI ′,z′).
According to Definition 3.1, we have

i(F̃ ; ω̃(λ), α̃(λ), z′) ≥ 0

for µ-a.e. z′ ∈ Rec+(F ) \ {ω(λ), α(λ)}.
By the continuity of I ′ and the hypothesis on µ, there exists an open free disk U

containing z such that µ(U) > 0 and L1(F̃ ; ω̃(λ), α̃(λ), z′) > 0 when z′ ∈ U ∩ Rec+(F ).
Similarly to the proof of Proposition 3.8, we have

Iµ(F̃ ;ω(λ), α(λ)) ≥
∫
S

k≥0 F k(U)
i(F̃ ; ω̃(λ), α̃(λ), z) dµ

=
∫

U
τ(z)i(F̃ ; ω̃(λ), α̃(λ), z) dµ

=
∫

U
τ∗(z)i(F̃ ; ω̃(λ), α̃(λ), z) dµ

=
∫

U
L∗(F̃ ; ω̃(λ), α̃(λ), z) dµ

=
∫

U
L1(F̃ ; ω̃(λ), α̃(λ), z) dµ

> 0.

¤

Before proving the case where the set FixCont,I(F ) is infinite, let us recall two results:

Proposition 5.2 (Franks’ Lemma [Fra88]). Let F : R2 → R2 be an orientation preserving
homeomorphism. If F possesses a periodic free disk chain, that means a family (Ur)r∈Z/nZ

of pairwise disjoint free topological open disks such that for every r ∈ Z/nZ, one of the
positive iterates of Ur meets Ur+1, then F has at least one fixed point.

Theorem 5.3 ([Jau14]). Let M be an oriented surface and F be the time-one map of
an identity isotopy I on M . There exists a closed subset X ⊂ Fix(F ) and an isotopy I ′
joining IdM\X to F |M\X in Homeo(M \X) such that

(1) For all z ∈ X, the loop I(z) is homotopic to zero in M .
(2) For all z ∈ Fix(F ) \X, the loop I ′(z) is not homotopic to zero in M \X.
(3) For all z ∈ M\X, the trajectories I(z) and I ′(z) are homotopic with fixed endpoints

in M .
(4) There exists an oriented topological foliation F on M \ X such that, for all z ∈

M \X, the trajectory I ′(z) is homotopic to an arc γ joining z and F (z) in M \X
which is positively to F .

Moreover, the isotopy I ′ satisfies the following property:
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(5) For all finite Y ⊂ X, there exists an isotopy I ′Y joining IdM and F in Homeo(M)
which fixes Y such that, if z ∈ M \X, the arc I ′(z) and I ′Y (z) are homotopic in
M \ Y . And if z ∈ X \ Y , the loop I ′Y (z) is contractible in M \ Y .

Proof of Theorem 1.4 for the case ]FixCont,I(F ) = +∞.
Suppose that X, I ′ and F are respectively the closed contractible fixed points set, the

isotopy, and the foliation, as stated in Theorem 5.3. Obviously, X 6= ∅ (see Remark 2.1)
and µ(M \X) > 0. Assume that X ′ is the union of the connected components of X that
separate M . Write M \ X ′ = tiSi where Si is an open F -invariant subsurface of M for
every i. For every i, we regard the restriction of I ′ on Si, say I ′i, as an identity isotopy on
Si. That means we extend I ′i to the set Si ∩X by IdSi∩X . Let us consider the closure of
Si. Regarding every connected component of ∂Si as one point, we get a closed surface S′i
and an identity isotopy induced by I ′i, written still I ′i. By the definition of Si, S

′
i and I ′i,

the following properties hold
(A1): if Si is a disk, X ∩ Si 6= ∅ (by Proposition 5.2 and Item 2 of Theorem 5.3);
(A2): ρS′i,I

′
i
(µ) = 0 ∈ H1(S′i,R) if Si is not a subsurface of sphere (by the items 1

and 3 of Theorem 5.3). Thanks to Theorem 5.1, we have ]FixCont,I′i(F |S′i) ≥ 3.

It implies that ]{the connected components of ∂Si ∪ (X ∩ Si)} ≥ 2 for every i.
Fix one subsurface Si. Similarly to the finite case, we choose a point z ∈ (Rec+(F ) \

Fix(F ))∩Si and a leaf λ ∈ F containing z. In [Lec06], the proofs of Proposition 4.1 (page
150, for Si being a subsurface of sphere) and Proposition 6.1 (page 166, for Si being not
a subsurface of sphere) imply that ω(λ) (resp. α(λ)) is connected and is contained in a
connected component of ∂Si ∪ (X ∩ Si). We write the connected component as X+(λ)
(resp. X−(λ)). Moreover, X+(λ) 6= X−(λ). Choose a lift λ̃ of λ. We need to consider the
following four cases: the set ω(λ̃) or α(λ̃) contains ∞ or not.

Take two points a ∈ α(λ) and b ∈ ω(λ). Let Y = {a, b} and I ′Y be the isotopy as in
Theorem 5.3. Suppose that Ĩ ′Y is the identity lift of I ′Y to M̃ . Notice that

(B1): if z ∈ M \ X, the arcs I ′(z) and I ′Y (z) are homotopic in M \ Y (Item 5,
Theorem 5.3), and I ′Y (z) is homotopic to an arc γ joining z and F (z) in M \ Y
and positively transverse to F (Item 4, Theorem 5.3);

(B2): if z ∈ X \ Y , γ ∧ I ′Y (z) = 0 where γ is any path from a to b (Item 5, Theorem
5.3).

If both α(λ̃) and ω(λ̃) do not contain ∞, replacing α(λ) by a, ω(λ) by b, and I ′ by I ′Y
in the proof of the finite case, we can get Iµ(F̃ ; a, b) > 0.

We suppose now that either α(λ̃) or ω(λ̃) contains ∞. Recall that d̃ is the distance on
M̃ induced by a distance d on M which is further induced by a Riemannian metric on M .
Define d̃(z̃, C̃) = inf

ec∈ eC
d̃(z̃, c̃) if z̃ ∈ M̃ and C̃ ⊂ M̃ . Take a sequence {(ãm, b̃m)}m≥1 such

that
• π(ãm) = a and π(̃bm) = b ;
• If α(λ̃) (resp. ω(λ̃)) does not contain ∞, we set ãm = ã (resp. b̃m = b̃) for every

m where ã ∈ π−1(a) ∩ α(λ̃) (resp. b̃ ∈ π−1(b) ∩ ω(λ̃));
• lim

m→+∞ d̃(ãm, λ̃) = 0 and lim
m→+∞ d̃(̃bm, λ̃) = 0.

For every m, suppose that c̃m (resp. c̃ ′m) is a point of λ̃ such that d̃(ãm, c̃m) = d̃(ãm, λ̃)
(resp. d̃(̃bm, c̃ ′m) = d̃(̃bm, λ̃)). Note that c̃m = ãm = ã (resp. c̃ ′m = b̃m = b̃) and
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d̃(ãm, λ̃) = 0 (resp. d̃(̃bm, λ̃) = 0) if α(λ̃) (resp. ω(λ̃)) does not contain ∞. Choose a
simple path l̃m (resp. l̃ ′m) from ãm (resp. c̃ ′m) to c̃m (resp. b̃m) such that the length of
l̃m (resp. l̃ ′m) is d̃(ãm, λ̃) (resp. d̃(̃bm, λ̃)). Here, we assume that the simple path is empty
if its length is 0. Without loss of generality, we may suppose that π(l̃m+1) ⊂ π(l̃m) (resp.
π(l̃ ′m+1) ⊂ π(l̃ ′m)). Let γ̃m = l̃mλ̃m l̃ ′m where λ̃m is the sub-path of λ̃ from c̃m to c̃ ′m.
Then γ̃m is a path from ãm to b̃m.

We know that, for every m ≥ 1, the linking number i(F̃ ; ãm, b̃m, z′) exists for µ-a.e.
z′ ∈ M \ {a, b}. Hence, the linking number i(F̃ ; ãm, b̃m, z′) exists on a full measure subset
of M \ {a, b} for all m.

According to B2 above, we have i(F̃ ; ãm, b̃m, z′) = 0 if z′ ∈ X \ {a, b}. We now claim
that

lim inf
m→+∞ i(F̃ ; ãm, b̃m, z′) ≥ 0 for µ-a.e. z′ ∈ Rec+(F ) \X.

Fix one point z′ ∈ Rec+(F ) \ X and choose a disk U containing z′ (here again, we
suppose that U ∩ λ = ∅). By B1 and the construction of γ̃m, for every n ≥ 1, there exists
m(z′, n) ∈ N such that when m ≥ m(z′, n), the value

(5.1) Ln(F̃ ; ãm, b̃m, z′) = γ̃m ∧ Γ̃n
eI ′Y ,z′ = π(γ̃m) ∧ Γn

I ′Y ,z′ ≥ 0

is constant with regard to m.
We now suppose that

µ{z′ ∈ Rec+(F ) \X | lim inf
m→+∞ i(F̃ ; ãm, b̃m, z′) < 0} > 0.

There exists a small number c > 0 such that

(5.2) µ{z′ ∈ Rec+(F ) \X | lim inf
m→+∞ i(F̃ ; ãm, b̃m, z′) < −c} > c.

Write E = {z′ ∈ Rec+(F ) \X | lim inf
m→+∞ i(F̃ ; ãm, b̃m, z′) < −c}. Fix a point z′ ∈ E and a

disk U containing z′ as before. By taking subsequence if necessary, we may suppose that

−∞ ≤ lim
m→+∞ i(F̃ ; ãm, b̃m, z′) < −c.

Then there exists N(z′) such that when m ≥ N(z′), we have

i(F̃ ; ãm, b̃m, z′) = lim
n→+∞

Ln(F̃ ; ãm, b̃m, z′)
τn(z′)

< −c.

Fix m0 ≥ N(z′). There exists n(z′,m0) ∈ N such that when n ≥ n(z′,m0), we have

Ln(F̃ ; ãm0 , b̃m0 , z
′)

τn(z′)
< −c.

Then we can choose n0 ≥ n(z′,m0) such that

Ln0(F̃ ; ãm0 , b̃m0 , z
′) < −cτn0(z

′).

By Inequality (5.1), there exists m(z′, n0) > m0 such that, when m ≥ m(z′, n0), we
have

Ln0(F̃ ; ãm, b̃m, z′) ≥ 0.
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Now fix m1 ≥ m(z′, n0). There exists n(z′,m1) > n0 such that when n ≥ n(z′,m1), it
holds

Ln(F̃ ; ãm1 , b̃m1 , z
′)

τn(z′)
< −c.

Then we can choose n1 ≥ n(z′,m1) such that

Ln1(F̃ ; ãm1 , b̃m1 , z
′) < −cτn1(z

′).

By induction, we can construct a sequence {(mi, ni)}i≥0 ⊂ N× N satisfying that

(C1): {mi}i≥0 and {ni}i≥0 are strictly increasing sequences;
(C2): for all i ≥ 0, we have

Lni(F̃ ; ãmi , b̃mi , z
′) < −cτni(z

′) and Lni(F̃ ; ãmi+1 , b̃mi+1 , z
′) ≥ 0.

By the positively transverse property of F , it is easy to see that the negative part of
Lni(F̃ ; ãmi , b̃mi , z

′) only comes from the intersection number of the curve Γ̃n
eI ′Y ,z′

with either

l̃mi or l̃ ′mi
in the case where either α(λ̃) or ω(λ̃) contains ∞.

We deal with the case where both α(λ̃) and ω(λ̃) contain ∞, and other cases follow
similarly. In this case, the both sets α(λ), ω(λ) ⊂ X are not contractible. According
to Item 5 of Theorem 5.3, for any z′′ ∈ M \ Y , the loop I ′−1

Y I ′(z′′) is contractible in
M \ Y (see Section 2.1 for the definition of I ′−1

Y ). This implies that γ̃m ∧ I ′−1
Y I ′(z′′) = 0

for all m and z′′ ∈ Rec+(F ) \ X. Note that I ′Y fixes a and b. By the facts that the
loop I ′Y (z′′) is contractible in M \ Y for any z′′ ∈ X \ Y and that α(λ) and ω(λ) are
not contractible, and the continuity of I ′Y , we get |π(l̃mi) ∧ I ′Y (x)| ≤ 1 (resp. |π(l̃ ′mi

) ∧
I ′Y (x)| ≤ 1) if the algebraic intersection number is defined and x is close to a (resp. b).
By the construction of λ̃m and C2, there must be an open sequence of disks {Ua

i }i≥0

containing the set (I ′Y )−1(π(l̃mi)) = ∪
y∈π(elmi )

(I ′Y )−1(y) (resp. {U b
i }i≥0 containing the set

(I ′Y )−1(π(l̃ ′mi
)) = ∪

y∈π(el ′mi
)
(I ′Y )−1(y)) that satisfies

(D1): Ua
i+1 ⊂ Ua

i (resp. U b
i+1 ⊂ U b

i ) and µ(Ua
i ) → 0 (resp. µ(U b

i ) → 0) as i → +∞
(since the measure µ has no atoms on FixCont,I(F ));

(D2): for every i ≥ 0,

1
τni(z′)

τni (z
′)−1∑

j=0

χUa
i
◦ F j(z′) >

c

2
or

1
τni(z′)

τni (z
′)−1∑

j=0

χUb
i
◦ F j(z′) >

c

2
,

where χU is the characteristic function of U ⊂ M .

Denote by χ∗U (x) the limit of 1
n

n−1∑
j=0

χU ◦ F j(x) as n → +∞ for µ-a.e. x ∈ M (due to

Birkhoff Ergodic theorem). By D2 and Inequality 5.2, we have

µ({x ∈ Rec+(F ) \X | χ∗Ua
i
(x) ≥ c

2
or χ∗

Ub
i
(x) ≥ c

2
}) > c

for each i. This implies that
∫
M (χ∗Ua

i
(x) + χ∗

Ub
i
(x))dµ ≥ c2

2 > 0 for every i. On the other
hand, thanks to Birkhoff Ergodic theorem and D1, we have∫

M
(χ∗Ua

i
(x) + χ∗

Ub
i
(x))dµ =

∫

M
(χUa

i
(x) + χUb

i
(x))dµ = µ(Ua

i ) + µ(U b
i ) → 0

as i → +∞, which is impossible.
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Finally, we get

(5.3) lim inf
m→+∞ i(F̃ ; ãm, b̃m, z′) ≥ 0

for µ-a.e. z′ ∈ Rec+(F ) \ {a, b}.
From the continuity of I ′Y and the hypothesis on µ, there exists an open free disk U

containing z such that µ(U) > 0 and for z′ ∈ U ∩ Rec+(F ),

(5.4) lim
m→+∞L1(F̃ ; ãm, b̃m, z′) > 0.

As ρM,I(µ) = 0, by Proposition 3.7, the inequalities 5.3, 5.4 and Fatou Lemma, we have

Iµ(F̃ ; a, b) = lim
m→+∞ iµ(F̃ ; ãm, b̃m)

= lim
m→+∞

∫

M\{a,b}
i(F̃ ; ãm, b̃m, z) dµ

≥
∫

M\{a,b}
lim inf
m→+∞ i(F̃ ; ãm, b̃m, z) dµ

≥
∫
S

k≥0 F k(U)
lim inf
m→+∞ i(F̃ ; ãm, b̃m, z) dµ

=
∫

U
lim inf
m→+∞ τ(z)i(F̃ ; ãm, b̃m, z) dµ

=
∫

U
lim inf
m→+∞ τ∗(z)i(F̃ ; ãm, b̃m, z) dµ

=
∫

U
lim inf
m→+∞L∗(F̃ ; ãm, b̃m, z) dµ

=
∫

U
lim inf
m→+∞L1(F̃ ; ãm, b̃m, z) dµ

> 0.

¤

6. Appendix

6.1. Proofs of Lemma 2.6, Lemma 2.7 and Lemma 2.8.

We first recall some properties of i(F̃ ; z̃, z̃ ′) defined in Formula 2.2, whose proofs can
be found in [Wang11a, page 56]):

(P1): i(F̃ ; z̃, z̃ ′) is locally constant on (Fix(F̃ )× Fix(F̃ )) \ ∆̃;
(P2): i(F̃ ; z̃, z̃ ′) is invariant by covering transformation, that is,

i(F̃ ;α(z̃), α(z̃ ′)) = i(F̃ ; z̃, z̃ ′) for every α ∈ G;

(P3): i(F̃ ; z̃, z̃ ′) = 0 if π(z̃) = π(z̃ ′);
(P4): there exists K such that i(F̃ ; z̃, z̃ ′) = 0 if d̃(z̃, z̃ ′) ≥ K.

Lemma 2.7 immediately follows from Lemma 2.6 and P4. Hence we only need to prove
Lemma 2.6 and Lemma 2.8.
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Proof of Lemma 2.6. If z̃ 6∈ X̃, it is obvious by the continuity (see P1 above) and connect-
edness. Suppose that z̃ ∈ X̃. Fix a point ã ∈ X̃. The linking number i(F̃ ; ã, ·) will be a
constant on each connected component of X̃ \ ã. Let b̃ and b̃′ , c̃ and c̃′ lie on different
components, respectively. Then i(F̃ ; ã, b̃) = i(F̃ ; ã, b̃′) and i(F̃ ; ã, c̃) = i(F̃ ; a, c̃′). We have
to prove that i(F̃ ; ã, b̃) = i(F̃ ; ã, c̃). Now fix b̃. Let Ỹ be the connected component of
X̃ \ {ã} that contains c̃. Then ã belongs to the closure of Ỹ and hence Ỹ ∪ ã is connected.
Let Z̃ be the connected component of X̃ \ {b̃} that contains ã. So (Ỹ ∪ ã) ∩ Z̃ 6= ∅.
Hence c̃ ∈ Ỹ ⊂ Z̃. We get i(F̃ ; b̃, ã) = i(F̃ ; b̃, c̃) since ã and c̃ lie on the same connected
component of X \ b̃. Now fix c̃. Similarly, we have i(F̃ ; c̃, b̃) = i(F̃ ; c̃, ã) since b̃ and ã

lie on the same connected component of X \ c̃. Obviously, i(F̃ ; z̃, z̃ ′) is symmetrical on
(Fix(F̃ )× Fix(F̃ )) \ ∆̃ by the definition of ieI(z̃, z̃ ′). Therefore, we obtain

i(F̃ ; ã, b̃) = i(F̃ ; b̃, ã) = i(F̃ ; b̃, c̃) = i(F̃ ; c̃, b̃) = i(F̃ ; c̃, ã) = i(F̃ ; ã, c̃).

¤
To prove Lemma 2.8, we need the following lemma:

Lemma 6.1. If X̃ is a connected subset of Fix(F̃ ) and X̃ is not reduced to a singleton, I

satisfies the B-property on X̃.

Proof. Let X̃ ′ be a connected component of Fix(F̃ ) that contains X̃. By Lemma 2.7, it is
obvious if X̃ ′ is unbounded. Suppose now that X̃ ′ is bounded. Then X̃ ′ is compact. Let
us consider the value i(F̃ , z̃, z̃′) where z̃ ∈ Fix(F̃ ) and z̃′ ∈ X̃ ′. By the second statement
of Lemma 2.6, we only need to consider the case where z̃ ∈ Fix(F̃ ) \ X̃ ′. If there exists
a sequence {z̃n}+∞

n=1 ⊂ Fix(F̃ ) \ X̃ ′ such that |i(F̃ , z̃n, z̃′)| → +∞ as n → +∞. By
P4, the sequence {z̃n} must have a convergence subsequence. W.l.o.g, we suppose that
limn→+∞ z̃n = z̃0. Obviously, z̃0 6∈ X̃ ′ by the second statement of Lemma 2.6. Finally, it is
also impossible in this case since d̃(z̃0, X̃

′) > 0 and the first statement of Lemma 2.6. ¤

Proof of Lemma 2.8. If X is not contractible, it follows from Lemma 2.7. Otherwise, it fol-
lows from Lemma 6.1 and the properties P2-P4 of i(F̃ ; z̃, z̃ ′). Furthermore, if FixCont,I(F )
is a singleton, it follows from P3. Otherwise, it follows from the first statement of this
lemma. ¤

6.2. Proof of Lemma 4.1.

To prove Lemma 4.1, we need the following lemma:

Lemma 6.2. Let S and S′ be two sub-surfaces of an orientable closed surface M , with
S′ ⊂ Int(S) and z ∈ S′. If i∗(H1(S,Z)) and i∗(H1(S′,Z)) (resp. i∗(H1(Cl(M \S),Z)) and
i∗(H1(Cl(M\S′),Z))) have the same image in H1(M,Z), then i∗(π1(S, z)) and i∗(π1(S′, z))
have the same image in π1(M, z).

Proof. Let C be a component of the boundary of S′. It belongs to the boundary of
Cl(S) \ S′, more precisely, is in a connected component S′′ of Cl(S) \ S′. The genus of S′′
is zero because i∗(H1(S,Z)) and i∗(H1(S′,Z)) have the same image in H1(M,Z). We claim
that C is the unique component of the boundary of S′ and is one of the boundaries of S′′.
Otherwise, one can find a cycle in S that intersects transversally C, which contradicts the
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fact that i∗(H1(S,Z)) and i∗(H1(S′,Z)) have the same image in H1(M,Z). Secondly, we
note that S′′ (in fact, every connected component of Cl(S) \ S′) is homeomorphic to an
annulus because i∗(H1(Cl(M \ S),Z)) and i∗(H1(Cl(M \ S′),Z)) have the same image in
H1(M,Z). One deduces that every path in S′′ whose endpoints are on C is homotopic in
S′′ to a path on C. ¤
Proof of Lemma 4.1. Let us show that lim−→ε→0

i∗(H1(Zε,Z)) exists. Otherwise, there is a
positive decrease sequence {εi}+∞

i=1 such that
• limi→+∞ εi = 0;
• i∗(H1(Zεi+1 ,Z)) ( i∗(H1(Zεi ,Z)) for every i.

This implies that there is a sequence of simple loops {Γi}+∞
i=1 on M which satisfies

• Γi ⊂ Zεi for every i;
• Γi ∩ Γj = ∅ for all i 6= j;
• [Γi] 6= [Γj ] for all i 6= j, where [Γi] ∈ H1(M,Z) is the homology class of Γi.

This is impossible since H1(M,Z) is finitely generated.
We now prove that lim−→ε→0+ i∗(π1(Zε, z)) exists. By the existence of lim−→ε→0

i∗(H1(Zε,Z)),
we can choose a positive number ε0 that is small enough such that

i∗(H1(Zε1 ,Z)) = i∗(H1(Zε2 ,Z)) and i∗(H1(Cl(M \ Zε1),Z)) = i∗(H1(Cl(M \ Zε2),Z))

for all 0 < ε2 < ε1 ≤ ε0. The conclusion then follows from Lemma 6.2. ¤

6.3. Examples. Let us give two examples to see what will happen when Supp(µ) 6= M .

Example 6.3. Consider the following smooth identity isotopy on R2: Ĩ = (F̃t)t∈[0,1] :
(x, y) 7→ (x + t

2π cos(2πy), y + t
2π sin(2πy)). It induces an identity smooth isotopy I =

(Ft)t∈[0,1] on T2. Let µ have constant density on {(x, y) ∈ T2 | y = 0 or y = 1
2} and vanish

on elsewhere. Obviously, ρT2,I(µ) = 0 but FixCont,I(F1) = ∅.
Example 6.3 tells us that there is no sense to talk about the action function when g = 1

and Supp(µ) 6= M .
The following example belongs to Le Calvez who mentioned me that this example

implies that Theorem 1.4 is not true anymore in the case where g > 1 and Supp(µ) 6= M .

Example 6.4 ([Lec05], page 73). Let M be the closed orientated surface with g = 2. He
constructed an identity isotopy I = (Ft)t∈[0,1], a point z′1,3 which is a periodic point of F1

with periodic 20 and the arc
∏

0≤i≤19 I(F i
1(z

′
1,3)) is homologic to zero, and two points z3

and z4 which are the only two contractible fixed points of F1.
Let now the measure µ = 1

20

∑19
i=0 δF i

1(z′1,3), where δz is the Dirac measure. It is easy to
check that ρM,I(µ) = 0 and that the action function is constant.
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