Max-Planck-Institut
fiir Mathematik
in den Naturwissenschaften
Leipzig

One-way quantum deficit for 2xd systems

by

Biao-Liang Ye and Shao-Ming Fei

Preprint no.: 44

2016







One-way quantum deficit for 2 ® d systems

Biao-Liang Ye
School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

Shao-Ming Fei
School of Mathematical Sciences, Capital Normal University, Beijing 100048, China and

Mazx-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
Abstract

We investigate one-way quantum deficit for 2 ® d systems. Analytical expressions of one-way
quantum deficit under both von Neumann measurement and weak measurement are presented. As
an illustration, qubit-qutrit systems are studied in detail. It is shown that there exists non-zero one-
way quantum deficits even quantum entanglement vanishes. Moreover, quantum deficit via weak
measurement turns out to be weaker than that via von Neumann measurement. The dynamics of

entanglement and one-way quantum deficit under dephasing channel is also investigated.

PACS numbers: 03.65.Aa, 03.67.Mn, 03.65.Ta



INTRODUCTION

Quantum entanglement is one of the most important quantum correlations and plays
a fundamental role in quantum information science [I]. Beyond entanglement, quantum
discord [2, 3] plays a key role in some quantum speed-up for quantum information tasks [4],
for instance, in assisted optimal state discrimination only one side discord is required, while
the entanglement is not necessary [5, [6]. Other different measures in quantifying quantum
correlations [7], such as one-way quantum deficit [8, 9], quantum dissonance [10], geometrical
discord [11], measurement-induced nonlocality [12] have been also provided. Nonetheless,
usually it is formidably difficulty to get analytical results for these quantum correlations.
Analytical expressions of quantum discord [I3HI5] seem to be extremely hard due to the
optimization involved [16, I7]. Only a few analytical results for the simplest two-qubit
systems have been worked out [I18-20)].

Recently, in Ref. [2I] the authors shew that analogous to quantum discord, one-way
quantum deficit exhibits also frozen phenomenon. The one-way quantum deficit and quan-
tum discord in X X spin chains have been investigated in [22]. And the explicit relationship
between quantum discord and one-way quantum deficit has been studied in [23]. Similar to
quantum discord, it is hard to derive analytical expressions of one-way quantum deficit of
general two-qubit systems. The upper bound of one-way quantum deficit is shown to be the
entropy of the measured subsystem [24]. Partial analytical expressions of one-way quantum
deficit of five-parameter two-qubit X states have been provided in Ref [25].

In this manuscript, we study the one-way quantum deficit for 2@ d (qubit-qudit) systems.
We provide the analytical results of one-way quantum deficit for a two-parameter class of
states in 2 ® d quantum systems with d > 3. Moreover, we utilize the weak measurement
[26] to investigate the one-way quantum deficit for the systems. Generally weak measure-
ment exhibits amplifying roles [27]. However, we find the one-way quantum deficit via weak
measurement is weaker than that via von Neumann measurement. We also study the deco-
herence of one-way quantum deficit via von Neumann measurement and weak measurement

for qubit-qutrit systems.



ONE-WAY QUANTUM DEFICIT VIA VON NEUMANN MEASUREMENT

One-way quantum deficit is related to extracting work from a correlated system to a heat
bath under local operations [§]. Consider Alice (A) and Bob (B) share a bipartite quantum
system pap € H>®@ H? in 2 and d dimensional spaces H? and H?, respectively. Let {P;} be
local von Neumann (projective) measurement, P,P; = 6;;F;, > . P, = I, with I the identity
operator. The one-way quantum deficit is defined as the minimal increase of entropy after
the projective measurement performing on the subsystem A [2§],

Alpan) = min S(plas) = S(pan) (1)

where plp = Zj(PjA ® Ipap(P* ® I) is the state after measurement on A, S(p) =
—Trplog, p is the von Neumann entropy of the state p, and the minimum is taken over
all possible projective measurements {PjA}. The one-way information deficit is non-negative
and zero for classical-quantum correlated states.

A two-parameter family of states in 2 ® d quantum system was first introduced in [29],
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where {|ij) : i = 0,1,7 = 2,3,...,d — 1} are orthonormal bases for the 2 ® d quantum
systems and the four Bell bases are given as follows
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The parameters satisfy 2(d—2)r+3s+t = 1 with 0 < r < 1/(2d—4). It has been proven that

|0F) = —=(100) £[11)),  [¢*) = —=(|01) £ [10)).

any 2 ® d states can be transformed into p,; with the help of local operations and classical
communication (LOCC) [29]. The quantum discord for such states have been studied in
Ref. [30].

Now, let us turn to calculate one-way quantum deficit for the state . We perform

measurements on subsystem A by projective operators Pt = |k') (K|, k € {0, 1}, where

10') = cos(8/2)[0) — e~ sin(6/2)[1),

11") = €™ sin(0/2)]0) + cos(6/2)]1).



The projective measurement bases are described by the angles 6 and ¢ of the Bloch sphere,
with 6 € [0, 7] and ¢ € [0, 27).

To treat one-way quantum deficit, the key problem is to minimize the first term in
(1). However, the eigenvalues of Zj(PjA ® Ipap(P* ® I) do not contain the measure-
ment parameters 6 and ¢. That is to say, for 2 x d systems, the one-way quantum deficit
is independent of projective measurements and we do not need to do the minimization.

Namely, the result is optimal under any projective measurements. The eigenvalues of

st s+t
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the post measured state are given by {s, s
S(p) = —[3slogy s+tlog, t+2(d—2)rlog, r|, we obtain the analytical expressions of one-way

quantum deficit for 2 ® d states,
A = slog, 2s + tlogy 2t — (s + t)log, (s + t). (4)

It turns out that one-way quantum deficit for 2®d states is the same as the quantum discord

of the two-parameter states [30].

ONE-WAY QUANTUM DEFICIT VIA WEAK MEASUREMENT

Weak measurement was formulated in Ref. [26] by using the pre and post-selected quan-

tum systems. In Ref. [31] the authors constructed weak measurement operators,

/1—tanh /1+tanh
—I—a:
/1+t h| /1 — tanh]|
_ zn ] My + 22111 [x] M,

where x is a parameter describing the strength of the measurement, M, and M; are the two
orthogonal projectors satisfying My + M, = I and q(+z)'q(+z) + q(—x)'q(—x) = I. Much
attention has been paid to weak measurement both theoretically and experimentally [32].
Now we study one-way quantum deficit under weak measurement. Instead of pro-
jective measurement, under weak measurement the post measured state has the form
> e old(®) ® I - p - [q(x) @ I]T.  The eigenvalues of this state is given by
{3(s+t+ (s—t)sech[z], (s +t— (s —t)sech[z],s,s,r,r,--- ,r}. Thus, the one-way quantum
deficit via weak measurement is given by

A = Ailogy Ai + slogy s + tlogyt, (5)

i=0,1



where A; = (s +t + (—1)(s — t)sech[z].

We have derived the analytical formulae of one-way quantum deficit under projective
measurement and weak measurement, respectively. It is observed that the analytical ex-
pressions of one-way quantum deficit under weak measurement or projective measurement
are independent of the dimension d. In the following we investigate the relationship between
quantum entanglement and one-way quantum deficit, as well as their evolution under noisy

channel.

ENTANGLEMENT, ONE-WAY QUANTUM DEFICIT IN QUBIT-QUTRIT SYS-
TEMS

We consider qubit-qutrit systems (d = 3). The qubit-qutrit states are given by

ore = 1([02){02] + [12)(12]) + (|7 ) {dT| + [¢7) (™|
AT + TN (6)

The geometric discord of such states under various noise channels have been studied in Ref.
[33].

For 2 ® 3 systems the positive partial transposition (PPT) criterion is the necessary and
sufficient condition for separability [34], [35]. We use the negativity N as the measure of
entanglement [29],

N(o) = max{0, [|o"7 ]l — 1}, (7)

where T stands for the partial transpose with respect to the subsystem B, and o7 is
the partial transposes state of o, ||o||; = Tr[V/oTo] denotes the trace norm of o. For the
qubit-qutrit state o,; the negativity is given by N(o,;) = max{0,2(r +¢) — 1}.

Take s = 0.15. The relationship between the negativity and one-way quantum deficit is
shown in Fig[l] The state is separable for ¢t < 0.45 and entangled for ¢ > 0.45. For separable
states, the one-way quantum deficit via projective and weak measurements could be still
greater than zero. The weak quantum deficit (dashed blue line) is weaker than one-way
quantum deficit via von Neumann measurement (solid orange line).

Now we consider decoherence of qubit-qutrit systems under dephasing channels. After
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FIG. 1: (Color online) Solid orange line for one-way quantum deficit via projective
measurement A, dashed blue line for weak quantum deficit A,,, and dotted-dashed green

line for negativity N.

the dephasing channels the qubit-qutrit state o, is transformed to be

1 2
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i=0 =0
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The parameters 4 = 1 — e ™74 and 75 = 1 — e "', with "4y the decay rate of the
subsystem A(B) and ya(p) € [0, 1].
The one-way quantum deficit of state o/, can be calculated directly from the optimal

r,t

projective measurement with 8 = 0 and arbitrary ¢, which is given by

1
= 1
R(0) = 30 Aylogy Ay — (5 + 1) logy 5 (s + 1), (8)
=0

6



where

A = gl 4+ (~1)(s — /T~ 70— 5]

Similarly, under this decoherence channel the one-way quantum deficit via weak mea-

surement is given by

1
Ay(0y,) = [njlogym; — &logy &), (9)
=0
where
1 .
nj = 5[3 +t+ (=1 (s — )/ (1 — ya) (1 — 7B)];
and

€ = 3ls ++ (~1)(s — )sechla] T = 74)(1 — 75)]

The negativity of o,., has the form

1
N(o,,) = max {O, 5[2(27“ +t—1)+ (2r+4t — 1)/ (1 —y4)(1 — 73)]} : (10)

0.25

0.20

0.15]

3

0.10F >~
By N Y

0.05[ \‘\\

0.00 ‘ ‘ Tt e

0.0 0.2 04 06 0.8 10

FIG. 2: (Color online) Under dephasing channels, the quantum correlation for qubit-qutrit

[N

systems. The decoherence of one-way quantum deficit via projective measurement A’ is
depicted by solid orange line. Weak quantum deficit E’ w 18 described in dashed blue line.
The dotted-dashed green line denotes negativity N’. We suppose y4 = v = v and set
r=0.03,s =0.12,t = 0.58, z = 0.8.

The dynamics of the system under dephasing channel can be seen in Fig. [2l In finite time,
entanglement sudden death happens (dotted-dashed green line), while one-way quantum
deficit under projective or weak measurements vanish gradually. Moreover, under the whole
decoherence dynamical process the weak quantum deficit is also always weaker than the

one-way quantum deficit via projective measurement.
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CONCLUSIONS

We have extended previous studies on one-way quantum deficit for two-qubit systems to
the case of 2 ® d systems. We have provided analytical expressions of one-way quantum
deficit under both projective measurement and weak measurement. It has been shown that
there still exits non-zero one-way quantum deficit for separable states. In particular, we
have investigated the quantum entanglement (negativity) and quantum deficits for qubit-
qutrit systems. It has been found that the one-way quantum deficit via weak measurement
is weaker than the one under projective measurement. Under the decoherence of dephasing
channel, one sees the entanglement sudden death, while one-way quantum deficits do not
vanish suddenly. Our results could help to understand the one-way quantum deficit. Such

approach may be also used to investigate quantum correlations for multipartite systems.
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