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Abstract

We investigate one-way quantum deficit for 2 ⊗ d systems. Analytical expressions of one-way

quantum deficit under both von Neumann measurement and weak measurement are presented. As

an illustration, qubit-qutrit systems are studied in detail. It is shown that there exists non-zero one-

way quantum deficits even quantum entanglement vanishes. Moreover, quantum deficit via weak

measurement turns out to be weaker than that via von Neumann measurement. The dynamics of

entanglement and one-way quantum deficit under dephasing channel is also investigated.
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INTRODUCTION

Quantum entanglement is one of the most important quantum correlations and plays

a fundamental role in quantum information science [1]. Beyond entanglement, quantum

discord [2, 3] plays a key role in some quantum speed-up for quantum information tasks [4],

for instance, in assisted optimal state discrimination only one side discord is required, while

the entanglement is not necessary [5, 6]. Other different measures in quantifying quantum

correlations [7], such as one-way quantum deficit [8, 9], quantum dissonance [10], geometrical

discord [11], measurement-induced nonlocality [12] have been also provided. Nonetheless,

usually it is formidably difficulty to get analytical results for these quantum correlations.

Analytical expressions of quantum discord [13–15] seem to be extremely hard due to the

optimization involved [16, 17]. Only a few analytical results for the simplest two-qubit

systems have been worked out [18–20].

Recently, in Ref. [21] the authors shew that analogous to quantum discord, one-way

quantum deficit exhibits also frozen phenomenon. The one-way quantum deficit and quan-

tum discord in XX spin chains have been investigated in [22]. And the explicit relationship

between quantum discord and one-way quantum deficit has been studied in [23]. Similar to

quantum discord, it is hard to derive analytical expressions of one-way quantum deficit of

general two-qubit systems. The upper bound of one-way quantum deficit is shown to be the

entropy of the measured subsystem [24]. Partial analytical expressions of one-way quantum

deficit of five-parameter two-qubit X states have been provided in Ref [25].

In this manuscript, we study the one-way quantum deficit for 2⊗d (qubit-qudit) systems.

We provide the analytical results of one-way quantum deficit for a two-parameter class of

states in 2 ⊗ d quantum systems with d ≥ 3. Moreover, we utilize the weak measurement

[26] to investigate the one-way quantum deficit for the systems. Generally weak measure-

ment exhibits amplifying roles [27]. However, we find the one-way quantum deficit via weak

measurement is weaker than that via von Neumann measurement. We also study the deco-

herence of one-way quantum deficit via von Neumann measurement and weak measurement

for qubit-qutrit systems.
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ONE-WAY QUANTUM DEFICIT VIA VON NEUMANN MEASUREMENT

One-way quantum deficit is related to extracting work from a correlated system to a heat

bath under local operations [8]. Consider Alice (A) and Bob (B) share a bipartite quantum

system ρAB ∈ H2 ⊗Hd in 2 and d dimensional spaces H2 and Hd, respectively. Let {Pi} be

local von Neumann (projective) measurement, PiPj = δijPi,
∑

i Pi = I, with I the identity

operator. The one-way quantum deficit is defined as the minimal increase of entropy after

the projective measurement performing on the subsystem A [28],

⇀
∆(ρAB) = min

{PA
j }
S(ρ′AB)− S(ρAB), (1)

where ρ′AB =
∑

j(P
A
j ⊗ I)ρAB(PA

j ⊗ I) is the state after measurement on A, S(ρ) =

−Trρ log2 ρ is the von Neumann entropy of the state ρ, and the minimum is taken over

all possible projective measurements {PA
j }. The one-way information deficit is non-negative

and zero for classical-quantum correlated states.

A two-parameter family of states in 2⊗ d quantum system was first introduced in [29],

ρr,t = r
1∑
i=0

d−1∑
j=2

|ij〉〈ij|+ s(|φ+〉〈φ+|+ |φ−〉〈φ−|

+|ψ+〉〈ψ+|) + t|ψ−〉〈ψ−|, (2)

where {|ij〉 : i = 0, 1, j = 2, 3, . . . , d − 1} are orthonormal bases for the 2 ⊗ d quantum

systems and the four Bell bases are given as follows

|φ±〉 =
1√
2

(|00〉 ± |11〉), |ψ±〉 =
1√
2

(|01〉 ± |10〉).

The parameters satisfy 2(d−2)r+3s+t = 1 with 0 ≤ r ≤ 1/(2d−4). It has been proven that

any 2⊗ d states can be transformed into ρr,t with the help of local operations and classical

communication (LOCC) [29]. The quantum discord for such states have been studied in

Ref. [30].

Now, let us turn to calculate one-way quantum deficit for the state (2). We perform

measurements on subsystem A by projective operators PA
k = |k′〉〈k′|, k ∈ {0, 1}, where

|0′〉 = cos(θ/2)|0〉 − e−iφ sin(θ/2)|1〉,

|1′〉 = eiφ sin(θ/2)|0〉+ cos(θ/2)|1〉.
(3)
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The projective measurement bases are described by the angles θ and φ of the Bloch sphere,

with θ ∈ [0, π] and φ ∈ [0, 2π).

To treat one-way quantum deficit, the key problem is to minimize the first term in

(1). However, the eigenvalues of
∑

j(P
A
j ⊗ I)ρAB(PA

j ⊗ I) do not contain the measure-

ment parameters θ and φ. That is to say, for 2 × d systems, the one-way quantum deficit

is independent of projective measurements and we do not need to do the minimization.

Namely, the result is optimal under any projective measurements. The eigenvalues of

the post measured state are given by {s, s, s+t
2
, s+t

2
, r, r, · · · , r}. Taking into account that

S(ρ) = −[3s log2 s+t log2 t+2(d−2)r log2 r], we obtain the analytical expressions of one-way

quantum deficit for 2⊗ d states,

⇀
∆ = s log2 2s+ t log2 2t− (s+ t) log2(s+ t). (4)

It turns out that one-way quantum deficit for 2⊗d states is the same as the quantum discord

of the two-parameter states [30].

ONE-WAY QUANTUM DEFICIT VIA WEAK MEASUREMENT

Weak measurement was formulated in Ref. [26] by using the pre and post-selected quan-

tum systems. In Ref. [31] the authors constructed weak measurement operators,

q(+x) =

√
1− tanh[x]

2
M0 +

√
1 + tanh[x]

2
M1,

q(−x) =

√
1 + tanh[x]

2
M0 +

√
1− tanh[x]

2
M1,

where x is a parameter describing the strength of the measurement, M0 and M1 are the two

orthogonal projectors satisfying M0 +M1 = I and q(+x)†q(+x) + q(−x)†q(−x) = I. Much

attention has been paid to weak measurement both theoretically and experimentally [32].

Now we study one-way quantum deficit under weak measurement. Instead of pro-

jective measurement, under weak measurement the post measured state has the form

ρ′ =
∑

+x,−x[q(x) ⊗ I] · ρ · [q(x) ⊗ I]†. The eigenvalues of this state is given by

{1
2
(s+ t+(s− t)sech[x], 1

2
(s+ t− (s− t)sech[x], s, s, r, r, · · · , r}. Thus, the one-way quantum

deficit via weak measurement is given by

⇀
∆w = −

∑
i=0,1

Λi log2 Λi + s log2 s+ t log2 t, (5)
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where Λi = 1
2
(s+ t+ (−1)i(s− t)sech[x].

We have derived the analytical formulae of one-way quantum deficit under projective

measurement and weak measurement, respectively. It is observed that the analytical ex-

pressions of one-way quantum deficit under weak measurement or projective measurement

are independent of the dimension d. In the following we investigate the relationship between

quantum entanglement and one-way quantum deficit, as well as their evolution under noisy

channel.

ENTANGLEMENT, ONE-WAY QUANTUM DEFICIT IN QUBIT-QUTRIT SYS-

TEMS

We consider qubit-qutrit systems (d = 3). The qubit-qutrit states are given by

σr,t = r(|02〉〈02|+ |12〉〈12|) + s(|φ+〉〈φ+|+ |φ−〉〈φ−|

+|ψ+〉〈ψ+|) + t|ψ−〉〈ψ−|. (6)

The geometric discord of such states under various noise channels have been studied in Ref.

[33].

For 2⊗ 3 systems the positive partial transposition (PPT) criterion is the necessary and

sufficient condition for separability [34, 35]. We use the negativity N as the measure of

entanglement [29],

N(σ) = max{0, ‖σTB‖1 − 1}, (7)

where TB stands for the partial transpose with respect to the subsystem B, and σTB is

the partial transposes state of σ, ‖σ‖1 = Tr[
√
σ†σ] denotes the trace norm of σ. For the

qubit-qutrit state σr,t the negativity is given by N(σr,t) = max{0, 2(r + t)− 1}.

Take s = 0.15. The relationship between the negativity and one-way quantum deficit is

shown in Fig.1. The state is separable for t ≤ 0.45 and entangled for t > 0.45. For separable

states, the one-way quantum deficit via projective and weak measurements could be still

greater than zero. The weak quantum deficit (dashed blue line) is weaker than one-way

quantum deficit via von Neumann measurement (solid orange line).

Now we consider decoherence of qubit-qutrit systems under dephasing channels. After
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FIG. 1: (Color online) Solid orange line for one-way quantum deficit via projective

measurement
⇀

∆, dashed blue line for weak quantum deficit
⇀

∆w, and dotted-dashed green

line for negativity N.

the dephasing channels the qubit-qutrit state σr,t is transformed to be

σ′r,t =
1∑
i=0

2∑
j=0

Ei ⊗ Fj · σr,t · E†i ⊗ F
†
j ,

where

E0 =

 1 0

0
√

1− γA

 , E1 =

 0 0

0
√
γA

 ,

and

F0 =


1 0 0

0
√

1− γB 0

0 0
√

1− γB

 , F1 =


0 0 0

0
√
γB 0

0 0 0

 ,

F2 =


0 0 0

0 0 0

0 0
√
γB

 .

The parameters γA = 1 − e−τΓA and γB = 1 − e−τΓB , with ΓA(B) the decay rate of the

subsystem A(B) and γA(B) ∈ [0, 1].

The one-way quantum deficit of state σ′r,t can be calculated directly from the optimal

projective measurement (3) with θ = 0 and arbitrary φ, which is given by

⇀
∆(σ′r,t) =

1∑
j=0

λj log2 λj − (s+ t) log2

1

2
(s+ t). (8)
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where

λj =
1

2
[s+ t+ (−1)j(s− t)

√
(1− γA)(1− γB)].

Similarly, under this decoherence channel the one-way quantum deficit via weak mea-

surement is given by

⇀
∆w(σ′r,t) =

1∑
j=0

[ηj log2 ηj − ξj log2 ξj], (9)

where

ηj =
1

2
[s+ t+ (−1)j(s− t)

√
(1− γA)(1− γB)],

and

ξj =
1

2
[s+ t+ (−1)j(s− t)sech[x]

√
(1− γA)(1− γB)].

The negativity of σ′r,t has the form

N(σ′r,t) = max

{
0,

1

3
[2(2r + t− 1) + (2r + 4t− 1)

√
(1− γA)(1− γB)]

}
. (10)
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FIG. 2: (Color online) Under dephasing channels, the quantum correlation for qubit-qutrit

systems. The decoherence of one-way quantum deficit via projective measurement
⇀

∆′ is

depicted by solid orange line. Weak quantum deficit
⇀

∆′w is described in dashed blue line.

The dotted-dashed green line denotes negativity N’. We suppose γA = γB = γ and set

r = 0.03, s = 0.12, t = 0.58, x = 0.8.

The dynamics of the system under dephasing channel can be seen in Fig. 2. In finite time,

entanglement sudden death happens (dotted-dashed green line), while one-way quantum

deficit under projective or weak measurements vanish gradually. Moreover, under the whole

decoherence dynamical process the weak quantum deficit is also always weaker than the

one-way quantum deficit via projective measurement.
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CONCLUSIONS

We have extended previous studies on one-way quantum deficit for two-qubit systems to

the case of 2 ⊗ d systems. We have provided analytical expressions of one-way quantum

deficit under both projective measurement and weak measurement. It has been shown that

there still exits non-zero one-way quantum deficit for separable states. In particular, we

have investigated the quantum entanglement (negativity) and quantum deficits for qubit-

qutrit systems. It has been found that the one-way quantum deficit via weak measurement

is weaker than the one under projective measurement. Under the decoherence of dephasing

channel, one sees the entanglement sudden death, while one-way quantum deficits do not

vanish suddenly. Our results could help to understand the one-way quantum deficit. Such

approach may be also used to investigate quantum correlations for multipartite systems.
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