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EXIT LAWS OF ISOTROPIC DIFFUSIONS IN RANDOM ENVIRONMENT

FROM LARGE DOMAINS

BENJAMIN J. FEHRMAN†

Abstract. This paper studies, in dimensions greater than two, stationary diffusion processes in
random environment which are small, isotropic perturbations of Brownian motion satisfying a finite
range dependence. Such processes were first considered in the continuous setting by Sznitman and
Zeitouni [20]. Building upon their work, it is shown by analyzing the associated elliptic boundary-
value problem that, almost surely, the smoothed (in the sense that the boundary data is continuous)
exit law of the diffusion from large domains converges, as the domain’s scale approaches infinity, to
that of a Brownian motion. Furthermore, a rate for the convergence is established in terms of the
modulus of the boundary condition.

1. Introduction

The purpose of this paper is to characterize the smoothed exit distributions from large domains
associated to the diffusion in random environment determined by the generator

(1.1)
1

2

d∑
i,j=1

aij(x, ω)
∂2

∂xi∂xj
+

d∑
i=1

bi(x, ω)
∂

∂xi
,

where the environment, as described by a uniformly elliptic diffusion matrix A(x, ω) = (aij(x, ω))
and drift b(x, ω) = (bi(x, ω)), is indexed by an underlying probability space (Ω,F ,P).

The family of stochastic processes associated to the generator (1.1) will be assumed to be a
stationary, isotropic perturbation of Brownian motion satisfying a finite range dependence. Specif-
ically, there exists a measure-preserving group of transformations {τx}x∈Rd such that, for each

x, y ∈ Rd and ω ∈ Ω,

A(x+ y, ω) = A(x, τyω) and b(x+ y, ω) = b(x, τyω).

Whenever subsets A,B ⊂ Rd are sufficiently distant in space, the sigma algebras

σ(A(x, ·), b(x, ·) | x ∈ A) and σ(A(x, ·), b(x, ·) | x ∈ B) are independent.

For every orthogonal transformation r of Rd preserving the coordinate axis, for each x ∈ Rd, the
random variables

(A(rx, ω), b(rx, ω)) and (rA(x, ω)rt, rb(x, ω)) have the same law.

Finally, for a constant η > 0 to be chosen small, for every x ∈ Rd and ω ∈ Ω,

|A(x, ω)− I| < η and |b(x, ω)| < η.

Such environments were considered in the continuous setting by Sznitman and Zeitouni [20] and
correspond to the analogue of the discrete framework studied by Bricmont and Kupiainen [5].
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The exit distribution of these processes will be understood by analyzing the asymptotic behavior,
as ε→ 0, of solutions

(1.2)

{
1
2 tr(A(x, ω)D2vε) + b(x, ω) ·Dvε = 0 on U/ε,
vε = f(εx) on ∂U/ε,

where, in dimension at least two, the domain U ⊂ Rd satisfies an exterior ball condition and
f ∈ C(∂U) is continuous on the boundary.

Writing Ex,ω for the expectation describing the diffusion Xt associated to the generator (1.1)
beginning from x in environment ω, and τ ε for the exit time from U/ε, solutions of (1.2) admit the
representation

(1.3) vε(x) = Ex,ω(f(εXτε)) on U/ε.

The continuity of the boundary data f in this setting corresponds to a necessary smoothing of
the exit distribution since, and as described below, the presence of traps (which, loosely speaking,
mean portions of space where the drift has a strong effect) along the boundary preclude, in the
case of discontinuous boundary data, an almost sure characterization of the exit measures defining
the solutions vε in the limit.

Observe, following a rescaling, that uε(x) = vε(x/ε) satisfies

(1.4)

{
1
2 tr(A(xε , ω)D2uε) + 1

ε b(
x
ε , ω) ·Duε = 0 on U,

uε = f(x) on ∂U,

and, in view of (1.3),

uε(x) = Ex
ε
,ω(f(εXτε)) = Ex

ε
,ω(f(εX ε2τε

ε2

)),

where ε2τε is by definition the exit time from U of the rescaled process εXt/ε2 . The behavior of

this rescaled process on Rd was characterized in [20], where it was proven that, on a subset of full
probability and for a deterministic α > 0,

(1.5) εX·/ε2 converges as ε→ 0 in law on Rd to a Brownian motion with variance α.

See Section 2 for the precise statement and details.
The primary aim of this paper is to establish the analogous result for the exit distribution, and

this is achieved by characterizing, on a subset of full probability, the asymptotic behavior as ε→ 0
of solutions to (1.4).

Theorem 1.1. There exists a subset of full probability such that, for every bounded domain U ⊂ Rd
satisfying an exterior ball condition, the solutions of ( 1.2) converge uniformly on U , as ε → 0, to
the solution

(1.6)

{
∆u = 0 on U,
u = f(x) on ∂U.

The proof relies strongly upon the results obtained in [20], and in particular between a comparison
there obtained, with scaling analogous to (1.2), between solutions of the parabolic equation

(1.7)

{
uεt = 1

2 tr(A(x, ω)D2uε) + b(x, ω) ·Duε on Rd × (0,∞),
uε = f(εx) on Rd × {0} ,

and the parabolic analogue of (1.6) with high probability and on large scales in space and time.
The details of this argument are presented in Section 3.

The comparison is used, as it was in [20], to construct a coupling between the process defined by
the generator (1.1) and a Brownian motion with variance approximately α along a discrete sequence
of time steps. See Proposition 5.1 in Section 5. And, this coupling allows for the introduction of
a discrete version of equation (1.2). Namely, the process is evaluated along the aforementioned
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discrete sequence of time steps and stopped as soon as it hits a neighborhood of the compliment of
the domain.

However, the approximation suggested here is typically insufficient to characterize the limiting
behavior of solutions to (1.2) and its rescaling (1.4) since the time steps are not sufficiently fine to
preclude the emergence of traps created by the drift. And, in this setting, the traps are twofold.
Considering the process associated to (1.4), and corresponding to the generator

(1.8)
1

2

d∑
i,j=1

aij(
x

ε
, ω)

∂2

∂xi∂xj
+

1

ε

d∑
i=1

bi(
x

ε
, ω)

∂

∂xi
,

the presence of the singular (in 1
ε ) drift can first act to confine the particle to create, in expectation,

an exponentially growing (in 1
ε ) exit time. The probability that the exit time is large is first

controlled, though sub-optimally, by Proposition 4.1 in Section 4.
Second, the drift can repel the process from the boundary, and thereby make impossible the

existence (in general) of barriers which are effective at scales greater than ε. This difficulty is
overcome by combining, in Section 7, the coupling obtained in Proposition 5.1 of Section 5 with
estimates concerning the exit time of Brownian motion from the slightly inflated domains

Uδ =
{
x ∈ Rd | d(x, U) < δ

}
,

where δ → 0 as ε → 0. These estimates are proven in Propositions 6.2 and 6.3 of Section 6.
Then, at points near the boundary ∂U , the exit of the Brownian motion from a somewhat larger
domain of the type Uδ is shown to compel, with high probability, the exit of the diffusion in random
environment from U . See Proposition 7.3 of Section 7. It is this fact that establishes the efficacy
of the discrete approximation and ultimately the proof of Theorem 1.1.

Finally, in Section 8, the convergence established in Theorem 1.1 is made quantitative assuming
first that the boundary data f is the restriction of a bounded, uniformly continuous function on
Rd. Namely,

(1.9) assume f ∈ BUC(Rd) with modulus σf satisfying |f(x)− f(y)| ≤ σf (|x− y|)

for all x, y ∈ Rd.

Theorem 1.2. Assume ( 1.9). There exist constants 0 < c0, c1 < 1 and C > 0 such that, on a
subset of full probability, for all ε > 0 sufficiently small depending on ω, the solutions of ( 1.4) and
( 1.6) satisfy

‖uε − u‖L∞(U) ≤ C‖f‖L∞(Rd)ε
c0 + Cσf (εc1).

A standard extension argument then allows Theorem 1.2 to be extended to arbitrary continuous
functions on the boundary, provided the domain is smooth. In this case,

(1.10) assume the domain U is smooth,

and

(1.11) assume f ∈ C(∂U) with modulus σf satisfying |f(x)− f(y)| ≤ σf (|x− y|)

for all x, y ∈ ∂U .

Theorem 1.3. Assume ( 1.10) and ( 1.11). There exist constants 0 < c0, c1 < 1, C1 = C1(U) > 0
depending upon the domain and C > 0 such that, on a subset of full probability, for all ε > 0
sufficiently small depending on ω, the solutions of ( 1.4) and ( 1.6) satisfy

‖uε − u‖L∞(U) ≤ C‖f‖L∞(∂U)ε
c0 + Cσf (C1ε

c1).
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Diffusion processes on Rd in the stationary ergodic setting were first considered in the case
b(x, ω) = 0 by Papanicolaou and Varadhan [17]. Furthermore, in the case that (1.2) can be
rewritten in divergence form, these diffusions and associated boundary value problems were studied
in Papanicolaou and Varadhan [16], and further results have been obtained by De Masi, Ferrari,
Goldstein and Wick [6], Kozlov [11], Olla [14] and Osada [15]. However, for general drifts b(x, ω)
which are neither divergence free nor a gradient of a stationary field, considerably less is known.

Indeed, the results of [20], which apply to the isotropic, perturbative regime described above, and
later extended by Fehrman [8, 9] are the only such available. And, to this point, the characterization
of the asymptotic behavior of boundary value problems like (1.4) has remained open. However, some
results do exist for the analogous discrete framework. Bolthausen and Zeitouni [4] characterized
the exit distributions from large balls (so, taking U = B1) of random walks in random environment
which are small, isotropic perturbations of a simple random walk, and their work was later refined
by Baur and Bolthausen [2] under a somewhat less stringent isotropy assumption. Finally, Baur
[3] has recently obtained results concerning the exit time from large balls of processes satisfying a
quenched symmetry assumption along a single coordinate direction.

The methods of this paper differ significantly from those of [2, 3, 4], which develop an induction
scheme to propagate estimates concerning the convergence of the exit law of the diffusion in random
environment to the uniform measure on the boundary of the ball, by instead relying upon the results
of [20] obtained in the parabolic setting. Furthermore, these methods apply to arbitrary bounded
domains satisfying an exterior ball condition.

The paper is organized so that, in Section 2, the notation and assumptions are presented and, in
Section 3, the most relevant aspects of [20] are reviewed and the primary probabilistic statement
concerning the random environment is presented. In Section 4, the exit time of the process in
random environment is controlled in probability, and the global coupling between the process in
random environment and Brownian motion is constructed in Section 5. The exit time of Brownian
motion at points near the boundary of the inflated domains Uδ is controlled in Section 6, and the
efficacy of the discrete approximation, as defined through the coupling, and ultimately the proof of
Theorem 1.1 are presented in Section 7. Finally, the rates of convergence in Theorems 1.2 and 1.3
appear in Section 8.

Acknowledgments. I would like to thank Professors Panagiotis Souganidis and Ofer Zeitouni for
many useful conversations.

2. Preliminaries

2.1. Notation. Elements of Rd and [0,∞) are denoted by x and y and t respectively and (x, y)
denotes the standard inner product on Rd. The gradient in space and derivative in time of a scalar
function v are written Dv and vt, while D2v stands for the Hessian of v. The spaces of k × l and
k× k symmetric matrices with real entries are respectively writtenMk×l and S(k). If M ∈Mk×l,

then M t is its transpose and |M | is its norm |M | = tr(MM t)1/2. If M is a square matrix, the trace
of M is written tr(M). The Euclidean distance between subsets A,B ⊂ Rd is

d(A,B) = inf { |a− b| | a ∈ A, b ∈ B }

and, for an index A and a family of measurable functions
{
fα : Rd × Ω→ Rnα

}
α∈A, the sigma

algebra generated by the random variables fα(x, ω), for x ∈ A and α ∈ A, is denoted

σ(fα(x, ω) | x ∈ A,α ∈ A).

For domains U ⊂ Rd, USC(U ;Rd), LSC(U ;Rd), BUC(U ;Rd), C(U ;Rd), Lip(U ;Rd), C0,β(U ;Rd)
and Ck(U ;Rd) are the spaces of upper-semicontinuous, lower-semicontinuous, bounded continuous,
continuous, Lipschitz continuous, β-Hölder continuous and k-continuously differentiable functions
on U with values in Rd. Furthermore, C∞c (Rd) denotes the space of smooth, compactly supported
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functions on Rd. The closure and boundary of U ⊂ Rd are written U and ∂U . For f : Rd → R, the
support of f is denoted Supp(f). Furthermore, BR and BR(x) are respectively the open balls of
radius R centered at zero and x ∈ Rd. For a real number r ∈ R, the notation [r] denotes the largest
integer less than or equal to r. Finally, throughout the paper C represents a constant which may
change from line to line but is independent of ω ∈ Ω unless otherwise indicated.

2.2. The Random Environment. The random environment is indexed by a probability space
(Ω,F ,P). Every element ω ∈ Ω corresponds to an individual realization of the environment as de-
scribed by the coefficients A(·, ω) and b(·, ω) on Rd. The stationarity of the coefficients is quantified
by an

(2.1) ergodic group of measure-preserving transformations {τx : Ω→ Ω}x∈Rd

such that the coefficients A : Rd × Ω → S(d) and b : Rd × Ω → Rd are bi-measurable stationary
functions satisfying, for each x, y ∈ Rd and ω ∈ Ω,

(2.2) A(x+ y, ω) = A(x, τyω) and b(x+ y, ω) = b(x, τyω).

The diffusion matrix and drift are bounded and Lipschitz uniformly for ω ∈ Ω. There exists
C > 0 such that, for all x ∈ Rd and ω ∈ Ω,

(2.3) |b(x, ω)| ≤ C and |A(x, ω)| ≤ C,

and, for all x, y ∈ Rd and ω ∈ Ω,

(2.4) |b(x, ω)− b(y, ω)| ≤ C|x− y| and |A(x, ω)−A(y, ω)| ≤ C|x− y|.

In addition, the diffusion matrix is uniformly elliptic uniformly in Ω. There exists ν > 1 such that,
for all x ∈ Rd and ω ∈ Ω,

(2.5)
1

ν
I ≤ A(x, ω) ≤ νI.

The coefficients satisfy a finite range dependence. There exists R > 0 such that, whenever
A,B ⊂ Rd satisfy d(A,B) ≥ R, the sigma algebras

(2.6) σ(A(x, ω), b(x, ω) | x ∈ A) and σ(A(x, ω), b(x, ω) | x ∈ B) are independent.

The diffusion matrix and drift satisfy a restricted isotropy condition. For every orthogonal trans-
formation r : Rd → Rd which preserves the coordinate axes, for every x ∈ Rd,

(2.7) (A(rx, ω), b(rx, ω)) and (rA(x, ω)rt, rb(x, ω)) have the same law.

And, the diffusion matrix and drift are a small perturbation of the Laplacian. There exists η0 > 0,
to later be chosen small, such that, for all x ∈ Rd and ω ∈ Ω,

(2.8) |b(x, ω)| ≤ η0 and |A(x, ω)− I| ≤ η0.

The final assumptions concern the domain. The domain

(2.9) U ⊂ Rd is open and bounded.

Furthermore, U satisfies an exterior ball condition. There exists r0 > 0 so that, for each x ∈ ∂U
there exists x∗ ∈ Rd such that

(2.10) Br0(x∗) ∩ U = {x} .

To avoid cumbersome statements in what follows, a steady assumption is introduced.

(2.11) Assume (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.7), (2.8), (2.9) and (2.10).
5



Observe that (2.3), (2.4) and (2.5) guarantee the well-posedness of the martingale problem
associated to to the generator

1

2

d∑
i,j=1

aij(x, ω)
∂2

∂xi∂xj
+

d∑
i=1

bi(x, ω)
∂

∂xi

for each x ∈ Rd and ω ∈ Ω, see Strook and Varadhan [19, Chapter 6,7]. The corresponding
probability measure and expectation on the space of continuous paths C([0,∞);Rd) will be written
Px,ω and Ex,ω where, almost surely with respect to Px,ω, paths Xt ∈ C([0,∞);Rd) satisfy the
stochastic differential equation

(2.12)

{
dXt = b(Xt, ω)dt+ σ(Xt, ω)dBt,
X0 = x,

for A(x, ω) = σ(x, ω)σ(x, ω)t, and for Bt some standard Brownian motion under Px,ω with respect

to the canonical right-continuous filtration on C([0,∞);Rd).
The translation and rotational invariance implied in law by (2.2) and (2.7) do not imply any

invariance properties, in general, for the quenched measures Px,ω. However, the annealed measures
and expectations, defined by the semi-direct products Px = P n Px,ω and Ex = E n Ex,ω on

Ω × C([0,∞);Rd), do satisfy a translational and rotational invariance in the sense that, for all
x, y ∈ Rd,
(2.13) Ex+y(Xt) = Ey(x+Xt) = x+ Ey(Xt),

and, for all orthogonal transformations r preserving the coordinate axis and for every x ∈ Rd,
(2.14) Ex(rXt) = Erx(Xt).

This fact plays an important role in [20] to preclude, with probability one, the emergence of ballistic
behavior of the rescaled process in the asymptotic limit.

Similarly, for each n ≥ 0 and x ∈ Rd, let Wn
x denote the Weiner measure on C([0,∞);Rd)

and EW
n
x the expectation corresponding to Brownian motion with variance αn beginning from

x. Almost surely with respect to Wn
x , paths Xt ∈ C([0,∞);Rd) satisfy the stochastic differential

equation

(2.15)

{
dXt =

√
αndBt,

X0 = x,

for Bt some standard Brownian motion under Wn
x with respect to the canonical right-continuous

filtration on C([0,∞);Rd).

2.3. A Remark on Existence and Uniqueness. The boundedness (2.3), Lipschitz continuity
(2.4) and ellipticity (2.5) of the coefficients together with the boundedness (2.9) and regularity
(2.10) of the domain guarantee the well-posedness, for every ω ∈ Ω, of equations like{

1
2 tr(A(x, ω)D2w) + b(x, ω) ·Dw = g(x) on U,
u = f(x) on ∂U,

for f ∈ C(∂U) and g ∈ C(U), in the class of bounded continuous functions. See, for instance,
Friedman [10, Chapter 3]. Furthermore, if τ denotes the exit time from U , then

u(x) = Ex,ω(f(Xτ )−
∫ τ

0
g(Xs) dx) on U,

see Øksendal [13, Exercise 9.12].
The same assumptions on the coefficients ensure the well-posedness of parabolic equations like{

wt = 1
2 tr(A(x, ω)D2w) + b(x, ω) ·Dw on Rd × (0,∞),

w = f(x) on Rd × {0} ,
6



for continuous initial data f(x) satisfying, for instance and to the extent that it will be applied in
this paper, |f(x)| ≤ C(1 + |x|2) on Rd, in the class of continuous functions satisfying, locally in
time, a quadratic estimate of the same form. See [10, Chapter 1]. Furthermore, the solution admits
the representation

w(x, t) = Ex,ω(f(Xt)) on Rd × (0,∞),

see [13, Exercise 9.12].
The analogous formulas hold for the constant coefficient elliptic and parabolic equations asso-

ciated, for each n ≥ 0, to the measures Wn
x . Since these facts are well-known, and since the

solution to every equation encountered in this paper admits an explicit probabilistic description,
the presentation will not further reiterate these points.

3. The Inductive Framework and Probabilistic Statement

In this section, the aspects of [20] most relevant to this work will be introduced. The interested
reader will find a full description of the inductive framework in [20], which was later reviewed in
the introductions of [8, 9]. Forgive, therefore, the terse explanation offered here.

Fix the dimension

(3.1) d ≥ 3,

and fix a Hölder exponent

(3.2) β ∈
(

0,
1

2

]
and a constant a ∈

(
0,

β

1000d

]
.

Let L0 be a large integer multiple of five. For each n ≥ 0, inductively define

(3.3) `n = 5

[
Lan
5

]
and Ln+1 = `nLn,

so that, for L0 sufficiently large, it follows that 1
2L

1+a
n ≤ Ln+1 ≤ 2L1+a

n . For each n ≥ 0, for c0 > 0,
let

(3.4) κn = exp(c0(log log(Ln))2) and κ̃n = exp(2c0(log log(Ln))2),

where, as n tends to infinity, notice that κn is eventually dominated by every positive power of Ln.
Furthermore, define, for each n ≥ 0,

(3.5) Dn = Lnκn and D̃n = Lnκ̃n,

where the preceding remark indicates the scales Dn and D̃n are larger but grow comparably with
the previously defined scales Ln.

The following constants enter into the probabilistic statements below. Fix m0 ≥ 2 satisfying

(3.6) (1 + a)m0−2 ≤ 100 < (1 + a)m0−1,

and δ > 0 and M0 > 0 satisfying

(3.7) δ =
5

32
β and M0 ≥ 100d(1 + a)m0+2.

In the arguments to follow, it will be essential that these assumptions guarantee δ and M0 are
sufficiently larger than a.

In order to apply the finite range dependence, it will be frequently necessary to introduce a
stopped version of the process. Define for every element Xt ∈ C([0,∞);Rd) the path

(3.8) X∗t = sup
0≤s≤t

|Xs −X0|,

and, for each n ≥ 0, the stopping time

Tn = inf
{
s ≥ 0 | X∗s ≥ D̃n

}
.
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The effective diffusivity of the ensemble at scale Ln is defined by

αn =
1

2d
E0

(
|XL2

n∧Tn |
2
)
,

where the localization is applied in order to exploit the diffusion’s mixing properties. The conver-
gence of the αn to a limiting diffusivity α is proven in [20, Proposition 5.7].

Theorem 3.1. Assume ( 2.11). There exists L0 and c0 sufficiently large and η0 > 0 sufficiently
small such that, for all n ≥ 0,

1

2ν
≤ αn ≤ 2ν and |αn+1 − αn| ≤ L

−(1+ 9
10

)δ
n ,

which implies the existence of α > 0 satisfying

1

2ν
≤ α ≤ 2ν and lim

n→∞
αn = α.

The results of [20] obtain an effective comparison on the parabolic scale (Ln, L
2
n) in space and

time, with improving probability as n→∞, between the solutions

(3.9)

{
ut = 1

2 tr(A(x, ω)D2u) + b(x, ω) ·Du on Rd × (0,∞),
u = f(x) on Rd × {0} ,

and solutions to the approximate limiting equation

(3.10)

{
un,t = αn

2 ∆un on Rd × (0,∞),
un = f(x) on Rd × {0} .

In order to simplify the notation define, for each n ≥ 0, the operators

(3.11) Rnf(x) = u(x, L2
n) and Rnf(x) = un(x, L2

n),

and the difference operator

(3.12) Snf(x) = Rnf(x)−Rnf(x).

Since solutions of (3.9) will not, in general, be effectively comparable with solutions of (3.10)
globally in space, it is necessary to introduce a cutoff function. For each v > 0, let

(3.13) χ(y) = 1 ∧ (2− |y|)+ and χv(y) = χ
(y
v

)
,

and define, for each x ∈ Rd and n ≥ 0,

(3.14) χn,x(y) = χ30
√
dLn

(y − x).

Furthermore, in order to account for the scaling of the initial data which appears in (1.2), the
comparison of the solutions is necessarily obtained with respect to the rescaled global Hölder-
norms, defined for each n ≥ 0,

(3.15) |f |n = ‖f‖L∞(Rd) + sup
x 6=y

Lβn
|f(x)− f(y)|
|x− y|β

.

See for instance the introductions of [9, 20] for a more complete discussion concerning the necessity
of these norms as opposed, say, to attempting an (in general, false) L∞-comparison.

The following control is the statement propagated by the arguments of [20], and expresses the
desired comparison between solutions (3.9) and (3.10), as written using the operator Sn from (3.12)
and localized by χn,x from (3.14), in terms of the |·|n-norm from (3.15) of the initial data.

Note carefully that this statement is not true, in general, for all triples x ∈ Rd, ω ∈ Ω and n ≥ 0.
However, as described below, it is shown in [20, Proposition 5.1] that such controls are available
for large n, with high probability, on a large portion of space.
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Control 3.2. Fix x ∈ Rd, ω ∈ Ω and n ≥ 0. Then, for each f ∈ C0,β(Rd),

|χn,xSnf |n ≤ L−δn |f |n.

It will also be necessary to obtain tail-estimates for the diffusion in random environment. Re-
calling that Px,ω is the measure on the space of continuous paths describing the diffusion beginning

from x ∈ Rd and associated to the generator

1

2

d∑
i,j=1

aij(x, ω)
∂2

∂xi∂xj
+

d∑
i=1

bi(x, ω)
∂

∂xi
,

the type of control propagated in [20] involves exponential estimates for the probability under Px,ω
that the maximal excursion X∗L2

n
defined in (3.8) is large with respect to the time elapsed.

As with Control 3.2, it is simply not true in general that this type of estimate is satisfied for all
triples (x, ω, n). However, it is shown in [20, Proposition 2.2] that such controls are available for
large n, with high probability, on a large portion of space.

Control 3.3. Fix x ∈ Rd, ω ∈ Ω and n ≥ 0. For each v ≥ Dn, for all |y − x| ≤ 30
√
dLn,

Py,ω(X∗L2
n
≥ v) ≤ exp(− v

Dn
).

It is necessary to obtain a lower bound in probability for the event, defined for each n ≥ 0 and
x ∈ Rd,

(3.16) Bn(x) = { ω ∈ Ω | Controls 3.2 and 3.3 hold for the triple (x, ω, n). } .

Notice that, in view of (2.2), for all x ∈ Rd and n ≥ 0,

(3.17) P(Bn(x)) = P(Bn(0)),

and observe that Bn(0) does not include the control of traps described in [20, Proposition 3.3],
which play in important role in propagating Control 3.2, and from which the arguments of this
paper have no further need.

The following theorem proves that the compliment of Bn(0) approaches zero as n tends to infinity,
see [20, Theorem 1.1].

Theorem 3.4. Assume ( 2.11). There exist L0 and c0 sufficiently large and η0 > 0 sufficiently
small such that, for each n ≥ 0,

P (Ω \Bn(0)) ≤ L−M0
n .

Henceforth, the constants L0, c0 and η0 are fixed to satisfy the hypothesis of Theorems 3.1 and
3.4 appearing above.

(3.18) Fix constants L0, c0 and η0 satisfying the hypothesis of Theorems 3.1 and 3.4.

The events which, following an application of the Borel-Cantelli lemma, come to define the event
on which Theorem 1.1 is obtained are chosen to ensure that Controls 3.2 and 3.3 are satisfied for a
sufficiently small scale as compared with 1

ε . Fix the smallest integer m > 0 satisfying the inequality

(3.19) m > 1− log(1− 2a− a2)
log(1 + a)

,

where the definition of Ln in (3.3) implies that Ln+1Ln−m ≤ L2
n−1 for all n ≥ 0 sufficiently large.

The idea will be to use Theorem 3.4 in order to obtain Controls 3.2 and 3.3 at scale Ln−m on
the entirety of the rescaled domain U/ε whenever Ln ≤ 1

ε < Ln+1. Since, for all n ≥ 0 sufficiently

large, it follows from the boundedness of U and (3.3) that, whenever Ln ≤ 1
ε < Ln+1, the rescaled
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domain U/ε is contained in what becomes the considerably larger set [−1
2L

2
n+2,

1
2L

2
n+2]

d, define, for
each n ≥ m,

(3.20) An =
{
ω ∈ Ω | ω ∈ Bm(x) for all x ∈ LmZd ∩ [−L2

n+2, L
2
n+2]

d and

for all n−m ≤ m ≤ n+ 2} .

The following proposition proves that, as n → ∞, the probability of the events An rapidly ap-
proaches one, since the exponent

2d(1 + a)2 − M0

2
< 0

is negative owing to (3.2) and (3.7).

Proposition 3.5. Assume ( 2.11) and ( 3.18). For each n ≥ m, for C > 0 independent of n,

P(Ω \An) ≤ CL2d(1+a)2− 1
2
M0

n .

Proof. Fix n ≥ m. Theorem 3.4 and (3.17) imply using (3.3) that, for C > 0 independent of n,

P(Ω \An) ≤
n+2∑

m=n−m
(
L2
n+2

Lm
)dL−M0

m ≤ C
n+2∑

m=n−m
L2d(1+a)2−2d(1+a)m−n−M0(1+a)m−n
n .

Therefore,

P(Ω \An) ≤ CL2d(1+a)2−M0(1+a)−m
n ,

which, since the definition of m implies that

(1 + a)−m ≥ (1 + a)(
2

1− a
− (1 + a)) ≥ 1

2
, yields P(Ω \An) ≤ CL2d(1+a)2−M0

2
n

and completes the proof. �

4. An Upper Bound for the Exit Time of the Process in Random Environment

The purpose of this section is to obtain an upper bound in probability for the exit time from the
rescaled domain U/ε of the process associated to the generator

(4.1)
1

2

d∑
i,j=1

aij(x, ω)
∂2

∂xi∂xj
+

d∑
k=1

bi(x, ω)
∂

∂xi
.

The reason for obtaining such an estimate will be seen in Section 5, where the process in random
environment is coupled with high probability to a deterministic Brownian motion. Since this
coupling cannot be expected to hold globally in time, it is necessary to ensure with high probability
that the exit time from U/ε occurs before the estimates deteriorate.

It will be shown that, as a consequence of the Hölder estimate stated in Control 3.2, whenever
the environment and scale satisfy ω ∈ An and Ln ≤ 1

ε < Ln+1 then, as n→∞, the exit time from

the rescaled domain U/ε occurs before time L2
n+2 with overwhelming probability. Define, for each

ε > 0, the C([0,∞);Rd) exit time

(4.2) τ ε = inf { t ≥ 0 | Xt /∈ U/ε } = inf { t ≥ 0 | εXt /∈ U } ,

where the final equality is particularly prescient in view of (1.5) and the scaling associated to the
generator

1

2

d∑
i,j=1

aij(
x

ε
, ω)

∂2

∂xi∂xj
+

1

ε

d∑
i=1

bi(
x

ε
, ω)

∂

∂xi
.
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In terms of this rescaled generator, the following proposition proves that, for environments ω ∈ An
and scales Ln ≤ 1

ε < Ln+1, as n→∞, paths εXt/ε2 exit U with overwhelming probability prior to

time ε2L2
n+2.

Proposition 4.1. Assume ( 2.11) and ( 3.18). For all n sufficiently large, for every ω ∈ An, for
all ε > 0 satisfying Ln ≤ 1

ε < Ln+1, for C > 0 independent of n,

sup
x∈U

Px
ε
,ω(τ ε > L2

n+2) ≤ CL−dan .

Proof. Using the boundedness of the domain in (2.9), choose R ≥ 1 satisfying U ⊂ BR and choose
n1 ≥ 0 such that, for every n ≥ n1,

(4.3) Ln+1U ⊂ Ln+1BR ⊂ [−L2
n+2, L

2
n+2]

d.

Henceforth, fix n ≥ n1, ω ∈ An and Ln ≤ 1
ε < Ln+1.

Define the smooth cutoff function satisfying 0 ≤ χBR ≤ 1 with

χBR(x) =

{
1 if x ∈ BR,
0 if x ∈ Rd \BR+1,

and observe that, for a constant C > 0 independent of ε > 0, since Ln ≤ 1
ε < Ln+1,

(4.4) |χBR(εx)|n+2 ≤ 1 + C
Ln+2

Ln
≤ CL2a+a2

n .

Then, consider solutions{
vεt = 1

2 tr(A(x, ω)D2vε) + b(x, ω) ·Dvε on Rd × (0,∞),
vε = χBR(εx) on Rd × {0} ,

which admit the representation

vε(x, t) = Ex,ω(χBR(εXt)) ≥ Px,ω(εXt ∈ BR) ≥ Px,ω(εXt ∈ U).

Therefore,

(4.5) 1− vε(x, t) ≤ Px,ω(εXt /∈ U) ≤ Px,ω(τ ε ≤ t).

The function vε will be compared via Control 3.2 with the solution{
vεt = αn+2

2 ∆vε on Rd × (0,∞),
vε = χBR(εx) on Rd × {0} .

The conditions ω ∈ An and (4.3) guarantee that for every x ∈ U/ε the conclusion of Control 3.2 is
satisfied and, therefore, using (3.2), (3.3) and (4.4), for C > 0 independent of n,

(4.6) sup
x∈U
|vε(x, L2

n+2)− vε(x, L2
n+2)| ≤ CL−δn+2L

2a+a2

n ≤ CL2a+a2−δ(1+a)2
n ≤ CL3a−δ

n .

To conclude, the size of vε(x, L2
n+2), which measures the likelihood that a Brownian motion with

variance αn+2 and beginning from x resides outside BR+1
ε

at time L2
n+2, is estimated using Theorem

3.1 and the Green’s function. For each x ∈ U/ε, since 1
ε < Ln+1 and R ≥ 1, for C > 0 independent

of n,

vε(x, L2
n+2) ≤

∫
B 4R

ε
(x)

(4παn+2L
2
n+2)

− d
2 exp(− |y − x|2

4αn+2L2
n+2

) dy ≤ C(εLn+2)
−d ≤ CL−da(1+a)n .

Therefore, in view of (4.6), for each x ∈ U/ε, for C > 0 independent of n,

(4.7) 1− vε(x, L2
n+2) ≥ 1− vε(x, L2

n+2)− |vε(x, L2
n+2)− vε(x, L2

n+2)| ≥ 1−CL−da(1+a)n −CL3a−δ
n .

11



So, using (4.5), since (3.2) and (3.7) imply da < da(1 + a) < δ − 3a, for C > 0 independent of n,

sup
x∈U

Px
ε
,ω(τ ε > L2

n+2) ≤ CL−dan ,

which completes the argument. �

5. The Global Coupling

The comparison implied by Control 3.2 on scale (Ln, L
2
n) between the vector-valued solutions of

the parabolic equation

(5.1)

{
ut = 1

2 tr(A(x, ω)D2u) + b(x, ω) ·Du on Rd × (0,∞),
u = x

Ln
on Rd × {0} ,

and the approximate homogenized equation

(5.2)

{
un,t = αn

2 ∆un on Rd × (0,∞),
un = x

Ln
on Rd × {0} ,

asserts that, after using the localization estimate implied by Control 3.3 and the choice of constants
(3.3), (3.4) and (3.5) to localize and bound the initial data with respect to the |·|n-norm,

(5.3) |u(0, L2
n)− un(0, L2

n)| = |E0,ω(
1

Ln
XL2

n
)− EWn

0 (
1

Ln
XL2

n
))| ≤ Cκ̃nL−δn ,

where Wn
x the Weiner measure on C([0,∞);Rd) corresponding to Brownian motion with variance

αn beginning from x.
Very formally, then, provided (what will be discrete) copies of the diffusion in random environ-

ment X̃t and Brownian motion B̃t are chosen carefully and are defined with respect to the same
measure on an auxiliary probability space (Ω̃, F̃ , P̃), a Chebyshev inequality should yield

(
γ

Ln
)βP̃(|X̃L2

n
− B̃L2

n
|β ≥ γβ) ≤ CL−δn κ̃n,

which implies

(5.4) P̃(|X̃L2
n
− B̃L2

n
| ≥ γ) ≤ CL−δn κ̃n(

Ln
γ

)β.

The purpose of this section will be to formalize and iterate this intuition along a discrete sequence of
time steps, where the work comes in constructing the processes X̃t and B̃t such that the integration
and absolute value in the version of (5.3) with respect to P̃ is commuted, and thereby justifies truly
the application of the Chebyshev inequality.

Solutions of (5.1) with initial data f(x) admit a representation in terms of the Green’s function

pt,ω(x, y) : [0,∞)× Rd × Rd → R,
which is the density of the diffusion beginning from x in environment ω at time t. See [10, Chapter 1]
for a detailed discussion of the existence and regularity of these densities, and which follow from
assumptions (2.3), (2.4) and (2.5). The formula for the solution is then

u(x, t) = Ex,ω(f(Xt)) =

∫
Rd
pt,ω(x, y)f(y) dy.

Similarly, solutions of (5.2) with initial data f(x) admit the analogous representation in terms of
the heat kernel

un(x, t) = EW
n
x (f(Xt)) =

∫
Rd

(4παnt)
− d

2 exp(−|y − x|
2

4αnt
)f(y) dy.

To simplify the notation in what follows, for each n ≥ 0, define

pn,ω(x, y) = pL2
n,ω

(x, y),
12



and the analogous heat kernel

pn(x, y) = (4παnL
2
n)−

d
2 exp(−|y − x|

2

4αnL2
n

).

The following proposition constructs a Markov process (Xk, Xk) on the space (Rd×Rd)N such that
the transition probabilities of first coordinate Xk are determined by pn,ω and, those of the second

coordinate Xk by pn. Furthermore, the difference |Xk−Xk| satisfies a version of (5.4) with respect
to the underlying measure.

The construction follows closely the proof of [20, Proposition 3.1], and is included for the conve-
nience of the reader and due to the mildly different formulation adapted to the arguments in this
paper. The proof relies upon the Kantorovich-Rubinstein Theorem, see Dudley [7, Theorem 11.8.2],
applied to the metrics

dn(x, y) = |x− y
Ln
|β,

where 0 < β ≤ 1
2 was fixed in (3.2). The theorem states that every pair of probability measures ν

and ν ′ on Rd assigning finite mass to the metric dn, in the sense that

(5.5)

∫
Rd
dn(x, 0) ν(dx) <∞ and

∫
Rd
dn(x, 0) ν ′(dx) <∞,

satisfy the equality

(5.6) Dn(ν, ν ′) = sup

{
|
∫
f dν −

∫
f dν ′| | |f(x)− f(y)| ≤ dn(x, y) on Rd × Rd

}
= inf

{∫
Rd×Rd

dn(x, x′) ρ(dx, dx′) | ρ is a probability measure on Rd × Rd

with first and second marginals ν and ν ′
}
.

The function Dn(·, ·) is sometimes referred to as the Kantorovich-Rubinstein or Wasserstein metric.
The choice of constants in the following proposition will be applied to spacial scales satisfying

Ln ≤ 1
ε < Ln+1. Therefore, in view of Proposition 4.1, the coupling remains effective up to and

past a point that the diffusion has exited the domain with overwhelming probability. Furthermore,
the time steps L2

n−m are chosen to be much smaller than the scale 1
ε2

in time as determined by the
definition of m in (3.19).

Proposition 5.1. Assume ( 2.11) and ( 3.18). For every ω ∈ Ω, for every x ∈ Rd, there exists a
measure Qn,x on the canonical sigma algebra of the space (Rd × Rd)N such that, under Qn,x, the

coordinate processes Xk and Xk respectively have the law of a Markov chain on Rd, starting from
x, with transition kernels pn−m,ω(·, ·) and pn−m(·, ·).

Furthermore, for every n ≥ m, ω ∈ An and x ∈ [−1
2L

2
n+2,

1
2L

2
n+2]

d, for C > 0 independent of n,

(5.7) Qn,x(|Xk −Xk| ≥ γ | for some 0 ≤ k ≤ 2(
Ln+2

Ln−m
)2) ≤ C(

Ln−m
γ

)β(
Ln+2

Ln−m
)4κ̃n−mL

−δ
n−m.

Proof. Fix n ≥ m and ω ∈ Ω. Let M1(Rd ×Rd) denote the set of probability measures on Rd ×Rd
with the topology of weak convergence. Exponential estimates imply, for each x ∈ Rd, the integrals
in (5.5) corresponding to the kernels νx = pn−m(x, ·) and ν ′x = pn−m(x, ·) are finite, see [10,
Chapter 1,Theorem 12]. The Kantorovich-Rubinstein theorem, see (5.6), therefore implies that, for
each x ∈ Rd, the subset

(5.8) Kx =
{
ρ ∈M1(Rd × Rd) | ρ has marginals pn−m,ω(x, ·) and pn−m(x, ·),

and Dn−m(pn−m,ω(x, ·), pn−m(x, ·)) =

∫
Rd×Rd

dn(x1, x2) ρ(dx1, dx2)

}
13



is non-empty and compact.
Furthermore, if

{
xi ∈ Rd

}∞
i=1

is a sequence with limit x∞ ∈ Rd then any sequence {ρi ∈ Kxi}
∞
i=1

is tight and has limit ρ∞ satisfying

(5.9)

∫
Rd×Rd

dn−m(x1, x2) ρ∞(dx1, dx2) ≤

lim inf
i→∞

∫
Rd×Rd

dn−m(x1, x2) ρi(dx1, dx2) = Dn−m(pn−m,ω(x∞, ·), pn−m(x∞, ·)),

where the final inequality follows using (5.6), (5.8) and the triangle inequality satisfied by Dn−m.
Since (5.9) implies that ρ∞ ∈ Kz∞ , using [19, Lemma 12.1.8, Theorem 12.1.10], there exists a
measurable map from Rd to M1(Rd × Rd) satisfying

(5.10) x→ ρ̃x ∈M1(Rd × Rd) with ρ̃x ∈ Kx.

The transition kernel of the Markov chain beginning at (x, y) ∈ (Rd × Rd) is denoted p̃x,y ∈
M1(Rd × Rd) and is defined, for each g ∈ L∞(Rd × Rd), by the relation

(5.11)

∫
Rd×Rd

g(x1, x2) p̃x,y(dx1, dx2) =

∫
Rd×Rd

g(x1, x2 − x+ y) ρ̃x(dx1, dx2).

For each x ∈ Rd, the measure Qn,x is defined as the law of the Markov chain (Xk, Xk) with
transition kernel p̃·,· and and initial distribution (x, x).

Notice that, if A ⊂ Rd is a Borel subset and k ≥ 0, then, using (5.8), (5.9) and (5.11), for each
x ∈ Rd and (y, z) ∈ Rd × Rd,

Qn,x(Xk+1 ∈ A | (Xk, Xk) = (y, z)) =

∫
A×Rd

ρ̃y(dx1, dx2) =

∫
A
pn−m,ω(y, x1) dx1,

and, similarly,

Qn,x(Xk+1 ∈ A | (Xk, Xk) = (y, z)) =

∫
Rd×(A+y−z)

ρ̃y(dx1, dx2)

=

∫
A+y−z

pn−m(y, x2) dx2 =

∫
A
pn−m(z, x2) dx2,

where the final line uses the translation invariance and symmetry of the heat kernel. This completes
the proof of existence. It remains to show (5.7).

Fix n ≥ m, ω ∈ An and x ∈ [−1
2L

2
n+2,

1
2L

2
n+2]

d. Let 0 ≤ k ≤ 2(
L2
n+2

L2
n−m

) be arbitrary. The triangle

inequality and definition of dn−m imply that, writing EQn,x for the expectation with respect to
Qn,x,

EQn,x(dn−m(Xk, Xk)) ≤ EQn,x(dn−m(Xk−1, Xk−1)) + EQn,x(dn−m(Xk, Xk −Xk−1 +Xk−1)),

where, using (5.8), (5.10), (5.11) and the strong Markov property,

EQn,x(dn−m(Xk, Xk −Xk−1 +Xk−1)) = EQn,x(Dn−m(pn−m,ω(Xk−1, ·), pn−m(Xk−1, ·))).

Therefore,

(5.12) EQn,x(dn−m(Xk, Xk)) ≤
EQn,x(dn−m(Xk−1, Xk−1)) + EQn,x(Dn−m(pn−m,ω(Xk−1, ·), pn−m(Xk−1, ·))).

The Kantorovich-Rubinstein theorem and Control 3.2 are used to bound the inequality’s final
term. Let f : Rd → R be a function satisfying |f(x)− f(y)| ≤ dn−m(x, y). Then, choose a smooth

14



cutoff function 0 ≤ χn−m ≤ 1 satisfying

χn−m(x) =

{
1 on BD̃n−m

,

0 on Rd \B2D̃n−m
,

and for which |χn−m|n−m ≤ 3.

Fix y ∈ [−L2
n+2, L

2
n+2]

d and define f̃y(z) = f(z)− f(y). Then, recalling the notation from (3.11)
and (3.12),

(5.13) |Sn−mf(y)| = |Sn−mf̃y(y)| ≤ |Sn−m(χn−mf̃y)(y)|+ |Sn−m((1− χn−m)f̃y)(y)|.

Since, for C > 0 independent of n,

|χn−mf̃y|n−m ≤ Cκ̃n−m,

Control 3.2, which is satisfied owing to the assumptions y ∈ [−L2
n+2, L

2
n+2]

d and ω ∈ An, implies

(5.14) |Sn(χn−mf̃y)(y)| ≤ CL−δn−mκ̃n−m.

The second term is bounded using Control 3.3 since ω ∈ An and y ∈ [−L2
n+2, L

2
n+2]

d. First, by the
triangle inequality,

|Sn−m((1− χn−m)f̃y)(y)| ≤ |Rn−m((1− χn−m)f̃y)(y)|+ |Rn−m((1− χn−m)f̃y)(y)|.

Following an integration by parts and bounding

Py,ω(|XL2
n−m
| ≥ r) ≤ Py,ω(X∗L2

n−m
≥ r),

Control 3.3 yields the estimate, for C > 0 independent of n,

(5.15) |Rn−m((1− χn−m)f̃y)(y)| ≤ −C
∫ ∞
D̃n−m

(
r

Ln−m
)β
d

dr
Py,ω(|XL2

n−m
| ≥ r) dr ≤

Cκ̃βn−m exp(−κ̃n−m).

Then, using the explicit representation of the Green’s function and the control of αn−m present in
Theorem 3.1, for C, c > 0 independent of n,

(5.16) |Rn−m((1− χn−m)f̃y)(y)| ≤
∫
Rd\BD̃n−m

pn−m(y, z)(
|z − y|
Ln−m

)β dz ≤ C exp(−cκ̃2n−m).

Since, in view of (3.3), (3.4) and (3.5) there exists C > 0 such that, for all n ≥ m,

exp(−cκ̃2n−m) ≤ Cκ̃βn−m exp(−κ̃n−m) ≤ CL−δn−mκ̃n−m,

the combination (5.13), (5.14), (5.15) and (5.16) yields, for C > 0 independent of n,

(5.17) |Sn−mf(y)| ≤ Cκ̃n−mL−δn−m.

If y /∈ [−L2
n+2, L

2
n+2]

d, again defining f̃y(z) = f(z)− f(y),

(5.18) |Sn−mf(y)| = |Sn−mf̃y(y)| ≤ |Rn−mf̃y(y)|+ |Rn−mf̃y(y)|.

To bound the first term, recall that, almost surely with respect to Py,ω, paths Xs ∈ C([0,∞);Rd)
satisfy the stochastic differential equation{

dXs = b(Xs, ω)dt+ σ(Xs, ω)dBs,
X0 = y,

for A(x, ω) = σ(x, ω)σ(x, ω)t and for Bt some standard Brownian motion under Px,ω with respect

to the canonical right-continuous filtration on C([0,∞);Rd). Therefore, using the exponential
15



inequality for Martingales, see Revuz and Yor [18, Chapter 2, Proposition 1.8], (2.3) and (2.4), for
every R ≥ 0, for C > 0 independent of R, y and ω,

Py,ω(X∗L2
n−m
≥ R+ CL2

n−m) ≤ exp(− R2

CL2
n−m

).

Choosing R = Cκ̃n−mLn−m, it follows that, for C, c > 0 independent of n ≥ m,

Py,ω(X∗L2
n−m
≥ Cκ̃n−mL2

n−m) ≤ exp(−cκ̃2n−m).

Then, form the decomposition

|Rn−mf̃y(y)| ≤ |Ey,ω(f̃y(XL2
n−m

), X∗L2
n−m
≤ Cκ̃n−mL2

n−m)|

+ |Ey,ω(f̃y(XL2
n−m

), X∗L2
n−m

> Cκ̃n−mL
2
n−m)|.

The second term of this inequality is bounded using (5.15). The first term is bounded brutally,

using the fact that f̃(z) ≤ dn−m(z, y), which yields, for C > 0 independent of n,

|Py,ω(f̃y(XL2
n−m

), X∗L2
n−m
≤ Cκ̃n−mL2

n−m)| ≤ Cκ̃βn−mL
β
n−m.

Therefore, for C > 0 independent of n,

(5.19) |Rn−mf̃y(y)| ≤ Cκ̃βn−mL
β
n−m.

The second term of (5.18) is bounded using the explicit representation of the heat kernel and

Theorem 3.1. For C > 0 independent of n, since f̃y(z) ≤ dn−m(z, y),

(5.20) |Rn−mf̃y(y)| ≤ |
∫
Rd
pn−m(y, z)(

|z − y|
Ln−m

)β dz| ≤ C.

Therefore, in view of (5.18), (5.19) and (5.20), for C > 0 independent of n,

(5.21) |Snf(y)| ≤ C(1 + κ̃βn−mL
β
n−m) ≤ Cκ̃βn−mL

β
n−m.

Returning to (5.12), decompose the second term as

(5.22) EQn,x(Dn−m(pn−m,ω(Xk−1, ·), pn−m(Xk−1, ·))) =

EQn,x(Dn−m(pn−m,ω(Xk−1, ·), pn−m(Xk−1, ·)), Xk−1 ∈ [L2
n+2, L

2
n+2]

d)

+ EQn,x(Dn−m(pn−m,ω(Xk−1, ·), pn−m(Xk−1, ·)), Xk−1 /∈ [L2
n+2, L

2
n+2]

d).

Since f satisfying |f(x) − f(y)| ≤ dn−m(x, y) appearing in (5.17) and (5.21) was arbitrary, the
Kantorovich-Rubinstein theorem in (5.6) with (5.17) imply that

(5.23) EQn,x(Dn−m(pn−m,ω(Xk−1, ·), pn−m(Xk−1, ·)), Xk−1 ∈ [L2
n+2, L

2
n+2]

d) ≤ Cκ̃n−mL−δn−m.

Then, again the Kantorovich-Rubinstein theorem from (5.6) together with (5.21), using x ∈
[−1

2L
2
n+2,

1
2L

2
n+2]

d and 0 ≤ k ≤ 2( Ln+2

Ln−m
)d, the second term is bounded by

(5.24) EQn,x(Dn−m(pn−m,ω(Xk−1, ·), pn−m(Xk−1, ·)), Xk−1 /∈ [L2
n+2, L

2
n+2]

d)

≤ Cκ̃βn−mL
β
n−mPx,ω(X∗2L2

n+2
≥ 1

2
L2
n+2).

To conclude, since x ∈ [−1
2L

2
n+2,

1
2L

2
n+2]

d and ω ∈ An, Control 3.3 implies that, for C > 0 indepen-
dent of n,

(5.25) Px,ω(X∗2L2
n+2
≥ 1

2
L2
n+2) ≤ 2 exp(−

L2
n+2

Dn+2
) ≤ C exp(−Ln+1).
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Therefore, in view of (5.22), (5.23), (5.24) and (5.25), for C > 0 and c > 0 independent of n,

(5.26) EQn,x(Dn−m(pn−m,ω(Xk−1, ·), pn−m(Xk−1, ·)))

≤ κ̃n−mL−δn−m + Cκ̃βn−mL
β
n−m exp(−Ln+1) ≤ Cκ̃n−mL−δn−m.

It follows from (5.12) and (5.22) that, for every 0 ≤ k ≤ 2( Ln+2

Ln−m
)2, for C > 0 independent of n,

EQn,x(dn−m(Xk, Xk)) ≤ EQn,x(dn−m(Xk−1, Xk−1)) + Cκ̃n−mL
−δ
n−m.

And, since the initial distribution of the Markov chain (X0, X0) = (x, x) with probability one under

Qn,x, iterating this inequality yields, for every 0 ≤ k ≤ 2( Ln+2

Ln−m
)2,

EQn,x(dn−m(Xk, Xk)) ≤ Ckκ̃n−mL−δn−m.

Chebyshev’s inequality and the definition of dn−m then imply that, for every 0 ≤ k ≤ 2( Ln+2

Ln−m
)2,

for every γ > 0,

(
γ

Ln−m
)βQn,x(|Xk −Xk| ≥ γ) ≤ Ckκ̃n−mL−δn−m,

and, therefore,

Qn,x(|Xk −Xk| ≥ γ | for some 0 ≤ k ≤ 2(
Ln+2

Ln−m
)2) ≤

C(
Ln−m
γ

)β(1 + . . .+ 2(
Ln+2

Ln−m
)2)κ̃n−mL

−δ
n−m.

Estimating the sum by the elementary inequality 1 + . . .+m ≤ m2,

Qn,x(|Xk −Xk| ≥ γ | for some 0 ≤ k ≤ 2(
Ln+2

Ln−m
)2) ≤ C(

Ln−m
γ

)β(
Ln+2

Ln−m
)4κ̃n−mL

−δ
n−m,

which, since n ≥ m, ω ∈ An and x ∈ [−1
2L

2
n+2,

1
2L

2
n+2]

d were arbitrary, completes the argument. �

The section concludes with a straightforward corollary of Proposition 5.1. Since the definition
of m in (3.19) implies

(1 + a)m+2 − 1 ≤ (1 + a)4

2− (1 + a)2
− 1 ≤ 8a

2
= 4a,

it follows from the definition of Ln in (3.3) that, for C > 0 independent of n,

(
Ln+2

Ln−m
)4 ≤ CL16a

n−m.

The following corollary then follows immediately by taking γ = Ln−m in Proposition 5.1. Observe
that (3.2) and (3.7) imply the exponent

16a− δ < 0

is negative.

Corollary 5.2. Assume ( 2.11) and ( 3.18). For every n ≥ m, ω ∈ An and x ∈ [−1
2L

2
n+2,

1
2L

2
n+2]

d,
for C > 0 independent of n,

Qn,x(|Xk −Xk| ≥ Ln−m | for some 0 ≤ k ≤ 2(
Ln+2

Ln−m
)2) ≤ Cκ̃n−mL16a−δ

n−m .
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6. Estimates for the Exit Time of Brownian Motion

In this section estimates are obtained, in expectation and near the boundary of the domain, for
the exit time of a Brownian motion. The role of the exterior ball condition comes in the proof of
these estimates, which states that there exists (a now fixed) r0 > 0 such that, for every x ∈ ∂U ,
there exists x∗ ∈ Rd satisfying

(6.1) Br0(x∗) ∩ U = {x} .
Furthermore, define, for each δ > 0, the inflated domain

(6.2) Uδ =
{
x ∈ Rd | d(x, U) < δ

}
,

and notice, as a consequence of (6.1), for every 0 < δ < r0,

(6.3) Uδ satisfies the exterior ball condition with radius (r0 − δ).
Essentially, it will be necessary to understand, in expectation, the exit time of Brownian motion
from the sets Uδ and U , as δ → 0, at points within distance δ from the boundary.

The first step is to consider the exit time of Brownian motion from the annular domains centered
at the origin and defined, for each pair of radii 0 < r1 < r2 <∞, by

Ar1,r2 = Br2 \Br1 .

For each pair (r1, r2) let τr1,r2 denote the C([0,∞);Rd) exit time

τr1,r2 = inf { t ≥ 0 | Xt /∈ Ar1,r2 } ,
and recall that, in expectation and with respect to the Weiner measure Wn

x defining Brownian
motion with variance αn beginning from x, the function

unr1,r2(x) = EW
n
x (τr1,r2) on Ar1,r2

satisfies the equation

(6.4)

{
1 + αn

2 ∆unr1,r2 = 0 on Ar1,r2 ,
unr1,r2 = 0 on ∂Ar1,r2 .

See, for instance, [13, Exercise 9.12]. The following proposition obtains an upper bound for these
solutions most effective in a neighborhood of ∂Br1 . The estimate necessarily depends upon the
pair (r1, r2), which in the application to follow will be fixed independently of n ≥ 0, but does not
otherwise depend upon n ≥ 0.

Proposition 6.1. Assume ( 2.11) and ( 3.18). For each pair of radii 0 < r1 < r2 < ∞, for each
n ≥ 0, there exists C = C(r1, r2) > 0 such that

unr1,r2(x) ≤ Cd(x, ∂Br1) on Ar1,r2 .

Proof. Fix 0 < r1 < r2 < ∞ and n ≥ 0. The solution unr1,r2 of (6.4) admits the explicit radial
description, since d ≥ 3 owing to (3.1), writing r = |x|,

u(x) = u(r) = c1(r1, r2) + c2(r1, r2)r
2−d − r2

2dαn
on Ar1,r2 ,

where

c1(r1, r2) =
1

2dαn
· r

2
1r

2−d
2 − r22r

2−d
1

r2−d2 − r2−d1

and c2(r1, r2) =
1

2dαn
· r22 − r21
r2−d2 − r2−d1

.

Therefore, after performing a Taylor expansion in r about r1, using the fact that u(r1) = 0, for
each x ∈ Ar1,r2 ,

unr1,r2(x) = unr1,r2(r) = c2(2− d)r1−d1 (r − r1) + c2(2− d)(1− d)

∫ r

r1

s−d(r − s) ds− (
2r1r + r2

2dαn
).
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Because the integrand is bounded by r−d1 (r2− r1), a brutal but sufficient estimate, and because the
final term is negative, the uniform control in n ≥ 0 of αn provided by Theorem 3.1 implies that
there exits C = C(r1, r2) > 0 satisfying

unr1,r2(x) = unr1,r2(r) ≤ C(r − r1) = Cd(x, ∂Br1) on Ar1,r2 ,

which completes the argument. �

Passing from the annular regions Ar1,r2 to the domain U and its inflations Uδ, for δ > 0 small,

is now straightforward. Define, for each x ∈ Rd and pair of radii (r1, r2), the translate

Ar1,r2(x) = x+Ar1,r2 = Br2(x) \Br1(x),

and, for each δ > 0, the C([0,∞);Rd) exit times

(6.5) τ = inf { t ≥ 0 | Xt /∈ U } and τ δ = inf { t ≥ 0 | Xt /∈ Uδ } .
The following corollary controls the expectation of τ and τ δ in an approximately δ-neighborhood
of the respective boundaries. Recall the radius r0 in (6.1) quantifying the exterior ball condition.

Corollary 6.2. Assume ( 2.11) and ( 3.18). For every 0 < δ < r0
2 , for every n ≥ 0, for C > 0

independent of n and δ,

sup
d(x,∂U)≤δ

EW
n
x (τ) ≤ Cδ and sup

d(x,∂Uδ)≤2δ
EW

n
x (τ δ) < Cδ.

Proof. For each 0 < δ < r0
2 it follows from (6.3) that Uδ satisfies the exterior ball condition with

radius r0 − δ. Fix r2 >
r0
2 such that, whenever x ∈ ∂Uδ and x∗ ∈ Rd satisfy

Br0−δ(x
∗) ∩ U δ = {x} , it follows that U δ ⊂ Br2(x∗).

The existence of r2 chosen uniformly for 0 < δ < r0
2 is guaranteed by the boundedness of U assumed

in (2.9). Observe that, for each x ∈ U , since the stopping time τδ ≥ τ almost-surely with respect
to Wn

x , the first statement is subsumed by the second, which will be shown henceforth.
Fix 0 < δ < r0

2 and n ≥ 0. In Proposition 6.1, choose r1 = r0− δ and observe that the smallness

of δ guarantees r0
2 ≤ r1 ≤ r0, and the choice of pair (r1, r2) ensures, for every x ∈ ∂Uδ and x∗ ∈ Rd

satisfying

(6.6) Br0−δ(x
∗) ∩ U δ = {x} , the containment U δ ⊂ Ar1,r2(x∗).

Fix x ∈ Uδ satisfying d(x, ∂Uδ) ≤ 2δ and, owing to the compactness of ∂Uδ, choose x ∈ ∂Uδ
satisfying |x − x| = d(x, ∂Uδ). Let x∗ satisfy (6.6) corresponding to x, and let un,xr1,r2 satisfy the
equation

(6.7)

{
1 + αn

2 ∆un,xr1,r2 = 0 on Ar1,r2(x∗),

un,xr1,r2 = 0 on ∂Ar1,r2(x∗).

Due to the translational invariance of the equation, Proposition 6.1 implies that, since r1 and r2
can be chosen to be bounded uniformly above and away from zero independently of 0 < δ < r0

2 and
n ≥ 0, for C > 0 independent of n and δ,

(6.8) un,xr1,r2(x) ≤ Cd(x, ∂Ar1,r2(x∗)) ≤ C|x− x| = Cd(x, ∂Uδ) ≤ Cδ.

In order to conclude, the expectation of the exit time EW
n
x (τ δ) on U δ is the solution of the

equation {
1 + αn

2 ∆EW
n
x (τ δ) = 0 on Uδ,

EW
n
x (τ δ) = 0 on ∂Uδ,

see [13, Exercise 9.12], and (6.6) implies that the solution un,xr1,r2 ≥ 0 of (6.7) satisfies{
1 + αn

2 ∆un,xr1,r2(τδ) = 0 on Uδ,

un,xr1,r2(τδ) ≥ 0 on ∂Uδ.
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Therefore, by comparison principle and (6.8), for C > 0 independent of n and δ,

EW
n
x (τ δ) ≤ un,xr1,r2(x) ≤ Cδ,

which, because x ∈ Uδ satisfying d(x, ∂Uδ) ≤ 2δ, 0 < δ < r0
2 and n ≥ 0 were arbitrary, completes

the proof. �

Corollary 6.2 is also sufficient to estimate, for each ε > 0, the exit times of Brownian motion
from the rescaled domains U/ε. Write, for each ε > 0, the C([0,∞);Rd) exit time

(6.9) τ ε = inf { t ≥ 0 | Xt /∈ U/ε} = inf { t ≥ 0 | εXt /∈ U} .

The corresponding expectation EW
n
x (τ ε) then satisfies{

1 + αn
2 ∆EW

n
x (τ ε) = 0 on U/ε,

EW
n
x (τ ε) = 0 on ∂U/ε,

see [13, Exercise 9.12], and can be obtained by a rescaling of EW
n
x (τ) from Corollary 6.2. Indeed,

EW
n
x (τ ε) = ε−2EW

n
εx(τ) on U/ε.

Similarly, if for each ε > 0 and δ > 0,

τ ε,δ = inf { t ≥ 0 | Xt /∈ Uδ/ε } = inf { t ≥ 0 | εXt /∈ Uδ } ,

then, for τ δ the exit time from Uδ defined in (6.5),

EW
n
x (τ ε,δ) = ε−2EW

n
εx(τ δ) on U δ/ε.

The following statement is then an immediate consequence Corollary 6.2 and the previous two
equalities.

Corollary 6.3. Assume ( 2.11) and ( 3.18). For every ε > 0, 0 < δ < r0
2ε and n ≥ 0, for C > 0

independent of ε, δ and n,

sup
d(x,∂U/ε)≤δ

EW
n
x (τ ε) ≤ Cε−1δ and sup

d(x,∂Uδ/ε)≤2δ
EW

n
x (τ ε,δ) < Cε−1δ.

7. The Discrete Approximation and Proof of Theorem 1.1

The purpose of this section is to complete the almost-sure characterization, as ε→ 0, of solutions

(7.1)

{
1
2 tr(A(xε , ω)D2uε) + 1

ε b(
x
ε , ω) ·Duε = 0 on U,

uε = f(x) on ∂U,

which, for the C([0,∞);Rd) stopping time

(7.2) τ ε = inf { t ≥ 0 | εXt /∈ U } = inf { t ≥ 0 | Xt /∈ U/ε } ,

and probability measure and expectation Px,ω and Ex,ω on C([0,∞);Rd) associated to the unscaled
generator

(7.3)
1

2

d∑
i,j=1

aij(x, ω)
∂2

∂xi∂xj
+

d∑
i=1

bi(x, ω)
∂

∂xi
,

admit the representation

uε(x) = Ex
ε
,ω(f(εXτε)) on U.

See (1.3), (1.4) and [13, Exercise 9.12].
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The strategy will be, for scales ε satisfying Ln ≤ 1
ε < Ln+1, to approximate the continuous

process Xt by the discrete process constructed in Proposition 5.1 corresponding to time steps of
order L2

n−m. The choice in (3.19) of the integer m satisfying

m > 1− log(1− 2a− a2)
log(1 + a)

guarantees, in view of the definitions of Ln in (3.3) and D̃n in (3.5), that there exists ζ > 0 such
that, for C > 0 independent of n,

(7.4) Ln+1D̃n−m ≤ CL2−ζ
n−1.

Furthermore, in order to simplify some statements to follow, use the definition of Ln in (3.3) and
κ̃n in (3.4) to fix ζ > 0 sufficiently small so that, for all n ≥ m,

(7.5) κ̃n−mL
16a−δ
n−m ≤ L−ζn−1 and L−dan ≤ L−ζn−1.

Henceforth,

(7.6) fix ζ > 0 satisfying (7.4) and (7.5).

Introduce, for each ε > 0 and n ≥ m, the discrete C([0,∞);Rd) stopping times

(7.7) τ ε,n1 = inf
{
kL2

n−m ≥ 0 | d(XkL2
n−m

, (U/ε)c) ≤ D̃n−m

}
,

which quantify the first time in the discrete sequence
{
kL2

n−m
}
k≥0 that XkL2

n−m
resides in the

D̃n−m neighborhood of the compliment of U/ε. It is not true that τ ε,n ≤ τ ε for every path Xt,
however, for scales Ln ≤ 1

ε < Ln+1, the failure of this inequality will be controlled in probability
by the exponential estimate appearing Control 3.3.

Furthermore, define, for each ε > 0 and n ≥ m, the discrete C([0,∞);Rd) stopping times

(7.8) τ ε,n2 = inf
{
kL2

n−m ≥ 0 | d(XkL2
n−m

, (U/ε)) ≥ D̃n−m

}
.

These stopping times indicate the first earliest point in the discrete sequence
{
kL2

n−m
}
k≥0 that

XkL2
n−m

resides outside the D̃n−m neighborhood of (U/ε).

It follows from the definitions that τ ε,n1 ≤ τ ε,n2 and, on the event τ ε,n1 ≤ τ ε, it is necessarily the
case that τ ε,n1 ≤ τ ε ≤ τ ε,n2 . The estimates obtained in expectation for the exit time of Brownian
motion appearing in Corollary 6.3 will allow for an effective estimate of τ ε,n2 near the boundary
of U/ε for scales ε and n satisfying Ln ≤ 1

ε < Ln+1. These bounds, together with the coupling
constructed in Proposition 5.1, then yield an upper bound for the probability

Px,ω(τ ε − τ ε,n1 ≥ L2
n−1) for x ∈ U/ε.

This estimate, in conjunction with the exponential controls established by Control 3.3, effectively
provides a barrier for equation (7.1) near of boundary ∂U of a quality that, for general such
equations, is impossible to obtain. And, therefore, shows that the discretely stopped process Xτε,n1

is a good proxy for Xτε . The proof of Theorem 1.1 then follows from the coupling established in
Corollary 6.3 and the upper bound for the exit time appearing in Proposition 4.1.

Proposition 7.1. Assume ( 2.11) and ( 3.18). For all n ≥ 0 sufficiently large, for every ε > 0
satisfying Ln ≤ 1

ε ≤ Ln+1, for ζ > 0 in ( 7.6) and C > 0 independent of n,

sup
d(x,(U/ε)c)≤2D̃n−m

Wn−m
x (τ ε,n2 ≥ L2

n−1) ≤ CL
−ζ
n−1.
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Proof. Fix n1 ≥ 0 such that, for every n ≥ n1, for r0 the constant quantifying the exterior ball
condition in (6.1),

(7.9) 2D̃n−m ≤
r0Ln

2
.

This condition guarantees that, whenever d(x, (U/ε)c) ≤ 2D̃n−m, the conclusion of Proposition 6.3
is satisfied.

Henceforth, fix n ≥ n1, ε > 0 satisfying Ln ≤ 1
ε < Ln+1 and x ∈ Rd satisfying d(x, (U/ε)c) ≤

2D̃n−m. Recalling that τ ε,δ denotes the exit time from the δ-neighborhood of (U/ε), and choosing

δ = 2D̃n−m, Proposition 6.3 implies that, for C > 0 independent of n,

EW
n
x (τ ε,2D̃n−m) ≤ C(2D̃n−m)ε−1 < CD̃n−mLn+1.

Therefore, for ζ > 0 defined in (7.6), for C > 0 independent of n,

EW
n
x (τ ε,2D̃n−m) ≤ CL2−ζ

n−1.

Then, by Chebyshev’s inequality, for C > 0 independent of n,

(7.10) Wn
x (τ ε,2D̃n−m ≥ 1

2
L2
n−1) ≤ CL

−ζ
n−1.

In order to conclude, using the translational invariance of the heat kernel and the Markov prop-
erty, and owing to exponential tail estimates for Brownian motion on scale D̃n−m, see [18, Chap-
ter 2, Proposition 1.8], using the choice of constants (3.3), (3.4) and (3.5), for C > 0 and c > 0
independent of n,

(7.11) Wn
x (τ ε,2D̃n−m + L2

n−m ≤ τ
ε,n
2 ) ≤Wn

0 (X∗L2
n−m
≥ D̃n−m) ≤ C exp(−cκ̃2n−m).

And, since the choice of constants (3.3), (3.4) and (3.5) guarantee the existence of C > 0 indepen-

dent of n satisfying exp(−cκ̃2n−m) ≤ CL−ζn−1, and since for n ≥ 0 sufficiently large L2
n−m < 1

2L
2
n−1,

in combination (7.10) and (7.11) assert that

Wn
x (τ ε,n2 ≥ L2

n−1) ≤ CL
−ζ
n−1,

which, since x satisfying d(x(U/ε)c) ≤ 2D̃n−m, ε satisfying Ln ≤ 1
ε < Ln+1 and n ≥ n1 were

arbitrary, completes the argument. �

The following proposition relies upon the random subsets An defined in (3.20). Recall, for each
n ≥ 0,

(7.12) An =
{
ω ∈ Ω | ω ∈ Bm(x) for all x ∈ LmZd ∩ [−L2

n+2, L
2
n+2]

d and

for all n−m ≤ m ≤ n+ 2.} ,

which implies that for every ω ∈ An, x ∈ [−L2
n+2, L

2
n+2]

d and scale between Ln−m to Ln+2, the
Hölder estimate from Control 3.2 and the localization estimate from Control 3.3 are satisfied. The
remaining arguments require no further use of Control 3.2, since the coupling obtained in Corollary
5.2 encodes already its purpose, but the localization estimate from Control 3.3 will be used, and
which is now recalled.

Control 7.2. Fix x ∈ Rd, ω ∈ Ω and n ≥ 0. For each v ≥ Dn, for all |y − x| ≤ 30
√
dLn,

Py,ω(X∗L2
n
≥ v) ≤ exp(− v

Dn
).

The following proposition establishes, on the event An, the desired comparison between the
continuous exit time τ ε and discrete stopping time τ ε,n1 with respect to Px,ω for large n and and on
scales ε satisfying Ln ≤ 1

ε < Ln+1.
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Proposition 7.3. Assume ( 2.11) and ( 3.18). For each n ≥ m sufficiently large, for every ε > 0
satisfying Ln ≤ 1

ε < Ln+1 and for every ω ∈ An, for C > 0 independent of n,

sup
x∈U/ε

Px,ω(τ ε − τ ε,n1 ≥ L2
n−1) ≤ CL

−ζ
n−1.

Proof. Fix n1 ≥ 0 as in Proposition 7.1 such that, for each n ≥ n1,

2D̃n−m ≤
r0Ln

2
.

This condition guarantees that Proposition 7.1 is satisfied for every n ≥ n1. Furthermore, fix n2 ≥ 0
such that, whenever n ≥ n2,

Ln+1U ⊂ [−1

2
L2
n+2,

1

2
L2
n+2]

d,

which guarantees, whenever n ≥ n2 and Ln ≤ 1
ε < Ln+2, the containment U/ε ⊂ [−1

2L
2
n+2,

1
2L

2
n+2]

d

and therefore, for every x ∈ U/ε, the conclusion of Corollary 5.2.
Henceforth, fix n ≥ max(n1, n2,m), ε > 0 satisfying Ln ≤ 1

ε < Ln+1, ω ∈ An and x ∈ U/ε.

Recall the measure Qn,x defining the Markov chain (Xk, Xk) on (Rd ×Rd)N, and which effectively
acts in its respective coordinates as a discrete version of the process in random environment or
Brownian motion with variance αn−m along the sequence

{
kL2

n−m
}
k≥0 in time. Let Cn denotes

the event

Cn = (|Xk −Xk| ≥ Ln−m | for some 0 ≤ k ≤ 2(
Ln+2

Ln−m
)2 ),

and recall, owing to Corollary 5.2, for C > 0 independent of n,

(7.13) Qx,n(Cn) ≤ Cκ̃n−mL16a−δ
n−m .

Let τ̃ ε denotes the discrete C([0,∞);Rd) stopping time

(7.14) τ̃ ε = inf
{
kL2

n−m ≥ 0 | XkL2
n−m

/∈ U/ε
}
.

It follows by definition that τ ε ≤ τ̃ ε. Furthermore, the definition of Qn,y and the Markov property
imply that

(7.15) Px,ω(τ̃ ε − τ ε,n1 ≥ L2
n−1) = Qn,x(T̃ ε − T ε,n1 ≥ (

Ln−1
Ln−m

)2)

= Qn,x(T̃ ε − T ε,n1 ≥ (
Ln−1
Ln−m

)2, Cn) +Qn,x(T̃ ε − T ε,n1 ≥ (
Ln−1
Ln−m

)2, Ccn),

where, in the final two terms of the equality, the stopping times are defined by

T ε,n1 = inf
{
k ≥ 0 | (Xk, Xk) satisfies d(Xk, (U/ε)

c) ≤ D̃n−m

}
,

which is merely the analogue of τ ε,n1 defined for the first coordinate of (Xk, Xk), and

T̃ ε = inf
{
k ≥ 0 | (Xk, Xk) satisfies Xk /∈ U

}
,

which is the analogue of τ̃ ε defined for the first coordinate of (Xk, Xk).
In view of (7.13), the first term of (7.15) is bounded, for C > 0 independent of n, by

(7.16) Qn,x(T̃ ε − T ε,n1 ≥ (
Ln−1
Ln−m

)2, Cn) ≤ Qn,x(Cn) ≤ Cκ̃n−mL16a−δ
n−m .
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The second event is decomposed one step further as

(7.17) Qn,x(T̃ ε − T ε,n1 ≥ (
Ln−1
Ln−m

)2, Ccn) = Qn,x(T̃ ε − T ε,n1 ≥ (
Ln−1
Ln−m

)2, Ccn, T
ε,n
1 > (

Ln+2

Ln−m
)2)

+Qn,x(T̃ ε − T ε,n1 ≥ (
Ln−1
Ln−m

)2, Ccn, T
ε,n
1 ≤ (

Ln+2

Ln−m
)2).

Proposition 4.1, and in particular line (4.7) which applies equally to the discrete sequence, since
L2
n−m divides L2

n+2 according to the choice (3.3), implies that the first term of (7.17) can be
estimated, for C > 0 independent of n, by

(7.18) Qn,x(T̃ ε − T ε,n1 ≥ (
Ln−1
Ln−m

)2, Ccn, T
ε,n
1 > (

Ln+2

Ln−m
)2) ≤ Qn,x(T ε,n1 > (

Ln+2

Ln−m
)2) ≤ CL−dan .

It remains to bound

Qn,x(T̃ ε − T ε,n1 ≥ (
Ln−1
Ln−m

)2, Ccn, T
ε,n
1 ≤ (

Ln+2

Ln−m
)2).

Define the discrete stopping time

T
ε,n
2 = inf

{
k ≥ 0 | (Xk, Xk) satisfies d(Xk, (U/ε)) ≥ D̃n−m

}
,

which is the analogue of τ ε,n2 defined for the second coordinate of the process (Xk, Xk) on (Rd×Rd)N.

On the event Ccn, for every 0 ≤ k ≤ 2( Ln+2

Ln−m
)2, whenever

d(Xk, (U/ε)
c) ≤ D̃n−m, it follows that d(Xk, (U/ε)

c) ≤ D̃n−m + Ln−m ≤ 2D̃n−m,

and whenever

d(Xk, (U/ε)) ≥ D̃n−m, it follows that d(Xk, (U/ε)) ≥ D̃n−m − Ln−m > 0.

Therefore, on the event (Ccn, T
ε,n
1 ≤ ( Ln−1

Ln−m
)2), since it follows from the definitions that

d(XT ε,n1
, (U/ε)c) ≤ D̃n−m and d(XT

ε,n
2
, (U/ε)) ≥ D̃n−m,

the Markov property, the definition of Qn,x and Proposition 7.1 imply, for C > 0 independent of n,

(7.19)

Qn,x(T̃ ε − T ε,n1 ≥ (
Ln−1
Ln−m

)2, Ccn, T
ε,n
1 ≤ (

Ln+2

Ln−m
)2) ≤ sup

d(x,(U/ε)c)≤2D̃n−m
Qn,x(T

ε,n
2 ≥ (

Ln−1
Ln−m

)2)

= sup
d(x,(U/ε)c)≤2D̃n−m

Wn−m
x (τ ε,n2 ≥ L2

n−1) ≤ CL
−ζ
n−1.

Therefore, owing to the choice of ζ > 0 in (7.6) and since τ ε ≤ τ̃ ε from (7.14), the string of
inequalities (7.15), (7.16), (7.17), (7.18) and (7.19) imply, for C > 0 independent of n,

Px,ω(τ ε − τ ε,n1 ≥ L2
n−1) ≤ Px,ω(τ̃ ε − τ ε,n1 ≥ L2

n−1) ≤ CL
−ζ
n−1,

which, since x ∈ U/ε, n sufficiently large, Ln ≤ 1
ε < Ln+1 and ω ∈ An were arbitrary, completes

the argument. �

The subsets An now come to define the event on which the conclusion of Theorem 1.1 is obtained.
Recall Proposition 3.5, which states that, for each n ≥ m, for C ≥ 0 independent of n,

P(Ω \An) ≤ CL2d(1+a)2− 1
2
M0

n ,
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and notice that the definition of Ln in (3.3) and the negative exponent 2d(1 + a)2 − 1
2M0 < 0

guarantee the sum
∞∑
n=m

P(Ω \An) ≤ C
∞∑
n=m

L
2d(1+a)2− 1

2
M0

n <∞.

Therefore, using the Borel-Cantelli lemma, let Ω0 ⊂ Ω denote the subset of full probability

(7.20) Ω0 = { ω ∈ Ω | There exists n = n(ω) such that ω ∈ An for all n ≥ n. } .
Observe here that the set Ω0 is independent of U and the boundary data.

Before shortly proceeding with the proof, it is convenient to recall some notation. For each n ≥ 0,
let un denote the solution

(7.21)

{
αn
2 ∆un = 0 on U,
un = f(x) on ∂U,

and let u denote the solution

(7.22)

{
∆u = 0 on U,
u = f(x) on ∂U.

The following proposition follows immediately by uniqueness and Theorem 3.1, and states simply
that the exit distribution from U of a Brownian motion is independent of its (non-vanishing)
variance, which corresponds to a time-change.

Proposition 7.4. Assume ( 2.11) and ( 3.18). For each n ≥ 0,

un = u on U.

Similarly, for each ε > 0 and ω ∈ Ω, let uε denote the solution

(7.23)

{
1
2 tr(A(xε , ω)D2uε) + 1

ε b(
x
ε , ω) ·Duε = 0 on U,

uε = f(x) on ∂U.

The following theorem proves that, on the event Ω0, as ε→ 0 the solutions uε converge uniformly
to u on U whenever the boundary data is the restriction of a smooth function defined on the whole
space. Namely,

(7.24) assume f ∈ C∞c (Rd).
This restriction will be removed by a standard approximation argument in the section’s final the-
orem.

Theorem 7.5. Assume ( 2.11), ( 3.18) and ( 7.24). For every ω ∈ Ω0, the solutions of ( 7.22) and
( 7.23) satisfy

lim
ε→0
‖uε − u‖L∞(U) = 0.

Proof. Fix ω ∈ Ω0 and n1 ≥ m such that ω ∈ An for every n ≥ n1 and such that, whenever n ≥ n1,

Ln+1U ⊂ [−1

2
L2
n+2,

1

2
L2
n+2]

d

and the conditions of Propositions 7.1 and 7.3 are satisfied. Furthermore, choose ε0 ≥ 0 such that,
whenever 0 < ε < ε0, it follows that Ln ≤ 1

ε < Ln+1 implies n ≥ n1.
The proof will rely upon the previously encountered continuous and discrete C([0,∞);Rd) stop-

ping times, defined for each ε > 0 and n ≥ 0,

τ ε = inf { t ≥ 0 | εXt /∈ U} and τ ε,n1 = inf
{
kL2

n−m ≥ 0 | d(XkL2
n−m

, (U/ε)c) ≤ D̃n−m

}
,

and will use the representation

uε(x) = Ex
ε
,ω(f(εXτε)) on U,
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where Ex
ε
,ω denotes the expectation corresponding to the Px

ε
,ω describing diffusion associated to

the unscaled generator (7.3).
The Discrete Approximation: Fix 0 < ε < ε0, the n ≥ 0 satisfying Ln ≤ 1

ε < Ln+1 and x ∈ U .
First, decompose the representation in terms of the discrete approximation by

(7.25) uε(x) = Ex
ε
,ω(f(εXτε)) = Ex

ε
,ω(f(εXτε)− f(εXτε,n1

)) + Ex
ε
,ω(f(εXτε,n1

)).

It will be shown that the first term of (7.25) is negligible.
Decompose the expectation of the difference like

(7.26) Ex
ε
,ω(f(εXτε)− f(εXτε,n1

)) = Ex
ε
,ω(f(εXτε)− f(εXτε,n1

)), τ ε + L2
n−m > τ ε,n1 )

+ Ex
ε
,ω(f(εXτε)− f(εXτε,n1

)), τ ε + L2
n−m ≤ τ

ε,n
1 ).

The event τ ε+L2
n−m implies by definition that the process beginning from Xτε travels further than

D̃n−m in time L2
n−m. Therefore, the Markov property, ω ∈ An, the choice of n1 and the exponential

estimated provided by Control 7.2 imply that

(7.27) |Ex
ε
,ω(f(εXτε)− f(εXτε,n1

), τ ε + L2
n−m ≤ τ

ε,n
1 )| ≤

2‖f‖L∞(Rd) exp(−D̃n−m
Dn−m

) ≤ ‖f‖L∞(Rd) exp(−κn−m).

The first term (7.26) is further decomposed in the form

(7.28) Ex
ε
,ω(f(εXτε)− f(εXτε,n1

), τ ε + L2
n−m > τ ε,n1 ) =

Ex
ε
,ω(f(εXτε)− f(εXτε,n1

),−L2
n−m ≤ τ ε − τ

εn
1 < L2

n−1)

+ Ex
ε
,ω(f(εXτε)− f(εXτε,n1

), τ ε − τ ε,n1 ≥ L2
n−1).

In view of Proposition 7.3 and the choice of 0 < ε < ε0, the second term (7.28) is bounded, for
C > 0 independent of n, by

(7.29) |Ex
ε
,ω(f(εXτε)− f(εXτε,n1

), τ ε − τ ε,n1 ≥ L2
n−1)| ≤

2‖f‖L∞(Rd)Px
ε
,ω(τ ε − τ ε,n1 ≥ L2

n−1) ≤ C‖f‖L∞(Rd)L
−ζ
n−1.

The first term of (7.28) is separated into the events

(7.30) Ex
ε
,ω(f(εXτε)− f(εXτε,n1

),−L2
n−m ≤ τ ε − τ

εn
1 < L2

n−1) =

Ex
ε
,ω(f(εXτε)− f(εXτε,n1

), 0 < τ ε − τ εn1 < L2
n−1)

+ Ex
ε
,ω(f(εXτε)− f(εXτε,n1

), 0 ≤ τ ε,n1 − τ ε < L2
n−m).

The Markov property and f ∈ C∞c (Rd) imply

|Ex
ε
,ω(f(εXτε)− f(εXτε,n1

), 0 < τ ε − τ εn1 < L2
n−1)| ≤

‖Df‖L∞(Rd)εD̃n−1Ex
ε
,ω(PX

τ
ε,n
1 ,ω

(X∗L2
n−1
≤ D̃n−1))

+ 2‖f‖L∞(Rd)Ex
ε
,ω(PX

τ
ε,n
1 ,ω

(X∗L2
n−1

> D̃n−1)),

which, since ω ∈ An and 1
Ln+1

< ε ≤ 1
Ln
, it follows from Control 7.2 that, for C > 0 independent

of n,

(7.31) |Ex
ε
,ω(f(εXτε)− f(εXτε,n1

), 0 < τ ε − τ εn1 < L2
n−1)| ≤

C‖Df‖L∞(Rd)
D̃n−1
Ln

+ C‖f‖L∞(Rd) exp(−κn−1).
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And, the identical argument at scale Ln−m implies that the second term of (7.30) satisfies, for
C > 0 independent of n,

(7.32) |Ex
ε
,ω(f(εXτε)− f(εXτε,n1

), 0 ≤ τ ε,n1 − τ ε < L2
n−m)| ≤

C‖Df‖L∞(Rd)
D̃n−m
Ln

+ C‖f‖L∞(Rd) exp(−κn−m).

Therefore, inequalities (7.31) and (7.32) bound (7.30) and show, for C > 0 independent of n,

|Ex
ε
,ω(f(εXτε)− f(εXτε,n1

),−L2
n−m ≤ τ ε − τ

εn
1 < L2

n−1)| ≤

C‖Df‖L∞(Rd)
D̃n−1
Ln

+ C‖f‖L∞(Rd) exp(−κn−m).

Then, combining this inequality with (7.29) to bound (7.28), for C > 0 independent of n, since

there exists C > 0 such that exp(−κn−m) ≤ CL−ζn−1 for every n ≥ m,

(7.33) |Ex
ε
,ω(f(εXτε)− f(εXτε,n1

), τ ε + L2
n−m > τ ε,n1 )| ≤ C‖f‖L∞(Rd)L

−ζ
n−1 + C‖Df‖L∞(Rd)

D̃n−1
Ln

.

And, using this inequality with (7.27), the expectation of the difference (7.26) can be estimated in
the form, for C > 0 independent of n, again using the fact that there exists C > 0 independent of

n such that exp(−κn−m) ≤ CL−ζn−1 for all n ≥ m,

(7.34) |Ex
ε
,ω(f(εXτε)− f(εXτε,n1

))| ≤ C‖f‖L∞(Rd)L
−ζ
n−1 + C‖Df‖L∞(Rd)

D̃n−1
Ln

.

Therefore, in view of the decomposition (7.25) and the estimate (7.34), for C > 0 independent
of n,

(7.35) |uε(x)− Ex
ε
,ω(f(εXτε,n1

)| ≤ C‖f‖L∞(Rd)L
−ζ
n−1 + C‖Df‖L∞(Rd)

D̃n−1
Ln

.

This estimate proves the efficacy of the discrete approximation defined by the stopping time τ ε,n1 . It
will now be shown that the discretely stopped process is a good approximation of Brownian motion
via the coupling estimate obtained in Corollay 5.2.

The Coupling: Recall the measure Qn,x
ε

defining the Markov chain (Xk, Xk) on (Rd×Rd)N, and

which effectively acts in the respective coordinates as discrete versions of the process in random
environment and Brownian motion with variance αn−m along the sequence

{
kL2

n−m
}
k≥0 in time.

Let Cn denotes the event

(7.36) Cn = (|Xk −Xk| ≥ Ln−m | for some 0 ≤ k ≤ 2(
Ln+2

Ln−m
)2 ),

which, owing to Corollary 5.2 and ω ∈ An with n ≥ n1, satisfies, for C > 0 independent of n,

(7.37) Qn,x
ε
(Cn) ≤ Cκ̃n−mL16a−δ

n−m .

Furthermore, define as before the discrete stopping time

T ε,n1 = inf
{
k ≥ 0 | (Xk, Xk) satisfies d(Xk, (U/ε)

c) ≤ D̃n−m

}
,

which is the analogue of τ ε,n1 in the first coordinate.

The definition of Qn,x
ε

and the Markov property imply that, writing E
Qn, xε for the expectation

with respect to Qn,x
ε
,

(7.38) Ex
ε
,ω(f(εXτε,n1

) = E
Qn, xε (f(εXT ε,n1

)) = E
Qn, xε (f(εXT ε,n1

)−f(εXT ε,n1
)))+E

Qn, xε (f(εXT ε,n1
)).
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As before, it will be shown that the expectation of the difference is negligible. Decompose it in
terms of the event Cn to obtain

(7.39) E
Qn, xε (f(εXT ε,n1

)− f(εXT ε,n1
))) = E

Qn, xε (f(εXT ε,n1
)− f(εXT ε,n1

)), Cn)

+ E
Qn, xε (f(εXT ε,n1

)− f(εXT ε,n1
)), Ccn).

The first term of (7.39) is bounded using (7.37) which implies, for C > 0 independent of n,

(7.40) |EQn, xε (f(εXT ε,n1
)− f(εXT ε,n1

)), Cn)| ≤ 2‖f‖L∞(Rd)Qn,xε (Cn) ≤ C‖f‖L∞(Rd)κ̃n−mL
16a−δ
n−m .

The second term of (7.39) is further decomposed in the form

(7.41) E
Qn, xε (f(εXT ε,n1

)− f(εXT ε,n1
)), Ccn) = E

Qn, xε (f(εXT ε,n1
)− f(εXT ε,n1

)), Ccn, T
ε,n
1 < (

Ln+2

Ln−m
)2)

+ E
Qn, xε (f(εXT ε,n1

)− f(εXT ε,n1
)), Ccn, T

ε,n
1 ≥ (

Ln+2

Ln−m
)2),

observing here that T εn1 = k corresponds to the process at time kL2
n−m. The first term of (7.41)

is bounded using the definition of the set Ccn, T ε,n1 < ( Ln+2

Ln−m
)2 and ε ≤ 1

Ln
, which imply, for C > 0

independent of n,

(7.42) |EQn, xε (f(εXT ε,n1
)− f(εXT ε,n1

)), Ccn, T
ε,n
1 < (

Ln+2

Ln−m
)2)| ≤

C‖Df‖L∞(Rd)εLn−m ≤ C‖Df‖L∞(Rd)
Ln−m
Ln

.

The second term of (7.41) is bounded using the control for the exit time obtained in Proposition
4.1, and in particular line (4.7) which applies equally to the discrete sequence since L2

n−m divides

L2
n+2, to yield, for C > 0 independent of n and ζ > 0 defined in (7.6),

(7.43) |EQn, xε (f(εXT ε,n1
)− f(εXT ε,n1

)), Ccn, T
ε,n
1 ≥ (

Ln+2

Ln−m
)2)| ≤

2‖f‖L∞(Rd)Qx
ε
,n(T ε,n1 ≥ (

Ln+2

Ln−m
)2) ≤ C‖f‖L∞(Rd)L

−da
n ≤ C‖f‖L∞(Rd)L

−ζ
n−1.

Therefore, inequalities (7.42) and (7.43) bound (7.41), for C > 0 independent of n, by

|EQn, xε (f(εXT ε,n1
)− f(εXT ε,n1

)), Ccn)| ≤ C‖f‖L∞(Rd)L
−ζ
n−1 + C‖Df‖L∞(Rd)

Ln−m
Ln

,

and together with the choice of ζ > 0 in (7.6) and (7.40), the expectation of the difference in (7.39)
can be estimated in the form, for C > 0 independent of n,

|EQn, xε (f(εXT ε,n1
)− f(εXT ε,n1

)))| ≤ C‖f‖L∞(Rd)L
−ζ
n−1 + C‖Df‖L∞(Rd)

Ln−m
Ln

.

And therefore, using (7.38), for C > 0 independent of n,

(7.44) |Ex
ε
,ω(f(εXτε,n1

)− EQn, xε (f(εXT ε,n1
))| ≤ C‖f‖L∞(Rd)L

−ζ
n−1 + C‖Df‖L∞(Rd)

Ln−m
Ln

.

It remains to recover the exit distribution of Brownian motion from the second term in the difference.
Recovering the Exit Distribution of Brownian Motion: The arguments here are essentially the

unwinding, in terms of Brownian motion, of what led from (7.25) to (7.35). Define the discrete
stopping time

T
ε,n
2 = inf

{
k ≥ 0 | (Xk, Xk) satisfies d(Xk, (U/ε)) ≥ D̃n−m

}
,
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which is the analogue of τ ε,n2 defined in (7.8) for the second coordinate. After performing de-
compositions analogous to (7.39) and (7.41), it follows by an identical argument that, for C > 0
independent of n,

(7.45) |EQn, xε (f(εXT ε,n1
))− EQn, xε (f(εXT ε,n1

), Ccn, T
ε,n
1 < (

Ln+2

Ln−m
)2)| ≤ C‖f‖L∞(Rd)L

−ζ
n−1.

Notice that, since T ε,n1 < ( Ln+2

Ln−m
)2, on the event Ccn

(7.46) d(XT ε,n1
, (U/ε)c) ≤ D̃n−m implies d(XT ε,n1

, (U/ε)c) ≤ Ln−m + D̃n−m ≤ 2D̃n−m.

The second term of the difference in (7.45) is then decomposed with respect to the stopping time

T
ε,n
2 as in (7.25), and takes the form

(7.47)

E
Qn, xε (f(εXT ε,n1

), Ccn, T
ε,n
1 < (

Ln+2

Ln−m
)2) = E

Qn, xε (f(εXT ε,n1
)− f(εXT

ε,n
2

), Ccn, T
ε,n
1 < (

Ln+2

Ln−m
)2)

+ E
Qn, xε (f(εXT

ε,n
2

), Ccn, T
ε,n
1 < (

Ln+2

Ln−m
)2).

As before, the expectation of the difference is shown to be negligible.

Since, on the event (Ccn, (
Ln+2

Ln−m
)2) it is necessarily the case that T ε,n1 ≤ T

ε,n
2 , the first term of

(7.47) is written

(7.48) E
Qn, xε (f(εXT ε,n1

)− f(εXT
ε,n
2

), Ccn, T
ε,n
1 < (

Ln+2

Ln−m
)2) =

E
Qn, xε (f(εXT ε,n1

)− f(εXT
ε,n
2

), Ccn, T
ε,n
1 < (

Ln+2

Ln−m
)2, T

ε,n
2 − T

ε,n
1 > (

Ln−1
Ln−m

)2)

+ E
Qn, xε (f(εXT ε,n1

)− f(εXT
ε,n
2

), Ccn, T
ε,n
1 < (

Ln+2

Ln−m
)2, T

ε,n
2 − T

ε,n
1 ≤ (

Ln−1
Ln−m

)2).

In view of (7.46), the Markov property, the definition of Qn,x
ε

and Proposition 7.1, the first term

of (7.48) is bounded, for C > 0 independent of n, by

(7.49) |EQn, xε (f(εXT ε,n1
)− f(εXT

ε,n
2

), Ccn, T
ε,n
1 < (

Ln+2

Ln−m
)2, T

ε,n
2 − T

ε,n
1 > (

Ln−1
Ln−m

)2)| ≤

2‖f‖L∞(Rd) sup
d(x,(U/ε)c)≤2D̃n−m

Wn−m
x (τ ε,n2 ≥ L2

n−1) ≤ C‖f‖L∞(Rd)L
−ζ
n−1.

Exponential estimates for Brownian motion will be used on scale D̃n−1 to bound the second term
of (7.48), see [18, Chapter 2, Proposition 1.8], after performing the further decomposition

(7.50) E
Qn, xε (f(εXT ε,n1

)− f(εXT
ε,n
2

), Ccn, T
ε,n
1 < (

Ln+2

Ln−m
)2, T

ε,n
2 − T

ε,n
1 ≤ (

Ln+2

Ln−m
)2) =

E
Qn, xε (f(εXT ε,n1

)− f(εXT
ε,n
2

), Ccn, T
ε,n
1 < (

Ln+2

Ln−m
)2,

T
ε,n
2 − T

ε,n
1 ≤ (

Ln−1
Ln−m

)2, |XT ε,n1
−XT

ε,n
2
| > D̃n−1)

+ E
Qn, xε (f(εXT ε,n1

)− f(εXT
ε,n
2

), Ccn, T
ε,n
1 < (

Ln+2

Ln−m
)2,

T
ε,n
2 − T

ε,n
1 ≤ (

Ln−1
Ln−m

)2, |XT ε,n1
−XT

ε,n
2
| ≤ D̃n−1).
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In analogy with (7.31), the first term is bounded using the Markov property and exponential
estimates for Brownian motion and the control of αn provided by Theorem 3.1, and the second
term using the continuity of f and ε ≤ 1

Ln
, to yield for C, c > 0 independent of n,

(7.51) |EQn, xε (f(εXT ε,n1
)− f(εXT

ε,n
2

), Ccn, T
ε,n
1 < (

Ln+2

Ln−m
)2, T

ε,n
2 − T

ε,n
1 ≤ (

Ln−1
Ln−m

)2)| ≤

C‖Df‖L∞(Rd)
D̃n−1
Ln

+ C‖f‖L∞(Rd) exp(−cκ2n−1).

Therefore, combining (7.48), (7.49) and (7.51), and using the fact that there exists C > 0 inde-

pendent of n ≥ 1 such that exp(−cκ2n−1) ≤ CL−ζn−1, equation (7.47) yields the estimate, for C > 0
independent of n,

(7.52) |EQn, xε (f(εXT ε,n1
), Ccn, T

ε,n
1 < (

Ln+2

Ln−m
)2)− EQn, xε (f(εXT

ε,n
2

), Ccn, T
ε,n
1 < (

Ln+2

Ln−m
)2)| ≤

C‖Df‖L∞(Rd)
D̃n−1
Ln

+ C‖f‖L∞(Rd)L
−ζ
n−1.

And, after repeating exactly the argument leading to (7.45), for C > 0 independent of n,

(7.53) |EQn, xε (f(εXT
ε,n
2

))− EQn, xε (f(εXT
ε,n
2

), Ccn, T
ε,n
1 < (

Ln+2

Ln−m
)2)| ≤ C‖f‖L∞(Rd)L

−ζ
n−1.

Then, combining (7.52) and (7.53) with (7.45) yields, for C > 0 independent of n,

(7.54) |EQn, xε (f(εXT ε,n1
))− EQn, xε (f(εXT

ε,n
2

))| ≤ C‖Df‖L∞(Rd)
D̃n−1
Ln

+ C‖f‖L∞(Rd)L
−ζ
n−1.

Since it follows from Markov property and the definition of Qn,x
ε

that

E
Qn, xε (f(εXT

ε,n
2

)) = E
Wn−m
x
ε (f(εXτε,n2

)),

equations (7.44) and (7.54) produce the estimate, for C > 0 independent of n,

(7.55) |Ex
ε
,ω(f(εXτε,n1

)− EW
n−m
x
ε (f(εXτε,n2

))| ≤ C‖Df‖L∞(Rd)
D̃n−1
Ln

+ C‖f‖L∞(Rd)L
−ζ
n−1.

Conclusion: It remains only to estimate the difference

|EW
n−m
x
ε (f(εXτε,n2

))− EW
n−m
x
ε (f(εXτε))| = |E

Wn−m
x
ε (f(εXτε,n2

)− f(εXτε))|.

Since it follows by definition that τ ε < τ ε,n2 , form the decomposition

(7.56) E
Wn−m
x
ε (f(εXτε,n2

)− f(εXτε)) = E
Wn−m
x
ε (f(εXτε,n2

)− f(εXτε), τ
ε,n
2 − τ ε ≤ L2

n−1)

+ E
Wn−m
x
ε (f(εXτε,n2

)− f(εXτε), τ
ε,n
2 − τ ε > L2

n−1).

Exponential estimates for Brownian motion on scale D̃n−1, see [18, Chapter 2, Proposition 1.8], and
ε < 1

Ln
imply that, for C, c > 0 independent of n, and in exact analogy with the bound obtained in

(7.51), the first term of (7.56) is bounded by

(7.57) |EW
n−m
x
ε (f(εXτε,n2

)− f(εXτε)), τ
ε,n
2 − τ ε ≤ L2

n−1)| ≤

C‖Df‖L∞(Rd)
D̃n−1
Ln

+ C‖f‖L∞(Rd) exp(−cκ2n−1).
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The second term of (7.56) is handled similarly to (7.30) but in the reverse order. Here,

(7.58) |EW
n−m
x
ε (f(εXτε,n2

)− f(εXτε), τ
ε,n
2 − τ ε > L2

n−1)| ≤

2‖f‖L∞(Rd)W
n−m
x
ε

(τ ε,n2 − τ ε,n1 > L2
n−1 − L2

n−m, τ
ε,n
1 ≤ τ ε + L2

n−m)

+ 2‖f‖L∞(Rd)W
n−m
x
ε

(τ ε + L2
n−m < τ ε,n1 ).

Since, for all n ≥ m, there exists c0 > 0 satisfying

L2
n−1 − L2

n−m ≥ c0L2
n−1,

the proof of Proposition 7.1 implies that, for a larger C > 0 independent of n,

(7.59) sup
d(x,(U/ε)c)≤2D̃n−m

Wn−m
x (τ ε,n2 ≥ c0L2

n−1) ≤ CL
−ζ
n−1.

Therefore, the Markov property, exponential estimates for Brownian motion on scale D̃n−m, see
[18, Chapter 2, Proposition 1.8], (7.57), (7.58) and (7.59) combine to bound (7.56), using the fact

that there exists C > 0 such that exp(−κ2n−1) ≤ exp(−κ2n−m) ≤ CL−ζn−1 for each n ≥ m, for C > 0
independent of n, by

(7.60) |EW
n−m
x
ε (f(εXτε,n2

)− f(εXτε))| ≤ C‖f‖L∞(Rd)L
−ζ
n−1 + C‖Df‖L∞(Rd)

D̃n−1
Ln

.

Finally, in view of (7.35), (7.55), (7.60) and the triangle inequality, by the definition of uε, un−m,
u and Proposition 7.4, for C > 0 independent of n,

(7.61) |Ex
ε
,ω(f(εXτε)− E

Wn−m
x
ε (f(εXτε))| = |uε(x)− un−m(x)| = |uε(x)− u(x)| ≤

C‖Df‖L∞(Rd)
D̃n−1
Ln

+ C‖f‖L∞(Rd)L
−ζ
n−1.

This, since ε→ 0 implies n→∞ and the choice of constants (3.3), (3.4) and (3.5) imply that

lim
n→∞

(C‖Df‖L∞(Rd)
D̃n−1
Ln

+ C‖f‖L∞(Rd)L
−ζ
n−1) = 0,

and because x ∈ U , ω ∈ Ω0 and 0 < ε < ε0 were arbitrary, completes the proof. �

The final theorem of this section extends Theorem 7.5 to boundary data

(7.62) f ∈ C(∂U).

The proof follows by a standard approximation argument.

Theorem 7.6. Assume ( 2.11), ( 3.18) and ( 7.62). For every ω ∈ Ω0, the solutions of ( 7.22) and
( 7.23) satisfy

lim
ε→0
‖uε − u‖L∞(U) = 0.

Proof. The Tietze Extension Theorem, see for instance Armstrong [1, Page 40, Theorem 2.15],
asserts that there exists a compactly supported extension

f̃ ∈ BUC(Rd) satisfying f̃ |∂U = f.

Then, for each δ > 0, by convolution construct an f̃ δ ∈ C∞c (Rd) satisfying

‖f̃ δ − f̃‖L∞(Rd) ≤ δ,

and let uε,δ denote the solution{
1
2 tr(A(xε , ω)D2uε,δ) + 1

ε b(
x
ε , ω) ·Duε,δ = 0 on U,

uε,δ = f̃ δ(x) on ∂U.
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Similarly, let uδ denote the solution {
∆uδ = 0 on U,

uδ = f̃ δ(x) on ∂U.

The comparison principle and the triangle inequality imply that, for each ω ∈ Ω, δ > 0 and
ε > 0,

‖uε − u‖L∞(U) ≤ ‖u
ε − uε,δ‖L∞(U) + ‖uε,δ − uδ‖L∞(U) + ‖uδ − u‖L∞(U) ≤

2δ + ‖uε,δ − uδ‖L∞(U).

And, therefore, since f̃ δ satisfies the assumptions of Theorem 7.5, for every δ > 0 and ω ∈ Ω0,

lim sup
ε→0

‖uε − u‖L∞(U) ≤ 2δ,

which, since δ > 0 is arbitrary, completes the argument. �

8. The Quantitative Estimate

In the paper’s final section, a rate for the convergence appearing in Theorem 7.6 is first established
for boundary data which is the restriction of a bounded, continuous function on Rd. That is,

(8.1) assume f ∈ BUC(Rd),

and write σf : [0,∞)→ [0,∞) for the modulus of continuity

(8.2) |f(x)− f(y)| ≤ σf (|x− y|) for all x, y ∈ Rd.

Notice that, in the case U = Br, which allows for an explicit radial extension, or whenever
the domain U is smooth, see the Product Neighborhood Theorem in Milnor [12, Page 46], every
continuous function f ∈ C(∂U), which is necessarily uniformly continuous by compactness, admits

a continuous extension f̃ ∈ BUC(Rd) satisfying, for a constant C = C(U) depending only upon the
domain,

σf̃ (s) ≤ σf (Cs) for all s ∈ [0,∞).

And therefore, for sufficiently smooth domains, assumption (8.1) is always satisfied up to a domain
dependent factor.

Theorem 8.1. Assume ( 2.11), ( 3.18) and ( 8.1). There exists C > 0 such that, for every ω ∈ Ω0,
for all ε > 0 sufficiently small depending on ω, for ζ > 0 defined in ( 7.6), the solutions of ( 7.22)
and ( 7.23) satisfy

‖uε − u‖L∞(U) ≤ C‖f‖L∞(Rd)ε
ζ

2(1+a)2 + Cσf (ε
a

2(1+a)2 ).

Proof. Fix ω ∈ Ω0. The only observation is that, in every step of the proof of Theorem 7.5 involving
the continuity of f , the Lipschitz estimates can be replaced by estimates using the modulus σf .
And, therefore, since ω ∈ Ω0 and in view of the final estimate (7.61), whenever ε > 0 is sufficiently
small and n ≥ 0 satisfies Ln ≤ 1

ε < Ln+1, for C > 0 independent of n and ω,

‖uε − u‖L∞(U) ≤ Cσf (
D̃n−1
Ln

) + C‖f‖L∞(Rd)L
−ζ
n−1.

Then, it follows from the definition of the constants (3.3), (3.4) and (3.5) that, for all n ≥ 0
sufficiently large and whenever Ln ≤ 1

ε < Ln+1,

D̃n−1
Ln

≤ L
− a

2(1+a)2

n+1 ≤ ε
a

2(1+a)2 and L−ζn−1 ≤ L
− ζ

2(1+a)2

n+1 ≤ ε
ζ

2(1+a)2 ,

which, since ω ∈ Ω0 was arbitrary, completes the argument. �
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The paper’s final theorem extends Theorem 8.1 to general continuous boundary data provided
the domain U is smooth. In this case,

(8.3) assume f ∈ C(∂U) and that the domain U is smooth.

The proof is an immediate consequence of Theorem 8.1 and the remark immediately preceding.

Theorem 8.2. Assume ( 2.11), ( 3.18) and ( 8.3). There exists C > 0 and C1 = C1(U) > 0 such
that, for every ω ∈ Ω0, for all ε > 0 sufficiently small depending on ω, for ζ > 0 defined in ( 7.6),
the solutions of ( 7.22) and ( 7.23) satisfy

‖uε − u‖L∞(U) ≤ C‖f‖L∞(∂U)ε
ζ

2(1+a)2 + Cσf (C1ε
a

2(1+a)2 ).
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