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Abstract

We present an analytical lower bound of multipartite concurrence based

on the generalized Bloch representation of density matrices. It is shown

that the lower bound can be used as an effective entanglement witness

of genuine multipartite entanglement. Tight lower and upper bounds

for multipartite tangles are also derived.

PACS numbers: 03.67.-a, 02.20.Hj, 03.65.-w

I. INTRODUCTION

Quantum entanglement, as the remarkable nonlocal feature of quantum mechanics, is

recognized as a valuable resource in the rapidly expanding field of quantum information sci-

ence, with various applications [1, 2] such as quantum computation , quantum teleportation,

dense coding, quantum cryptographic schemes, quantum radar, entanglement swapping and

remote states preparation.

Quantum states without entanglement are called separable states, which constitute a

convex subset of all the quantum states. States that are not biseparable with respect to

any partitions are said to be genuinely multipartite entangled. Genuinely multipartite en-

tanglement is a kind of important type of entanglement, which offers significant advantage

in quantum information processing tasks [3]. In particular, it is the basic ingredient in

measurement-based quantum computation [4], and is beneficial in various quantum com-

munication protocols [5], including secret sharing [6] (cf. [7]). Despite its importance,

characterization and detection of this kind of resource turn out to be rather hard and only

a few results have been proposed [8–11].

Quantifying quantum entanglement is a basic and longer standing problem in quantum

information theory. A measure of quantum entanglement can be used to detect and classify
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entanglement of quantum states. In this paper, we use the multipartite concurrence [12] to

investigate the multipartite entanglement. Let Hi, i = 1, 2, · · · , N , be d-dimensional vector

spaces. The concurrence of a N -partite pure state |ψ⟩ ∈ H1 ⊗H2 ⊗ · · · ⊗ HN is defined by

CN(|ψ⟩⟨ψ|) = 21−
N
2

√
(2N − 2)−

∑
α

Tr{ρ2α}, (1)

where α labels all the different reduced density matrices. If we list all the 2N−2 reduced ma-

trices in the following way: {ρ1, ρ2, · · · , ρN , ρ12, ρ13, · · · , ρ1N , ρ23, · · · , ρ12···N−1, · · · , ρ23···N},
(1) can be reexpressed as

CN(|ψ⟩⟨ψ|) = 21−
N
2

√√√√(2N − 2)− 2
2N−1−1∑
k=1

Tr{ρ2k}. (2)

For a mixed multipartite quantum state, ρ =
∑

i pi|ψi⟩⟨ψi| ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN , the

corresponding concurrence of (1) is given by the convex roof:

CN(ρ) = min
{pi,|ψi}⟩

∑
i

piCN(|ψi⟩⟨ψi|). (3)

The correlation tensors of the generalized Bloch representation of a quantum state paly

significant roles in quantum information theory. In [13–16], separable conditions for both

bi- and multi-partite quantum states are introduced by studying the norm of the correlation

tensors. In [17, 18], the authors present a multipartite entanglement measure for N-qubit

and N-qudit pure states, using the norm of the correlation tensors. In [9], the authors have

introduced a general framework for detecting genuine multipartite entanglement and non

full separability in multipartite quantum systems of arbitrary dimensions based also on the

correlation tensors. In [19], we have found that the norms of the correlation tensors are

closely related to the maximal violation of a kind of multipartite (multi-setting ?) Bell

inequalities.

In the following, we first reform the concurrence for multipartite pure states in terms

of the norms of the correlation tensors. The correlation tensors are then used to derive a

lower bound of concurrence for mixed multipartite quantum states. The lower bound also

provides a fully separable condition for multipartite quantum states. We further show that

genuine multipartite entanglement can be detected by the bound. We also investigate the

multipartite tangle. Tight lower and upper bounds are derived.

II. LOWER BOUND OF MULTIPARTITE CONCURRENCE

We first consider the concurrence of multipartite pure states |ψ⟩ ∈ H1⊗H2⊗· · ·⊗HN in

terms of the generalized Bloch representation of |ψ⟩⟨ψ|. Let {λαk
} be the SU(d) generators.
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The generalized Bloch representation for any quantum states ρ ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN is

given by [15],

ρ =
1

dN

⊗N
j=1Id +

∑
{µ1}

∑
α1

T {µ1}
α1

λ{µ1}α1
+

∑
{µ1µ2}

∑
α1α2

T {µ1µ2}
α1α2

λ{µ1}α1
λ{µ2}α2

+
∑

{µ1µ2µ3}

∑
α1α2α3

T {µ1µ2µ3}
α1α2α3 λ

{µ1}
α1 λ

{µ2}
α2 λ

{µ3}
α3

+ · · ·+
∑

{µ1µ2···µM}

∑
α1α2···αM

T {µ1µ2···µM}
α1α2···αM λ

{µ1}
α1 λ

{µ2}
α2 · · ·λ{µM}

αM

+ · · ·+
∑

α1α2···αN

T {1,2,··· ,N}
α1α2···αN λ

{1}
α1 λ

{2}
α2 · · ·λ{N}

αN

)
,

(4)

where {µ1µ2 · · ·µM} is a subset of {1, 2, · · · , N}, λ{µk}αk = Id ⊗ Id ⊗ · · · ⊗ λαk
⊗ Id ⊗ · · · ⊗ Id

with λαk
appearing at the µkth position and

T {µ1µ2···µM}
α1α2···αM

=
dM

2M
Tr[ρλ{µ1}α1

λ{µ2}α2
· · ·λ{µM}

αM
], (5)

which can be viewed as the entries of the tensors T {µ1µ2···µM}.

After some algebraic calculations, we have

Trρ2 =
1

d2N
(dN + 2dN−1

∑
k1∈{1,2,···N}

||T k1 ||2 + 22dN−2
∑
k1k2

||T k1k2 ||2 + · · ·

+2MdN−M
∑
k1···kM

||T k1···kM ||2 + · · ·+ 2N ||T 1···N ||2) (6)

and

Trρ2k1···kM =
1

d2M
(dM + 2dM−1

∑
j∈{1,2,···M}

||T kj ||2 + · · ·+ 22dM−2
∑
j,l

||T kjkl ||2

+ · · ·+ 2M ||T k1···kM ||2) (7)

for any 1 ≤ M ≤ N − 1, where ρk1···kM is the M -partite reduced density matrix supporting

on Hk1 ⊗Hk2 ⊗ · · · ⊗ HkM .
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For any 1 ≤M ≤ N − 1, we get∑
k1,k2,··· ,kM

(Trρ2 − Trρ2k1···kM )

= CM
N (

dN

d2N
− dM

d2M
) + (CM

N

2dN−1

d2N
− CM−1

N−1

2dM−1

d2M
)

∑
k1∈{1,2,···N}

||T k1 ||2

+(CM
N

22dN−2

d2N
− CM−2

N−2

22dM−2

d2M
)
∑
k1k2

||T k1k2 ||2 + · · ·

+(CM
N

2ldN−l

d2N
− CM−l

N−l
2ldM−l

d2M
)

∑
k1k2···kl

||T k1k2···kl||2 + · · ·

+(CM
N

2MdN−M

d2N
− C0

N−M
2M

dM
)

∑
k1k2···kM

||T k1k2···kM ||2

+CM
N

2M+1dN−M+1

d2N

∑
k1k2···kM+1

||T k1k2···kM+1||2 + · · ·

+CM
N

2N

d2N
||T 1···N ||2,

where CM
N =M !/N !(M −N)!.

By substituting the equation above into (1), for pure states |ψ⟩ we have

2N−2C2
N(|ψ⟩⟨ψ|)

=
1

dN
[−(d+ 1)N + dN + 2N − 1] +

2

dN+1
[−(d+ 1)N−1 + 2N − 1]

∑
k1∈{1,2,···N}

||T k1 ||2

+
22

dN+2
[−(d+ 1)N−2 + 2N − 1]

∑
k1k2

||T k1k2||2 + · · ·

+
2M

dN+M
[−(d+ 1)N−M + 2N − 1]

∑
k1k2···kM

||T k1k2···kM ||2 + · · ·

+
2N−1

d2N−1
[−(d+ 1) + 2N − 1]

∑
k1k2···kN−1

||T k1k2···kN−1 ||2

+
(2N − 2)2N

d2N
||T 1···N ||2. (8)

Since Trρ2 = 1 for any pure state ρ = |ψ⟩⟨ψ|, from (6) we have

∑
k1∈{1,2,···N}

||T k1 ||2 =
d2N − dN

2dN−1
− 22dN−2

2dN−1

∑
k1k2

||T k1k2||2 − · · ·

−2MdN−M

2dN−1

∑
k1···kM

||T k1···kM ||2 − · · · − 2N

2dN−1
||T 1···N ||2. (9)
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Substituting (9) into (8), we obtain an alternative relation about the the concurrence,

2N−2C2
N(|ψ⟩⟨ψ|) = [2N − (d+ 1)N

dN
− 1

dN
(dN − 1)(d+ 1)N−1]

+
22

dN+2
[(d+ 1)N−1 − (d+ 1)N−2]

∑
k1k2

||T k1k2 ||2 + · · ·

+
2M

dN+M
[(d+ 1)N−1 − (d+ 1)N−M ]

∑
k1···kM

||T k1···kM ||2 + · · ·

+
2N

d2N
[(d+ 1)N−1 − 1]||T 1···N ||2. (10)

Formula (10) gives a sufficient and necessary condition for the fully separability of mul-

tipartite pure states. In particular, as the tensors T {µ1µ2···µM} in (4) are mean values of the

observables λ
{µ1}
α1 λ

{µ2}
α2 · · ·λ{µM}

αM , (10) also gives an experimental way to measure the con-

currence of a pure multipartite state. From (10) we can now derive the lower bound for

multipartite concurrence of any mixed states ρ.

Theorem 1: For any mixed quantum state ρ ∈ H1 ⊗H2 ⊗ · · · ⊗ HN , we have

CN(ρ) ≥ −21−N/2[−2N +
(d+ 1)N

dN
+

1

dN
(dN − 1)(d+ 1)N−1]

1
2

+21−N/2{ 22

dN+2
[(d+ 1)N−1 − (d+ 1)N−2]

∑
k1k2

||T k1k2 ||2 + · · ·

+
2M

dN+M
[(d+ 1)N−1 − (d+ 1)N−M ]

∑
k1···kM

||T k1···kM ||2 + · · ·

+
2N

d2N
[(d+ 1)N−1 − 1]||T 1···N ||2}

1
2 . (11)

Proof: For simplicity we denote C = −2N + (d+1)N

dN
+ 1

dN
(dN − 1)(d + 1)N−1, and Cα

the coefficient of ||T α||2 in (10) for α ∈ {k1k2, k1k2k3, · · · , 1 · · ·N}, which are nonnegative

numbers depending only on N and d.

Assume that ρ =
∑

i pi|ψi⟩⟨ψi| is the optimal decomposition such that (3) attains the

minimum. We have that

CN(ρ) =
∑
i

piCN(|ψi⟩) = 21−N/2
∑
i

pi{−C +
∑
α

Cα||T α
i ||2}

1
2

≥ 21−N/2[
∑
i

pi

√∑
α

Cα||T α
i ||2 −

√
C]

≥ 21−N/2[

√∑
α

Cα(
∑
i

pi||T α
i ||)2 −

√
C]

≥ 21−N/2[

√∑
α

Cα||T α||2 −
√
C],
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where we have used the inequalities
√
a− b ≥

√
a −

√
b for a ≥ b ≥ 0 and

∑
i

√∑
j x

2
ij ≥√∑

j(
∑

i xij)
2 for real and nonnegative xij.

The lower bound (11) can be used to estimate the concurrence for multipartite quantum s-

tates with arbitrary dimension. It is also a kind of entanglement witness for fully separability.

Moreover, this multipartite concurrence can be employed to detect the genuine multipartite

entanglement. It has been shown that an N -partite quantum state ρ ∈ H1 ⊗H2 ⊗ · · · ⊗HN

is genuine multipartite entangled if [20]

CN(ρ) >



21−
N
2

√√√√√2N − 4 +
2

d
− 2

N−1
2∑

k=1

Ck
N

dk
, for odd N,

21−
N
2

√√√√√2N − 4 +
2

d
− 2

N
2
−1∑

k=1

Ck
N

dk
− C

N
2
N

d
N
2

, for even N.

Since the concurrence CN(ρ) is difficult to compute, our lower bound can employed to detect

the genuine multipartite entanglement.

As an example, let us consider tripartite case. From (12) ρ ∈ H1 ⊗H2 ⊗H3 is genuinely

multipartite entangled if C3(ρ) >
√
2− 2

d
. For a three-qubit GHZ state mixed with noise,

ρGHZ = x
8
I+(1−x)|GHZ⟩⟨GHZ|, where |GHZ⟩ = 1√

2
(|000⟩+|111⟩), we have from Theorem

1, C3(ρGHZ) ≥???. Therefore, ρGHZ is genuinely multipartite entangled for x < 0.0496.

III. BOUNDS ON MULTIPARTITE TANGLE

We now consider the multipartite tangle that is tightly related concurrence. From the

squared I-concurrence for bipartite quantum systems [21], we introduce the multipartite

squared I-concurrence. For a multipartite pure quantum state |ψ⟩ ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN

the multipartite squared I-concurrence is defined by the square of the multi-concurrence,

τN(|ψ⟩⟨ψ|) = C2
N(|ψ⟩⟨ψ|) = 22−N [(2N − 2)−

∑
α

Tr{ρ2α}], (12)

where α labels all the different reduced density matrices. For a mixed multipartite quantum

state, ρ =
∑

i pi|ψi⟩⟨ψi| ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN , the corresponding multipartite squared

I-concurrence is then given by the convex roof:

τN(ρ) = min
{pi,|ψi}⟩

∑
i

piτN(|ψi⟩⟨ψi|). (13)

Such defined multipartite squared I-concurrence has the following properties: (i) τN(ρ) = 0

if and only if ρ is fully separable; (ii) τN(ρ) is invariant under local unitary transformation
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of ρ; (iii) τN(ρ) ≥ C2
N(ρ). By property (i) above, a multipartite state in not separable if

τN(ρ) > 0. In the following, we present valid lower and upper bounds for τN(ρ).

Theorem 2: For any mixed quantum state ρ ∈ H1 ⊗H2 ⊗ · · · ⊗ HN , we have

τN(ρ) ≥ −22−N [−2N +
(d+ 1)N

dN
+

1

dN
(dN − 1)(d+ 1)N−1]

+22−N{ 22

dN+2
[(d+ 1)N−1 − (d+ 1)N−2]

∑
k1k2

||T k1k2 ||2 + · · ·

+
2M

dN+M
[(d+ 1)N−1 − (d+ 1)N−M ]

∑
k1···kM

||T k1···kM ||2 + · · ·

+
2N

d2N
[(d+ 1)N−1 − 1]||T 1···N ||2}; (14)

τN(ρ) ≤ 22−N(2N − 2−
∑
α

Trρ2α). (15)

Proof: We still use the simplified notions C and Cα used in proving the Theorem 1.

Assume that ρ =
∑

i pi|ψi⟩⟨ψi| is the optimal decomposition such that (13) attains the

minimum. We have that

τN(ρ) =
∑
i

piC
2
N(|ψi⟩) = 22−N

∑
i

pi{−C +
∑
α

Cα||T α
i ||2}

= 22−N [
∑
α

Cα(
∑
i

pi||T α
i ||)2 − C]

≥ 22−N [
∑
α

Cα||T α||2 − C],

where we have used the triangle inequality for the Hilbert-Schmidt norm.

On the other hand, by the definition of τN(ρ), we have

τN(ρ) ≤
∑
i

piτN(|ψi⟩) = 22−N(2N − 2−
∑
α,i

piTr(ρ
i
α)

2)

≤ 22−N [2N − 2−
∑
α

Tr(
∑
i

piρ
i
α)

2]

= 22−N(2N − 2−
∑
α

Trρ2α),

which gives the upper bound.

From the proof of Theorem 2, one has that for pure states the lower and upper bounds

are exact. Thus the lower and upper bounds (14) for τN(ρ) are tight.

Example: Consider the randomly generated three-qubit state, ρ = 1−p
8
I8+ p|ψ⟩⟨ψ| with

0 ≤ p ≤ 1, where I8 is the 8 × 8 identity matrix. To check the efficiency of the bounds of

τ3(ρ) in Theorem 2, we first compute all the norms of the correlation tensors and then derive
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the upper and lower bounds. To compare the validity of the estimation of τ3(ρ), we take

p = 0.97, 0.98 and 0.995 sequentially. For weakly mixed states (with large p), the bounds

provide an excellent estimation for tangle, see Fig. 1.
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FIG. 1: Upper and lower bounds of tangle for ρ = 1−p
8 I8 + p|ψ⟩⟨ψ|, where |ψ⟩ are randomly

generated pure states.

Remark Our bounds are given by the norms of the correlation tensors. As the Hilbert-

Schmidt norm is invariant under local unitary transformation, the bounds give experimental-

ly feasible way in identify both separability and genuine multipartite entanglement. Further

more, as has been discussed in [9, 15], partial knowledge of the correlation tensors may also

allow us to detect entanglement and estimate the degree of entanglement.

IV. CONCLUSIONS AND DISCUSSIONS

It is a basic and fundamental question in quantum entanglement theory to compute the

concurrence for multipartite quantum systems. Since the concurrence is defined by tak-

ing the optimization over all the ensemble decompositions of a mixed quantum states, it is

formidable to derive an analytical formula. We have derived an analytical and experimental-

ly feasible formula for multipartite concurrence of any multipartite pure quantum states by

using generalized Bloch representation of density matrices. We have then obtained a lower

bound of concurrence for any mixed multipartite quantum states. Genuine multipartite en-

tanglement can be detected by using this bound. We have also investigated the multipartite

tangle. Tight lower and upper bounds are obtained. The approach used in this manuscript

can also be used to investigate the k-separability of multipartite quantum systems. Future

research on the construction of genuine multipartite entanglement criteria in terms of the

lower bound of multipartite squared I-concurrence and the k norm would be also interesting.
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