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1. INTRODUCTION

1.1. Main result. The qualitative theory of stochastic homogenization of diver-
gence-form equations was developed in the late 70’s [27, 44, 39]. By a probabilistic
representation, it is equivalent to the invariance principle for the corresponding
reversible diffusion in random environment. Shortly afterwards, a strikingly general
invariance principle was proved for additive functionals of reversible Markov chains
[25]. This result enables to show at once that a reversible random walk (or diffusion)
in a random environment, and a tagged particle in a symmetric exclusion process,
both rescale to Brownian motion. The recent monograph [26] covers many further
developments on this approach.

The price to pay for the breadth of this result is the difficulty to strengthen
or quantify it. For instance, it was asked in [25, Remark 1.10] whether a tagged
particle in a symmetric exclusion process satisfies an invariance principle for almost
every realization of the initial configuration (a “quenched” invariance principle). To
this day, this question is still open.

Optimal quantitative results on the homogenization of divergence-form equations
with random coefficients have only started to appear recently. We refer to [19, 20, 22,
17, 16, 33, 8, 18, 7, 5, 6, 21] for a sample of the recent work on the subject. Previous
work focused on showing quenched invariance principles, and could ultimately
cover very degenerate situations such as random walks on percolation clusters
[43, 10, 35, 12, 34, 1, 3, 2, 14].

In both lines of research, one central ingredient of the proofs is a heat kernel
or regularity estimate. The fact that heat kernel estimates imply a quenched
invariance principle was understood early on, see [38]. Proving heat kernel bounds
for degenerate environments such as percolation clusters is however a comparatively
recent breakthrough [36, 9]. We refer to [11, 28] for surveys of the topic, and to
[13, 4, 37] for more recent contributions.

We aim to develop a comparable program for the case of a tagged particle in the
symmetric exclusion process. In this paper, we show diffusive heat kernel bounds for
this process. To the best of our knowledge, this is the first result of this type for an
interacting particle system. Our method can be applied to more general reversible
particle systems, although we choose to focus on this particular case for clarity.

We write (X¢, 7, )ts0 for the joint process of the tagged particle and the symmetric
simple exclusion process on Z%, d > 2, started at (X,n). We fix the average density of
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particles at p € (0,1): under the measure (-| X = 0) ,, the random variables (1())z+0
are i.i.d. Bernoulli with parameter p. We refer to the next section for precise
definitions. Here is our main result.

Theorem 1.1 (Heat kernel bound). For every p > 2, there exists a constant
C(d, p,p) < oo such that for every t >0,

Z <(P(X,77) [X; = l‘])p | X = O) < Ct(l—p)%.

P
zeZd

Corollary 1.2. For every p>2 and € > 0, there exists a constant C(d, p,p,€) < oo
such that for every x € Z¢ and t > 0,

(P [Xe=2]) | X =0)7 <Or(E9),

We can also complement this information by an off-diagonal bound of Carne-
Varopoulos type.

Theorem 1.3 (Carne-Varopoulos bound). There exists a constant C(d) < oo such
that for every x € Z¢ and t > 0,

ey
(Px.y [Xi=2] | X =0) < eXp( Ci ) if |z < ¢,
P | exp (—Iicl) if || > t.

1.2. Sketch of proof for the standard heat equation. Our strategy is inspired
by the following argument for the relaxation of the standard heat equation. Let
u be the parabolic Green function with the pole at the origin, i.e. the decaying
solution to
L1 Ou=Au  in (0,+00) x R,
(L.1) u(t=0,)=06() inR
Our core goal (compare with Theorem 2.1 below) is to control the decay of monotone
quantities of the form fRd uP(t,-), for p > 2. We focus on the case p = 2 for simplicity,
and present a robust argument, which will be adapted to the particle system, for
the well-known fact that

(1.2) / W (t,x)de <Ot 2,
Rd

We give ourselves a partition of R? into boxes of size ¢, and for each z € R%, we
denote by By(x) the box of this partition containing x. We start by writing
(1.3)

/Rd u?(t,z)dx < Q/Rd (u(t,x) ~ Touo) u(t,-))2 dzx + 2/]Rd (][1;’@(1) u(t,-))2 dz,

where fBe(I) = |By(x)|™! fBl(z) is the normalized integral. For the first term,
Poincaré’s inequality ensures that

(1.4) /R (u(t,x) - ]gf(w)u(t7~))2 dz < Cp(d)e? /]R IVu(t, ) dz,

and moreover,

O /Rd u?(t,-) = _Q/Rd |Vu(t, )|

Therefore, in a time-averaged sense, the first term on the right side of (1.3) is
dominated by the left side, provided that ¢ < ¢/t with ¢ sufficiently small. Tt
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therefore suffices to control the second term on the right side of (1.3). Since
fRd u(t,-) = 1 is independent of time, we get

/Rd (J{am) u(t, ~))2 dz < /R By ()| (]gm) u(t,.)) dx = B,

Choosing ¢ = ¢v/t completes our sketch of proof for (1.2).

1.3. Difficulties in the case of the exclusion process. We now discuss the
encountered problems, and the required modifications to the argument described
above, in our context of a tagged particle in a symmetric exclusion process.

The most visible difficulties in obtaining heat kernel bounds for the tagged particle
are that the environment in which the particle evolves changes over time, and that
the jump rates may degenerate to zero due to the exclusion mechanism.

Optimal heat kernel estimates for degenerate dynamic environments satisfying
some mild assumptions were obtained in [37]. These results cover in particular
the case of a diffusion with symmetric, possibly vanishing jump rates that depend
locally on an auxiliary exclusion process at equilibrium.

The latter process is however fundamentally different from the one we consider
here. Indeed, in the situation considered in [37], and more generally in the context
of stochastic homogenization, one can first sample the dynamic or static random
environment beforehand, and then define a diffusion with the given coefficients. In
contrast, in the setting we study here, the tagged particle and the bath of all the
other, untagged particles cannot be thus disentangled. There is a “retro-action” of
the particle onto its environment, which makes the approach of [37] inapplicable.
This is the core difficulty of the problem. Mathematically, this is immediately
apparent when we try to write down a differential equation analogous to (1.1) for
quantities such as P, ,)[X; = 0]: there is no closed equation for this quantity if
we only allow x and t to vary, but not 7. Similarly, for random walks in static or
dynamic random environments, quantities such as the left side of (1.2) are monotone
almost surely. This is not the case in our setting, and only averaged monotone
quantities will be available to us.

In spite of these difficulties, we will show here how to adapt the argument exposed
in the previous subsection and obtain heat kernel estimates for the tagged particle.
We replace the standard Poincaré inequality used in (1.4) by spectral gap inequalities
for the dynamics in finite volume. The proof of these inequalities requires some
care, due to the degeneracy of the rates. Moreover, since the dynamics preserves
the number of particles, these inequalities will hold only if we condition on having a
fixed number of particles in the box under consideration.

In the analysis of the analogue to the first term on the right side of (1.3), our
need to fix the number of particles in individual boxes forces the appearance of
conditional measures in the analogue to the last term of (1.3). In other words,
instead of quantities such as [u(t,-), we will have to estimate the expectation of a
similar quantity with the integrand multiplied by the space-dependent densities of
the conditional measures. These densities are highly singular, since they concentrate
on very thin sets of fixed number of particles inside a region. We first bound these
densities independently of the space variable, and then use the reversibility of the
dynamics to transfer the evolution onto this density. For this term, the tagged
particle is irrelevant, and we can use L' contraction in the environment variable
only. We then leverage on the locality of the initial condition f =w(0,-) to conclude.

1.4. Outline of the paper. In the next section, we introduce the notation and
present the general result of the form of (1.2) that we will prove, see Theorem 2.1.
In Section 3, we show a spectral gap with optimal scaling for the joint process of
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the tagged particle and the exclusion process in finite volume. Section 4 starts
with a proof of the Carne-Varopoulos bound, from which we deduce a convenient
localization property. The rest of the section then implements the strategy sketched
above.

2. NOTATION AND REFORMULATION

We fix an integer d > 2. We say that z,y € Z? are neighbors, and write z ~ y, if
|z —y| = 1, where |- | is the Euclidean distance. This turns Z¢ into a graph, and we
denote by B the associated set of (unoriented) edges. For any positive integer ¢, we
denote by By the box {¢,...,¢}?, and by By the set of edges with both end-points
in By. We let

Q= {(x,n) € B, x {0, I}BZ s n(x) = 1},
Q::{(m,n)ede{O,l}Zd : 77(33):1}.
For e € B and z € Z%, we denote

y ife={z,y},
v ifedux.

z€ =

In other words, z¢ is the image of x by the transposition between the two endpoints
of the edge e. For n € {0,1}Zd (or {0,1}B¢), ° is the configuration such that
for every z, n°(z) = n(z¢). For a function f : Q - R (or ; - R), we define
fé(z,m) = f(z°,n°). We study the symmetric, simple exclusion process with a
tagged particle. This is the dynamics associated with the infinitesimal generator £
formally acting on a random variable f:Q - R as

Lf=) ac(f~f),

eeB

where

(2.1) ae(n) = l{ne*n}.

We also consider the finite-volume counterparts,

Lef =) ac(f°-f),
eeBy
where now f : 0y, - R. The dynamics associated with £, takes place in €, and
preserves the number of particles; one can check that for every p € {0,...,|By|}/|Byl,
the uniform measure on the set

{(95’77) €Qy - ZB n(z) :P|Be|}

is reversible for the dynamics (that is, the operator £, is symmetric with respect to
this measure). We denote this measure by (-), ,. With a slight abuse of notation
(since we also use 7 to denote a deterministic quantity), we write (X, n) for the
canonical random variable on Q¢ (or ). For general p € [0,1], we understand (), ,
to be (), | p5,)p,|- For any x € 7%, we also define (-] X = z), to be the measure
under which X = x almost surely (and thus 7(x) = 1) and (1(y))y¢, are independent
Bernoulli random variables with parameter p. When no ambiguity occurs, we may
abuse notation and write
(-lz)=(-|X =),

For each A ¢ Z¢, we denote by F(A) the o-algebra generated by the random
variables (n(z),z € A). We extend the notion of F(A)-measurable random variable
to functions defined on Q or €, as follows. A function f:Q - R (resp. 2y - R)
is said to be F(A)-measurable if for every x € Z¢ (resp. By), the random variable
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f(x,-) is F(A)-measurable. For every p € [1,00] and measurable f : Q - R, we
define

(2.2) [ fle (o) = ( > AIfP1X =w)p); = ( 2 (Ifl”Iw));,

zeZd xeZd
with the usual interpretation as a supremum if p = co. In most places, the value of p
will be clear from the context, so that we simply write | f|, = [ f] z»(,) and keep
the dependence on p implicit.
For an integer r > 0, we say that a function f:Q — R is B,-local if

f is F(B,)-measurable, and
for every x € Z4\ B,, f(z,n) =0.

We say that a function is local if it is B,.-local for some 7 < +oo0.
For a local function f, we define u: R, x 2 - R as the unique bounded solution
to

(23) { 8tu = EU,

u(0,-) = ().
We may also write P, f(+) = uy(+) = u(t,-), where P, denotes the semigroup associated
with the generator £. Note that in the above expressions, the single dot represents
an element of 2, which is a subset of the product space Z¢ x {0, I}Zd. In other words,
an overly scrupulous notation for u(t,z,n) would be u(t, (z,n)). Throughout the
paper we use the notation a < b in proofs, to denote a < Cb for some constant C' < oo
which may depend on some additional parameters as specified in the statement to
be proved.

The main result of this paper, Theorem 1.1, is an immediate consequence of the
following estimate on monotone quantities.

Theorem 2.1. Let pe (0,1), f be a local function, and ui(-) = u(t,-) be the solution
to equation (2.3). For every p > 2, there exists a constant C(d, p, f,p) < co such that
for every t >0,

—n)4
(2.4) el (,y < CtIP%.

Recalling that the left side of (2.4) equals to

> (luel|z),

reZd
we see that inequality (2.4) is consistent with the idea that only those summands
indexed by  in a ball of radius about v/t contribute to the sum, and that each of
these summands is bounded by about ¢™? %. The constant in Theorem 2.1 can be
chosen to hold uniformly over p bounded away from 1.

We denote the stochastic process associated with the infinitesimal generator £ by
(Xt,m,)e=0 (see [29] for a construction), by P, ) its law starting from (z,7) € 2,
and by E(, ,) the associated expectation. This is the joint process of the tagged
particle and the bath of the other, mutually indistinguishable particles. By [30,
Theorem 3.16], the solution to (2.3) admits the probabilistic representation

(2.5) u(t,z,1) = B [f(Xe,m,)] -

Proofs of Theorem 1.1 and Corollary 1.2 from Theorem 2.1. We define the local
function

f(l‘,’l]) = 15-0,
so that if u solves (2.3) with this choice of f, then by (2.5), for every ¢ > 0,

u(z,m) =P g [Xe =0].
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By Theorem 2.1, for each p > 2, there exists a constant C(d, p,p) < co such that
p _p)d
> APy [Xe=0])" | X =a) <OtUPE,

zeZd

Theorem 1.1 follows, since by stationarity, we have
P P
(P (Xe=2])" | X =0), = ((Pxy [Xe=0])" | X =) .
By Jensen’s inequality and Theorem 1.1, for every q > p, we have
(P X =2])" | X =0)7 < (P [Xe = 2])" [ X =0)

<O(d. poq) 1708,
By choosing ¢ sufficiently large, we obtain Corollary 1.2. U

1
q
p

3. SPECTRAL GAP INEQUALITIES

In this section, we show as a first ingredient towards the proof of Theorem 2.1 that
the joint process of the tagged particle and the set of all the other (indistinguishable)
particles, restricted to a box of size ¢, relaxes over a time scale of ¢2. This takes the
form of the following spectral gap inequalities.

Theorem 3.1 (Spectral gap). For every p € (0,1), there exists Cs(d, p) < oo which
increases with respect to p and such that for every { € Zs1 and f:Qy - R, we have

((F=(010,)"), < CsC 3 (acl - 1?)

0
eeBy P

The proof of Theorem 3.1 is inspired by the arguments exposed in [42]. We rely
on the spectral gap of the dynamics of the n variable alone, which was proved in
[42, Lemmas 8.2 and 8.3] and which we now recall. When no tagged particle is
considered, the exclusion rule becomes artificial, in the sense that the dynamics
becomes identical to the Kawasaki dynamics, where particles are exchanged along
edges at a constant rate.

Proposition 3.2 (Spectral gap for Kawasaki dynamics [42]). There exists a constant
Ck(d) < 0o such that for every pe[0,1], £ € Zsy and f:{0,1}P¢ - R,

((F=(00,)7),, <Ol ¥ (P = F))?)

L,p’
eeBy P

as well as, for every x € By,

((£= {710 -1),,) [t =1) <t T ()= £ nte) = 1)
P e(;x(

Lp®

The crucial difference between Theorem 3.1 and Proposition 3.2 is that the
function f in Proposition 3.2 is a function of 1 only, while the the one in Theorem 3.1
also depends on the position of the tagged particle X. Note that the second part of
Proposition 3.2 relies on the fact that we only consider the case d > 2. (In fact, only
the one-dimensional, nearest-neighbor case needs to be excluded.)

Proof of Theorem 3.1. We take f : Qy — R such that (f), , =0, and write

B2, = & (1x =2+ 3 (- (X =a),,) [xX=2) .

reBy reBy £,p
so the first part on the right side of the above equation represents the variation
induced by the tagged particle, and the second part corresponds to the variation
induced by the configurations of all other indistinguishable particles. We omit the
indices p, £ on (-) and, for an edge b € B; we define b,b € By as the two end-points of
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b, so that b= (b, B). We apply the standard Poincaré inequality on By to the first
sum above (recalling that (f), , = 0), and Proposition 3.2 to the second one, to get

B e Y (<f<x,n>|x:x>—<f<x,n>|X:y>)
(3.1) (= 1) B
+0 3 S - F(X )P X =2).

xeBy e<By
edxr

We first observe that (z¢,7°) = (x,7°) when « ¢ e, and in addition ° =  whenever
a.(n) =0, so we may rewrite

DAL ) = FX P [X =) = 3 {ac() [ (X,n) - F(X, )] | X = 2),

eeBy ceBy
e3x epx

and thus bound the second term on the right side of (3.1) by
5 SAFX ) = FX,mP X = 2) <02 37 (ac(m)[F°(X,n) - F(X,n)]*| X = )

xeB, e<By weBy
e eeBy

(3-2) =1Bel¢® 3 ae(f° = f)?)-
eE]Bg
We now tackle the first term on the right side of (3.1). To lighten the notation,
we sometimes write the edge (z,y) as zy. By definition, it holds

(F(Xm[X =y) = (F(X¥n") | X =),

SO we may rewrite

2 (fXm) X =2) - (f(X,n) | X =9)°

(z,y)eB,

=Y ((FXm) - FX™ ™) | X =)
(z,y)eBe

To conclude the proof of Theorem 1, we need to smuggle the coefficient a inside the
expectation on the right side of the above equation. For those configurations (x,n)
with n(z) = n(y) = 1 and thus a®¥(n) = 0, we want to perform a finite number of flips
to exchange x and y in an “admissible” way in which we always flip an edge that
connects an occupied site with an unoccupied one. In order to do so, we leverage
on the presence of two empty sites at positions z; and z3. We now construct the
sequence of flips we will use; this sequence will only depend on the positions of z, y,
z1 and zs.

(3.3)

(1) Recall that x ~y, and let z; and 22 be two holes in 7, at positions distinct
from x and y. We choose a shortest non-intersecting path in B, \ {z,y} of
the form

T>Y—>...> 2 >...> 29,

according to some arbitrary deterministic tie-breaking rule, and in such a
way that the four points z,y, T,y form a unit square on a plane.

(2) We flip each edge along the path, starting from the end, until the second
hole 22 is next to z1, then we move the two holes back together to (Z,7), so
that we get a configuration near (x,y) of the form

22

where * is the tagged particle at x, e is the particle at y (assuming there is
one, for the purpose of graphical representation), and we have moved the
holes in z1, 29 to (Z,%), denoted by o.
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(3) We flip four times to obtain

R N e N N A

(4) We move the two holes at T, back to z1, zo along the path.

We wrote the description of the sequence of flips assuming that n(z1) = n(z2) =0,
but this only served as a guide to the explanation; for arbitrary 7, we may define
the same sequence of edge flips, the only difference being that the flips are no longer
“allowed” exclusion flips. In other words, we will think of the sequence of edges
selected and flipped in steps (2)-(4) above as a function of z,y, 21 and 29 only, but
not of 7. We denote it by

(3.4) Sey,zn,z = (0i(2, Y, 21, 22) )iy -

We have n =n(z,y, 21,22) $ |21 — x| + |22 — 21]- By construction,
(3.5) (aewbe e = (2, o),

and for every n such that n(z1) = n(z2) =0,

(3.6) ap, (n"P1) =1 for every i =1,...,n.

For a fixed x ~ y, we first define the random variable Z;(n) to be a minimizer of
the function

(3.7 z1 P length(Z -7~ ... > 21),

among all z; € Z \ {z,y} such that n(z;) = 0. We then define Z5(n) to be a
minimizer of the function

29+ length(Z1(n) — ... > 2z2),

among all zp € Z4\{x,y, Z1(n)} such that n(z2) = 0. Since p < 1, the set of candidate
minimizers in both definitions are non-empty for ¢ sufficiently large. In both
definitions, we break ties according to an arbitrary deterministic rule. We can think
of an algorithm for the definition of Z; that explores each candidate z; € Z¥ \ {z,y}
sequentially, starting from the minimizer of (3.7) and going increasingly, until
a candidate with 7(z1) = 0 is reached. (We simply need to make sure that the
tie-breaking rule defines an ordering between the sites that have the same image
through the mapping (3.7).) A similar interpretation holds for the definition of Zs.
We denote by N, the number of occupied sites thus explored until both Z; and Z5
are well-defined.

We write
(F(Xm) = (X 0™ | X =) = {1z, zyeny (F(X,0) = F(XTV, ™)) | X = )
(3.8) = Y Lz 2oy (F(Xm) = F(X ) | X = ).

21,2268y

For any fixed tuple (x,y, 21, 22), we now consider the (deterministic) set Sy y 2,2,
defined in (3.4), and use (3.5)-(3.6) to write

> Y zim Zemea) (F(X0) = F(XT,0™) ) | X = )

21,2268y

= X (Ve ey S () DY (X gt

Zl,ZQEB[ i=1

X:x),
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where we defined D’f(X,n) = f(X° n®) - f(X,n); we recall that n depends on
x,y,21,22. By the above equation and (3.8), we rewrite (3.3) as

2 ((fXLn) X =2) - (f(X,n) | X =)

(z,y)eBe
n 2
262 Z ( Z <l{Zl—z17Z2—z2} Z ap, (nbl...bi—l)Dbi f(Xbl...bi_l , nbl...bi_l) X = l‘>) .
(z,y)eBy \21,22€B, i=1

Applying Holder’s inequality first in (-| X = 2) and then in ¥, . .p, yields
(3.9)

2 (FXm) X =2) - (f(X,n) | X =9))°

(z,y)eBy
<é2 Z ( Z <1{Z1=21,Z2=22}|X:$>2)
(z,y)eB, \z1,22€B;

x Z <1{lezl,Zz=z2} | X = x)% ((i ap, (nbl"'bH)Dbif(Xbl'“bH777b1"'bi71))2 ‘X =
i-1

z1,29€By
We now estimate the probability (l{lethzzzz} | X = 9:) If we define
ryi= 2z —a[ =120, roi=|zg = 21| =120,

then by the construction of the path in (1) and the definition of Z;, Zs, there exists
a constant ¢ =¢(d) > 0 such that the total number of occupied sites around z and
21, which we denoted by No, satisfies Ny > @(ré + r$). Let N = |By| -1 be the total
number of sites except z, and N7 = |p|By|| - 1 be the total number of particles
except the tagged particle. Since (-) is the uniform measure over € ,, and there
are already N> occupied sites around = and z1, it follows from Lemma A.1 that

(1 | X =)< (N)_l(N‘N2)< N1<N—N2>(N1)N2
(Zr=21,20=20} N N -No) N\ NN - No)\ N
If N3/N < p/2, we have

N1 N (rd+rd
<1{Zl=217Z2=22} |X :m> N (W) Sp (ri+ 2);

if No/N > p/2, we have

Nl N2 N F(Til-w‘g) 8(7“114-7“3)
(L1221, 2-20) | X =) S VN ~) SYNpEpoTospT

Thus, there exists ¢ > 0 such that (117,-., z,-2,} | X =) S pc(rf*’”g), and since

c(rd+rd)
(3.10) S (L zimey Zomen) | X = 2)2 S Z rdpd=l T < oo,

z1,22€By r1,r2=1

we estimate in (3.9)

2 (fXm) X =2) - (f(X,n) | X =)

(z,y)eBy

ey X

(z,y)eBy z1,22€By

clzq -z|? 4 clza- zl\

(Z;a (77171 bi— 1)Db f(Xbl -1 1.._bi_1))2 ‘X _
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By applying the Cauchy-Schwarz inequality to the innermost sum and recalling that
n=n(x,y,21,22) $ |21 — x| + |22 — 21|, we further obtain

62( 2) (F(X,m) | X =2) = (f(X,m) | X =)
z,y)eBy

d d
clzr=al? | clzp=z1]
2

sty Y, (zr-z|+|z2—z|)p 2

(z,y)€By 21,22€ By

> Z (abi (nbl...bi,l)(Dbif(Xbl...bi,l7nb1...bi,1))2 ‘X _ I):> .

i=1

Since the argument inside (-| X = z) is non-negative, we use the crude bound

(abi (nbl'“bi_l)(Dbif(Xbl.”bi_l77’]b1“'b7"_1))2 |X _ J})

(3.11) = <abi(77)(Dbif(X’n))2 X = xbl...bi,1>
< T (o (0 1050)) 13X =5) - Bl (1)),

where for the “=" we used the invariance of the measure under flips. Therefore

Y (X)X =) - (F(Xm)| X =)’

(z,y)eB,

clzg-x|® | ¢
SCB| Y Y (a-al+la-ap 7 F

(,y)eBy z1,22€ By i=1

z9-z1]¢ n(z,y,21,22)
2

. (0757

n(x Tr+z1,x+z1+2
oy |d | clzgld (@Y THZLTHZI+22)

OB Y Y (alelmhe Y (D)),

(z,y)eBy z1,22€Z i=1

For each 21, 23 fixed, by our construction of Sy y 4z, 0+2,+2, We observe that in the
Y, +21,c+21+ .
double sum Y, ,)ep, Z?:(f VEERLaaEE) oqch edge by € By is repeated $ |21|4 + |2o|d

times. The non-negativity of the argument in (-) allows us to estimate

n(z,y,x+z1,x+21+22)

> > (an (D" £)*) 5 (11| + |22") 3 {ae(D°£)7)

(z,y)eB, i=1 eeBy
and thus
2 ((FXIX =)~ (F(X0) | X = y))°
(z,y)eB,
clzgl? | elzal? o
(3.12) 5€2|Bz|( > (aal + 2D (2] + 2 )p 2 )Z(ae(D 7))
21,2624 eeB,
2 e 2
SCIBA Y (ae(D7f)7).
eeBy

Inserting this last inequality and (3.2) into (3.1) concludes the proof of the spectral
gap inequality. From (3.10) and (3.12), it is clear that we can choose the constant
Cs(d, p) increasing with p € (0,1). O

4. PROOFS OF THE MAIN RESULTS

The main goal of this section is to prove Theorem 2.1. From now on, we fix
a local function f. Without loss of generality, we may assume that f > 0 (and
therefore u > 0). In the spirit of the argument sketched in Subsection 1.2, we first
reduce this proof to the following bound.
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Proposition 4.1. Under the assumptions of Theorem 2.1, for every p > 1, there
exist a constant C(d, p, f,p) < oo and, for every § >0, a constant C'(§) < oo such
that for every t >0,

(41) PR = lJuell3h < C(6t >0, <ae((uf)1’ - uf)z|x) + C’(5)t(1—2p)g)_
xeZd ecB

Proof of Theorem 2.1 from Proposition 4.1. We first observe that
(4.2) Ouluclsh ==p 3 D)™ = ufP ™ ac(uf —wi) |x) <O0.

zeZd eeB

We now verify that
(43)  {ac(ug)r - ud)’ [2) < CO) (W)™ = uf" ac(uf = ue) ).

Indeed, since ug = f is assumed to be non-negative, we have u; > 0, and therefore
the above estimate follows from the deterministic inequality

(2" =" < C() (@™ -y ) (z-y),  forz,y>0.

In order to verify the latter, it suffices to consider the case of z =1 and y € [0,1] by
symmetry and homogeneity, and then the conclusion follows easily.
By (4.2), the function t — Hutﬂgg is decreasing and we have, for every ¢ > 0, that

2
hell22 / s 22 s

(?c( 5 S {alr-uy]s) ass cone-?)

zeZd eeB

(wp) 2 2 AP —u e (uf - us) | 2) ds+C"(5)t(1_2p)g)

L rezd ecB

4.2 C , _opyd
{0 gy - )+ @0
< 0(5 C(p)H ||2P +C' (5)t(1 21’)2)

p

It suffices now to fix ¢ sufficiently small such that Cd % < 201-20)% {4 obtain
Theorem 2.1 by iteration. O

In the next subsection, we prove Theorem 1.3 and derive convenient localization
results for the process. We then devote the rest of the section to the proof of
Proposition 4.1.

4.1. Localization and cutoff estimate. We start by proving Theorem 1.3.

Proof of Theorem 1.3. Our proof is inspired by the elegant argument presented in
[40] (see also [32, 31]), with some modifications related to the fact that our processes
are indexed by continuous time. We fix z,y € Z%, and denote by ¢ the function
z = |z —x|. We may identify & with the function on Q defined by £(z,7n) = £(z).
The following process is a martingale:

t
My = €X0) ~€X0) - [ L6(Kum,)ds.
We have

t
(Ex [Me| Xy =y] |z) =y - 2| - <E(X7,7)[/0 L§(Xs,ns)ds|Xt:y]|x>.
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By reversibility,

t
(Boxy (Mo | X0 =] |y) = -ly - o] - (Ew) [ [ recxmas|x - ] |y)

t
=-ly-x|- <E(Xm) |:/ L{(Xs,ns)ds|Xt = y] |x)
0
Combining the last two displays, we obtain

(4.4) (E(X,n) (M| Xy =y] |$) - (E(X,n) [M| X, = x] |y) =2y - z|.

We now take a probability space with probability measure P and associated expecta-
tion E such that under P, the processes (X7, 07 )0 and (XY, 0¥ )50 are independent,
and are distributed according to (P( xm -] |a:> and (P( xm (-] |y) respectively. We
denote the corresponding martingales by M;* and M/ respectively. The identity
(4.4) can be rewritten as

BIM - MY | Xy =y, X{ =z] =2y -a|.
We apply Jensen’s inequality to derive, for any A > 0,
A
Al —exp (SE[MF - MY |XE =y, X! = a])
E [eé(M#M#)]
P[X?=y, XV =2]

<E [e%(th_Mfy) | X7 =y, XY = x] <

With Lemma A.2, we further obtain
(4.5) P[Xy =y, X! =2] e IE [e%(Mf—M;y)]
<exp[-Aly - 2| + Ct(e* -1- N,
for some constant C'(d) > 0. The above estimate holds for any A > 0, and we now

choose A appropriately to minimize the right side of the above inequality.
If |y — x| > ¢, we have

exp [—)\|y —z|+Ct(e* - 1- /\)] <exp [—|y —z|(A-C(e*-1- )\))] .

By choosing 0 < A < 1 so that A —C(e* —=1-X) >0, we find ¢; > 0 such that the
right side of the above inequality is bounded by e~c1lv=l in this case.
If |y — | < t, by choosing A = hjw;fl < MY, we have

exp [-Aly - 2| + Ct(e* -1- A)] <exp(-Aly - z| + CA*te?)

2
el B (- €20

By choosing M > 1, we find ¢o > 0 such that the right side of the above inequality
2
is bounded by e-c2lv==I"/t,
We finally note that, using independence and then reversibility, the left side
of (4.5) is

2
PIX} = y]P[X} = 2] = ({Pxn [Xe = 9] )"
and therefore the proof is complete. O

We now aim to show the following localization result, which says that similarly
to the standard heat equation, at a fixed time ¢, we may localize the solution to
dyu = Lu with local initial data f to the box By, provided that L > /7.

From now on, we define L := [\/ilog2 t] v 1, and denote by Ay, the conditional
expectation

Aph(z,n) = (h(x,n) | F(BL)),
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with F(Bpr) the o-algebra generated by the variables (n(x),z € By).

Proposition 4.2 (Localization). Let h be a local, non-negative function, and p > 1.
There exists a constant C(d, p,h,p) < oo such that the function hy = P;h satisfies,
for every t >0,

10g2 t

(4.6) Ihelop — (3 ((ALh)? |2))% < Ce ",

xeBy,

where L = |/tlog®t]| v 1.

Applying the above result to u; yields that, for L = |/tlog®t] v 1,

(47) ”utH2p g( Z ((ALut)2p|l'>)% +Ce_lo%t

xreBy,

Therefore, in order to prove Proposition 4.1, we only need to analyze the first term
on the right side of (4.7).

The rest of Subsection 4.1 is devoted to proving Proposition 4.2. The latter is a
localization statement in two different senses: first because it replaces hy by Aphy;
and second because it replaces a full-space sum (implicit in the norm) by one indexed
by Bp. The second aspect of localization is obtained through the Carne-Varopoulos
estimate, which indicates that the tagged particle is not super-diffusive. This
information is also useful to justify the introduction of the conditioning operator
Ap. The need of this conditioning in our argument is inspired by the strategy laid
out for the proof of [24, Proposition 3.1]. We use the Carne-Varopoulos estimate to
control some boundary terms for which the tagged particle is beyond the diffusive
regime.

We start by observing that the heat kernel estimate obtained in Theorem 1.3
implies the following bound on solutions to (2.3).

Lemma 4.3. Let h be a local, non-negative function, and hy = Pih be the solution
to (2.3) with initial condition h. There exists a constant C(d,h) < oo such that for
every t >0 and x € Z?, we have

2
|| ||

(he]z) SC(efﬁ +e’?).

Proof. Recall the probabilistic representation (2.5), which reads

ht(l‘, 77) = E(:E,n) [h(Xta nt)]
We use the locality of h to derive

(he|2) = (E(x ) [MXe, )] [2) < [Blloo (P [1Xe] < 70] [2)

?‘2
where ro denotes the size of the support of h. Let the function f(t,7) = €™ 7 1{gcr<s) +
e C 1454y, where C(d) < oo is the constant from Theorem 1.3. We have that

(helz)<lhleo 35 F(E 12D
zilx+z|<ro

If |z| € 2rg, we use the trivial bound (h; |z) < |h]co-
If |z| > 2r9, |2| is comparable to |z|, and we have

2 el
(hla) bl ¥ f(0]2D) < Ol (787 + &),

zi|@+z|<ro

with a possibly larger constant C. The proof is complete. U
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In the proof of Proposition 4.2, we will focus on the case p = 1, and then note

that the general case p > 1 follows directly from an L* bound of h;. For positive
integers m < L and a sequence of increasing positive constants o; = exp (%) with
v =7Vt and 7 >0 to be determined, we define

L
Un,L,a(8) = am|Anhs|3+ Y ar(|Arhs]3 = [Ar-1hs]3) + arei([hs]3 = |ALRS|3)
k=m+1
L
= ap|hs|3 - Y (ars1 = ap) || Aghs 13-
k=m

We will first estimate <= |Aghg|3 for k € Zs1, then derive a differential inequality
for Up, 1o (s) with s € [0,¢]. By Gronwall’s inequality, it will lead to a bound on
U toa(8) and [hl3— [Aph 3.

We define the Dirichlet energy of h associated with x € Z¢, e € B as

D.(h|z):= <ae(he - h)? |:17) .

For every e € B and k € Z51, recall that we write e € B, if both end-points of e belong
to By. We write e € OBy, if only one of these end-points belongs to By.

Lemma 4.4. There exists a constant C(d, p,h) < oo such that for any k € Zs1, 8> 1
and s >0, we have

d
—£\|Akhs“§< Z Z De(hs|x)+cﬁ Z z De(hs|x)

zeZd eeBy, reZd ecOBy,
+ 5 T [Akah)? 2] = {(Aeho)? o)) + C(sTe 4 78,
zeZd

Proof. Since 05 (Arhs) = Ak (Oshs) = A (Lhs), we have

da

o 2 {(Axha)?[2) =2 3 3 (Avhs, ac(hS — hy) ).

xeZd 274 e€B

For any e € B, using the transformation (z,n) — (z¢,n¢), we get

> (Akhs,ac(hg —hs) |2y = 3 ((Axhs)®, ac(hs - hY) |z°)

reZd reZd

= 2 ((Axhs)%,ac(hs = Q) |2),

zeZd
and therefore,
d ¢
(4.8) - 3 ((Akhs)?|2) == >0 3 ((Akhs)® = Aghy, ac(hS = hy) | z) .
S pezad reZd eeB

The summand on the right side of the above equation takes a similar form as the
Dirichlet energy D.(hs|z). In order to make this more precise, we distinguish
between different cases of z € Z%, e € B.
(i) If e € By, then a. is F(By)-measurable. We also have (Aphs)® = AghS, so
((Akhs)® = Aphg, ac(hé — hy) | @) = (ac(AchS — Aghy)? | z)
< (ae(hg ~ hy)? |:17) .

(ii) If e ¢ Br+1 and « ¢ e, then we have (Aghs)® = Aphs, so the summands in (4.8)
are zero.
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(iii) If e ¢ By, and z € e, then we have |z| > k. By Lemma 4.3, we have

_=P e
5 3 Ly eo Al (s =) [2) | <C Y (78 4 )

zeZd eeB ||k

2 .
<C(% +e—c)

(iv) If e € OBy, and « ¢ e, then by Lemma A.3 we have
Z Z 1{@68Bk,m¢e} ((Akhs)e - Ayhs, ae(hg - hs) | .CE)

zeZd eeB

CBY S aelht—h) 7Y+ S 3 [((Araahe)?|2) — ((Aho)? | 2)].

zeZd ecdBy, /8 xeZd

The proof is complete.

We recall that

L
Unz,L,a(S) = aL+1Hhs ||§ - Z (ak+1 - ak)HAkhs ”g

k=m

with o = exp (%) and v = 7/t

Lemma 4.5. There exists C(d,p,h) < oo such that for anyt>1, s€[0,t], 7>C

and positive integers m < L, we have
T Un1.0(8) < T U pa(s) + C(t?e % +e7 %),
Proof. We have

d L d
o m.L.a(8) = a1 Hh 5 - k;(akﬂ—ak)%HAkth%

For the first term on the right side of the above equation, we have

d

sl == % ¥ De(hil ).
s xeZd ecB

We apply Lemma 4.4 to the second term to obtain
(4.9)

d

7Um [e%

ds ™ (5)

—ars1 », . De(hg|z)+ Z(ak+1—ak) >3 De(hs|z)

zeZd eeB xeZd ecBy

L

+CB Z (age1—ag) >, >, De(hg|x) +% 3 (et — o) (| Arsrhs||3 -

xeZd ecOBy k=m

+C Z (st —ak)(s%e_& + e_%),

k=m

|Akhs]3)

where C' = C(d, p,h) >0 and 8 > 1. We will show that by choosing 7 appropriately,
the total Dirichlet energy on the right side of (4.9) can be negative, and the rest is
bounded up to some multiplicative constant by Uy, 1, o plus some remainder term.

(i) Dirichlet energy. Since 8> 1 in (4.9) is arbitrary, we choose 8 = /. We also

assume 7 > C for the constant C' appearing in (4.9), then

CB(ags1 — k) < y(aps1 — ) € Wi,
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and we have

L
CB Y (arr—ar) Y, Y. De(hs|z)

k=m xeZd ecOBy

< Z Ok+1 Z ( Z De(hs|z) - Z De(h5|x))7

k=m reZd \eeByy eeBy,

which implies

L L
;; (1 —ax) Y, . De(hslx)+0,5’kz (ks —ar) Y, Y. De(hs|)

xeZd ecBy zeZd ecOBy,

<o+t Z Z D.(hs|x) - am Z Z D.(hs|x).
zeZd eeB 41 zeZd e€B,,
Therefore, the total Dirichlet energy on the right side of (4.9) (that is, the sum of
the three first terms appearing there) is negative.
(ii) The remainder term. Using v(ag+1 — o) € Qge1, We obtain

L

2 L1 1
Z(a;ﬁl—ak)(s%e’% +e’%)< > = -
k=m k=m 7V k=m 7V

1
— e
k=m Y TVt k=m

Therefore,
L d _ k2 k
Y (o1 —ou)(s2e  +e @) <O(8
k=m

Now using again the fact that S(ag+1 — ax) < Qge1, We obtain

d C L 4 _m2 _m
i Uma(s) <5 2 api1 ([ Apsihs |3 = [Aghs[3) + Ct2e™ e + Ce™@
k=m
C ’VTL2 m
< mLa(s)+C(t2e & +e7¢),
The proof is complete. O

We are now ready to conclude the proof of Proposition 4.2.

Proof of Proposition 4.2. 1t is clear that we only need to consider those ¢ > 1. For
such fixed t, we choose m = |v/tlogt| and L = |\/tlog?t|. By Lemma 4.5, we apply
the Gronwall’s inequality to Uy, 1o in [0,t], and derive

m,2 m
U1 (0) sc(Um,L,a(o) sl +te_?)

d _log%t _ Vilogt
sO(Um,L,a(o)thlHe T o4te © )
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Since h is a local function, it is B,,-local for large ¢, and recalling the definition of
Um,L,a, we have
Unn,1,a(0) = am | Amhl3 = a3
Therefore,
4 _log?t _VElogt
are([hel3 = |ALR3) < Up,za(t) < C(amllh|\§ +tMEeTTE wge T )
which leads to

C C og? Vilo
D N L Bl G Ca)
ar+1 ar+1

j i
Since a; = ey = eVt there exists a constant C' > 0 such that

log

2 ¢
e (1+ |h]3).

[hel3 = [ALhe]3 < Ce
This implies
Ihe=Achel3 = 3 {(he=Ache)?[2) = 3 (F|2) = 3 {(Arhi)’|2)

reZd xeZd reZd

log? t

<O (14 [R]).
For p > 1, we simply use the L™ bound |A¢]|e < || to obtain
[he = Aphel3E = 3 ((he = Aphe)*|2) <C Y ((he = Aphe)? | )

reZd reZd

log2 t

<Ce"E (1 |hl3).
Using Lemma 4.3, we can further restrict the tagged particle in By:

JALhe3E = >0 ((Aph)|2)+ Y ((Aph)™|=).

zeBL, z¢BL

For the summation outside By, we have

S ((Arh)?|2)<C Y (Aphy]z)<C T (e¢+eu)

z¢Br, z¢Br, r¢Br,
log ¢
<Ce " C
The proof of Proposition 4.2 is therefore complete. U

4.2. Variance control: spectral gap inequality. Recalling that in the previous
step we fixed L = |v/tlog®t]| v 1, we now define £ := |§v/#] v 1, for some 0 < § <« 1 to
be determined, and fix a partition {By; }iez,, of By, into boxes of size ¢. For each
r € Z?%, we denote by By(x) the box of this partition to which = belongs (so that
By(x) is not the box centered at z, which we may rather denote by =+ By). Possibly
adjusting & ever so slightly, we assume that m := (2L +1)¢/(2¢+1)? is an integer, i.e.
we choose m < 64 lodet boxes of size ¢ partitioning By, and write By, = U;2; By ;.

Let MKL € 23 be the random vector made of the number of particles in each of
the size-¢ boxes partitioning By, which we decompose as

MY = (My,..., M),

with M; denoting the (random) number of particles in By ;.

We first show that all M; can be restricted to be in [5]By], p—;l|Bg|], i.e. we only
consider the cases when the number of particles in each box By ; is relatively close
to its expectation p|By|. Define

m
o £y ._
17(M7p) = Dl Lo B emi<es By

Recall that we fixed a local function f > 0, and that w, is the solution to (2.3).
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Lemma 4.6. Let p > 1. There exists a constant C(d,p, f,p) < oo and, for each
8 >0, a constant C'(8) < oo such that for every t >0,

zeByr, zeBy,

(410) X ((ALut)Q”Ix)sO( )Y ((ALut)%P(Mg)m)+c'(5)t-100pd).

Proof. We write

> A(Apu)®lz) = 30 ((Apu)®*17(M7) |z + 3 ((Arue)®(1-17(ML)) ),
xeBy, zeBy, xeBy,
and bound the second term on the r.h.s by

> ((Apu)(1-17(M7))|2) s 3 (1-17(Mp)]z).

zeBy, zeByL,

By our definition of 17(MY), it holds for every x € By, that

{1-17(M7) |2} < 3 ((1{Mi>P—;1\Bg|} |$> +{Laesimap |$)) -

=1
For each : =1,...,m, we have

(Lo st iog |5 € (X018 |0 < M [ 52 e 41 - )] ™

2

A

for any A > 0, where the factor e® comes from the case when x € B, ;. For the
P+l

function g(\) == e~= *(pe* + 1 - p), it holds that g(0) =1 and ¢'(0) = (p-1)/2 <0,
so we may choose A =\, so that C},:= g(\,) <1. Thus,
B
(1{Mi>%1\BA} |x> sep.
Since the same discussion applies to (1{M11<§‘B£|} \x), we obtain
(1-17(MY) | 2) s mCIP < 570 (10g2 1) CCLOVEDT,

which implies

()OO ) 5
and proves (4.10). O
Given a vector MY, we define for a function A
(4.11) T h(M,x) =B ™ 3 (h[ML,y).

yeBy(x)
This quantity may be viewed as a local average of h, that is, as the expectation of h
conditioning on MKL and the event that the tagged particle is uniformly distributed
in By(x). Appealing to (4.10) and to the triangle inequality, we bound

(412) Y ((Apw)™|z)
xeBy,
$ 3 (|Aruy - mhuPP1P (ML) |2 + > ((rhue)1P(MY) [ z) + O ()¢ 1004
Q:EBL xEBL
We now apply the spectral gap inequality of Theorem 3.1 to control the first term
on the right side of the above display.

Proposition 4.7. Let p> 1. There exists a constant C(d, p,p) < oo such that for
every F(Br)-measurable, bounded non-negative function h: Q - R and t >0, we
have

(4.13) Y (|h-7Lh(ME,2)[PP17(MY) |z) <C Y Y (ac((h)P - hP)?| ).

zeBy, xreBy, eeBy,
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Proof. We write

> (Ih—ﬂﬁh(M‘i,x)IQ”l”(M‘i)Ix):i > (k=7 h(ML, )17 (ML) |z).

xeBy, i=1xeBy ;
It suffices to show that for every i€ {1,...,m},
(4.14) > (jh-7Lh(ML,2) P17 (M) [2) s 2 Y > (ac((h9)P - hP)?|x).
reBy ; r€By ; eeBy,

Since the ordering of the partition (By;)7?; is arbitrary, it suffices to prove (4.14)
for i = 1. Recalling that MY = (M, ..., M,,), we define a decreasing sequence of
o-algebras {G;}; by

(4.15) Gj=0(My,...,M;,{n@) : Te BL\u_ Be})

and the following random variables for ¢ > 1:

(4.16) (W)Y =(h?|G;y),  HI=[BJ™ Y (h)Y.
yeBe,1

It is clear that HJ‘? may be viewed as the expectation of h? conditioning on G; and
the event that the tagged particle is uniformly distributed in By ;.

With the above notations, we write

> (lh=m (M, )PP (ML) [2) = 3 (b= Hy [ |G, )17 (ML) | ).

IEBg,l weBLl

We observe that for each z € By 1, the random variable
(b= H} [ |G, ) 17(MY)

depends only on M and (7(F),7 ¢ Br,1), thus we may substitute the outer measure
(-]} with (-|zo) for any fixed g € By and move the summation inside to write

> (Ih—ﬂfh(MfLw)IQpl"(M[L)Ix):< > Alh=Hp, [ |Gy )17 (M)

xeBy 1 reBy 1

We apply the moment inequality of Lemma A.4 to derive
Y AIh=Hy [ 1Gm2) s 35 ((W = HE)? |G )

zeBy 1 reBy

It thus remains to prove (4.14) with the left side replaced by

l‘o) .
For the summation in (4.17), we have

S (002 16ns) = 5 (=m0 S - 12,0 6]

@) (5 {000t G 17

reBy 1

z€By,1 x€By 1 i=1
m-1
(4.18) = > (= | Go) + Y Y ((HD = HE)? G ).
z€By 1 =1 weBy 1

We start by observing that the first term on the right side of (4.18) can be
rewritten as

(4.19) > ((hp_Hf)2|gm,z):< > ((n - H7)* (G, 2)

x€By 1 reBy 1

ng7x0) .
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By applying to the term inside (|G, zo) the spectral gap inequality of Theorem 3.1
in the box By, and with density given by p; := M;/|By| € [£, 2:1], we obtain

> (- H)" | G, )

$EB[)1

(120) <cs(,o1,d>62( S8 (el -w)161,0)

reBy 1 ecBy

gm7x0>

=Cs(pr,d)® > Y (ae((he)p—hp)2|gm7x)~

xEBgyl eE]Bg,l

To deal with the second term on the right side of (4.18), the idea is similar. For
eachi=1,...,m—1, we note that ((H? — H,)?| Gy, ) does not depend on z, and

((H? - HE)? |G ) = (((HP = HE1)?1Gis1,y) | Gimsy)

for any y € By ;1. We also have

(HY = HE B Y ((071Giy) = (171G 9)))

B S (W1 Gayy) - (W Givns )

yeBy 1

After conditioning on G;,1, we apply the spectral gap inequality of Proposition 3.2
to the box By ;.1 and derive for every y € B, ; that

(((hp |Gi, ) — (hp|gi+17y>)2 | gz‘+1,y) <Ckl? Z (ae((he)p - hp)2 ’ gi+1,y) )

e€By i+1
and this implies

m—-1

(421) > Y ((HP - HL)) |G, )

i=1 xeBy 1
m-1

SOy, Y N {ac((h) = h7)? G ).

1=1 yeBy 1 eeBy i11

Combining (4.20) and (4.21), we obtain

> (0 - 12)?| G2

reBy

2
S (Cs(pr,d)vCr) 2 % Y (ac((h)? = h¥)7 | Gon, ).
:L‘EBg‘l EEBL
We finally plug this inside (4.17) and obtain (4.14) with ¢ = 1. We need the factor
17(MY)) to bound Cs(p1,d) < Cs(2, d). O

By Proposition 4.7 and the fact that 7% Ay = 77, £ = |§\/t], we can therefore
reduce (4.12) to

(4.22) > ((ALut)2p |x)

xreBy,

$0% 3 Y fac(@i)r ) la)+ ¥ ((rhu) 1P (ME) ) + C(o)E

xeBy, eeBy, xreBy,
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4.3. Conclusion. Summarizing, it follows from Proposition 4.2 and (4.22) that for
(=16/t]v1and L=|Vtlog?t|v1,

(4.23) luellzp $0%¢ 30 3 {ac((uf)” = (ue))? )

zeZd ecB
+ Z ((Wéut(MlL,x))Qp 1”(M%) |x) + C(é)t(l_%)%.
IEBL

In order to complete the proof of Proposition 4.1, it therefore suffices to show the
following.

Proposition 4.8. There exists a constant C'(6) = C'(d, p, f,p,0) < oo such that for
every t >0, we have

Z <(7T€ut(Mi, x))zplp(Mi) |$> < 01(5) t(l_Qp)%_

xreBy,

From now on, we denote by (-) the “pure” Kawasaki measure on the lattice Z<,
i.e. the product measure of independent Bernoulli {n(y)},eze with parameter p.
We also define the operator Lx associated to the Kawasaki dynamic acting on a
random variable f = f(n) as

(4.24) Licf(n) =3 (f(n°) = f(n)

ecB
For every x € By, we denote with h*(z,-) the Radon-Nikodym derivative of the
measure (-|MY{,z) with respect to (-|x), i.e. for g € L' (2) we have
(4.25) {9(z,-) ML = M, ) = (g(z, )b (z,-) | z).

Analogously, we denote by M the Radon-Nikodym derivative of (-|M%) with
respect to (-). We have the following lemma.

Lemma 4.9. Let the vector M = (My,...,M,,) be fized and such that M; > 1 for
alli=1,...m. For any x € By, we define i(x) such that By ;) = Be(x). We have

Bl ~
(1.26) W () = AP ),
Mi T
in the sense that for every random variable g = g(X,n), we have

(9%, )M = ) = P (g BV ),

i(z)

Proof. Let 1), be the indicator function of the event Mf; =M (i.e. of having M;
particles in each of the boxes By; partitioning Br), let g = g(X,n) and § = G(n).
Since we may write

(@) M = M) = GO T () = <’§(~) L () >

(1)

and for every z € By,

(90X, ) MY, = M, ) = {g(e, ™ () | o) = <g(w, )

it holds that

(1(n(2)=1y1ar)

(XM = My = ) 1 ORM )
(Lin(2)-131m)
oI M) ).

(Ln(a)=131n1)
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We establish identity (4.26) by observing that by the independence of each 7(y)
and the construction of the vector M, we have
(L) |Bd

. O
(Lpp)-131nm) M)

Proof of Proposition 4.8. For any z € By, by the definition of h™(z,-) through
(4.25), we rewrite
|

> ((rhu(ME,2)) 17 (M) |2) = 3 <(|Be|_l > (e MG, y)) 17 (M

zeBp, zeBp, yeBy(z)
B 3 (X fun 1)) 1) o).
zeBr, | yeBy(x)

where here and in the following, we interpret (u:h™ |y) and (u:h™ |y) as random
variables with M = MZL. By our restriction on the values of MKL given by the random
variable 17(MY ), we can appeal to Lemma 4.9 to derive

5 ((rh (0L 2)) 1)) o)

xreBy,
oo (2 |Bl” -~ R
- PB z( ( S (o) <n>|y)) 1 m)
zeBr, Mi(x) yeB(x)

We bound the above term by

2p
B[ Y (( 5 <ut(y,n)7iM<n>|y)) 1M,

.’I:EBL yEBg (J‘)

For fixed 4, the above expectation is independent of x € By ;, so we write for an
arbitrary x; € By ;
x)

B[ Y (( 5 <ut(y7n>ﬁM(n>|y>) 1(MY)

zeBr 1 \yeB,(x)

m 2p
am g (3 o) e

i=1 yeBy ;

S IB Y (9, (M) (M) [a),

i=1
with
2p
a5 = (3 futn B )15))
yeBy i
We claim that (4.27) can be bounded by

B2 S (g, (ME )12 (M) [ ) = (|Be|2p+1 $ 0 (ML )17 (M)
i=1 i=1

:

for an arbitrary x¢ ¢ Br. Consider <gi(M€L)1p(MZL) | :ci) for any 4: it can be written
as

m

(gz(Mi)lp(Mi”.’El): Z gz(Nla;Nm)]-p(NlaaNm)H<1{MJ:N]}|x7,)
Ni,...,NpmeZso j=1

For j # i, we have (I{Mj:Nj} |:cl) = (l{Mj:Nj} |x0>, and since g; > 0, it suffices to
show that

(1{M7‘,=N7‘,} -Ti) S (1{M1‘=Ni} 330);
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which is equivalent with
|Be| - 1) Ni-1 |Be|-N; (|B£|) N; |Be|-N;
i 1 _ £ i< I3 1 _ 4 1-
(Ni_l p T (L-p) S\, )r (1-p)

Using the simple estimate

B, 2+ Zgl(M )1°(MY) slBelzp“( > (ut(y,n)ﬁM(n)ly)) :

i=1 yeZd

we have proved

(4.28)
) ((rf (ML, 2) 717 (M) ) 5 | B2 (( 2 {us R ()| y>) x)
reBr yeZd

We remark that the term ¥, czq (ut(y,n)ﬁM(n) |y) in the r.h.s. above depends
on the variables with respect to which we take the outer expectation ( - |x), only
through the vector M. In other words, if we denote with 77 the configuration with
respect to which the measure ( - |zq) is defined, then we have that M = M (7}) and
that the r.h.s. in (4.28) may be rewritten as

J)o) .
Ul

2p
L (L O
yeZ4d
Here, with n or 77 subscript in the expectations we stress the variable with respect
to which each expectation is taken. Therefore, it follows that for every fixed 7], and
accordingly fixed M = M (7)), we may apply to the term ¥, czq (ut(y,n)ﬁM(n) |y)n
reversibility and rewrite it as

> (uly, ™ () ly), = 2 (FlymPRM () ]y), -

yeZd yeZd

Moreover, the locality of f yields

(4.29) > (uely, M () [y), s > (BRM (n)[y),

yeZa yeBy,

where B,, denotes the support of f. We now observe that, since "M does not
depend on thg tagged partjgle X, it holds that £LhM = LxhM | and therefore also
that P,hM = P,h™ | where P, := e!*% . Therefore, the contractivity of the L'-norm
for the Kawasaki dynamics yields that
(PRM [y)y = (Bh™ |y)y = p (PR L y2ny) < p H(PRM ) < p7H(RM) = p7t

Combining this last inequality with (4.29) and (4.28) yields

2p -

> ((rhue (ML, )17 (M) |2) 5 B2

xreBy,

Our choice of £ = |6v/t] v 1 allows us to conclude the proof of Proposition 4.8. [

We can now conclude the proof of Proposition 4.1, and therefore also of Theo-
rems 2.1 and 1.1.

Proof of Proposition 4.1. Proposition 4.8 applied to the second term on the right
side of (4.23) yields

|| ||2p<52t S S {ae ((uf)? = (ug)?)? |$)+C(6)t2(1 2).

zeZd eeB

as desired. O
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APPENDIX A. TECHNICAL LEMMAS

Lemma A.1. There exists a constant C' = C(m,e) such that for any N, Ny, Ny € Zy
with N > Ny > Ny >0, we have

G G e Rem ()

Proof. Defining p:= Ni/N,z = Na/N, we apply Stirling’s formula to derive
[(N)] (N—N2 ) _ (N NUNDE | NNV - Na) [(1 _m)l_rpp]

Ny Ni - N (N1 - No)INT \ N(N1-Na) | (p-z)r=
Ni(N = N2) nyo)
Oy | 22 NS,
\ NV - Ny ’

where
fo(z) =plogp+(1-z)log(l-xz)-(p-xz)log(p-=), z€l0,p).
A straightforward calculation gives f,(0) =0, f,(0) =logp, and f(x) <0, thus
fo(z) <zlogp.
The proof is complete. O

Lemma A.2. Fiz any x € Z¢, let £(2) = |z — x|, and define the martingale

My = 6% - €0%0) - [ 16(X,m.) s

For every (z,m) € Q and t,\ >0, we have
E (.. [exp(AM;)] < exp (2d (eA -1-A\)t).

Proof. The proof is inspired by [15]. We fix A >0, e()\) := e* = 1 - ), and show that
the process (F})s0 defined by
E; :=exp (AM; - e(A\){(M):)

is a supermartingale under P, .y, where ({M), )0 denotes the predictable quadratic

variation of M. The conclusion then follows since E[E;] < E[Ep] = 1 and (M), < 2dt.
We write M;_ to denote the left limit of M at time ¢, and AM; := M; — M;_ to

denote the size of the jump at time ¢. The key ingredient of the argument is that

(A1) sup AM; < 1.
t

We denote by ([M]¢)s0 the bracket process associated with M. Since M is of
bounded variation, this is simply

(A.2) (M= > (AM;)2.

0<s<t

By an extension of the fundamental theorem of calculus that allows for jumps, see
e.g. [41, Theorem I1.7.31], we have, for every s <t,

t t
(A.3) Et—ES:/ )\ET_dMT—/ e(N)E,_d(M), + 3 (AE, - \E,_AM,).

0<s<t

By [15, Corollary 3.2], we have
<l =—  M<l+dz+e(N)d
By (A.1), we deduce that
AE, = E,_ (M 1) < E,_ (MM, + e(\)(AM,)?).
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Combining this with (A.2) and (A.3), we obtain

Et—Essft /\Er_er+/te(>\)Er_d([M]—(M))r.

By [23, Proposition 4.50], the process ([M]¢ — (M),)+s0 is a martingale. The proof
is therefore complete. t

Lemma A.3. There exists C(p) < oo such that for every k € Zs1 and 8 > 1, we

have
Y Y Loy ((Ah)° = Aghyac (R~ 1) |x)
xeZd ecOBy,
(A4) , c . )
<CB Y. > (ac(h®-h) |gc)+E S [((Aph)?|2) - ((Axh)?|2)].
xeZd ecOBy, weZd

Proof. For any e € OBy, we write e = (y,z) with y € Bg,z ¢ Bi. We first show
that (A.4) holds when h only depends on n(y),n(z), and then consider the general
case.

Since z ¢ e, to simplify the notation we just write h = h(n(y),n(z)). Recalling
that n(y),n(z) are independent Bernoulli random variables with parameter p, we
have

Agh=h(n(y),1)p+h(n(y),0)(1-p),
(Axh)® = h(n(z),1)p + h(n(z),0)(1 - p).
Since ac(h® = h) = 1 )enez)y [M(1(2),1(y)) = h(n(y),n(2))], we further obtain
((Agh)® = Agh,ac(h = h)|x)
=p(1-p)[A(0,1)p+h(0,0)(1-p) - h(1,1)p=h(1,0)(1-p)][A(0,1) - h(1,0)]
+p(1=p)[A(1,1)p+h(1,0)(1-p) - h(0,1)p-h(0,0)(1-p)][A(1,0) - ~(0,1)].
Thus,
((Agh)® = Agh,ac(h® = h)|x)
(A.5) <CBIh(0,1) = h(1,0)* + %m(o, 1) -h(1, 1)+ %|h(070) - h(1,0))?

for some C = C(p) and any § > 0.
By a similar calculation, we have

(ac(h® = h)? |2} = 2p(1 ~ p) (0. 1) ~ h(1,0),
and
{(Akaih)?|z) = ((Axh)?| )
= p* (1= p)h(1,1) = h(1,0)]* + p(1 - p)*|R(0,1) - h(0,0)*.

It is clear that the first term on the right side of (A.5) can be controlled by
(ac(h® - h)?|z), and the last two terms can be controlled by

(ae(he - h)? |1:> + <(Ak+1h)2 | x) - ((Akh)2 | x)

after applying the triangle inequality. Thus (A.4) is proved when h only depends
on 1(y),n(z).

Now we consider the general case. Fix z € Z¢, and for any e = (y, z) € OB}, with
z ¢ By, we define h, = (h|F(Bj u{z})),, where to avoid confusion, we use (-), to
denote (-|x), then we have

((Arh)¢ = Agh,ac(h® = h)|x) = ((Agh,)® = Agh.,ac(hS = hy) | z).
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For each realization of {n(7) :7 € By \ {y}}, we view h, as a function of 1(y),n(z),
and the previous discussion shows that

((Akhz)e - Akhz7a€(h§ - hZ) |£C>

<OB{a(hs -1 )+ 5 [{(Araho)?|2) - ((Auho)? )]

For the first term on the right side of the above inequality, we have
(ae(hz - hz)2 |x> < <ae(he - h)2 |m) ,
so it remains to show

(A.6) S (((Agsrhz)?|2) = ((Aeh:)?|2) < ((Are1h)? | 2) = ((Arh)?| @)

e€OBy

Let Byyi N By = {z:}Y, and F; = F(Bru{z}.,),l=1,...,N. We have

N
(Akaah)? ) = ((Axh)? | 2) = 2 (0] 7 = (h] Fia)? [ 2)

=1
For any e = (y,z) € OBy, it is clear that z = z; for some [ =1,..., N. We claim that
AT {(Apaha)?|2) = (Aphey)? o) < (B F)? = (B] Fia) | ),

which implies (A.6) and completes the proof. To prove (A.7), we observe that
Aji1hs, (resp. Aghy,) is the average of (h|F;) (resp. (h|Fi-1)) with respect to
{z;}121, thus

((Apeihs, = Axhz)? [2) < (((R] F) = (R Fi1))? | @),

which reduces to (A.7) by the property of conditional expectation. O

Lemma A.4. Let E denote an expectation on a probability space, and p > 1. There
exists a constant C(p) < oo such that for every random variable X >0,

E[|X - E[X]P?] < CE[(X” - E[X"])*].
Proof. Let Y be an independent copy of X. We have
[ X -E[X]2p = [E[X =Y [ X]2p < | X = Y]2p.
Moreover, there exists a constant C'(p) such that for every =,y > 0,
|z —y[” < C(p)la” - y”|.

Indeed, it suffices to verify this for = 1 and y € [0, 1] by homogeneity and symmetry.
This is then a simple exercise. As a consequence, we deduce

|X ~E[X]l2p <C@)IIXP = YP[']5 = C(p)| X7 = Y75

We conclude by the triangle inequality. O

Acknowledgments. We thank Felix Otto for stimulating discussions, and Mikael
de la Salle for showing us the beautiful proof of Lemma A.4 reproduced here. Y.G.
was partially supported by the NSF through DMS-1613301.



[1]
2]
3]
(4]
[5]
[6]
[7]
(8]
[9]
(10]
(11]
(12]

(13]

(14]

[15]
(16]
(17]
(18]
19]
20]
(21]
(22]

23]

24]

(25]

[26]
27]

28]

HEAT KERNEL UPPER BOUNDS FOR INTERACTING PARTICLE SYSTEMS 27

REFERENCES

S. Andres, M. T. Barlow, J.-D. Deuschel, and B. M. Hambly. Invariance principle for the
random conductance model. Probab. Theory Related Fields, 156(3-4):535-580, 2013.

S. Andres, A. Chiarini, J.-D. Deuschel, and M. Slowik. Quenched invariance principle for
random walks with time-dependent ergodic degenerate weights, preprint, arXiv:1602.01760.

S. Andres, J.-D. Deuschel, and M. Slowik. Invariance principle for the random conductance
model in a degenerate ergodic environment. Ann. Probab., 43(4):1866-1891, 2015.

S. Andres, J.-D. Deuschel, and M. Slowik. Heat kernel estimates for random walks with
degenerate weights. Electron. J. Probab., 21:Paper No. 33, 21, 2016.

S. N. Armstrong, T. Kuusi, and J.-C. Mourrat. Mesoscopic higher regularity and subadditivity
in elliptic homogenization, preprint, arXiv:1507.06935.

S. N. Armstrong, T. Kuusi, and J.-C. Mourrat. The additive structure of elliptic homogeniza-
tion, preprint, arXiv:1602.00512.

S. N. Armstrong and J.-C. Mourrat. Lipschitz regularity for elliptic equations with random
coefficients. Arch. Ration. Mech. Anal., 219(1):255-348, 2016.

S. N. Armstrong and C. K. Smart. Quantitative stochastic homogenization of convex integral
functionals. Ann. Sci. Ec. Norm. Supér. (4), 49(2):423-481, 2016.

M. T. Barlow. Random walks on supercritical percolation clusters. Ann. Probab., 32(4):3024—
3084, 2004.

N. Berger and M. Biskup. Quenched invariance principle for simple random walk on percolation
clusters. Probab. Theory Related Fields, 137(1-2):83-120, 2007.

M. Biskup. Recent progress on the random conductance model. Probab. Surv., 8:294-373,
2011.

M. Biskup and T. M. Prescott. Functional CLT for random walk among bounded random
conductances. Electron. J. Probab., 12:no. 49, 1323-1348, 2007.

O. Boukhadra, T. Kumagai, and P. Mathieu. Harnack inequalities and local central limit
theorem for the polynomial lower tail random conductance model. J. Math. Soc. Japan,
67(4):1413-1448, 2015.

J.-D. Deuschel, T. A. Nguyen, and M. Slowik. Quenched invariance principles for the ran-
dom conductance model on a random graph with degenerate ergodic weights, preprint,
arXiv:1602.08428.

D. A. Freedman. On tail probabilities for martingales. Ann. Probab., 3:100-118, 1975.

A. Gloria, S. Neukamm, and F. Otto. An optimal quantitative two-scale expansion in stochastic
homogenization of discrete elliptic equations. ESAIM Math. Model. Numer. Anal., 48(2):325—
346, 2014.

A. Gloria, S. Neukamm, and F. Otto. Quantification of ergodicity in stochastic homogenization:
optimal bounds via spectral gap on Glauber dynamics. Invent. Math., 199(2):455-515, 2015.
A. Gloria, S. Neukamm, and F. Otto. A regularity theory for random elliptic operators,
preprint, arXiv:1409.2678.

A. Gloria and F. Otto. An optimal variance estimate in stochastic homogenization of discrete
elliptic equations. Ann. Probab., 39(3):779-856, 2011.

A. Gloria and F. Otto. An optimal error estimate in stochastic homogenization of discrete
elliptic equations. Ann. Appl. Probab., 22(1):1-28, 2012.

A. Gloria and F. Otto. The corrector in stochastic homogenization: optimal rates, stochastic
integrability, and fluctuations, preprint, arXiv:1510.08290.

A. Gloria and F. Otto. Quantitative results on the corrector equation in stochastic homoge-
nization. J. Eur. Math. Soc., in press, arXiv:1409.0801.

J. Jacod and A. N. Shiryaev. Limit theorems for stochastic processes, volume 288 of
Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, second edition,
2003.

E. Janvresse, C. Landim, J. Quastel, and H. T. Yau. Relaxation to equilibrium of conservative
dynamics. I. Zero-range processes. Ann. Probab., 27(1):325-360, 1999.

C. Kipnis and S. R. S. Varadhan. Central limit theorem for additive functionals of reversible
Markov processes and applications to simple exclusions. Comm. Math. Phys., 104(1):1-19,
1986.

T. Komorowski, C. Landim, and S. Olla. Fluctuations in Markov processes, volume 345 of
Grundlehren der Mathematischen Wissenschaften. Springer, Heidelberg, 2012.

S. M. Kozlov. Averaging of differential operators with almost periodic rapidly oscillating
coefficients. Mat. Sb. (N.S.), 107(149)(2):199-217, 317, 1978.

T. Kumagai. Random walks on disordered media and their scaling limits, volume 2101 of
Lecture Notes in Mathematics. Springer, Cham, 2014. Lecture notes from the 40th Probability
Summer School held in Saint-Flour, 2010, Ecole d’Eté de Probabilités de Saint-Flour.



28

29]
(30]

(31]

(32]

(33]
(34]
(35]
(36]
(37]

(38]

(39]

[40]
(41]

42]

[43]

44]

ARIANNA GIUNTI, YU GU, JEAN-CHRISTOPHE MOURRAT

T. M. Liggett. Stochastic interacting systems: contact, voter and exclusion processes, volume
324 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1999.

T. M. Liggett. Continuous time Markov processes, volume 113 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, 2010. An introduction.

J. Lunt, T. J. Lyons, and T. S. Zhang. Integrability of functionals of Dirichlet processes,
probabilistic representations of semigroups, and estimates of heat kernels. J. Funct. Anal.,
153(2):320-342, 1998.

T. J. Lyons and W. A. Zheng. A crossing estimate for the canonical process on a Dirichlet
space and a tightness result. Astérisque, (157-158):249-271, 1988. Colloque Paul Lévy sur les
Processus Stochastiques (Palaiseau, 1987).

D. Marahrens and F. Otto. Annealed estimates on the Green function. Probab. Theory Related
Fields, 163(3-4):527-573, 2015.

P. Mathieu. Quenched invariance principles for random walks with random conductances. J.
Stat. Phys., 130(5):1025-1046, 2008.

P. Mathieu and A. Piatnitski. Quenched invariance principles for random walks on percolation
clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463(2085):2287-2307, 2007.

P. Mathieu and E. Remy. Isoperimetry and heat kernel decay on percolation clusters. Ann.
Probab., 32(1A):100-128, 2004.

J.-C. Mourrat and F. Otto. Anchored Nash inequalities and heat kernel bounds for static and
dynamic degenerate environments. J. Funct. Anal., 270(1):201-228, 2016.

H. Osada. Homogenization of diffusion processes with random stationary coefficients. In
Probability theory and mathematical statistics (Tbilisi, 1982), volume 1021 of Lecture Notes
in Math., pages 507-517. Springer, Berlin, 1983.

G. C. Papanicolaou and S. R. S. Varadhan. Boundary value problems with rapidly oscillating
random coefficients. In Random fields, Vol. I, II (Esztergom, 1979), volume 27 of Collog.
Math. Soc. Jdnos Bolyai, pages 835—873. North-Holland, Amsterdam, 1981.

R. Peyre. A probabilistic approach to Carne’s bound. Potential Anal., 29(1):17-36, 2008.

P. E. Protter. Stochastic integration and differential equations, volume 21 of Applications of
Mathematics. Springer-Verlag, Berlin, second edition, 2004. Stochastic Modelling and Applied
Probability.

J. Quastel. Diffusion of color in the simple exclusion process. Comm. Pure Appl. Math.,
45(6):623-679, 1992.

V. Sidoravicius and A.-S. Sznitman. Quenched invariance principles for walks on clusters of
percolation or among random conductances. Probab. Theory Related Fields, 129(2):219-244,
2004.

V. V. Yurinskii. On a Dirichlet problem with random coefficients. In Stochastic differential
systems (Proc. IFIP-WG 7/1 Working Conf., Vilnius, 1978), volume 25 of Lecture Notes in
Control and Information Sci., pages 344-353. Springer, Berlin-New York, 1980.

(Arianna Giunti) MAX PLANCK INSTITUTE FOR MATHEMATICS IN THE SCIENCES, LEIPZIG,

GERMANY

CA

(Yu Gu) DEPARTMENT OF MATHEMATICS, BUILDING 380, STANFORD UNIVERSITY, STANFORD,
, 94305, USA

(Jean-Christophe Mourrat) ECOLE NORMALE SUPERIEURE DE LyoN, CNRS, LYON, FRANCE



	1. Introduction
	1.1. Main result
	1.2. Sketch of proof for the standard heat equation
	1.3. Difficulties in the case of the exclusion process
	1.4. Outline of the paper

	2. Notation and reformulation
	3. Spectral gap inequalities
	4. Proofs of the main results
	4.1. Localization and cutoff estimate
	4.2. Variance control: spectral gap inequality
	4.3. Conclusion

	Appendix A. Technical lemmas
	Acknowledgments

	References

