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A LIOUVILLE THEOREM FOR STATIONARY AND ERGODIC

ENSEMBLES OF PARABOLIC SYSTEMS

PETER BELLA, ALBERTO CHIARINI, AND BENJAMIN FEHRMAN

Abstract. A first-order Liouville theorem is obtained for random ensembles of uniformly
parabolic systems under the mere qualitative assumptions of stationarity and ergodicity. Fur-
thermore, the paper establishes, almost surely, an intrinsic large-scale C1,α-regularity estimate
for caloric functions.

1. Introduction and main results.

This paper considers random ensembles of uniformly parabolic systems

ut = ∇ · a∇u, (1)

where the law of the coefficient field a is assumed to be stationary with respect to space-time
translations and ergodic. Precisely, for a probability space of coefficient fields (Ω,F , 〈·〉), where
〈·〉 is used simultaneously to denote the law and expectation of the ensemble, the stationarity
asserts that the coefficients are statistically homogeneous in time and space in the sense that

∀x ∈ Rd,∀t ∈ R : a(·, ·) and a(·+ x, ·+ t) have the same law under 〈·〉 . (2)

The ergodicity asserts that every translationally invariant function of the coefficient field is
constant. That is, for every bounded random variable F :

if ∀x ∈ Rd, ∀t ∈ R, and for 〈·〉 -a.e. a : F (a) = F (a(·+ x, ·+ t)), then F = c 〈·〉 -a.s. (3)

Finally, the ensemble is bounded and uniformly elliptic in the sense that there exists a deter-
ministic λ ∈ (0, 1] such that

|aξ| ≤ |ξ| and λ |ξ|2 ≤ ξ · aξ ∀ξ ∈ Rd, and for 〈·〉 -a.e. a. (4)

Assumptions (2) and (3) are the minimal statistical requirements on the ensemble 〈·〉 which
guarantee the qualitative homogenization of equations like (1), see (12). Their role in this
paper, and in homogenization theory generally, appears most essentially through applications
of the ergodic theorem. See, for instance, the foundational work of Papanicolaou and Varadhan
[23], who worked in the elliptic setting.

However, conditions (2) and (3) are merely qualitative and contain no quantitative informa-
tion about the mixing properties of the ensemble. Therefore, while the results of this paper
apply to a very general class of environments, the corresponding homogenization may occur at
an arbitrarily slow rate. In order to obtain more quantitative statements, such as in the recent
work Armstrong, Bordas and Mourrat [3], it would be necessary to quantify the ergodicity in
the way, for example, of a spectral gap inequality or a finite-range of dependence.

The qualitative theory of homogenization for systems like (1) aims to characterize, for 〈·〉-a.e.
a, the limiting behavior, as ε→ 0, of solutions to the rescaled equation{

uεt = ∇ · aε∇uε in Rd × (0,∞)
uε = u0 on Rd × {0}, (5)
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where

aε(·, ·) := a
( ·
ε
,
·
ε2

)
is a parabolic rescaling of the coefficient field. This is understood classically through the intro-
duction of a space-time corrector φ = {φi}i∈{1,...,d} satisfying, for each i ∈ {1, . . . , d},

φi,t = ∇ · a(∇φi + ei) in Rd+1. (6)

Then, in view of the linearity, for each ξ ∈ Rd the corresponding corrector φξ is defined by the
sum

φξ := ξiφi, (7)

where here, and throughout the paper, the notation employs Einstein’s summation convention
over repeated indices.

The gradient of the corrector ∇φ is a random field which is stationary with finite energy.
That is, for each x ∈ Rd, t ∈ R and a ∈ Ω,

∇φ(x, t; a) = ∇φ(0, 0; a(·+ x, ·+ t)),

and, for each i ∈ {1, . . . , d}, 〈
|∇φi|2

〉
<∞.

These facts are used to prove the strict sublinearity of the large-scale L2-averages of φ on
parabolic cylinders. Namely, for each R > 0, let BR denote the ball of radius R centered at the
origin and let CR denote the parabolic cylinder

CR := BR × (−R2, 0].

The corrector satisfies, for 〈·〉-a.e. a, for each i ∈ {1, . . . , d},

lim
R→∞

1

R

( 
CR
|φi|2

) 1
2

= 0, (8)

where here, and throughout the paper, the integration variables will be omitted unless there is
a possibility of confusion. This sublinearity is essentially equivalent to homogenization, see (12)
below, and is crucial for the arguments of this paper.

The corrector is used to identify the homogenized coefficient field ahom as the expectation of
the components of the flux according to the rules, for i ∈ {1, . . . , d},

ahomei := 〈a(∇φi + ei)〉 , (9)

where the flux q = {qi}i∈{1,...,d} is defined, for each i ∈ {1, . . . , d}, by

qi := a(∇φi + ei). (10)

It is a classical fact that the homogenized coefficient field ahom is uniformly elliptic and bounded,
as is shown in Lemma 2. The solution of the corresponding constant-coefficient parabolic
equation {

vt = ∇ · ahom∇v in Rd × (0,∞)
v = u0 on Rd × {0}, (11)

then characterizes the limiting behavior, for 〈·〉-a.e. a and as ε → 0, of the solutions to (5).
Indeed, by obtaining an energy estimate for the error in the asymptotic expansion

uε ' v + εφi

( ·
ε
,
·
ε2

)
∂iv,

which relies upon the sublinearity (8), it follows that, for 〈·〉-a.e. a, for every u0 ∈ L2(Rd) and
T > 0, as ε→ 0,

uε → v strongly in L2(Rd × [0, T ]). (12)

This almost sure convergence is the qualitative homogenization of the original ensemble.
Looking ahead, observe that the behavior of the solution uε to (5) on a unit scale, for ε > 0

small, corresponds to a characterization of the large-scale behavior of the solution u satisfying
(1). Namely, the behavior of the solution uε on a unit scale corresponds to the behavior of u on
scale ε−1 in space and ε−2 in time. The purpose of this paper will be to characterize the extent
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to which solutions of (1) inherit, on large-scales and for 〈·〉-a.e. a, the regularity of solutions to
constant-coefficient parabolic equations.

A concise statement of this large-scale regularity is contained in the following first-order
Liouville theorem, which is the main theorem of the paper.

Theorem 1. Suppose that 〈·〉 is stationary (2), ergodic (3) and bounded and uniformly elliptic
(4). Then, 〈·〉-a.e. a satisfies the following first-order Liouville property: if u is an ancient
whole-space a-caloric function, that is if u is a distributional solution of

ut = ∇ · a∇u in Rd × (−∞, 0),

which is strictly subquadratic on parabolic cylinders in the sense that, for some α ∈ (0, 1),

lim
R→∞

1

R1+α

( 
CR
|u|2
) 1

2

= 0,

then there exists c ∈ R and ξ ∈ Rd such that

u(x, t) = c+ x · ξ + φξ(x, t) in Rd × (−∞, 0),

for the corrector φξ defined in (7).

The proof of Theorem 1 is strongly motivated by the work of Gloria, Neukamm and Otto
[17], who considered precisely these questions for stationary and ergodic ensembles of elliptic
equations. It is based on controlling the large-scale L2-deviation of the gradient of an a-caloric
function from the span of the a-caloric gradients {ξ + ∇φξ}ξ∈Rd . The excess of an a-caloric
function measures this deviation, and is defined, for each R > 0 and a-caloric function u on CR,
by

Exc(u;R) := inf
ξ∈Rd

 
CR

(∇u− ξ −∇φξ) · a(∇u− ξ −∇φξ). (13)

In Proposition 4 below, for 〈·〉-a.e. a, the excess of an a-caloric function will be shown to decay
like a power law in the radius. However, before the statement, it is useful to observe some
essential differences between the parabolic and elliptic settings. In what follows, the superscript
“ell” will be used to differentiate elliptic objects from their parabolic counterparts.

In the elliptic case, for a stationary and ergodic ensemble 〈·〉ell of bounded, uniformly elliptic
coefficient fields aell, the corrector φell = {φell

i }i∈{1,...,d} is defined by the equations, for i ∈
{1, . . . , d},

−∇ · aell(∇φell
i + ei) = 0 in Rd, (14)

and, for each ξ ∈ Rd,
φell
ξ := φell

i ξi.

These correctors play a virtually identical role to the parabolic correctors (6) in elliptic homog-
enization theory.

Excess for uniformly elliptic ensembles was first defined in [17, Lemma 2], although they
worked not with the intrinsic energy defined by a but with the equivalent L2-energy. This
differs, for instance, from the definition used in the work of the first author, third author and
Otto [11], which considered degenerate elliptic ensembles for which it was essential to incorporate
the environment a. These notions motivated definition (13), and measured the deviation of the
gradient of an aell-harmonic function u on BR, by which is meant a solution

−∇ · aell∇u = 0 in BR,

from the span of aell-harmonic gradients {ξ + ∇φell
ξ }ξ∈Rd . Precisely, for each R > 0 and aell-

harmonic function u on BR,

Excell(u;R) := inf
ξ∈Rd

 
BR

(∇u− ξ −∇φell
ξ ) · aell(∇u− ξ −∇φell

ξ ). (15)
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The decay of the excess was controlled in [17, Lemma 2] through the introduction of a flux
correction σell = {σell

i }i∈{1,...,d}. Namely, the flux qell = {qell
i }i∈{1,...,d} is defined, for each

i ∈ {1, . . . , d}, by

qell
i := aell(∇φell

i + ei),

where, in analogy with the parabolic setting, the homogenized coefficient field aell
hom is defined

by the expectation of the components of the flux, for i ∈ {1, . . . , d},

aell
homei :=

〈
aell(∇φell

i + ei)
〉ell

.

Therefore, strictly in the elliptic case, the corrector equation (14) asserts that the components of
the flux are divergence-free and may be viewed as closed (d−1)-forms on the whole space. Hence,
for each i ∈ {1, . . . , d}, there exists a (d − 2)-form, which is represented by a skew-symmetric
matrix σell

i = (σijk)
ell
j,k∈{1,...,d}, satisfying

∇ · σell
i = qell

i − aell
homei, (16)

where the divergence of the tensor-field σell
i is defined, for each i, j ∈ {1, . . . , d}, by

(∇ · σell
i )j =

d∑
k=1

∂kσ
ell
ijk.

Furthermore, the flux correction σell is fixed according to the choice of gauge, for each i, j, k ∈
{1, . . . , d},

∆σell
ijk = ∂kq

ell
ij − ∂jqell

ik .

In [17, Lemma 2], the sublinearity of the large-scale L2-averages of the extended corrector
(φell, σell) on large balls is shown to imply that the elliptic excess (15) decays as a power law in
the radius.

Precisely, for each α ∈ (0, 1), there exists Cell
0 = Cell

0 (α, d, λ) > 0 and Cell
1 = Cell

1 (α, d, λ) > 0
for which, whenever a pair of radii 0 < r < R < ∞ satisfy, for every ρ ∈ [r,R], for each
i ∈ {1, . . . , d},

1

ρ

( 
Bρ

∣∣∣φell
i

∣∣∣2 +
∣∣∣σell
i

∣∣∣2) 1
2

≤ 1

Cell
0

,

then, for every aell-harmonic function u in BR,

Excell(u; r) ≤ Cell
1

( r
R

)2α
Excell(u;R). (17)

Observe, in particular, that this is a deterministic result. Indeed, the stochastic properties
of the extended corrector (φell, σell) are necessary to prove that, for 〈·〉-a.e. a, the large-scale
L2-averages are sublinear. But, by taking this fact as an input, it follows from a Campanato
iteration that the excess of an arbitrary aell-harmonic function decays according to (17). In
this paper, the analogous result will also be obtained for the parabolic excess, as shown in
Proposition 4 below.

The first essential difference is that, unlike in the elliptic case, the fluxes {qi}i∈{1,...,d} de-
fined in (10) are not divergence-free, and so an immediate analogue of the flux correction
σell = {σell

i }i∈{1,...,d} cannot be defined. Instead, the flux is essentially decomposed according
to the Weyl decomposition, where the parabolic σ is constructed to correct the divergence-free
component. Precisely, for each i ∈ {1, . . . , d},

qi = qi,sol +∇ψi,
where the solenoidal part qi,sol is divergence-free and ∇ψi is a stationary, finite-energy gradient
chosen to satisfy

∆ψi = ∇ · qi. (18)

Indeed, for each i ∈ {1, . . . , d}, one first defines ∇ψi according to (18) and then observes that
qi −∇ψi is divergence-free.
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The flux correction σ = {σi}i∈{1,...,d} is then defined, for each i ∈ {1, . . . , d}, by the equation

∇ · σi = (qi −∇ψi)− 〈qi | FRd〉 , (19)

where 〈qi | FRd〉 denotes the conditional expectation of qi with respect to the sub-sigma-algebra
FRd ⊂ F of subsets of Ω which are invariant with respect to spatial translations of the coefficient
fields. They are fixed following the choice of gauge, for each i, j, k ∈ {1, . . . , d},

∆σijk = ∂k(qi −∇ψi)j − ∂j(qi −∇ψi)k. (20)

Finally, for each i ∈ {1, . . . , d}, it is necessary to correct the oscillations of the conditional
expectation 〈qi | FRd〉 about its mean. The corrector ζ = {ζij}i,j∈{1,...,d} is constructed explicitly
for this purpose and satisfies, for each i ∈ {1, . . . , d},

∂tζi = 〈qi | FRd〉 − 〈qi〉 = 〈qi | FRd〉 − ahomei. (21)

In particular, this final correction ζ is constant in space, as a FRd-measurable field, and depends
only on time.

In comparison with the elliptic setting, where the decay of the excess was determined by
the sublinearity of the large-scale L2-averages of (φell, σell), the decay of the parabolic excess
will be determined by the sublinearity of the large-scale L2-averages of the corrector (φ, ψ, σ),
measured with respect to the scaling in space, and the sublinearity of the large-scale L2-averages
of ζ, measured with respect to the scaling in time. The first lemma of the paper establishes the
existence of the extended corrector (φ, ψ, σ, ζ).

Lemma 2. Suppose that the ensemble 〈·〉 satisfies (2), (3) and (4). There exist C = C(d, λ) > 0
and four random fields φ = {φi}i∈{1,...,d}, ψ = {ψi}i∈{1,...,d}, σ = {σijk}i,j,k∈{1,...,d} and ζ =

{ζij}i,j∈{1,...,d} on Rd+1 with the following properties:
The gradient fields are stationary, finite energy random processes with vanishing expectation:

for each i, j, k ∈ {1, . . . , d},〈
|∇φi|2

〉
+
〈
|∇ψi|2

〉
+
〈
|∇σijk|2

〉
+
〈
|∂tζij |2

〉
≤ C,

and

〈∇φi〉 = 〈∇ψi〉 = 〈∇σijk〉 = 〈∂tζij〉 = 0.

For each i ∈ {1, . . . , d}, the field σi = (σijk)j,k∈{1,...,d} is skew-symmetric in its last two indices:
for each i, j, k ∈ {1, . . . , d},

σijk = −σikj .
The fields ψ and σ are stationary in time: for each x ∈ Rd, t ∈ R and a ∈ Ω,

ψ(x, t; a) = ψ(x, 0; a(·, ·+ t)),

and

σ(x, t; a) = σ(x, 0; a(·, ·+ t)).

Furthermore, for 〈·〉-a.e. a, the following equations are satisfied in the sense of distributions
on Rd+1. The field φ satisfies (6): for each i ∈ {1, . . . , d},

φi,t = ∇ · a(∇φi + ei).

The potential part of the flux is corrected by ψ according to (18): for each i ∈ {1, . . . , d},
∆ψi = ∇ · qi.

The field σ corrects the divergence-free part of the flux according to (19): for each i ∈
{1, . . . , d},

∇ · σi = qi −∇ψi − 〈qi | FRd〉 ,
where 〈· | FRd〉 denotes the conditional expectation with respect to the sub-sigma-algebra FRd ⊂ F
of subsets of Ω which are invariant with respect to spatial translations of the coefficient field.
Furthermore, σ is constructed according to the choice of gauge, for each i, j, k ∈ {1, . . . , d},

∆σijk = ∂k(qi −∇ψi)j − ∂j(qi −∇ψi)k.
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The field ζ corrects the oscillation of the conditional expectation about its mean: for each
i ∈ {1, . . . , d}, the random vector field ζi is constant in space and satisfies

∂tζi = 〈qi | FRd〉 − 〈qi〉 = 〈qi | FRd〉 − ahomei.

Finally, the homogenized coefficient field ahom defined in (9) is bounded and uniformly elliptic:
for each ξ ∈ Rd,

λ |ξ|2 ≤ ξ · ahomξ and |ahomξ| ≤
1

λ
|ξ| .

The following two propositions effectively split the probabilistic and deterministic aspects
of the paper. Proposition 3 contains the probabilistic parts, and uses the stationarity and
ergodicity of the ensemble to prove that the large-scale L2-averages of (φ, ψ, σ) are sublinear
with respect to the spatial scaling and that those of ζ are sublinear with respect to the time
scaling. This fact is essentially classical for the case of the correctors φ and ζ, although a new
argument for the sublinearity of φ is presented which may be of independent interest. A new
argument is required to prove the sublinearity of σ and ψ.

The difference is the following. The corrector φ is, in general, not stationary in either space
or time but equation (6) yields some control over both its spatial and temporal derivatives.
Similarly, the corrector ζ has an explicit, stationary time derivative but is itself not stationary.
In the second case, since equations (18) and (19) yield only the spatial regularity for ψ and
σ, it is necessary to use the fact that both fields are stationary in time in order to obtain the
convergence.

In fact, the following proposition will prove the sublinearity of the normalized corrector where,
in the case of φ, the components are normalized by their large-scale averages on a parabolic
cylinder, in the case of ζ, using the fact that the Sobolev embedding implies that ζ is continuous,
the components are normalized by their value at time zero and, in the case of ψ and σ, the
functions are normalized, for each fixed time, by their large-scale averages on a ball. This is
in fact equivalent to the sublinearity of the corrector (φ, ψ, σ, ζ) without a normalization, see
for instance [11, Lemma 2], but since this observation is not necessary for the arguments of the
paper it is omitted.

For an arbitrary function ϕ : Rd+1 → R, define, for each R > 0 and t ∈ R,

(ϕ)R :=

 
CR
ϕ and (ϕ)t,R :=

 
BR

ϕ(·, t).

The precise normalization considered and the corresponding sublinearity are contained in the
following proposition.

Proposition 3. Suppose that the ensemble 〈·〉 satisfies (2), (3) and (4). Then, for 〈·〉-a.e a,
the corrector (φ, ψ, σ) is strictly sublinear with respect to the spatial scaling and the corrector ζ
is strictly sublinear with respect to the time scaling in the sense that, for each i, j, k ∈ {1, . . . , d},

lim
R→∞

1

R

( 
CR

|φi − (φi)R|2 + |ψi − (ψi)t,R|2 + |σijk − (σijk)t,R|2
) 1

2

= 0, (22)

and

lim
R→∞

1

R2

( 
CR

|ζij − ζij(0)|2
) 1

2

= 0. (23)

Furthermore, for 〈·〉-a.e. a, for each i ∈ {1, . . . , d}, the large-scale L2-averages of the compo-
nents of the flux satisfy

lim
R→∞

( 
CR
|qi|2

) 1
2

=
〈
|qi|2

〉 1
2
. (24)

It is important to observe at this point that equations (18) and (19) defining ψ and σ are
invariant if either ψ or σ is altered by a time stationary constant. This explains why in (22), for
eachR > 0, it remains useful to allow for a time-dependent normalization. The equations (6) and
(21) defining φ and ζ are not likewise invariant, and therefore the corresponding normalizations
appearing in (22) and (23) are necessarily achieved by subtracting a true constant.



A LIOUVILLE THEOREM FOR STATIONARY AND ERGODIC ENSEMBLES OF PARABOLIC SYSTEMS 7

The deterministic aspect of the paper uses a Campanato iteration, which takes the conclusion
of Proposition 3 as input. Namely, it will be shown that, for any α ∈ (0, 1), the parabolic excess
decays like a power law in the radius as soon as the quantities appearing in (22) and (23) are
sufficiently small and as soon as (24) is sufficiently close to its expectation. This is to say that
there exists a random but 〈·〉-a.e. a finite radius r∗(a) such that, whenever r∗ < r < R < ∞,
for every a-caloric function u in CR, the parabolic excess satisfies, for C1 = C1(α, d, λ) > 0,

Exc(u; r) ≤ C1

( r
R

)2α
Exc(u;R).

This is the content of the following proposition.

Proposition 4. Suppose that the ensemble 〈·〉 satisfies (2), (3) and (4). Fix a Hölder exponent
α ∈ (0, 1). Then, there exist constants C0 = C0(α, d, λ) > 0 and C1(α, d, λ) > 0 with the
following property:

If R1 < R2 are two radii such that, for each R ∈ [R1, R2] and for each i, j, k ∈ {1, . . . , d},

1

R

( 
CR
|φi − (φi)R|2 + |ψi − (ψi)t,R|2 + |σijk − (σijk)t,R|2

) 1
2

≤ 1

C0
,

and

1

R2

( 
CR
|ζij − ζij(0)|2

) 1
2

≤ 1

C0
,

and such that, for each i ∈ {1, . . . , d} and R ∈ [R1, R2],( 
CR
|qi|2

) 1
2

≤ 2
〈
|qi|2

〉 1
2
,

then any distributional solution u to the parabolic equation

ut = ∇ · a∇u in CR2

satisfies

Exc(u;R1) ≤ C1

(
R1

R2

)2α

Exc(u;R2).

The proof of Proposition 4 is motivated by the proof of [17, Lemma 2] from the elliptic
setting. There, the flux correction σell was used to express the residuum of the homogenization
error in a useful divergence form. That is, for R > 0, given an aell-harmonic function u in BR,
define its aell

hom-harmonic extension v into BR to be the solution{
−∇ · aell

hom∇v = 0 in BR
v = u on ∂BR.

Then, for a smooth cutoff function η vanishing along the boundary ∂BR, define the augmented
homogenization error well to be the following modification of the classical two-scale expansion

well := u− (1 + ηφell
i ∂i)v,

where the cutoff is used in order to guarantee the difference well vanishes on the boundary.
It was proven that the augmented homogenization error well satisfies{
−∇ · aell∇well = ∇ ·

(
(1− η)(aell − aell

hom)∇v + (φell
i a

ell − σell
i )∇(η∂iv)

)
in BR

well = 0 on ∂BR,
(25)

which, by testing the equation with well, yields a useful energy estimate that provides the
starting point for a Campanato iteration.

In particular, by analyzing the right hand side of (25), the energy of well can be controlled
by the growth of the extended corrector (φell, σell), the choice of the cutoff function η and
the interior and boundary regularity of the aell

hom-harmonic function v. The argument is com-

pleted by observing that, owing to the regularity of aell
hom-harmonic functions, the energy of the

homogenization error is a good approximation for the excess.
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The methods of this paper apply the same philosophy to the parabolic setting. However,
similarly to what was done in the proof of [11, Theorem 2], it is furthermore necessary to
introduce a spatial regularization of the a-caloric function u. The purpose of this is to obtain
more regularity in time, since such functions are already sufficiently regular in space. Precisely,
if u is an a-caloric function then, in general, its time derivative ut ∈ H−1 and no better, where
H−1 denotes the dual space of the Sobolev space H1. However, for every ε > 0, if uε denotes the
spatial convolution of u on scale ε > 0, then it is possible to show that uεt ∈ L2, see Section 5.1
below. This additional approximation is necessary in order to apply the boundary estimate of
Section 5.3.

For ε > 0, the ahom-caloric function vε will then be the ahom-caloric extension of the spatial
regularization uε into CR. Namely, for R > 0 and ε > 0, given an a-caloric function u in CR+ε,
define the ahom-caloric extension vε of uε into CR to be the solution{

vεt = ∇ · ahom∇vε in CR
vε = uε on ∂pCR,

where ∂pCR denotes the parabolic boundary

∂pCR :=
(
BR × {−R2}

)
∪
(
∂BR × [−R2, 0]

)
.

Then, again motivated by the classical two-scale expansion, for ε > 0 and a smooth cutoff
function η vanishing on the parabolic boundary ∂pCR, the augmented homogenization error w
will be defined as

w := u− (1 + ηφi∂i)v
ε.

It will be shown in the proof of Proposition 4 that the augmented homogenization error satisfies wt −∇ · a∇w = ∇ · ((1− η)(a− ahom)∇vε) +∇ · ((φia+ ψi − σi)∇(η∂iv
ε)) in CR

+∂tζi · ∇(η∂iv
ε)− φi(η∂ivε)t − ψi∆(η∂iv

ε)
w = u− uε on ∂pCR.

(26)
As in the elliptic setting, the energy estimate obtained by testing this equation with w, for

an appropriately chosen cutoff η, will be the starting point of the Campanato iteration used to
control the decay of the excess. In this case, there is a contribution from the boundary, which
will be controlled first by fixing ε > 0 small. From the right hand side of (26), the energy of the
homogenization error will then be controlled by the growth of the extended parabolic corrector
(φ, ψ, σ) and, after integrating in parts by time, the growth of ζ and q. It is furthermore
necessary to make a good choice for the cutoff function η and to use the interior and boundary
regularity of the ahom-caloric function vε. The argument is completed by observing that, owing
to the interior regularity of ahom-caloric functions, the homogenization error w provides a good
approximation for the excess.

Finally, the following parabolic Caccioppoli inequality will be used in the proofs of Theorem 1
and Proposition 4. The proof is classical, and is included for the convenience of the reader.

Lemma 5. Suppose that 〈·〉 satisfies (4). There exists C = C(λ) > 0 such that, for 〈·〉-a.e. a,
for every R > 0 and distributional solution u of the equation

ut = ∇ · a∇u in CR,
and for every c ∈ R and ρ ∈ (0, R2 ),ˆ

CR−ρ

|∇u|2 ≤ C

ρ2

ˆ
CR\CR−ρ

|u− c|2 . (27)

In comparison with the elliptic setting, the qualitative homogenization theory of divergence-
form operators with coefficients depending on time and space is relatively under studied. While
the case of periodic coefficients has long been understood, and a full explanation can be found
in the classic reference Bensoussan, Lions and Papanicolaou [12, Chapter 3], the qualitative
stochastic homogenization of stationary and ergodic ensembles like (1) was obtained only more
recently by Rhodes [25, 26]. However, related problems were earlier handled, such as the case
of a Brownian motion in the presence of a divergence-free drift, by Komorowski and Olla [18],
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Landim, Olla and Yau [21] and Oelschläger [22]. In the discrete setting, related questions have
been considered, for instance, by Andres [1], Bandyopadhyay and Zeitouni [10] and Rassoul-
Agha and Seppäläinen [24] in the uniformly elliptic setting and, for degenerate environments,
by Andres, the second author, Deuschel and Slowik [2].

The quantitative homogenization of such ensembles has only recently been considered, and
the preprint [3] contains, to our knowledge, the first results in this direction. In particular, in [3,
Theorem 1.2], a full hierarchy of Liouville theorems is obtained for ensembles satisfying a finite-
range dependence in space and time. Their method is motivated by the work of Armstrong and
Smart [6] from the elliptic setting, which adapted the approach of Avellaneda and Lin [7] from
the context of periodic homogenization.

In [7], a full hierarchy of Liouville properties was established for uniformly elliptic and periodic
coefficient fields based upon the previous works Avellaneda and Lin [8, 9], which developed a
large-scale regularity theory in Hölder and Lp-spaces. In [6], the approach of [7] was adapted
to stationary and ergodic ensembles satisfying a finite-range dependence. Their proof, which
obtained a large-scale C0,1-regularity theory, was based upon a variational approach and the
quantification of the convergence of certain sub-additive and super-additive energies. Their
work was later extended by Armstrong and Mourrat [5] to more general mixing conditions, and
subsequently gave rise to a significant literature on the subject. The interested reader is pointed
to the recent monograph Armstrong, Kuusi and Mourrat [4], and the references therein.

The approach of this paper follows closely the work [17], which derived, for uniformly elliptic
ensembles, a large-scale C1,α-regularity estimate and first-order Liouville property under the
qualitative assumptions of stationarity and ergodicity. The method was based upon the intro-
duction of an intrinsic notion of excess, as defined in (15), as well as the construction of the
flux correction σell defined in (16). The introduction of σell was used to prove that the homog-
enization error solves the divergence-form equation (25), which provided the starting point for
a Campanato iteration as explained above.

Subsequently, Fischer and Otto [15] obtained a full hierarchy of Liouville properties under a
mild quantification of the ergodicity. In Fischer and Otto [16], the necessary quantification of
ergodicity from [15] was shown to be satisfied by a general class of Gaussian environments. How-
ever, absent some mild quantification of ergodicity in the sense of either [5] or [15], the existence
of higher order Liouville and large-scale regularity statements remains an open question.

Finally, motivated by the work of the second author and Deuschel [14], the first author,
third author and Otto [11] derived a large-scale C1,α-regularity theory and first-order Liouville
theorem for degenerate elliptic equations, where the boundedness and uniform ellipticity (4)
was replaced by certain moment conditions. It is expected that the results of this paper can be
similarly extended to degenerate environments, and the setting of [2] will serve as the starting
point for future work.

In principle, one could also hope to combine the methods of this paper with those of [17],
in the presence of a logarithmic Sobolev inequality like that used in [17, Theorem 1], to obtain
more quantitative information. For example, the minimal radius r∗(a) > 0 defined, for C0 > 0
from Proposition 4, after suppressing the normalizations in the notation, by

r∗(a) = inf

{
r ≥ 1 | For all R ≥ r, for each i ∈ {1, . . . , d},

( 
CR
|qi|2

) 1
2

≤ 2
〈
|qi|2

〉 1
2

and
1

R

( 
BR

|φi|2 + |ψi|2 + |σi|2
) 1

2

+
1

R2

( 
CR
|ζi|2

) 1
2

≤ 1

C0

}
,

which effectively defines the initial scale on which the C1,α-regularity of Proposition 4 begins to
take effect, is expected to have stretched exponential moments in the sense of [17, Theorem 1].
Furthermore, again assuming a logarithmic Sobolev inequality, it should be possible to obtain a
quantitative two-scale expansion for a-caloric functions like [17, Corollary 3]. Lastly, following
the methods of [15], it may be possible to prove higher order Liouville statements under a mild
quantification of the ergodicity.
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The paper is organized as follows. The proofs are presented in the order of their appearance:
Theorem 1, Lemma 2, Proposition 3, Proposition 4 and Lemma 5. In order to simplify the
notation, the statements and proofs are written for the non-symmetric scalar setting. How-
ever, at the cost of increasing some constants, all of the arguments carry through unchanged
for non-symmetric systems. Throughout, the notation . is used to denote a constant whose
dependencies are specified in every case by the statement of the respective theorem, proposition
or lemma.

2. The proof of Theorem 1

Fix a coefficient field a satisfying the conclusions of Lemma 2, Proposition 3 and Proposition 4,
and suppose that u is a distributional solution of

ut = ∇ · a∇u on Rd × (−∞, 0),

which is strictly subquadratic in the sense that, for some α ∈ (0, 1),

lim
R→∞

1

R1+α

( 
CR
|u|2
) 1

2

= 0.

Fix C0 = C0(α, d, λ) > 0 satisfying the hypothesis of Proposition 4. Then, using Proposition 3,
fix R0 > 0 such that, for every R > R0, for each i, j, k ∈ {1, . . . , d},

1

R

( 
CR
|φi − (φi)R|2 + |ψi − (ψi)t,R|2 + |σijk − (σijk)t,R|2

) 1
2

≤ 1

C0
,

and

1

R2

( 
CR
|ζij − ζij(0)|2

) 1
2

<
1

C0
,

and such that, for each i ∈ {1, . . . , d} and R > R0,( 
CR
|qi|2

) 1
2

≤ 2
〈
|qi|2

〉 1
2
.

The definition of the excess, Proposition 4 and the Caccioppoli inequality (27) imply that,
for each R0 < ρ < R,

Exc(u; ρ) .
( ρ
R

)2α
Exc(u;R) ≤

( ρ
R

)2α
 
CR
|∇u|2 .

ρ2α

(2R)2+2α

 
C2R
|u|2 .

Therefore, since u is strictly subquadratic,

Exc(u; ρ) . ρ2α lim sup
R→∞

1

(2R)2+2α

 
C2R
|u|2 = 0.

This implies that, for every ρ > 0,

Exc(u; ρ) = 0.

It is then immediate from the definition of parabolic excess (13), since CR1 ⊂ CR2 whenever
R1 < R2, that there exists ξ ∈ Rd for which the difference

z(x, t) := u(x, t)− ξ · x− φξ(x, t)

satisfies

∇z = 0 in Rd × (−∞, 0).

However, because z is a distributional solution of

zt = ∇ · a∇z in Rd × (−∞, 0),

it follows that z is necessarily constant in time as well. Therefore, there exists c ∈ R such that
u = c+ ξ · x+ φξ, which completes the argument.



A LIOUVILLE THEOREM FOR STATIONARY AND ERGODIC ENSEMBLES OF PARABOLIC SYSTEMS 11

3. The proof of Lemma 2

The construction of the corrector (φ, ψ, σ, ζ) will be achieved by lifting the relevant equations
(6), (18), (19) and (21) to the probability space Ω, and thereby identifying φ by its stationary,
finite energy gradient and time derivative, ψ and σ by their stationary, finite energy gradients,
and ζ by its stationary time derivative. For this, it is necessary to define the horizontal derivative
of a random variable as induced by shifts of the coefficient field in space and time. Then, these
will be used to define an analogue of the Sobolev space H1 on the probability space.

Given an L2(Ω) random variable f , define, for each i ∈ {1, . . . , d}, the horizontal derivative

Dif(a) := lim
h→0

f(a(·+ hei, ·))− f(a)

h
, (28)

where the above limit is understood in the sense of strong L2(Ω)-convergence. Of course, it is
not true in general that the above limit exists for every f ∈ L2(Ω), but the horizontal derivatives
are closed, densely defined operators on L2(Ω), see [23], with domains, for i ∈ {1, . . . , d},

D(Di) := { f ∈ L2(Ω) | Dif exists as an element of L2(Ω) }.
Similarly, for each f ∈ L2(Ω), define the horizontal time derivative

D0f(a) := lim
h→0

f(a(·, ·+ h))− f(a)

h
, (29)

which is a closed, densely defined operator on L2(Ω) with domain

D(D0) := { f ∈ L2(Ω) | D0f exists as an element of L2(Ω) }.
The analogue of the Hilbert space H1 is then defined on the probability space as the inter-

section

H1 := ∩di=0D(Di),

equipped with the inner product, for each f, g ∈ H1,

(f, g)H1 = 〈fg〉+ 〈D0fD0g〉+ 〈Df ·Dg〉 ,
for the horizontal spatial gradient

Df := (D1f, . . . ,Ddf).

Finally, define the space of spatial potentials

L2
pot(Ω;Rd) := { Df | f ∈ H1 } L2(Ω)−weak

, (30)

as the L2(Ω)-weak closure of spatial gradients arising fromH1 functions. Indeed, it is immediate
from the weak convergence that elements of L2

pot(Ω;Rd) are potentials in the sense that every

F = (F1, . . . , Fd) ∈ L2
pot(Ω;Rd) satisfies the distributional equality, for each i, j ∈ {1, . . . , d},

DiFj = DjFi.

In other words, every F ∈ L2
pot(Ω;Rd) is curl-free.

The following general fact about potential vector fields will be used in the construction of σ
and to prove the sublinearity for the corrector (φ, ψ, σ, ζ). It will be shown that, with respect
to the sub-sigma-algebra of subsets that are invariant with respect to spatial translations of the
coefficient fields, the conditional expectation of a potential vector field vanishes as a random
variable.

Lemma 6. For every F = (F1, . . . , Fd) ∈ L2
pot(Ω;Rd), for each i ∈ {1, . . . , d},

〈Fi | FRd〉 = 0 in L2(Ω), (31)

where 〈· | FRd〉 denotes the conditional expectation with respect to the sub-sigma-algebra FRd ⊂ F
of subsets which are invariant with respect to spatial translations of the coefficient field.

In particular, for every F = (F1, . . . , Fd) ∈ L2
pot(Ω;Rd), for every i ∈ {1, . . . , d},

〈Fi〉 = 0.



12 PETER BELLA, ALBERTO CHIARINI, AND BENJAMIN FEHRMAN

The proof of Lemma 6 now follows. Let F = (F1, . . . , Fd) ∈ L2
pot(Ω;Rd) be arbitrary. Owing

to the definition of the conditional expectation, it is sufficient to show that, for every FRd-
measurable function g ∈ L2(Ω), for each i ∈ {1, . . . , d},

〈Fig〉 = 0. (32)

To prove (32), owing to definition (30) there exists a sequence of functions {ϕn}∞n=1 ⊂ H1 such
that, as n→∞,

Dϕn ⇀ F weakly in L2(Ω;Rd). (33)

The weak convergence (33) implies that, for each i ∈ {1, . . . , d},

lim
n→∞

〈(Diϕn) g〉 = 〈Fig〉 . (34)

Then, for each n ≥ 1, since ϕn ∈ H1, it follows that, since spatial translations of the coefficient
field preserve the measure, see (2), for each i ∈ {1, . . . , d},

〈(Diϕn) g〉 = lim
h→0

1

h
〈(ϕn(a(·+ hei, ·))− ϕn(a)) g〉 = lim

h→0

1

h
〈ϕn (g(a(· − hei, ·))− g(a))〉 = 0,

(35)
where the final equality follows from the fact that g ∈ L2(Ω) and the fact that g is invariant with
respect to spatial shifts of the coefficient field as an FRd-measurable function. In combination,
(34) and (35) imply (32). Since the FRd-measurable g ∈ L2(Ω) and F ∈ L2

pot(Ω;Rd) were
arbitrary, this completes the proof of (31).

The final statement is then immediate since, for every F ∈ L2
pot(Ω;Rd) and i ∈ {1, . . . , d},

the conditional expectation satisfies

〈Fi〉 = 〈〈 Fi | FRd〉〉 = 0,

where the final equality follows from (31) and completes the proof of Lemma 6.

3.1. The construction of φ. For the construction of the corrector φ, it is sufficient to con-
struct, for each k ∈ {1, . . . , d}, a stationary gradient Dφk ∈ L2

pot(Ω;Rd) and a stationary

time-derivative D0φk ∈ H−1, where H−1 denotes the dual-space of H1, satisfying

〈D0φkf〉+ 〈Df · a(Dφk + ek)〉 = 0 for every f ∈ H1. (36)

The corrector φ will then be defined on Rd+1, for 〈·〉-a.e. a, by integration.
The first step is to introduce an approximation of (36) which is coercive with respect to the

H1-norm. The Riesz representation theorem and the uniform ellipticity of the ensemble (4)

guarantee that, for each k ∈ {1, . . . , d} and β ∈ (0, 1), there exists a unique element φβk ∈ H
1

satisfying

β
〈
φβkf

〉
+ β

〈
D0φ

β
kD0f

〉
+
〈
D0φ

β
kf
〉

+
〈
Df · a(Dφβk + ek)

〉
= 0 for every f ∈ H1. (37)

Therefore, for each k ∈ {1, . . . , d} and β ∈ (0, 1), after testing (37) with φβk , the uniform
ellipticity of the ensemble and Hölder’s inequality yield the estimate〈∣∣∣Dφβk ∣∣∣2〉+ β

〈∣∣∣φβk ∣∣∣2 +
∣∣∣D0φ

β
k

∣∣∣2〉 . 1, (38)

where the fact that〈
D0φ

β
kφ

β
k

〉
=

1

2

〈
D0(φβk)2

〉
= lim

h→0

1

2h

〈
(φβk)2(a(·, ·+ h))− (φβk)2(a)

〉
= 0 (39)

is also used to obtain (38), and follows from the fact that shifts of the coefficient field in time

and space preserve the underlying measure of the ensemble, see (2), and φβk ∈ L
2(Ω).

Then, for each k ∈ {1, . . . , d} and β ∈ (0, 1), equation (37), Hölder’s inequality and (38)
imply that, for each f ∈ H1,∣∣∣〈D0φ

β
kf
〉∣∣∣ . ‖f‖H1 and, therefore, ‖D0φ

β
k‖H−1 . 1. (40)
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Hence, for each k ∈ {1, . . . , d}, the definition of the potential space (30) with estimates (38)
and (40) imply that there exist Ψk ∈ L2

pot(Ω;Rd) and ξk ∈ H−1 such that, after passing to a
subsequence {βj → 0}∞j=1, as j →∞,

Dφ
βj
k ⇀ Ψk weakly in L2(Ω;Rd) and D0φ

βj
k ⇀ ξk weakly in H−1. (41)

The convergence (41) combined with equation (37) and estimate (38) prove that, for each
k ∈ {1, . . . , d},

〈ξkf〉+ 〈Df · a(Ψk + ek)〉 = 0 for every f ∈ H1.

Finally, for each k ∈ {1, . . . , d}, as weak limits of functions φβk ∈ H
1, the pair (Ψk, ξk) are

curl-free in the sense that, for each i ∈ {1, . . . , d}, distributionally

D0Ψki = Diξk.

Therefore, for each k ∈ {1, . . . , d}, the argument is completed by defining Dφk := Ψk and
D0φk := ξk.

3.2. The construction of ψ. For each k ∈ {1, . . . , d}, let Dφk ∈ L2
pot(Ω;Rd) denote the

stationary gradient corresponding to φk, which was constructed in the previous step. Then, for
each k ∈ {1, . . . , d}, define the lift of the flux qk to the probability space according to the rule

Qk := a(Dφk + ek). (42)

The existence of ψ follows from the following general fact.

Lemma 7. For every F ∈ L2(Ω;Rd), there exists Ψ ∈ L2
pot(Ω;Rd) satisfying

〈Ψ ·Df〉 = 〈F ·Df〉 for every f ∈ H1. (43)

The existence of ψ follows from Lemma 7 in the following way. For each k ∈ {1, . . . , d},
choose F = Qk and define Dψk := Ψ, which defines ψk, for 〈·〉-a.e. a, as a function on Rd via
integration. Then, for 〈·〉-a.e. a, for each k ∈ {1, . . . , d}, the function ψk is extended to Rd+1

as a stationary function in time.
In order to prove Lemma 7, the Riesz representation theorem asserts that, for each β ∈ (0, 1),

there exists a unique ψβ ∈ H1 satisfying

β
〈
ψβf

〉
+ β

〈
D0ψ

βD0f
〉

+
〈
Dψβ ·Df

〉
= 〈F ·Df〉 for every f ∈ H1. (44)

For each β ∈ (0, 1), after testing (44) with ψβ, Hölder’s inequality and Young’s inequality yield
the estimate 〈∣∣∣Dψβ∣∣∣2〉+ β

〈∣∣∣ψβ∣∣∣2 +
∣∣∣D0ψ

β
∣∣∣2〉 . 1. (45)

Therefore, the definition of the potential space (30) and estimate (45) imply that there exists
Ψ ∈ L2

pot(Ω;Rd) such that, after passing to a subsequence {βj → 0}∞j=1, as j →∞,

Dψβj ⇀ Ψ weakly in L2(Ω;Rd). (46)

In combination with equation (44), estimates (45) and the convergence (46) imply that Ψ
satisfies (43), which completes the proof of Lemma 7.

3.3. The construction of σ. For each k ∈ {1, . . . , d}, let Dψk ∈ L2
pot(Ω;Rd) denote the

stationary gradient corresponding to ψk constructed in the previous step and let Qk denote the
lift of the flux from (42). Lemma 7 applies directly to this situation, and proves that, for each
i, j, k ∈ {1, . . . , d}, there exists Σijk ∈ L2

pot(Ω;Rd) satisfying

〈Σijk ·Df〉 = 〈(Qi −Dψi)kDjf〉 − 〈(Qi −Dψi)jDkf〉
= 〈((Qi −Dψi)kej − (Qi −Dψi)jek) ·Df〉 for every f ∈ H1.

(47)

Then, for each i, j, k ∈ {1, . . . , d}, the definition Dσijk := Σijk defines σijk, for 〈·〉-a.e. a, on

Rd via integration. These functions are then extended to Rd+1, for each i, j, k ∈ {1, . . . , d}, for
〈·〉-a.e. a, as stationary functions in time.
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Since it is clear from the proof of existence that, for each i, j, k ∈ {1, . . . , d}, the gradients
can be constructed to satisfy

Σijk = −Σikj ,

after integrating it follows that, for each i, j, k ∈ {1, . . . , d},

σijk = −σikj .

Or, perhaps more simply, for each i ∈ {1, . . . , d}, one may first construct σijk for every j > k ∈
{1, . . . , d} and then simply define σikj := −σijk.

It remains to prove that, for each i ∈ {1, . . . , d},

D · σi = (Qi −Dψi)− 〈Qi | FRd〉 , (48)

where, for each i, j ∈ {1, . . . , d},

(D · σi)j =

d∑
k=1

Dkσijk. (49)

To simplify the notation in what follows, define the vector, for each i ∈ {1, . . . , d},

Ψi := (Qi −Dψi), (50)

where the construction of ψi guarantees that the vector Ψi is divergence-free in the sense of the
distributional equality

DlΨil = 0. (51)

Equation (48) now follows from the following distributional equalities. For each i, j ∈ {1, . . . , d},
thanks to equation (47), in the sense of distributions

Dl(Dl(D · σi)j) = Dl(Dl(Dkσijk) = Dk(Dl(Dlσijk)) = Dk(DkΨij −DjΨik).

Therefore, for each i, j ∈ {1, . . . , d}, in view of (51) and after relabeling the final integral,

Dl(Dl(D · σi)j) = Dk(DkΨij −DjΨik) = Dk(DkΨij)−Dj(DkΨik) = Dl(DlΨij).

Hence, in the sense of distributions, for each i, j ∈ {1, . . . , d},

Dl (Dl ((D · σi)j −Ψij)) = 0. (52)

Equation (52) implies that, for each i, j ∈ {1, . . . , d}, the difference ((D · σi)j −Ψij) is invari-
ant with respect to spatial translations of the coefficient field. That is, for each i, j ∈ {1, . . . , d},

((D · σi)j −Ψij) = 〈((D · σi)j −Ψij) | FRd〉 . (53)

The fact that (53) implies (48) follows from Lemma 6. Indeed, for each i ∈ {1, . . . , d},

Dψi ∈ L2
pot(Ω;Rd),

and by a straightforward repetition of the arguments leading to Lemma 6, for each i ∈ {1, . . . , d},

〈 (D · σi) | FRd 〉 = 0 in L2(Ω;Rd).

Therefore, for each i, j ∈ {1, . . . , d},

((D · σi)j −Ψij) = 〈((D · σi)j −Ψij) | FRd〉 = −〈Qij | FRd〉 ,

which is (48). This completes the argument.

3.4. The construction of ζ. The construction of ζ is explicit. Namely, for each i ∈ {1, . . . , d},
for the lift of the flux Qi defined in (42), define the stationary derivative in time according to
the rule

D0ζi = 〈Qi | FRd〉 − 〈Qi〉 .
For each i ∈ {1, . . . , d}, the function ζi is defined on R, for 〈·〉-a.e a, by integration in time and
extended to Rd+1 as a spatially constant function.
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3.5. The boundedness and uniform ellipticity of ahom. For the reader’s convenience, the
argument of [17, Lemma 2] is repeated here. For each ξ ∈ Rd, the linearity and (9) assert that
the homogenized coefficients are defined according to the rule

ahomξ := 〈a(∇φξ + ξ)〉 .
It is first shown that, for each ξ ∈ Rd,

|ahomξ| ≤
1

λ
|ξ| . (54)

For each ξ ∈ Rd, since φξ satisfies (6), the uniform ellipticity of the ensemble (4) and Jensen’s
inequality imply that

|ahomξ|2 = |〈a(∇φξ + ξ)〉|2 ≤〈
|a(∇φξ + ξ)|2

〉
≤
〈
|(∇φξ + ξ)|2

〉
≤ 1

λ
〈(∇φξ + ξ) · a(∇φξ + ξ)〉 .

Then, using the corrector equation (6), (39) and the Cauchy-Schwarz inequality,

|ahomξ|2 ≤
1

λ
〈(∇φξ + ξ) · a(∇φξ + ξ)〉 =

1

λ
ξ · 〈a(∇φξ + ξ)〉 ≤ 1

λ
|ξ| |ahomξ| .

Dividing by |ahomξ| yields (54) and completes the proof.
It remains only to prove that, for each ξ ∈ Rd,

λ |ξ|2 ≤ ξ · ahomξ. (55)

This follows from the convexity of the map

(X, v) ∈ S(d)>0 × Rd → v ·X−1v, (56)

where S(d)>0 denotes the space of positive, d × d symmetric matrices. Indeed, if X ∈ S(d)>0

and v ∈ Rd,
1

2

(
v ·X−1v

)
= sup

w∈Rd

{
w · v − 1

2
w ·Xw

}
,

is a supremum over linear functions in (X, v), and therefore the map (56) is convex. Hence, for
each ξ ∈ Rd, using the corrector equation (6) and Jensen’s inequality,

ξ · ahomξ = 〈(∇ϕξ + ξ) · a(∇ϕξ + ξ)〉 = 〈(∇φξ + ξ) · asym(∇φξ + ξ)〉

=
〈
(∇φξ + ξ) · (a−1

sym)−1(∇φξ + ξ)
〉
≥ 〈∇φξ + ξ〉 ·

〈
(a−1

sym)
〉−1 〈∇φξ + ξ〉

≥λ |ξ|2 ,
where asym denotes the symmetric part of a, and where the final inequality is obtained using the
boundedness of the ensemble (4) and the vanishing expectation of the gradient from Lemma 6.
This completes the proof of (55).

4. The proof of Proposition 3

4.1. The sublinearity of σ and ψ. The sublinearity of σ and ψ will follow from the following
general fact. Recall that, for a function ϕ : Rd+1 → R, for each R > 0 and t ∈ R,

(ϕ)R =

 
CR
ϕ and (ϕ)t,R =

 
BR

ϕ(·, t).

Lemma 8. Suppose that ϕ is a scalar random field on Rd+1 which is stationary in time and
has a stationary, finite energy gradient ∇ϕ in the potential space L2

pot(Ω;Rd). That is, assume
that 〈

|∇ϕ|2
〉
<∞ with ∇ϕ ∈ L2

pot(Ω;Rd). (57)

Then, for 〈·〉-a.e. a, the normalized large-scale L2-averages of ϕ are strictly sublinear in the
sense that

lim
R→∞

1

R2

 
CR
|ϕ− (ϕ)t,R|2 = 0. (58)
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To prove Lemma 8, since ϕ is stationary in time, it will first be shown that, for 〈·〉-a.e. a, the
normalized large-scale L2-averages of ϕ(·, 0) on large balls are sublinear. Define, for each ε > 0,

ϕε(·) := εϕ(
·
ε
, 0).

Then, for 〈·〉-a.e. a,

lim
R→∞

1

R2

 
BR

|ϕ(·, 0)− (ϕ)0,R|2 = lim
ε→0

 
B1

|ϕε − (ϕε)|2 = 0, (59)

where the first equality is immediate by scaling if, for each ε > 0,

(ϕε) :=

 
B1

ϕε.

To obtain (59), the Poincaré inequality in space, together with the ergodic theorem, imply
that, for 〈·〉-a.e. a,

lim sup
ε→0

 
B1

|ϕε − (ϕε)|2 ≤ lim sup
ε→0

 
B1

|∇ϕε|2 =
〈
|∇ϕ|2 | FRd

〉
<∞,

where the final term is finite, for 〈·〉-a.e. a, thanks to (57). Therefore, for 〈·〉-a.e. a, the
sequence {(ϕε−(ϕε))}ε∈(0,1) is bounded in H1(B1), and hence compact in L2(B1) by the Rellich-
Kondrachov embedding theorem. Since the ergodic theorem, see Krengel [19, Theorem 2.3],
implies that, for 〈·〉-a.e. a, as ε→ 0, the gradient

∇ϕε ⇀ 〈∇ϕ | FRd〉 = 0 weakly in L2(B1;Rd),

where the vanishing of the conditional expectation follows from Lemma 6 and (57), the compact
embedding implies that, for 〈·〉-a.e a,

(ϕε − (ϕε))→ 0 strongly in L2(B1),

which proves (59).
The sublinearity of the normalized large-scale averages at time zero will now be upgraded

to the sublinearity of the normalized large-scale averages on parabolic cylinders using Egorov’s
theorem. Precisely, using (59), it will be shown that, for 〈·〉-a.e. a,

lim
R→∞

1

R

( 
CR
|ϕ− (ϕ)t,R|2

) 1
2

= 0. (60)

To prove (60), for ε ∈ (0, 1) use Egorov’s theorem and (59) to find a measurable subset
Aε ⊂ Ω and Rε > 0 such that, for every a ∈ Aε and R > Rε,

1

R

( 
BR

|ϕ(·, 0)− (ϕ)0,R|2
) 1

2

< ε with 〈χAε〉 > 1− ε, (61)

where χAε ∈ L∞(Ω) denotes the indicator function of Aε. The large-scale averages on cylinders
appearing in (60) will be decomposed according to the event Aε.

For each R > 0 and ε ∈ (0, 1), use the triangle inequality to form the decomposition

1

R

( 
CR
|ϕ− (ϕ)t,R|2

) 1
2

≤ 1

R

( 0

−R2

χAε(a(·, ·+ t))

 
BR

|(ϕ− (ϕ)t,R)|2
) 1

2

+
1

R

( 0

−R2

(1− χAε(a(·, ·+ t)))

 
BR

|(ϕ− (ϕ)t,R)|2
) 1

2

. (62)
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For the second term of (62), for each R > 0 and ε ∈ (0, 1), Hölder’s inequality and the Sobolev
embedding theorem imply that

1

R

( 0

−R2

(1− χAε(a(·, ·+ t)))

 
BR

|(ϕ− (ϕ)t,R)|2
) 1

2

.

1

R

( 
CR

(1− χAε(a(·, ·+ t)))

) 1
d
( 
CR
|(ϕ− (ϕ)t,R)|

2d
d−2

) d−2
2d

.( 
CR

(1− χAε(a(·, ·+ t)))

) 1
d
( 
CR
|∇ϕ|2

) 1
2

, (63)

where the argument is written only for the case d ≥ 3, since the modifications necessary to
handle the cases d = 1 and d = 2 are straightforward and follow from the Sobolev embedding
theorem.

After combining (62) and (63), it is then immediate from the ergodic theorem and the defi-
nition of Aε from (61) that, for each ε > 0, for 〈·〉-a.e. a,

lim sup
R→∞

1

R

( 
CR
|ϕ− (ϕ)t,R|2

) 1
2

≤ 〈(1− χAε) | Ft〉
1
d

〈
|∇ϕ|2

〉 1
2

+ ε, (64)

where 〈· | Ft〉 denotes the conditional expectation with respect to the sub-sigma-algebra Ft ⊂ F
of subsets of Ω which are invariant with respect to translations of the coefficient fields in time.

Since, as ε→ 0, the choice (61) implies that

〈(1− χAε) | Ft〉 → 0 strongly in L1(Ω),

using (57), after choosing a countable sequence {εn → 0}∞n=1, it follows from (62) and (64) that,
for 〈·〉-a.e. a,

lim
R→∞

1

R

( 
CR
|ϕ− (ϕ)t,R|2

) 1
2

= 0, (65)

which proves (60). This completes the proof of Lemma 8, and thereby proves the sublinearity
of σ and ψ thanks to Lemma 2.

4.2. The sublinearity of φ. The sublinearity of φ will follow from the following general fact.

Lemma 9. Suppose that ϕ is a scalar random field on Rd+1 which has a stationary, finite
energy gradient ∇ϕ in the potential space L2

pot(Ω;Rd). That is, assume that〈
|∇ϕ|2

〉
<∞ with ∇ϕ ∈ L2

pot(Ω;Rd). (66)

Furthermore, assume that, for 〈·〉-a.e. a, the field ϕ satisfies

ϕt = ∇ · F distributionally in Rd+1, (67)

for the stationary extension of a finite energy field F ∈ L2(Ω;Rd). Then, for 〈·〉-a.e. a, the
normalized large-scale L2-averages of ϕ are strictly sublinear in the sense that

lim
R→∞

1

R

( 
CR
|ϕ− (ϕ)R|2

) 1
2

= 0. (68)

To prove Lemma 9, for each R > 0, use the triangle inequality to obtain

1

R

( 
CR
|ϕ− (ϕ)R|2

) 1
2

≤ 1

R

( 
CR
|ϕ− (ϕ)t,R|2

) 1
2

+
1

R

( 
CR
|(ϕ)t,R − (ϕ)R|2

) 1
2

. (69)

Since ϕ has a stationary spatial gradient, for each R > 0 and t ∈ R, the scalar random field

(x, t)→ (ϕ− (ϕ)t,R)(x, t) =

 
BR

ϕ(x, t)− ϕ(y, t) dy
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is stationary in time, with a stationary, finite-energy gradient in the potential space. Therefore,
Lemma 8 applies to this random field, and asserts that, for 〈·〉-a.e. a,

lim
R→∞

1

R

( 
CR
|ϕ− (ϕ)t,R|2

) 1
2

= 0. (70)

It remains to prove that, for 〈·〉-a.e. a,

lim
R→0

1

R

( 
CR
|(ϕ)t,R − (ϕ)R|2

) 1
2

= lim
R→0

1

R

( 0

−R2

|(ϕ)t,R − (ϕ)R|2
) 1

2

= 0.

Let ρ ∈ C∞c (Rd) be a smooth, symmetric convolution kernel satisfying supp(ρ) ⊂ B1 and, for
each ε > 0, define the rescaling ρε(·) = ε−dρ( ·ε). Then, for each ε > 0, define the spatial

convolution, for each x ∈ Rd and t ∈ R,

ϕε(x, t) :=

ˆ
Rd
ρε(y − x)ϕ(y, t) dy.

The introduction of the convolution kernel provides a test function which will be used to apply
the equation (67) satisfied by ϕ.

First, for each R > 0 and ε ∈ (0, R), it follows from the support of the convolution kernel,
Fubini’s theorem and Jensen’s inequality that

|(ϕ)R − (ϕε)R|2 =

∣∣∣∣ 
CR

ˆ
Rd
ρε(x) (ϕ(x+ y, t)− ϕ(y, t)) dx dy dt

∣∣∣∣2
≤ε2

∣∣∣∣ˆ 1

0

ˆ
Rd
ρε(x)

 
CR
|∇ϕ(y + rx, t)| dy dx dtdr

∣∣∣∣2
≤ε2

ˆ 1

0

ˆ
Rd
ρε(x)

 
CR
|∇ϕ(y + rx, t)|2 dy dx dtdr

.ε2
 
C2R
|∇ϕ|2 .

(71)

Similarly, the identical argument yields, for each R > 0, t ∈ R and ε ∈ (0, R),

|(ϕ)t,R − (ϕε)t,R|2 . ε2
 
B2R

|∇ϕ(·, t)|2 . (72)

Therefore, for each R > 0 and ε ∈ (0, R), the triangle inequality, (71) and (72) imply that,
after adding and subtracting ((ϕε)t,R − (ϕε)R),

1

R

( 0

−R2

|(ϕ)t,R − (ϕ)R|2
) 1

2

.
1

R

( 0

−R2

|(ϕε)t,R − (ϕε)R|2
) 1

2

+
ε

R

( 
C2R
|∇ϕ|2

) 1
2

. (73)

For the first term on the right hand side of (73), for each R ≥ 1 and ε ∈ (0, R), the equation
(67) satisfied by ϕ and the Poincaré inequality in time yields

1

R

( 0

−R2

|(ϕε)t,R − (ϕε)R|2
) 1

2

.

( 0

−R2

|∂t(ϕε)t,R|2
) 1

2

.

( 0

−R2

∣∣∣∣ 
BR

ˆ
Rd
∇ρε(x− y) · F (x, t) dx dy

∣∣∣∣2 dt

) 1
2

.

 0

−R2

∣∣∣∣∣
ˆ
Rd
|∇ρε(x)|

 
BR(x)

|F (y, t)| dy dx

∣∣∣∣∣
2

dt

 1
2

.

( 0

−R2

∣∣∣∣(ˆ
Rd
|∇ρε(x)| dx

)( 
B2R

|F (y, t)| dy

)∣∣∣∣2 dt

) 1
2

.

(74)
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Then, continuing with (74), the definition of the convolution kernel and Jensen’s inequality
yield

1

R

( 0

−R2

|(ϕε)t,R − (ϕε)R|2
) 1

2

.
1

ε

( 0

−R2

( 
B2R

|F (y, t)| dy

)2

dt

) 1
2

.
1

ε

( 
C2R
|F |2

) 1
2

.

(75)

Therefore, combining (73) with (75), for each R > 0 and ε ∈ (0, R),

1

R

( 0

−R2

|(ϕ)t,R − (ϕ)R|2
) 1

2

.
1

ε

( 
C2R
|F |2

) 1
2

+
ε

R

( 
C2R
|∇ϕ|2

) 1
2

.

Let δ ∈ (0, 1) be arbitrary and, for each R > 0, fix ε(R) := δR. For this choice, for each R > 0
and δ ∈ (0, 1),

1

R

( 0

−R2

|(ϕ)t,R − (ϕ)R|2
) 1

2

.
1

δR

( 
C2R
|F |2

) 1
2

+ δ

( 
C2R
|∇ϕ|2

) 1
2

. (76)

Since the ergodic theorem implies that, for 〈·〉-a.e. a,

lim
R→∞

( 
C2R
|F |2

) 1
2

=
〈
|F |2

〉 1
2

and lim
R→∞

( 
C2R
|∇ϕ|2

) 1
2

=
〈
|∇ϕ|2

〉 1
2
,

it follows from (76) that, for 〈·〉-a.e. a, for every δ ∈ (0, 1),

lim sup
R→∞

1

R

( 0

−R2

|(ϕ)t,R − (ϕ)R|2
) 1

2

. δ
〈
|∇ϕ|2

〉 1
2
.

Therefore, since δ ∈ (0, 1) is arbitrary,

lim
R→0

1

R

( 
CR
|(ϕ)t,R − (ϕ)R|2

) 1
2

= lim
R→0

1

R

( 0

−R2

|(ϕ)t,R − (ϕ)R|2
) 1

2

= 0. (77)

In combination, (69), (70) and (77) combine to prove (68), and thereby complete the proof of
Lemma 9. The sublinearity of the corrector φ, for 〈·〉-a.e. a, is then immediate from Lemma 2.

4.3. The sublinearity of ζ. The fact that, for 〈·〉-a.e. a, for each i, j ∈ {1, . . . , d},

lim
R→0

1

R2

( 
CR
|ζij − (ζij)R|2

) 1
2

= lim
R→∞

1

R2

( 0

−R2

|ζij − (ζij)R|2
) 1

2

= 0,

follows similarly to (59). That is, for each i ∈ {1, . . . , d}, the Poincaré inequality and the ergodic
theorem together with the Rellich-Kondrachov embedding theorem imply that the family{

ε2ζij(
·
ε2

)− ε2
 0

− 1
ε2

ζij

}
ε∈(0,1)

is compact in L2([0, 1]) and converges weakly to zero, as ε → 0, in H1([0, 1]). Therefore, for
〈·〉-a.e. a, for each i, j ∈ {1, . . . , d}, as ε→ 0,(

ε2ζij(
·
ε2

)− ε2
 0

− 1
ε2

ζij

)
→ 0 in L2([0, 1]). (78)

Furthermore, now exploiting the fact that ζ is a one-dimensional function, it follows from
the Sobolev embedding theorem and the Arzelà-Ascoli theorem that, for 〈·〉-a.e. a, for each
i, j ∈ {1, . . . , d}, the family {

ε2ζij(
·
ε2

)− ε2
 0

− 1
ε2

ζij

}
ε∈(0,1)
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is compact in C0, 1
2 ([0, 1]) and, by repeating the argument of (59), converges weakly to zero, as

ε→ 0, in H1([0, 1]). Therefore, for 〈·〉-a.e. a, for each i, j ∈ {1, . . . , d}, as ε→ 0,(
ε2ζij(

·
ε2

)− ε2
 0

− 1
ε2

ζij

)
→ 0 in C0, 1

2 ([0, 1]).

In particular, for each i, j ∈ {1, . . . , d}, as ε→ 0,∣∣∣∣∣ε2ζij(0)− ε2
 0

− 1
ε2

ζij

∣∣∣∣∣→ 0. (79)

Hence, in combination, (78) and (79) prove after rescaling that, for 〈·〉-a.e. a, for each i, j ∈
{1, . . . , d},

lim sup
R→0

1

R2

( 0

−R2

|ζij − ζij(0)|
) 1

2

≤

lim sup
R→∞

1

R2

( 0

−R2

|ζij − (ζij)R|
) 1

2

+ lim sup
R→∞

1

R2
|(ζij)R − ζij(0)| = 0,

which completes the argument since ζ is constant in space.

4.4. The large-scale averages of q. It is an immediately consequence of the ergodic theorem
and the fact that the flux q is stationary with finite energy that, for 〈·〉-a.e. a, for each i ∈
{1, . . . , d},

lim
R→∞

( 
CR
|qi|2

) 1
2

=
〈
|Qi|2

〉 1
2
,

which completes the argument, and the proof of Proposition 3.

5. The proof of Proposition 4

The proof of Proposition 4 is split into five steps. The first defines the augmented homoge-
nization error. The second proves that the augmented homogenization error satisfies a parabolic
equation. The third recalls some classical estimates governing the interior and boundary reg-
ularity of ahom-caloric functions. The fourth uses the equation satisfied by the augmented
homogenization error to derive an energy estimate. And, finally, the fifth uses the energy
estimate to complete the proof of excess decay.

In what follows, to simplify the notation, observe that it may be assumed without loss of
generality that, for each R > 0, t ∈ R and i, j, k ∈ {1, . . . , d},

(φi)R = (ψi)t,R = (σijk)t,R = ζij(0) = 0.

Indeed, otherwise in the arguments to follow, at each step replace the components of the cor-
rector, for each R > 0, t ∈ R and i, j, k ∈ {1, . . . , d}, by the normalizations defined by

φ̃i := φi(x, t)− (φi)R, ψ̃i := ψi− (ψi)t,R, σ̃ijk := σijk − (σijk)t,R and ζ̃ij := ζij − ζij(0). (80)

The argument now begins with the definition of the augmented homogenization error.

5.1. The augmented homogenization error. The analysis augmented homogenization error
and its corresponding energy estimate will first be obtained on scale R = 1. The general results
will then follow by scaling. Suppose that u is an a-caloric function in C1. That is, in the sense
of distributions, suppose that u satisfies

ut = ∇ · a∇u in C1. (81)

Then, let ρ ∈ C∞c (Rd) be a standard convolution kernel satisfying supp(ρ) ⊂ B1. For each
ε ∈ (0, 1

4), let ρε(·) := ε−dρ( ·ε) and define the spatial convolution

uε(x, t) =

ˆ
Rd
ρε(y − x)u(y, t) dy on C1−ε.
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It is necessary to observe some useful energy estimates for u and its convolution.
First, it is immediate from (81) and the uniform ellipticity of a from (4) that

‖ut‖L2([−1,0];H−1(B1)) .
ˆ
C1
|∇u|2 .

Therefore, since the convolution preserves this estimate, for each ε ∈ (0, 1
4),

‖uεt‖L2([−1,0];H−1(B1−ε)) .
ˆ
C1
|∇u|2 . (82)

It is important to keep these estimates in mind when considering the application of the constant-
coefficient regularity estimates (101) and (105) below.

Next, although there is no convolution in time, the spatial convolution nevertheless provides
some temporal regularity in the sense that, for each ε ∈ (0, 1

4),

uεt(x, t) = −
ˆ
Rd
∇ρε(y − x) · a∇u(y, t) dy in C1−ε.

Therefore, the time-derivative has a uniformly bounded energy. That is, for each ε ∈ (0, 1
4), the

Minkowski integral inequality, Hölder’s inequality, the definition of the convolution kernel and
the uniform ellipticity of a imply thatˆ

C 3
4

|uεt|
2

 1
2

≤

(ˆ
C1−ε

∣∣∣∣ˆ
Rd
∇ρε(y − x) · a∇u(y) dy

∣∣∣∣2 dx dt

) 1
2

.
ˆ
Rd

(ˆ
C1−ε
|∇ρε(y)|2 |∇u(y + x, t)|2 dx dt

) 1
2

dy

=

ˆ
Rd
|∇ρε(y)|

(ˆ
C1−ε
|∇u(y + x, t)|2 dx dt

) 1
2

.
1

ε

(ˆ
C1
|∇u|2

) 1
2

.

The convolution error is also well controlled by the energy of u. Precisely, for each ε ∈ (0, 1
4),

it follows from Jensen’s inequality and the definition of the convolution kernel thatˆ
C 3
4

|uε − u|2
 1

2

=

ˆ
C 3
4

∣∣∣∣ˆ 1

0

ˆ
R
ρε(y)∇u(x+ sy, t) · y dy ds

∣∣∣∣2 dx dt

 1
2

≤ ε

ˆ
Rd
ρε(y)

ˆ 1

0

ˆ
C 3
4

|∇u(x+ sy, t)|2 dx dtds dy

 1
2

≤ ε
(ˆ
C1
|∇u|2

) 1
2

.

Lastly, it is immediate from Jensen’s inequality that the convolution preserves the energy in
the sense that, for each ε ∈ (0, 1

4),ˆ
C 3
4

|∇uε|2
 1

2

≤
(ˆ
C1
|∇u|2

) 1
2

.
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Fubini’s theorem therefore implies that, for each ε ∈ (0, 1
4), there exists rε ∈ (1

2 ,
3
4) such that(ˆ

∂pCrε
|uε − u|2

) 1
2

. ε

(ˆ
C1
|∇u|2

) 1
2

, (83)

and (ˆ
∂pCrε

|uεt|
2

) 1
2

.
1

ε

(ˆ
C1
|∇u|2

) 1
2

, (84)

and, finally, such that(ˆ
∂pCrε

|∇u|2
) 1

2

+

(ˆ
∂pCrε

|∇uε|2
) 1

2

.

(ˆ
C1
|∇u|2

) 1
2

. (85)

It will be for this radius that the ahom-caloric extension of uε is constructed.
Namely, for each ε ∈ (0, 1

4), let vε denote the solution{
vεt = ∇ · a∇vε in Crε
vε = uε on ∂pCrε .

(86)

These functions will now come to define the augmented homogenization error after the intro-
duction of a cutoff function.

For each ε ∈ (0, 1
4) and ρ ∈ (0, 1

8), let ηερ ∈ C∞c (Rd+1) be smooth cutoff function satisfying

0 ≤ ηερ ≤ 1 with, for each x ∈ Rd and t ∈ R,

ηερ(x, t) =

{
1 if (x, t) ∈ Crε−2ρ

0 if (x, t) ∈
(
Rd × (−∞, 0)

)
\ Crε−ρ.

(87)

Furthermore, for each ε ∈ (0, 1
4) and ρ ∈ (0, 1

8), for each x ∈ Rd and t ∈ R,∣∣∇ηερ(x, t)∣∣+
∣∣∂tηερ(x, t)∣∣ . 1

ρ
and

∣∣∇2ηερ(x, t)
∣∣ . 1

ρ2
. (88)

Then, for ρ ∈ (0, 1
4) and ε ∈ (0, 1

4) to be specified later, define the augmented homogenization
error w according to the rule

w = u− (1 + ηερφi∂i)v
ε. (89)

The augmented homogenization error (89) will now be shown to satisfy a useful parabolic
equation. The computation is motivated by the analogous computation in [17, Lemma 2], but
there are significant differences owing to the parabolic setting and the use of the parabolic
extended corrector (φ, ψ, σ, ζ).

5.2. The equation satisfied by the augmented homogenization error. It is now shown
that the augmented homogenization error (89) satisfies

wt −∇ · a∇w = ∇ ·
(
(1− ηερ)(a− ahom)∇vε

)
+∇ ·

(
(φia+ ψi − σi)∇(ηερ∂iv

ε)
)

in Crε
+∂tζi · ∇(ηερ∂iv

ε)− φi(ηερ∂ivε)t − ψi∆(ηερ∂iv
ε)

w = u− uε on ∂pCrε .
(90)

Fix ρ ∈ (0, 1
4) and ε ∈ (0, 1

4) and let w be defined by (89). Since the boundary condition is
immediate from the definition, it remains only to compute the equation. First, using definition
(89), the gradient is defined by

∇w = ∇u−∇vε −∇(φiη
ε
ρ∂iv

ε).

Then, because u satisfies (81),

−∇ · a∇w = −ut +∇ · a∇vε +∇ · a(∇φiηερ∂ivε + φi∇(ηερ∂iv
ε)). (91)

It is necessary to further analyze the term

∇ · a∇vε +∇ · a(∇φiηερ∂ivε),
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which, after adding and subtracting the unit vectors {ei}i∈{1,...,d}, satisfies, for the fluxes
{qi}i∈{1,...,d} defined in (10),

∇ · a∇vε +∇ · a(∇φiηερ∂ivε) = ∇ · ((1− ηερ)a∇vε) +∇ · (qiηερ∂ivε).
Then, after adding and subtracting the vectors {ahomei}i∈{1,...,d},

∇ · a∇vε +∇ · a(∇φiηερ∂ivε) =

∇ · ((1− ηερ)a∇vε) +∇ · ((qi − ahomei)η
ε
ρ∂iv

ε) +∇ · (ηερahom∇vε).
Therefore, since v satisfies (86),

∇· a∇vε +∇· a(∇φiηερ∂ivε) = vεt +∇· ((1− ηερ)(a− ahom)∇vε) +∇· ((qi− ahomei)η
ε
ρ∂iv

ε). (92)

Returning to (91), in view of (92),

−∇·a∇w = −ut+vεt+∇·((1−ηερ)(a−ahom)∇vε)+∇·((qi−ahomei)η
ε
ρ∂iv

ε+φia∇(ηερ∂iv
ε)). (93)

For the derivative in time, owing to definition (89),

wt = ut − vεt − φi,tηερ∂ivε − φi(ηερ∂ivε)t,
which, in combination with (93), yields the distributional equality

wt −∇ · a∇w =∇ ·
(
(1− ηερ)(a− ahom)∇vε + φia∇(ηερ∂iv

ε)
)

+ (qi − ahomei) · ∇(ηερ∂iv
ε)

+ ((∇ · qi)− φi,t) ηερ∂ivε − φi(ηερ∂ivε)t.
Therefore, since the correctors {φi}i∈{1,...,d} satisfy (6), distributionally

wt −∇ · a∇w =∇ ·
(
(1− ηερ)(a− ahom)∇vε + φia∇(ηερ∂iv

ε)
)

+(qi − ahomei) · ∇(ηερ∂iv
ε)− φi(ηερ∂ivε)t.

(94)

It remains to analyze the term

(qi − ahomei) · ∇(ηερ∂iv
ε).

For the correctors {ψi}i∈{1...,d} satisfying (18), add and subtract the gradients {∇ψi}i∈{1,...,d}
and add and subtract the conditional expectations {〈qi | FRd〉}i∈{1,...,d} to obtain

(qi − ahomei) · ∇(ηερ∂iv
ε) =(qi −∇ψi − 〈qi | FRd〉) · ∇(ηερ∂iv

ε)

+(〈qi | FRd〉 − ahomei) · ∇(ηερ∂iv
ε) +∇ψi · ∇(ηερ∂iv

ε).

Since the correctors {σi}i∈{1,...,d} satisfy (19) and the correctors {ζi}i∈{1,...,d} satisfy (21),

(qi − ahomei) · ∇(ηερ∂iv
ε) = (∇ · σi) · ∇(ηερ∂iv

ε) + ∂tζi · ∇(ηερ∂iv
ε) +∇ψi · ∇(ηερ∂iv

ε). (95)

Then, for each i ∈ {1, . . . , d}, the skew-symmetry of σi proven in Lemma 2 implies the distri-
butional equality

∇ · (σi∇(ηερ∂iv
ε)) = −(∇ · σi) · ∇(ηερ∂iv

ε). (96)

Indeed, for each i ∈ {1, . . . , d}, distributionally

∇ · (σi∇(ηερ∂iv
ε)) = ∂j(σijk∂k(η

ε
ρ∂iv

ε)) = ∂jσijk∂k(η
ε
ρ∂iv

ε) + σijk∂j∂k(η
ε
ρ∂iv

ε) =

− ∂jσikj∂k(ηερ∂ivε) + σijk∂j∂k(η
ε
ρ∂iv

ε) = −(∇ · σi) · ∇(ηερ∂iv
ε),

where the penultimate inequality follows from the skew-symmetry of σ and the final equality
from the skew-symmetry of σ and the equality of mixed partial derivatives.

Therefore, returning to (95), the equality (96) and the distributional equality

∇ψi · ∇(ηερ∂iv
ε) = ∇ · (ψi∇(ηερ∂iv

ε))− ψi∆(ηερ∂iv
ε)

imply that

(qi − ahomei) · ∇(ηερ∂iv
ε) = ∇ ·

(
(ψi − σi)∇(ηερ∂iv

ε)
)

+ ∂tζi · ∇(ηερ∂iv
ε)− ψi∆(ηερ∂iv

ε). (97)

Therefore, returning to (94), in view of (97), it follows that

wt −∇ · a∇w =∇ ·
(
(1− ηερ)(a− ahom)∇vε

)
+∇ ·

(
(φia+ ψi − σi)∇(ηερ∂iv

ε)
)

+∂tζi · ∇(ηερ∂iv
ε)− φi(ηερ∂ivε)t − ψi∆(ηερ∂iv

ε),
(98)
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which completes the proof of (90). This equation will later be used to obtain an energy estimate
for the augmented homogenization error. However, first, it is useful to recall three classical
estimates concerning the boundary and interior regularity of ahom-caloric functions.

5.3. Interior and boundary estimates for ahom-caloric functions. In this subsection,
three classical estimates are presented to control the interior and boundary regularity of ahom-
caloric functions.

In what follows, the boundary conditions will be assumed to be the trace of a function
ũ : C1 → R satisfying

ũ ∈ L2([−1, 0];H1(B1)) and ũt ∈ L2([−1, 0];H−1(B1)). (99)

The first estimate is the a priori energy estimate for the ahom-caloric extension of ũ into C1.
That is, if ṽ satisfies {

ṽt = ∇ · ahom∇ṽ in C1

ṽ = ũ on ∂pC1,
(100)

then, ˆ
C1
|∇ṽ|2 .

ˆ
C1
|∇ũ|2 + ‖ũt‖2L2([−1,0];H−1(B1)). (101)

To prove (101), let z̃ denote the distributional solution of{
z̃t = ∇ · ahom∇z̃ +∇ · ahom∇ũ− ũt in C1

z̃ = 0 on ∂C1.
(102)

Then, testing (102) with z̃ and, after applying the Poincaré inequality, Hölder’s inequality and
Young’s inequality and using the uniform ellipticity of ahom from Lemma 2, it follows thatˆ

C1
|∇z̃|2 .

ˆ
C1
|∇ũ|2 + ‖ũt‖2L2([−1,0];H−1(B1)). (103)

However, thanks to (99) and (100), it is then immediate that

ṽ = z̃ + ũ.

Hence, with (103) and the triangle inequality,ˆ
C1
|∇ṽ|2 .

ˆ
C1
|∇ũ|2 + ‖ũt‖2L2([−1,0];H−1(B1)),

which proves (101).
An interior regularity estimate will now be obtained for ahom-caloric functions. Suppose

that ṽ satisfies (100) for ũ satisfying (99). It then follows from a repeated application of the
Caccioppoli inequality (27) that, for each k ≥ 0, there exists C(k) > 0 such thatˆ

B1−ρ

∣∣∣∇kṽ∣∣∣2 ≤ C(k)

(Rρ)2k

ˆ
B1

|∇ṽ|2 .

Therefore, by choosing k = d
2 , k = d

2 +1 and k = d
2 +2, the Sobolev embedding theorem implies

that

sup
C1−ρ

(
|∇ṽ|+ ρ

∣∣∇2ṽ
∣∣+ ρ2

∣∣∇3ṽ
∣∣)2 . ρ−(d+2)

ˆ
C1
|∇ṽ|2 .

ρ−(d+2)

(ˆ
C1
|∇ũ|2 + ‖ũt‖2L2([−1,0];H−1(B1))

)
, (104)

where the final inequality follows from (101).
The boundary regularity statement follows from a simplified version of Ladyzenskaja, Solon-

nikov and Uraltceva [20, Theorem 9.1] or, for the optimal statement, Weidemaier [27, Theo-
rem 3.1]. This estimate will obtainH2-regularity, and therefore requires more from the boundary
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condition. In particular, this estimate explains the necessity of introducing the boundary regu-
larization in the definition of the augmented homogenization error. Suppose that ũ satisfies the
trace estimates

ũ ∈ L2([−1, 0];H1(∂B1)) ∩H1(B1 × {−1}) and ũt ∈ L2([−1, 0];L2(∂B1)),

and that ṽ is the ahom-caloric extension of ũ into C1 in the sense of (100). Then, it follows from
[20, Theorem 9.1] or [27, Theorem 3.1] that

ˆ
C1
|∇ṽ|2 +

∣∣∇2ṽ
∣∣2 .

ˆ
∂pC1

∣∣∇tanũ
∣∣2 +

ˆ 0

−1

ˆ
∂B1

|ũt|2 , (105)

where ∇tanũ denotes the tangential derivative of ũ on the parabolic boundary. In particular,
∇tanũ coincides with the full gradient on B1×{−1}. Estimates (101), (104) and (105) will play
an important role in the energy estimate to follow.

5.4. The energy estimate for the augmented homogenization error. Equation (90) will
now be used to obtain an energy estimate for the augmented homogenization error w defined
in (89). Precisely, it will be shown that

ˆ
Crε
∇w · a∇w .ε

ˆ
C1
|∇u|2 +

ρ
2
d

ε2

ˆ
C1
|∇u|2

+
1

ρd+4

ˆ
C1

(
|φ|2 + |ψ|2 + |σ|2

) ˆ
C1
|∇u|2

+

(
1

ρ
d
2

+3

(ˆ
C1
|ζ|2
) 1

2

+
1

ρd+6

ˆ
C1
|ζ|2
)ˆ
C1
|∇u|2

+
1

ρd+4

(ˆ
C1
|ζ|2
) 1

2
(ˆ
C1
|q|2
) 1

2
ˆ
C1
|∇u|2 .

(106)

The idea is to test equation (98) with w. However, for this it is necessary to introduce a cutoff
to ensure that w vanishes along the upper boundary of the cylinder. For each δ ∈ (0, 1), define
a smooth cutoff function γδ : R→ R which is non-increasing and satisfies 0 ≤ γδ ≤ 1 with

γδ(t) =

{
1 if t ≤ −δ,
0 if t ≥ 0.

(107)

Furthermore, for the Dirac mass δ0 at zero, as δ → 0,

|(γδ)t|⇀ δ0 as distributions on R. (108)

To begin, equation (98) is tested against γδw. Properties of the cutoff ηερ from (87) and (88),
the uniform ellipticity of a from (4) and ahom from Lemma 2 and Hölder’s inequality imply
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that, after bounding the time derivative of vε by its Hessian matrix,

ˆ
Crε
|(γδ)t| |w|2 +

ˆ
Crε

γδ∇w · a∇w .
ˆ 0

−r2ε

ˆ
∂Brε

γδ(u− uε)ν · a(∇u−∇vε)

+

ˆ
Brε×{−rε2}

γδ |u− uε|2

+

ˆ
Crε\Crε−2ρ

γδ |∇vε| |∇w|

+ sup
Crε−ρ

(∣∣∇2vε
∣∣+

1

Rρ
|∇vε|

) ˆ
Crε

γδ (|φ|+ |ψ|+ |σ|) |∇w|

+ sup
Crε−ρ

(
1

ρ2
|∇vε|+ 1

ρ

∣∣∇2vε
∣∣+
∣∣∇3vε

∣∣) ˆ
Crε

γδ (|φ|+ |ψ|) |w|

+

∣∣∣∣∣
ˆ
Crε

∂tζi · ∇(ηερ∂iv
ε)γδw

∣∣∣∣∣ ,
(109)

where ν denotes the interior normal and

|φ| :=

(
d∑
i=1

|φi|2
) 1

2

, |ψ| :=

(
d∑
i=1

|ψi|2
) 1

2

and |σ| :=

 d∑
i,j,k=1

|σijk|2
 1

2

.

For the first two boundary terms, it is immediate from the choice of rε ∈ (1
2 ,

3
4) in (83)

and (85), the uniform ellipticity of a, Hölder’s inequality and the estimate for the Dirichlet to
Neumann map, see [13], that

ˆ 0

−r2ε

ˆ
∂Brε

(u− uε)ν · a(∇u−∇vε) +

ˆ
Brε×{−r2ε}

|u− uε|2 .

(ˆ
∂pCrε

|u− uε|2
) 1

2
(ˆ

∂pCrε
|∇u|2 +

∣∣∇tanu
∣∣2) 1

2

+

ˆ
∂pCrε

|u− uε|2 . ε

ˆ
C1
|∇u|2 .

It is then necessary to analyze the final term on the right hand side of (109). Using the
definition of w from (89) and the fact that ζ vanishes at t = 0 owing to (80), it follows after
integrating by parts variously in time and space that

ˆ
Crε

∂tζi · ∇(ηερ∂iv
ε)γδw =

ˆ
Crε

(ηερ∂iv
ε)tζi · γδ∇w −

ˆ
Crε

ζi · ∇(ηερ∂iv
ε)(γδ)tw

−
ˆ
Crε

ζi · ∇(ηερ∂iv
ε)γδ(ut − vt)−

ˆ
Crε

ζi · ∇(ηερ∂iv
ε)γδ(η

ε
ρφj∂jv

ε)t,

(110)
where this equality uses the fact that the corrector ζ and the cutoff γδ are constant in space.

The first two terms of (110) are bounded immediately using the definition of the cutoff ηερ
from (87) and (88), which yields∣∣∣∣∣

ˆ
Crε

(ηερ∂iv
ε)tζi · γδ∇w

∣∣∣∣∣ . sup
Crε−ρ

(
1

ρ2
|∇vε|+

∣∣∇3vε
∣∣)ˆ

Crε
γδ |ζ| |∇w| , (111)

where

|ζ| :=

 d∑
i,j=1

|ζij |2
 1

2

.



A LIOUVILLE THEOREM FOR STATIONARY AND ERGODIC ENSEMBLES OF PARABOLIC SYSTEMS 27

Similarly, ∣∣∣∣∣
ˆ
Crε

(ζi · ∇
(
ηερ∂iv

ε
)
)(γδ)tw

∣∣∣∣∣ . sup
Crε−ρ

(
1

ρ
|∇vε|+

∣∣∇2vε
∣∣)ˆ

Crε
|(γδ)t| |ζ| |w| . (112)

It is necessary to analyze the final two terms of (110). For the first of these, using the
equations (81) and (86) satisfied by u and v respectively,

ˆ
Crε

ζi · ∇(ηερ∂iv
ε)γδ(ut − vt) =−

ˆ
Crε

γδζi ·
(
∇2(ηερ∂iv

ε) · a∇u
)

+

ˆ
Crε

γδζi ·
(
∇2(ηερ∂iv

ε) · ahom∇vε
)
.

Therefore, using the uniform ellipticity (4) of a and the uniform ellipticity of ahom from Lemma 2,
after bounding the time derivative of v by the norm of its Hessian matrix,∣∣∣∣∣

ˆ
Crε

ζi · ∇(ηερ∂iv
ε)γδ(ut − vεt)

∣∣∣∣∣ .
sup
Crε−ρ

(
1

ρ2
|∇vε|+ 1

ρ

∣∣∇2vε
∣∣+
∣∣∇3vε

∣∣) ˆ
Crε−ρ

γδ |ζ| (|∇u|+ |∇vε|) . (113)

For the final term of (110),

ˆ
Crε

ζi · ∇(ηερ∂iv
ε)γδ(η

ε
ρφj∂jv

ε)t =

ˆ
Crε

ζi · ∇(ηερ∂iv
ε)γδφj(η

ε
ρ∂jv

ε)t

+

ˆ
Crε

ζi · ∇(ηερ∂iv
ε)γδφj,t(η

ε
ρ∂jv

ε),

and, therefore, using the equation (6) satisfied by the correctors {φi}i∈{1,...,d},

ˆ
Crε

ζi · ∇(ηερ∂iv
ε)γδ(η

ε
ρφj∂jv

ε)t =

ˆ
Crε

ζi · ∇(ηερ∂iv
ε)γδφj(η

ε
ρ∂jv

ε)t

−
ˆ
Crε

γδ∇
(
ζi · ∇(ηερ∂iv

ε)ηερ∂jv
ε
)
· qj ,

for the fluxes {qi}i∈{1,...,d} defined in (10). Hence, after bounding the time derivative of v by its
Hessian matrix,∣∣∣∣∣

ˆ
Crε

ζi · ∇(ηερ∂iv
ε)γδ(η

ε
ρφj∂jv

ε)t

∣∣∣∣∣ .
sup
Crε−ρ

(
|∇vε|

(
1

ρ2
|∇vε|+ 1

ρ

∣∣∇2vε
∣∣+
∣∣∇3vε

∣∣)+

(
1

ρ
|∇vε|+

∣∣∇2vε
∣∣)2
)ˆ
Crε

γδ |ζ| |q|

+ sup
Crε−ρ

((
1

ρ
|∇vε|+

∣∣∇2vε
∣∣)( 1

ρ2
|∇vε|+

∣∣∇3vε
∣∣)) ˆ

Crε
γδ |ζ| |φ| , (114)

where

|q| :=

(
d∑
i=1

|qi|2
) 1

2

.
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Therefore, in view of (82) and (109), it follows from the uniform ellipticity of a, the definition
of γδ, the Poincaré inequality in space, Hölder’s inequality and Young’s inequality that

ˆ
Crε
|(γδ)t|w2 +

ˆ
Crε

γδ∇w · a∇w .ε
ˆ
C1
|∇u|2

+

ˆ
Crε\Crε−2ρ

|∇vε|2

+
1

ρd+4

ˆ
C1

(
|φ|2 + |ψ|2 + |σ|2

)ˆ
C1
|∇u|2

+

∣∣∣∣∣
ˆ
Crε

∂tζi · ∇(ηερ∂iv
ε)γδw

∣∣∣∣∣ .
(115)

For the second term of (115), the choice of the radius rε ∈ (1
2 ,

3
4) satisfying (84) and estimate

(101) for ahom-caloric functions imply that

ˆ
Crε
|∇vε|2 +

∣∣∇2vε
∣∣2 .

ˆ
∂pCrε

∣∣∇tanuε
∣∣2 +

ˆ 0

−r2ε

ˆ
∂Brε

|uεt|
2 .

1

ε2

ˆ
Crε
|∇uε|2 ≤ 1

ε2

ˆ
C1
|∇u|2 .

Therefore, it follows from the Sobolev embedding theorem that

ˆ
Crε\Crε−2ρ

|∇vε|2 .

(ˆ
Crε

χCrε\Crε−2ρ

) 2
d
(ˆ
Crε
|∇vε|

2d
d−2

) d−2
d

≤ ρ
2
d

ε2

ˆ
C1
|∇u|2 ,

where χCrε\Crε−2ρ
is the indicator function of the set (Crε \ Crε−2ρ), and where the argument is

only written for the case d ≥ 3, since the modifications necessary for the cases d = 1 and d = 2
are straightforward and rely only upon the Sobolev embedding theorem.

For the final term of (115), estimates (111), (112), (113) and (114) together with estimates
(82) and (104), where Hölder’s inequality is used for the final term, prove that, since removing
γδ from the final three terms of the right hand side increases their magnitude,

∣∣∣∣∣
ˆ
Crε

∂tζi · ∇(ηερ∂iv
ε)γδw

∣∣∣∣∣ . 1

ρ
d
2

+3

ˆ
Crε

γδ |ζ| |∇w|
(ˆ
C1
|∇u|2

) 1
2

+
1

ρ
d
2

+1

ˆ
Crε
|(γδ)t| |ζ| |w|

(ˆ
C1
|∇u|2

) 1
2

+
1

ρ
d
2

+3

(ˆ
C1
|ζ|2
) 1

2
ˆ
C1
|∇u|2

+
1

ρd+4

(ˆ
C1
|ζ|2
) 1

2
(ˆ
C1
|q|2
) 1

2
ˆ
C1
|∇u|2

+
1

ρd+5

(ˆ
C1
|ζ|2
) 1

2
(ˆ
C1
|φ|2

) 1
2
ˆ
C1
|∇u|2 .

(116)
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Therefore, following an application of Hölder’s inequality and then Young’s inequality, it follows
from (115) and (116) that

ˆ
Crε

γδ∇w · a∇w .ε
ˆ
C1
|∇u|2 +

ρ
2
d

ε2

ˆ
C1
|∇u|2

+
1

ρd+4

ˆ
C1

(
|φ|2 + |ψ|2 + |σ|2

)ˆ
C1
|∇u|2

+

(
1

ρ
d
2

+3

(ˆ
C1
|ζ|2
) 1

2

+
1

ρd+6

ˆ
C1
|ζ|2
)ˆ
C1
|∇u|2

+
1

ρd+4

(ˆ
C1
|ζ|2
) 1

2
(ˆ
C1
|q|2
) 1

2
ˆ
C1
|∇u|2

+
1

ρd+2

ˆ
C1
|(γδ)t| |ζ|2

ˆ
C1
|∇u|2 .

(117)

In view of the construction of γδ from (107), and owing to the distributional convergence
(108), the fact that ζ vanishes at t = 0 thanks to (80) implies, for 〈·〉-a.e. a,

lim
δ→0

ˆ
C1
|(γδ)t| |ζ|2 = 0.

Therefore, after passing to the limit δ → 0 in (117), the construction of γδ in (107) implies that

ˆ
Crε
∇w · a∇w .ε

ˆ
C1
|∇u|2 +

ρ
2
d

ε2

ˆ
C1
|∇u|2

+
1

ρd+4

ˆ
C1

(
|φ|2 + |ψ|2 + |σ|2

) ˆ
C1
|∇u|2

+

(
1

ρ
d
2

+3

(ˆ
C1
|ζ|2
) 1

2

+
1

ρd+6

ˆ
C1
|ζ|2
)ˆ
C1
|∇u|2

+
1

ρd+4

(ˆ
C1
|ζ|2
) 1

2
(ˆ
C1
|q|2
) 1

2
ˆ
C1
|∇u|2 ,

(118)

which completes the proof of (106).
To obtain (118) for an arbitrary radius R > 0, suppose that u is an a-caloric function on BR.

Then, for each ε ∈ (0, R4 ), there exists a radius Rε ∈ (R2 ,
3R
4 ) and a cutoff function ηRερ with

0 ≤ ηRερ ≤ 1 and such that

ηRερ (x, t) =

{
1 if (x, t) ∈ CRε−2ρRε

0 if (x, t) ∈ (Rd × (−∞, 0)) \ CRε−ρRε ,
(119)

which, for the ahom-caloric extension vε of uε into CRε , define the corresponding augmented
homogenization error

w = u− (1 + ηRερ φi∂i)v
ε.

Then, for each ε ∈ (0, R4 ), after performing the rescalings

(w̃, ũ, ṽε, q̃)(·, ·) =
1

Rε
(w, u, vε, q)(Rε·, R2

ε ·),

it follows using equations (6), (18), (19) and (21) that the correctors rescale according to the
rules

(φ̃, ψ̃, σ̃) =
1

Rε
(φ, ψ, σ)(Rε·, R2

ε ·) and ζ̃(·) =
1

R2
ε

ζ(R2
ε ·).
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Hence, after applying (118) and returning to the original scaling, it follows that, for each
ε ∈ (0, R4 ) and ρ ∈ (0, 1

8),

 
CRε
∇w · a∇w .ε

 
CR
|∇u|2 +

ρ
2
d

ε2

 
CR
|∇u|2

+
1

R2ρd+4

 
CR

(
|φ|2 + |ψ|2 + |σ|2

) 
CR
|∇u|2

+

(
1

R2ρ
d
2

+3

(ˆ
CR
|ζ|2
) 1

2

+
1

R4ρd+6

ˆ
CR
|ζ|2
)ˆ
CR
|∇u|2

+
1

R2ρd+4

( 
CR
|ζ|2
) 1

2
( 
CR
|q|2
) 1

2
 
CR
|∇u|2 ,

(120)

which is the general form of the energy estimate that will be used in the proof of excess decay
to follow.

5.5. The proof of excess decay. The energy estimate will now be used to prove the excess
decay of Proposition 4. Fix R > 0 and suppose that u is an a-caloric function CR. Then, for
each ε ∈ (0, R4 ) and ρ ∈ (0, 1

8), choose a radius Rε ∈ (R2 ,
3R
4 ) and a cutoff ηRερ such that, for the

ahom-caloric extension vε of uε into CRε , the conclusion of (120) is satisfied for the augmented
homogenization error w defined by

w = u− (1 + ηRερ φi∂i)v
ε in CRε . (121)

The proof of excess decay will now proceed in four steps.
Step 1. In the first step of the proof, it will be shown that, for any δ > 0, there exists

C2 = C2(d, λ, δ) > 0 such that, whenever, for each i ∈ {1, . . . , d},( 
CR
|qi|2

) 1
2

≤ 2
〈
|qi|2

〉 1
2
, (122)

and

1

R

( 
CR
|φi|2 + |ψi|2 + |σi|2

) 1
2

+
1

R2

( 
CR
|ζi|2

) 1
2

≤ 1

C2
, (123)

then  
CRε
∇w · a∇w . δ

 
CR
∇u · a∇u. (124)

The proof is a simple consequence of estimate (120) and the definition (121).
Fix δ > 0. Then, assuming that (122) and (123) are satisfied for some C2 > 0 to be fixed

later, estimate (118), the choice (121) and the uniform ellipticity of a imply that

 
CR1

∇w · a∇w .(
ε+

ρ
2
d

ε2
+

1

C2
2ρ

d+4
+

1

C2ρ
d
2

+3
+

1

C2
2ρ

d+6
+

1

C2ρd+4

〈
|q|2
〉 1

2

) 
CR1

∇u · a∇u.

Therefore, first choose ε0 ∈ (0, 1
4) satisfying

ε0 <
1

3
δ.

Then, choose ρ0 ∈ (0, 1
8) sufficiently small so as to guarantee that

ρ
2
d

ε20
<

1

3
δ.
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Finally, fix C2 > 0 large enough to ensure that 1

C2
2ρ

d+4
0

+
1

C2ρ
d
2

+3

0

+
1

C2
2ρ

d+6
0

+
1

C2ρ
d+4
0

〈∣∣q2
∣∣〉 1

2

 <
δ

3
.

Then, it follows that, for this choice of ε0, ρ0 and C2, 
CRε0

∇w · a∇w . δ

 
CR
∇u · a∇u,

which proves (124).
In particular, since ρ0 ∈ (0, 1

8) and Rε0 ∈ (R2 ,
3R
4 ), using the definition (119) of the cutoff

η
Rε0
ρ0 , it follows that

w = u− (1 + φi∂i)v
ε0 on CR

4
. (125)

Therefore, since Rε0 ∈ (R2 ,
3R
4 ), it follows from (124) and (125) that, for any δ > 0 there exists

C2 = C2(d, λ) > 0 such that, whenever (123) and (124) are satisfied, for each r ∈ (0, R4 ],
 
Cr

(∇u−∇vε0 −∇(φi∂iv
ε0)) · a(∇u−∇vε0 −∇(φi∂iv

ε0)) . δ

(
R

r

)d+2  
CR
∇u · a∇u. (126)

This completes the first step of the proof.
Step 2. The second step will show that the left hand side of (126) is a good approximation

for the excess by using the interior regularity of ahom-caloric functions and the Caccioppoli
inequality. To simplify the notation in what follows, define

v := vε0 in CRε0 .
Then, form the decomposition

∇u−∇v−∇(φi∂iv) = ∇u−∇v(0, 0)(Id +∇φ) + (∇v(0, 0)−∇v) (Id +∇φ)−φi∇(∂iv), (127)

where Id denotes the (d× d)-identity matrix and, for each i, j ∈ {1, . . . , d},
(∇φ)ij := ∂jφi.

After fixing ξ0 = ∇v(0, 0), use (127), the triangle inequality and Young’s inequality to prove
that, in Cr for any r ∈ (0, R4 ],

|∇u− ξ0 −∇φξ0 |
2 . |∇w|2 + sup

Cr
(|∇v −∇v(0, 0)|)2 |I +∇φ|2 + sup

Cr
(|∇(∂iv)|)2 |φi|2 . (128)

Estimate (104) implies that, after bounding the time derivative of v by the norm of its Hessian
matrix, and using the uniform ellipticity of a and the choice Rε0 ∈ (R2 ,

3R
4 ), for each r ∈ (0, R4 ],

sup
Cr

(|∇v −∇v(0, 0)|) . sup
Cr

(
r
∣∣∇2v

∣∣+ r2
∣∣∇3v

∣∣)2
.
( r
R

)2
sup
CR

4

(
R

4

∣∣∇2v
∣∣+

(
R

4

)2 ∣∣∇3v
∣∣)2

.
( r
R

)2
 
CR
∇u · a∇u. (129)

Similarly, for each i ∈ {1, . . . , d}, using estimate (104), the uniform ellipticity of a and Rε0 ∈
(R2 ,

3R
4 ), it follows that, for each r ∈ (0, R4 ],

sup
Cr

(|∇(∂iv)|)2 . sup
CR

4

(|∇(∂iv)|)2 .
1

R2

 
CR
∇u · a∇u. (130)

Finally, since for each i ∈ {1, . . . , d} the a-caloric coordinate (xi + φi) satisfies

∂t(xi + φi) = ∇ · a∇(xi + φi) in Rd+1,

the Caccioppoli inequality (27) implies that, for each r ∈ (0, R4 ], 
Cr
|ei +∇φi|2 .

1

(2r)2

 
C2r
|φi|2 +

1

(2r)2

 
C2r

x2
i .

1

(2r)2

 
C2r
|φi|2 + 1. (131)
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Therefore, returning to (128), estimates (129), (130) and (131), with the uniform ellipticity of
a and the choice Rε0 ∈ (R2 ,

3R
4 ), imply that, for each r ∈ (0, R4 ],

 
Cr

(∇u− ξ0 −∇φξ0) · a(∇u− ξ0 −∇φξ0) .

(
R

r

)d+2  
CRε0

∇w · a∇w

+
( r
R

)2
(

1

(2r)2

 
C2r
|φi|2 + 1

)  
CR
∇u · a∇u.

(132)

This completes the second step.
Step 3. In the third step, inequality (132) will be combined with (124) to prove the excess

decay along a subsequence. Namely, for every α ∈ (0, 1), it will be shown that there exists
C0 = C0(d, λ, α) > 0 and θ0 = θ0(α, d, λ) ∈ (0, 1

4) such that, if r1 = θ0R and if, for each
r ∈ [r1, R], ( 

Cr
|qi|2

) 1
2

≤ 2
〈
|qi|2

〉 1
2
, (133)

and

1

r

( 
Cr
|φi|2 + |ψi|2 + |σi|2

) 1
2

+
1

r2

( 
Cr
|ζi|2

) 1
2

≤ 1

C0
, (134)

then

Exc (u; r1) ≤
(r1

R

)2α
Exc(u;R). (135)

Notice that the inequality appearing in (135) is exact.
Let δ > 0 be arbitrary. In view of (124), there exists C2 = C2(δ, d, λ) ≥ 1 such that, whenever

(133) and (134) are satisfied for the constant C2, then, since Rε0 ∈ (R2 ,
3R
4 ), 

CRε0

∇w · a∇w . δ

 
CR
∇u · a∇u.

Therefore, it follows from inequality (132) and (134) that, for C3 = C3(d, λ) > 0, since Rε0 ∈
(R2 ,

3R
4 ),

 
Cr1

(∇u− ξ0 −∇φξ0) · a(∇u− ξ0 −∇φξ0) ≤ C3

(
δ

(
R

r1

)d+2

+
(r1

R

)2
) 
CR
∇u · a∇u. (136)

Choose θ0 ∈ (0, 1
4) sufficiently small so as to guarantee

C3θ
2
0 ≤

1

2
θ2α

0 , (137)

which is possible because α ∈ (0, 1), and choose δ0 > 0 sufficiently small so as to guarantee

C3δ0θ
−(d+2)
0 ≤ 1

2
θ2α

0 . (138)

It is then immediate from (136) that, by choosing θ0 as in (137) and choosing C0 :=
C2(δ0, d, λ) for δ0 defined in (138), whenever (133) and (134) are satisfied for the constant
C0 and r1 = θ0R, 
Cr1

(∇u− ξ0 −∇φξ0) · a(∇u− ξ0 −∇φξ0) ≤ θ2α
0

 
CR
∇u · a∇u =

(r1

R

)2α
 
CR
∇u · a∇u. (139)

Since the excess is defined, for each R > 0, by

Exc(u;R) = inf
ξ∈Rd

 
CR

(∇u− ξ −∇φξ) · a(∇u− ξ −∇φξ),

inequality (139) implies that

Exc(u; r1) ≤
(r1

R

)2α
 
CR
∇u · a∇u. (140)
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However, because the left hand side of inequality (140) is invariant with respect to the addition
of an arbitrary a-caloric gradient (ξ +∇φξ) in the sense that, with (140), for every ξ ∈ Rd,

Exc(u; r1) = Exc(u− (ξ · x+ φξ); r1) ≤
(r1

R

)2α
 
CR

(∇u− ξ −∇φξ) · a∇(u− ξ −∇φξ), (141)

taking an infimum on the right hand side with respect to ξ ∈ Rd yields

Exc(u; r1) ≤
(r1

R

)2α
Exc(u;R), (142)

which completes the proof of (135), and the argument’s third step.
Step 4. The final step completes the proof using (142) and an iteration argument. Fix

r1 < R such that, for C0 > 0 defined following (138), both (133) and (134) are satisfied for the
constant C0 for every r ∈ [r1, R]. It will be shown that, in this case,

Exc(u; r) .
( r
R

)2α
Exc(u;R). (143)

Fix θ0 as defined in (134). If r ≥ Rθ0, then using the definition of the excess, for C = C(θ0) > 0,

Exc(u; r) ≤
(
R

r

)d
Exc(u;R) =

(
R

r

)d+2α ( r
R

)2α
Exc(u;R)

≤ θ−(d+2α)
0

( r
R

)2α
Exc(u;R) ≤ C

( r
R

)2α
Exc(u;R). (144)

If r < θ0R, then let n be the unique positive integer satisfying θn−1
0 R ≤ r < θn0R. Proceeding

inductively, and relying upon the fact that (142) obtains an exact inequality, for constants
C = C(θ0) > 0 which can change between inequalities,

Exc(u; r) ≤ CExc(u; θn0R) ≤ C(θn0 )2αExc(u;R) =

Cθ2α
0 (θn−1

0 )2αExc(u;R) ≤ C
( r
R

)2α
Exc(u;R). (145)

In combination, (144) and (145) prove (143) and complete the proof of Proposition 4.

6. The proof of Lemma 5

Fix a coefficient field a satisfying (4). Fix R > 0 and suppose that u is a distributional
solution of

ut = ∇ · a∇u in CR. (146)

Let c ∈ R and ρ ∈ (0, R2 ) be arbitrary. The Caccioppoli inequality is obtained by testing

equation (146) with η2(u− c) for an appropriately chosen cutoff function η.
Precisely, fix η ∈ C∞c (Rd+1) satisfying 0 ≤ η ≤ 1 and, for x ∈ Rd and t ∈ R,

η(x, t) =

{
1 if (x, t) ∈ BR−ρ × [ρ2 −R2, 0]
0 if (x, t) ∈ Rd+1 \ CR.

Furthermore, choose η satisfying

|ηt| .
1

ρ2
and |∇η| . 1

ρ
on Rd+1.

Test equation (146) against η2(u− c) and use the the definition of η and the identity

∇(η2(u− c)) · a∇u = η2∇u · a∇u+ 2η(u− c)∇η · a∇u
to obtain ˆ

CR
η2∇u · a∇u .

1

2

ˆ
CR

(u− c)2∂tη +

ˆ
CR
η |(u− c)| |∇η| |∇u| .

Therefore, following applications of Hölder’s inequality and Young’s inequality, and after using
definition of η and the uniform ellipticity of a, it follows thatˆ

CR−ρ

|∇u|2 .
1

ρ2

ˆ
CR\CR−ρ

(u− c)2,



34 PETER BELLA, ALBERTO CHIARINI, AND BENJAMIN FEHRMAN

which completes the proof.
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