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Abstract

We consider the problem of quantifying the information shared by a pair of random variables X1, X2 about

another variable S. We propose a new measure of shared information, called extractable shared information, that is

left monotonic; that is, the information shared about S is bounded from below by the information shared about f(S)

for any function f . We show that our measure leads to a new nonnegative decomposition of the mutual informa-

tion I(S;X1X2) into shared, complementary and unique components. We study properties of this decomposition and

show that a left monotonic shared information is not compatible with a Blackwell interpretation of unique information.

We also discuss whether it is possible to have a decomposition in which both shared and unique information are left

monotonic.

Keywords: Information decomposition; multivariate mutual information; left monotonicity; Blackwell order

I. INTRODUCTION

A series of recent papers have focused on the bivariate information decomposition problem [1]–[6]. Consider

three random variables S, X1, X2 with finite alphabets S, X1 and X2, respectively. The total information that the

pair (X1, X2) convey about the target S can have aspects of shared or redundant information (conveyed by both

X1 and X2), of unique information (conveyed exclusively by either X1 or X2), and of complementary or synergistic

information (retrievable only from the the joint variable (X1, X2)). In general, all three kinds of information may

be present concurrently. One would like to express this by decomposing the mutual information I(S;X1X2) into

a sum of nonnegative components with a well-defined operational interpretation. One possible application area is

in the neurosciences. In [7], it is argued that such a decomposition can provide a framework to analyze neural

information processing using information theory that can integrate and go beyond previous attempts.

For the general case of k finite source variables (X1, . . . , Xk), Williams and Beer [3] proposed the partial

information lattice framework that specifies how the total information about the target S is shared across the singleton

sources and their disjoint or overlapping coalitions. The lattice is a consequence of certain natural properties of
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shared information (sometimes called the Williams–Beer axioms). In the bivariate case (k = 2), the decomposition

has the form

I(S;X1X2) = SI(S;X1, X2)︸ ︷︷ ︸
shared

+CI(S;X1, X2)︸ ︷︷ ︸
complementary

+UI(S;X1\X2)︸ ︷︷ ︸
unique (X1 wrt X2)

+UI(S;X2\X1)︸ ︷︷ ︸
unique (X2 wrt X1)

, (1)

I(S;X1) = SI(S;X1, X2) + UI(S;X1\X2), (2)

I(S;X2) = SI(S;X1, X2) + UI(S;X2\X1), (3)

where SI(S;X1, X2), UI(S;X1\X2), UI(S;X2\X1), and CI(S;X1, X2) are nonnegative functions that depend

continuously on the joint distribution of (S,X1, X2). The difference between shared and complementary informa-

tion is the familiar co-information [8] (or interaction information [9]), a symmetric generalization of the mutual

information for three variables,

CoI(S;X1, X2) = I(S;X1)− I(S;X1|X2) = SI(S;X1, X2)− CI(S;X1, X2).

Equations (1) to (3) leave only a single degree of freedom, i.e., it suffices to specify either a measure for SI , for

CI or for UI .

Williams and Beer not only introduced the general partial information framework, but also proposed a measure of

SI to fill this framework. While their measure has subsequently been criticized for “not measuring the right thing”

[4]–[6], there has been no successful attempt to find better measures, except for the bivariate case (k = 2) [1],

[4]. One problem seems to be the lack of a clear consensus on what an ideal measure of shared (or unique or

complementary) information should look like and what properties it should satisfy. In particular, the Williams–Beer

axioms only put crude bounds on the values of the functions SI , UI and CI . Therefore, additional axioms have

been proposed by various authors [4]–[6]. Unfortunately, some of these properties contradict each other [5], and

the question for the right axiomatic characterization is still open.

The Williams–Beer axioms do not say anything about what should happen when the target variable S undergoes

a local transformation. In this context, the following left monotonicity property was proposed in [5]:

(LM) SI(S;X1, X2) ≥ SI(f(S);X1, X2) for any function f . (left monotonicity)

Left monotonicity for unique or complementary information can be defined similarly. The property captures the

intuition that shared information should only decrease if the target performs some local operation (e.g., coarse

graining) on her variable S. As argued in [2], left monotonicity of shared and unique information are indeed desirable

properties. Unfortunately, none of the measures of shared information proposed so far satisfy left monotonicity.

In this contribution, we study a construction that enforces left monotonicity. Namely, given a measure of shared

information SI , define

SI(S;X1, X2) := sup
f :S→S′

SI(f(S);X1, X2), (4)

where the supremum runs over all functions f : S → S ′ from the domain of S to an arbitrary finite set S ′. By

construction, SI satisfies left monotonicity, and SI is the smallest function bounded from below by SI that satisfies

left monotonicity.
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Changing the definition of shared information in the information decomposition framework Equations (1)–(3)

leads to new definitions of unique and complementary information:

UI
∗
(S;X1\X2) := I(S;X1)− SI(S;X1, X2),

UI
∗
(S;X2\X1) := I(S;X2)− SI(S;X1, X2),

CI
∗
(S;X1, X2) := I(S;X1X2)− SI(S;X1, X2)− UI

∗
(S;X1\X2)− UI

∗
(S;X2\X1).

In general, UI
∗
(S;X1 \X2) 6= UI(S;X1 \X2) := supf :S→S′ UI(f(S);X1 \X2). Thus, our construction cannot

enforce left monotonicity for both UI and SI in parallel.

Lemma 2 shows that SI , UI
∗

and CI
∗

are nonnegative and thus define a nonnegative bivariate decomposition.

We study this decomposition in Section IV. In Theorem 1, we show that our construction is not compatible with a

decision-theoretic interpretation of unique information proposed in [1]. In Section V, we ask whether it is possible

to find an information decomposition in which both shared and unique information measures are left monotonic. Our

construction cannot directly be generalized to ensure left monotonicity of two functions simultaneously. Nevertheless,

it is possible that such a decomposition exists, and in Proposition 5, we prove bounds on the corresponding shared

information measure.

Our original motivation for the definition of SI was to find a bivariate decomposition in which the shared

information satisfies left monotonicity. However, one could also ask whether left monotonicity is a required property

of shared information, as put forward in [2]. In contrast, [4] argue that redundancy can also arise by means of a

mechanism. Applying a function to S corresponds to such a mechanism that singles out a certain aspect from S.

Even if all the Xi share nothing about the whole S, they might still share information about this aspect of S,

which means that the shared information will increase. With this intuition, we can interpret SI not as an improved

measure of shared information, but as a measure of extractable shared information, because it asks for the maximal

amount of shared information that can be extracted from S by further processing S by a local mechanism. More

generally, one can apply a similar construction to arbitrary information measures. We explore this idea in Section III

and discuss probabilistic generalizations and relations to other information measures. In Section VI, we apply our

construction to existing measures of shared information.

II. PROPERTIES OF INFORMATION DECOMPOSITIONS

A. The Williams–Beer Axioms

Although we are mostly concerned with the case k = 2, let us first recall the three axioms that Williams and

Beer [3] proposed for a measure of shared information for arbitrarily many arguments:

(S) SI(S;X1, . . . , Xk) is symmetric under permutations of X1, . . . , Xk, (Symmetry)

(SR) SI(S;X1) = I(S;X1), (Self-redundancy)

(M) SI(S;X1, . . . , Xk−1, Xk) ≤ SI(S;X1, . . . , Xk−1),

with equality if Xi = f(Xk) for some i < k and some function f . (Monotonicity)

Any measure of SI satisfying these axioms is nonnegative. Moreover, the axioms imply the following:
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(RM) SI(S;X1, . . . , Xk) ≥ SI(S; f1(X1), . . . , fk(Xk)) for all functions f1, . . . , fk. (right monotonicity)

Williams and Beer also defined a function

Imin(S;X1, . . . , Xk) =
∑
s

PS(s) min
i

{∑
xi

PXi|S(xi|s) log
PS|Xi

(s|xi)

PS(s)

}
(5)

and showed that Imin satisfies their axioms.

B. The COPY example and the Identity Axiom

Let X1, X2 be independent uniformly distributed binary random variables, and consider the copy function

COPY(X1, X2) := (X1, X2). One point of criticism of Imin is the fact that X1 and X2 share Imin(COPY(X1, X2);X1, X2) =

1 bit about COPY(X1, X2) according to Imin, even though they are independent. [4] argue that the shared information

about the copied pair should equal the mutual information:

(Id) SI(COPY(X1, X2);X1, X2) = I(X1;X2). (Identity)

Ref. [4] also proposed a bivariate measure of shared information that satisfies (Id). Similarly, the measures of

bivariate shared information proposed in [1] satisfies (Id). However, (Id) is incompatible with a nonnegative

information decomposition according to the Williams–Beer axioms for k ≥ 3 [2].

On the other hand, Ref. [5] uses an example from game theory to give an intuitive explanation how even

independent variables X1 and X2 can have nontrivial shared information. However, in any case the value of 1 bit

assigned by Imin is deemed to be too large.

C. The Blackwell property and property (∗)

One of the reasons that it is so difficult to find good definitions of shared, unique or synergistic information

is that a clear operational idea behind these notions is missing. Starting from an operational idea about decision

problems, Ref. [1] proposed the following property for the unique information, which we now propose to call

Blackwell property:

(BP) For a given joint distribution PSX1X2
, UI(S;X1\X2) vanishes if and only if there exists a random variable

X ′1 such that S −X2 −X ′1 is a Markov chain and PSX′
1

= PSX1
. (Blackwell property)

In other words, the channel S → X1 is a garbling or degradation of the channel S → X2. Blackwell’s theorem [10]

implies that this garbling property is equivalent to the fact that any decision problem in which the task is to predict S

can be solved just as well with the knowledge of X2 as with the knowledge of X1. We refer to Section 2 in [1]

for the details.

Ref. [1] also proposed the following property:

(∗) SI and UI depend only on the marginal distributions PSX1 and PSX2 of the pairs (S,X1) and (S,X2).

This property was in part motivated by (BP), which also depends only on the channels S → X1 and S → X2 and

thus on PSX1 and PSX2 . Most information decompositions proposed so far satisfy property (∗).
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III. EXTRACTABLE INFORMATION MEASURES

One can interpret SI as a measure of extractable shared information. We explain this idea in a more general

setting.

For fixed k, let IM(S;X1, . . . , Xk) be an arbitrary information measure that measures one aspect of the

information that X1, . . . , Xk contain about S. At this point, we do not specify what precisely an information

measure is, except that it is a function that assigns a real number to any joint distributions of S,X1, . . . , Xk. The

notation is, of course, suggestive of the fact that we mostly think about one of the measures SI , UI or CI , in

which the first argument plays a special role. However, IM could also be the mutual information I(S;X1), the

entropy H(S), or the coinformation CoI(S;X1, X2). We define the corresponding extractable information measure

as

IM(S;X1, . . . , Xk) := sup
f

IM(f(S);X1, . . . , Xk), (6)

where the supremum runs over all functions f : S 7→ S ′ from the domain of S to an arbitrary finite set S ′. The

intuition is that IM is the maximal possible amount of IM one can “extract” from (X1, . . . , Xk) by transforming S.

Clearly, the precise interpretation depends on the interpretation of IM .

This construction has the following general properties:

1) Most information measures satisfy IM(O;X1, . . . , Xk) = 0 when O is a constant random variable. Thus, in

this case, IM(S;X1, . . . , Xk) ≥ 0. Thus, for example, even though the coinformation can be negative, the

extractable coinformation is never negative.

2) Suppose that IM satisfies left monotonicity. Then, IM = IM . For example, entropy H and mutual information

I satisfy left monotonicity, and so H = H and I = I . Similarly, as shown in [2], the measure of unique

information ŨI defined in [1] satisfies left monotonicity, and so ŨI = ŨI .

3) In fact, IM is the smallest left monotonic information measure that is at least as large as IM .

The next result shows that our construction preserves monotonicity properties of the other arguments of IM .

It follows that, by iterating this construction, one can construct an information measure that is monotonic in all

arguments.

Lemma 1. Let f1, . . . , fk be fixed functions. If IM satisfies IM(S; f1(X1), . . . , fk(Xk)) ≤ IM(S;X1, . . . , Xk)

for all S, then IM(S; f1(X1), . . . , fk(Xk)) ≤ IM(S;X1, . . . , Xk) for all S.

Proof. Let f∗ = arg maxf

{
IM(f(S); f1(X1), . . . , fk(Xk))

}
. Then,

IM(S; f1(X1), . . . , fk(Xk)) = IM(f∗(S); f1(X1), . . . , fk(Xk))

(a)
≤ IM(f∗(S);X1, . . . , Xk) ≤ sup

f
IM(f(S);X1, . . . , Xk) = IM(S;X1, . . . , Xk),

where (a) follows from the assumptions.
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As a generalization to the construction, instead of looking at “deterministic extractability,” one can also look at

“probabilistic extractability” and replace f by a stochastic matrix. This leads to the definition

IM(S;X1, . . . , Xk) := sup
PS′|S

IM(S′;X1, . . . , Xk), (7)

where the supremum now runs over all random variables S′ that are independent of X1, . . . , Xk given S. The

function IM is the smallest function bounded from below by IM that satisfies

(PLM) IM(S;X1, X2) ≥ IM(S′;X1, X2) whenever S′ is independent of X1, X2 given S.

(probabilistic left monotonicity)

An example of this construction is the intrinsic conditional information I(X;Y ↓ Z) := minPZ′|Z I(X;Y |Z ′),

which was defined in [11] to study the secret-key rate, which is the maximal rate at which a secret can be generated

by two agents knowing X or Y , respectively, such that a third agent who knows Z has arbitrarily small information

about this key. The min instead of the max in the definition implies that I(X;Y ↓ Z) is “anti-monotone” in Z.

In this paper, we restrict ourselves to the deterministic notions, since many of the properties we want to discuss

can already be explained using deterministic extractability. Moreover, the optimization problem (6) is a finite

optimization problem and thus much easier to solve than Equation (7).

IV. EXTRACTABLE SHARED INFORMATION

We now specialize to the case of shared information. The first result is that when we apply our construction to

a measure of shared information that belongs to a bivariate information decomposition, we again obtain a bivariate

information decomposition.

Lemma 2. Suppose that SI is a measure of shared information, coming from a nonnegative bivariate information

decomposition (satisfying Equations (1) to (3)). Then, SI defines a nonnegative information decomposition; that is,

the derived functions

UI
∗
(S;X1\X2) := I(S;X1)− SI(S;X1, X2),

UI
∗
(S;X2\X1) := I(S;X2)− SI(S;X1, X2),

and CI
∗
(S;X1, X2) := I(S;X1X2)− SI(S;X1, X2)− UI

∗
(S;X1\X2)− UI

∗
(S;X2\X1)

are nonnegative. These quantities relate to the original decomposition by

a) SI(S;X1, X2) ≥ SI(S;X1, X2),

b) CI
∗
(S;X1, X2) ≥ CI(S;X1, X2),

c) UI(f∗(S);X1\X2) ≤ UI
∗
(S;X1\X2) ≤ UI(S;X1\X2),

where f∗ is a function that achieves the supremum in Equation (4).
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Proof.

a) SI(S;X1, X2) ≥ SI(S;X1, X2) ≥ 0,

b) CI
∗
(S;X1, X2) = SI(S;X1, X2)− CoI(S;X1, X2) ≥ SI(S;X1, X2)− CoI(S;X1, X2)

≥ CI(S;X1, X2) ≥ 0,

c) UI
∗
(S;X1\X2) = I(S;X1)− SI(S;X1, X2) ≤ I(S;X1)− SI(S;X1, X2) = UI(S;X1\X2),

UI
∗
(S;X1\X2) = I(S;X1)− SI(S;X1, X2) ≥ I(f∗(S);X1)− SI(f∗(S);X1, X2)

= UI(f∗(S);X1\X2) ≥ 0,

where we have used the data processing inequality.

Lemma 3. 1) If SI satisfies (∗), then SI also satisfies (∗).

2) If SI is right monotonic, then SI is also right monotonic.

Proof. (1) is direct, and (2) follows from Lemma 1.

Without further assumptions on SI , we cannot say much about when SI vanishes. However, the condition that

UI
∗

vanishes has strong consequences.

Lemma 4. Suppose that UI
∗
(S;X1\X2) vanishes, and let f∗ be a function that achieves the supremum in

Equation (4). Then, there is a Markov chain X1 — f∗(S) — S. Moreover, UI(f∗(S);X1\X2) = 0.

Proof. Suppose that UI
∗
(S;X1\X2) = 0. Then, I(S;X1) = SI(S;X1, X2) = SI(f∗(S);X1, X2) ≤ I(f∗(S);X1) ≤

I(S;X1). Thus, the data processing inequality holds with equality. This implies that X1 − f∗(S)− S is a Markov

chain. The identity UI(f∗(S);X1\X2) = 0 follows from the same chain of inequalities.

Theorem 1. If UI has the Blackwell property, then UI
∗

does not have the Blackwell property.

Proof. As shown in the example in the appendix, there exist random variables S, X1, X2 and a function f that

satisfy

1) S and X1 are independent given f(S).

2) The channel f(S)→ X1 is a garbling of the channel f(S)→ X2.

3) The channel S → X1 is not a garbling of the channel S → X2.

We claim that f solves the optimization problem (4). Indeed, for an arbitrary function f ′,

SI(f ′(S);X1, X2) ≤ I(f ′(S);X1) ≤ I(S;X1) = I(f(S);X1) = SI(f(S);X1, X2).

Thus, f solves the maximization problem (4).
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If UI satisfies the Blackwell property, then (2) and (3) imply UI(f(S);X1\X2) = 0 and UI(S;X1\X2) > 0.

On the other hand,

UI
∗
(S;X1 \X2) = I(S;X1)− SI(S;X1, X2) = I(S;X1)− SI(f(S);X1, X2)

= I(S;X1)− I(f(S);X1) + UI(f(S);X1\X2) = 0.

Thus, UI
∗

does not satisfy the Blackwell property.

Corollary 2. There is no bivariate information decomposition in which UI satisfies the Blackwell property and SI

satisfies left monotonicity.

Proof. If SI satisfies left monotonicity, then SI = SI . Thus, UI = UI
∗

cannot satisfy the Blackwell property by

Theorem 1.

V. LEFT MONOTONIC INFORMATION DECOMPOSITIONS

Is it possible to have an extractable information decomposition? More precisely, is it possible to have an

information decomposition in which all information measures are left monotonic? The obvious strategy of starting

with an arbitrary information decomposition and replacing each partial information measure by its extractable

analogue does not work, since this would mean increasing all partial information measures (unless they are

extractable already), but then their sum would also increase. For example, in the bivariate case, when SI is replaced

by a larger function SI , then UI needs to be replaced by a smaller function, due to the constraints (2) and (3).

As argued in [2], it is intuitive that UI be left monotonic. As argued above (and in [5]), it is also desirable that

SI be left monotonic. The intuition for synergy is much less clear. In the following, we restrict our focus to the

bivariate case and study the implications of requiring both SI and UI to be left monotonic. Proposition 5 gives

bounds on the corresponding SI measure.

Proposition 5. Suppose that SI , UI and CI define a bivariate information decomposition, and suppose that SI

and UI are left monotonic. Then,

SI(f(X1, X2);X1, X2) ≤ I(X1;X2) (8)

for any function f .

Before proving the proposition, let us make some remarks. Inequality (8) is related to the identity axiom. Indeed, it

is easy to derive Inequality (8) from the identity axiom and from the assumption that SI is left monotonic. Although

Inequality (8) may not seem counterintuitive at first sight, none of the information decompositions proposed so far

satisfy this property (the function If from [12] satisfies left monotonicity and has been proposed as a measure of

shared information, but it does not lead to a nonnegative information decomposition).
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Proof. If SI is left monotonic, then

SI(f(X1, X2);X1, X2) ≤ SI(COPY(X1, X2);X1, X2)

= I(COPY(X1, X2);X1)− UI(COPY(X1, X2);X1\X2).

If UI is left monotonic, then

UI(COPY(X1, X2);X1\X2) ≥ UI(X1;X1\X2) = I(X1;X1)− SI(X1;X1, X2).

Note that I(X1;X1) = H(X1) = I(COPY(X1, X2);X1) and

SI(X1;X1, X2) = I(X1;X2)− UI(X1;X2\X1) = I(X1;X2).

Putting these inequalities together, we obtain SI(f(X1, X2);X1, X2) ≤ I(X1;X2).

VI. EXAMPLES

In this section, we apply our construction to Williams and Beer’s measure, Imin [3], and to the bivariate measure

of shared information, S̃I , proposed in [1].

First, we make some remarks on how to compute the extractable information measure (under the assumption that

one knows how to compute the underlying information measure itself). The optimization problem (4) is a discrete

optimization problem. The search space is the set of functions from the support S of S to some finite set S ′. For

the information measures that we have in mind, we may restrict to surjective functions f , since the information

measures only depend on events with positive probabilities. Thus, we may restrict to sets S ′ with |S ′| ≤ |S|.

Moreover, the information measures are invariant under permutations of the alphabet S. Therefore, the only thing

that matters about f is which elements from S are mapped to the same element in S ′. Thus, any function f : S → S ′

corresponds to a partition of S, where s, s′ ∈ S belong to the same block if and only if f(s) = f(s′), and it suffices

to look at all such partitions. The number of partitions of a finite set S is the Bell number B|S|.

The Bell numbers increase super-exponentially, and for larger sets S, the search space of the optimization

problem (4) becomes quite large. For smaller problems, enumerating all partitions in order to find the maximum

is still feasible. For larger problems, one would need a better understanding about the optimization problem. For

reference, some Bell numbers include:

n 3 4 6 10

Bn 5 15 203 115975
.

As always, symmetries may help, and so in the COPY example discussed below, where |S| = 4, it suffices to study

six functions instead of B4 = 15.

We now compare the measure Imin, an extractable version of Williams and Beer’s measure Imin (see Equation (5)

above), to the measure S̃I , an extractable version of the measure S̃I proposed in [1]. For the latter, we briefly

recall the definitions. Let ∆ be the set of all joint distributions of random variables (S,X1, X2) with given state
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TABLE I

Shared information about f(X1, X2) for various functions f (in bits).

f Imin Imin S̃I S̃I

COPY 1 1 0 1/2

AND/OR 3/4 log 4/3 3/4 log 4/3 3/4 log 4/3 3/4 log 4/3

XOR 0 0 0 0

SUM 1/2 1/2 1/2 1/2

X1 0 0 0 0

f1 1/2 1/2 0 0

spaces S , X1, X2. Fix P = PSX1X2
∈ ∆. Define ∆P as the set of all distributions QSX1X2

that preserves the

marginals of the pairs (S,X1) and (S,X2), that is,

∆P
..=
{
QSX1X2 ∈ ∆ : QSX1 = PSX1 , QSX2 = PSX2 ,∀ (S,X1, X2) ∈ ∆

}
.

Then, define the functions

ŨI(S;X1\X2) ..= min
Q∈∆P

IQ(S;X1|X2),

ŨI(S;X2\X1) ..= min
Q∈∆P

IQ(S;X2|X1),

S̃I(S;X1, X2) ..= max
Q∈∆P

CoIQ(S;X1, X2),

C̃I(S;X1, X2) ..= I(S;X1X2)− min
Q∈∆P

IQ(S;X1X2),

where the index Q in IQ or CoIQ indicates that the corresponding quantity is computed with respect to the joint

distribution Q. The decomposition corresponding to S̃I satisfies the Blackwell property and the identity axiom [1].

ŨI is left monotonic, but S̃I is not [2]. In particular, S̃I 6= S̃I . S̃I can be characterized as the smallest measure

of shared information that satisfies property (∗). Therefore, S̃I is the smallest left monotonic measure of shared

information that satisfies property (∗).

Let X1 = X2 = {0, 1} and let X1, X2 be independent uniformly distributed random variables. Table I collects

values of shared information about f(X1, X2) for various functions f (in bits). The function f1 : {00, 01, 10, 11} →

{0, 1, 2} is defined as

f1(X1, X2) :=

X1, if X2 = 1,

2, if X2 = 0.

The SUM function is defined as f(X1, X2) := X1 +X2. Table I contains (up to symmetry) all possible non-trivial

functions f . The values for the extractable measures are derived from the values of the corresponding non-extractable

measures. Note that the values for the extractable versions differ only for COPY from the original ones. In these

examples, Imin = Imin, but as shown in [5], Imin is not left monotonic in general.
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VII. CONCLUSIONS

We introduced a new measure of shared information that satisfies the left monotonicity property with respect to

local operations on the target variable. Left monotonicity corresponds to the idea that local processing will remove

information in the target variable and thus should lead to lower values of measures which quantify information about

the target variable. Our measure fits the bivariate information decomposition framework; that is, we also obtain

corresponding measures of unique and synergistic information. However, we also have shown that left monotonicity

for the shared information contradicts the Blackwell property of the unique information, which limits the value of

a left monotonic measure of shared information for information decomposition.

We also presented an alternative interpretation of the construction used in this paper. Starting from an arbitrary

measure of shared information SI (which need not be left monotonic), we interpret the left monotonic measure SI

as the amount of shared information that can be extracted from S by local processing.

Our initial motivation for the construction of SI was the question to which extent shared information originates

from the redundancy between the predictors X1 and X2 or is created by the mechanism that generated S. These

two different flavors of redundancy were called source redundancy and mechanistic redundancy, respectively, in [4].

While SI cannot be used to completely disentangle source and mechanistic redundancy, it can be seen as a measure

of the maximum amount of redundancy that can be created from S using a (deterministic) mechanism. In this sense,

we believe that it is an important step forward towards a better understanding of this problem and related questions.

APPENDIX: COUNTEREXAMPLE IN THEOREM 1

Consider the joint distribution

f(s) s x1 x2 Pf(S)SX1X2

0 0 0 0 1/4

0 1 0 1 1/4

0 0 1 0 1/8

0 1 1 0 1/8

1 2 1 1 1/4

and the function f : {0, 1, 2} → {0, 1} with f(0) = f(1) = 0 and f(2) = 1. Then, X1 and X2 are independent

uniform binary random variables, and f(S) = AND(X1, X2). In addition, S − f(S)−X1 is a Markov chain. By

symmetry, the joint distributions of the pairs (f(S), X1) and (f(S), X2) are identical, and so the two channels

f(S) → X1 and f(S) → X2 are identical, and, hence, trivially, one is a garbling of the other. However, one can

check that the channel S → X1 is not a garbling of the channel S → X2.

This example is discussed in more detail in [13].
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