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Quantum correlations characterized by quantum entanglement and quantum discord play impor-
tant roles in many quantum information processing. We study the relations among the entanglement
of formation, concurrence, tangle, linear entropy based classical correlation and von Neumann en-
tropy based classical correlation. We present analytical formulae of both linear entropy based and
von Neumann entropy based classical correlations for arbitrary d× 2 quantum states. From the von
Neumann entropy based classical correlation, we derive an explicit formula of quantum discord for
arbitrary rank-2 two-qubit quantum states.

PACS numbers: 03.67.Mn,03.65.Ud

I. INTRODUCTION

Correlations between the subsystems of a bipartite sys-
tem play significant roles in many information process-
ing tasks and physical processes. The quantum entan-
glement [1] is an important kind of quantum correlation
which plays significant roles in many quantum tasks such
as quantum teleportation, dense coding, swapping, error
correction and remote state preparation. A bipartite s-
tate is called separable if it has zero entanglement be-
tween subsystems A and B: the probabilities of the mea-
surement outcomes from measuring the subsystem A are
independent of the probabilities of the measurement out-
comes from measuring the subsystem B. Nevertheless,
a separable state may still have quantum correlation –
quantum discord, if it is impossible to learn all the mu-
tual information by measuring one of the subsystems.
Quantum discord is the minimum amount of correlation,
as measured by mutual information, that is necessarily
lost in a local measurement of bipartite quantum states.
It has been shown that the quantum discord is required
for some information processing like assisted optimal s-
tate discrimination [2, 3].

Let ρAB denote the density operator of a bipartite sys-
tem HA ⊗HB. The quantum mutual information is de-
fined by

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (1)

where ρA(B) = TrB(A)(ρAB) are reduced density ma-
trices, S(ρ) = −Tr(ρ log ρ) is the Von Neumann en-
tropy. Quantum mutual information is the information-
theoretic measure of the total correlation in bipartite
quantum states. In terms of measurement-based con-
ditional density operators, the classical correlation of bi-
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partite states ρAB is defined by [4],

I←(ρAB) = max
{Pi}

[S(ρA)−
∑
i

piS(ρ
i
A)], (2)

where the maximum is taken over all positive operator-
valued measure (POVM) Pi performed on subsystem B,

satisfying
∑
i P
†
i Pi = I with probability of i as an out-

come, pi = Tr[(IA ⊗ Pi)ρAB(IA ⊗ P †i )], ρ
i
A = TrB[(IA ⊗

Pi)ρAB(IA⊗P †i )]/pi is the conditional states of system A
associated with outcome i, IA and I are the correspond-
ing identity operators.

The quantum discord is defined as the difference be-
tween the total correlation and the classical correlation
[4, 5]:

Q←(ρAB) = I(ρAB)− I←(ρAB). (3)

Generally it is a challenging problem to compute the
quantum correlation Q←(ρAB) due to difficulty in com-
puting the classical correlation I←(ρAB). Analytically
formulae of Q(ρ) can be obtained only for some special
quantum states like Bell-diagonal states [6], X-type s-
tates [7, 8] with respect to projective measurements, as
well as some special two-qubit states [9]. In stead of ana-
lytical formulae, some estimation on the lower and upper
bounds of quantum discord are also obtained [10, 11]. A
lower bound of quantum discord for the 2-qutrit systems
is obtained in [12]. In [13] a hierarchy of computationally
efficient lower bounds to the standard quantum discord
has been presented.

In this paper, by studying the classical correlations of
d⊗ 2 quantum states, we present the analytical formula
of quantum discord for any two-qubit states with rank-2.

II. ANALYTICAL FORMULA OF QUANTUM
DISCORD FOR RANK-2 TWO-QUBIT STATES

To derive an analytical formula of quantum discord for
rank-2 two-qubit states under von Neumann entropy, we
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first study the classical correlation under linear entropy.
The linear entropy S2(ρ) of a quantum state ρ is given by
S2(ρ) = 2[1− Tr(ρ2)]. The linear entropy version of the
classical correlation (2) of a bipartite state ρAB is given
by I←2 (ρAB) = max[S2(ρA)−

∑
i piS2(ρ

i
A)].

Any d⊗2 bipartite quantum state ρAB may be written
as

ρAB = Λρ ⊗ IB(|rB′B⟩⟨rB′B |), (4)

where |rB′B⟩ is the symmetric two qubit purification of
the reduced density operator ρB on an auxiliary qubit
system B′ and Λρ is a qubit channel from B′ to A.
A qudit states can be written as the Bloch expression

ρ = Id+r⃗γ
d , where Id denotes the d×d identity matrix, r⃗ is

a d2 − 1 dimensional real vector, γ = (λ1, λ2, ..., λd2−1)
T

is the vector of the generators of SU(d) and T stands
for transpose. The linear entropy written in terms of the
Bloch vector r⃗ of a qudit state, is given by S2(

Id+r⃗γ
d ) =

2d2−2d−4|r⃗|2
d2 . The action of a qubit channel Λ on a single-

qubit state ρ = I2+r⃗Bσ
2 , where r⃗B is the Bloch vector and

σ is the vector of Pauli operators, has the following form,

Λ(ρ) =
Id + (Lr⃗B + l)γ

d
, (5)

where L is a (d2 − 1) × 3 real matrix and l is a three-
dimensional vector.
We first give a Lemma about the linear entropy version

of the classical correlation.
[Lemma] For arbitrary d⊗ 2 quantum states,

I←2 (ρAB) =
4

d2
λmax(L

TL)S2(ρB), (6)

where λmax(L
TL) stands for the largest eigenvalues of

the matrix LTL.
[Proof] Any d⊗ 2 bipartite quantum state ρAB can be

written as

ρAB = Λρ ⊗ IB(|rB′B⟩⟨rB′B |),

Let ρB =
∑
λi|ϕi⟩⟨ϕi| be the spectral decomposition of

ρB . Then |VB′B⟩ =
∑√

λi|ϕi⟩|ϕi⟩. One has [16],

I←2 (ρAB) = max
{pi,ψi}

(
S2[Λ(ρB)]−

∑
i

piS2[Λ(|ψi⟩⟨ψi|)]

)
,

where the maximization goes over all possible pure state
decompositions of ρB . Taking into account (5), we have

S2[Λ(ρB)] = S2[Λ(
I2 + r⃗Bσ

2
)]

=
2d2 − 2d− 4(Lr⃗B + l)T (Lr⃗B + l)

d2
.

In the Pauli basis, the possible pure state decomposi-
tions of ρB are represented by all possible sets of prob-

ability {pj} and r⃗j such that ρB =
∑
j pj

I2+r⃗jσ
2 . Set

r⃗j = r⃗B + x⃗j . One can easily check that the calcula-
tion of I←2 (ρAB) reduces to determine pj , x⃗j , subject to
the conditions

∑
j pj x⃗j = 0 and |r⃗B + x⃗j | = 1, in the

following maximization,

4

d2
max
{pj ,x⃗j}

∑
j

pj x⃗
T
j L

TLx⃗j .

By using the method used in calculating the linear Holevo
capacity for qubit channels [16], we have (6).

Remark By proving the Lemma, we have corrected a
error in [11], where the factor 4/d2 in (6) was missed.

To get the analytical formula of classical correlation
I←(ρAB) under von Neumann entropy from I←2 (ρAB)
under linear entropy for any bipartite states ρAB , we
consider the relations among entanglement of formation,
concurrence, tangle, I←(ρAB) and I

←
2 (ρAB). The tangle

τ(ρAB) is defined by

τ(ρAB) = inf
{pi,|ψ⟩i}

∑
piS2(ρ

i
B), (7)

where the infimum runs over all pure-state decomposi-
tions {pi, |ψ⟩i} of ρAB and ρiB = TrA(|ψ⟩i⟨ψ|). Due to
the convexity, one has C2(ρAB) ≤ τ(ρAB) for two-qubit
states. Generally, τ(ρAB) is not equal to the square of
the concurrence [14].

The entanglement of formation E(|ψ⟩AB) [19–21]
and the concurrence C(|ψ⟩AB) [22–24] of a pure s-
tate |ψ⟩AB are defined by E(|ψ⟩AB) = S(ρA) and

C(|ψ⟩AB) =
√
2[1− Tr(ρ2A)], respectively. They are ex-

tended to mixed states ρAB by convex-roof construc-
tion, E(ρAB) = inf{pi,|ψi⟩}

∑
i piE(|ψi⟩), C(ρAB) =

inf{pi,|ψi⟩}
∑
i piC(|ψi⟩), with the infimum taking over all

possible pure state decompositions of ρAB .
For the two-qubit quantum statesρAB , the entangle-

ment of formation Ef (ρAB) and concurrence C(ρAB)
have the following relation [14]:

Ef (ρAB) = h(
1 +

√
1− C2(ρAB)

2
) (8)

where h(x) = −x log2(x)− (1− x) log2(1− x).
For a tripartite pure state |ψ⟩ABC , one has the follow-

ing relations [15],

Ef (ρAC) + I←(ρAB) = S(ρA). (9)

In the following we denote f(x) = h( 1+
√
1−x
2 ) for sim-

plicity.
[Theorem] For rank-2 two-qubit quantum states ρAB ,

the quantum discord is given by

Q←(ρAB) = S(ρB)− S(ρAB) + f(S2(ρA)− I←2 (ρAB)).
(10)

[Proof]: For two-qubit quantum states ρAB with rank-
2, they have spectral decompositions, ρAB = λ1|ψ⟩1⟨ψ|+
λ2|ψ⟩2⟨ψ|, where λi and |ψ⟩i, i = 1, 2, λ1 + λ2 = 1,
are respectively the eigenvalues and eigenvectors. Then
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the purified tripartite qubit state can be written as
|ψ⟩ABC =

√
λ1|ψ⟩1|0⟩ +

√
λ2|ψ⟩2|1⟩, satisfying ρAB =

TrC(|ψ⟩ABC⟨ψ|). We have the following monogamy re-
lation holds [16],

τ(ρAC) + I←2 (ρAB) = S2(ρA). (11)

As ρAC is a two-qubit state, one has τ(ρAC) =
C2(ρAC) [18]. Moreover, S(ρA) = Ef (|ψ⟩A|BC) =

f(C2(|ψ⟩A|BC)) = f(S2(ρA)),

Ef (ρAC) = f(C2(ρAC))

= f (S2(ρA)− I←2 (ρAB)) .

where the fist and second equations are due to (8) and
(11). From (9), we have

I←(ρAB) = S(ρA)− f
(
S2(ρA)− I←2 (ρAB)

)
. (12)

According to (3), we have the quantum discord for any
rank-2 two-qubit states.

Theorem 2 provides an analytical formula (10) of quan-
tum discord in terms of the original on Von Neumann
entropy for arbitrary rank-2 two-qubit quantum states.
Besides, the Von Neumann entropy based classical cor-
relation (12) is also analytically presented. It should be
emphasized that, the analytical formula of quantum dis-
cord (10) is only for rank-2 two-qubit quantum states,
but the formula for classical correlation (12) is valid for
any d⊗ 2 bipartite states with any ranks. In the follow-
ing, we give some detailed examples for quantum discords
and also classical correlations.

III. EXAMPLES

Let us first consider the rank-2 of two-qubit Bell-
diagonal states,

ρ =
1

4

I + 3∑
j=1

ciσj ⊗ σj

 .

By Theorem 2, we have S(ρA) = 1 and S2(ρA) = 1 and
I←2 (ρ) = c2. Then

I←(ρ) = 1−f(1−c2) = 1− c

2
log2(1−c)+

1 + c

2
log2(1+c),

which coincides with the result in Ref. [9].
Example 1: Now consider the following two-qubit s-

tates,

ρ1 =
2− x

6
|00⟩⟨00|+ 1 + x

6
|01⟩⟨01|+ 1

6
|01⟩⟨10| (13)

+
1

6
|10⟩⟨01|+ 1 + x

6
|10⟩⟨10|+ 2− x

6
|11⟩⟨11|,

where x ∈ [0, 2]. By computation we have S2(ρB) =
1, and the qubit channel Λ is given by Λ(|0⟩⟨0|) =

2−x
3 |0⟩⟨0| + 1+x

3 |1⟩⟨1|, Λ(|0⟩⟨1|) = 1
3 |1⟩⟨0|, Λ(|1⟩⟨0|) =

1
3 |0⟩⟨1| and Λ(|1⟩⟨1|) =

1+x
3 |0⟩⟨0|+ 2−x

3 |1⟩⟨1|. Therefore
we obtain

L =

 1
3 0 0
0 − 1

3 0
0 0 1−2x

3

 (14)

and I←2 (ρ1) = max{x∈[0.2]}{ 1
9 ,

(1−2x)2
9 }, see Fig.1.
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Fig. 1: The classical correlation I←2 (ρ1) with x ∈ [0, 2] .

The rank of ρ1 is two when x = 2. In this case, we have
S(ρB) = S2(ρA) = 1 and S(ρAB) = log2 3 − 2

3 . Hence

Q←(ρAB) =
5
3 − log2 3.

Example 2: We calculate now the discord of the
Horodecki state [? ],

ρH(p) = p|φ+⟩⟨φ+|+ (1− p)|00⟩⟨00|,

where |φ⟩+ = 1√
2
(|01⟩ + |10⟩). The qubit channel Λ

can be explicitly calculated: Λ(|0⟩⟨0|) = 2(1−p)
2−p |0⟩⟨0| +

p
2−p |1⟩⟨1|, Λ(|1⟩⟨0|) =

√
p

2−p |1⟩⟨0|, Λ(|0⟩⟨1|) =√
p

2−p |0⟩⟨1| and Λ(|1⟩⟨1|) = |0⟩⟨0|. By applying Theo-

rem 1, we get the matrix

L =


√

p
2−p 0 0

0 −
√

p
2−p 0

0 0 − p
2−p

 .

It is straightforward to verify that S2(ρ
H(p)B) =

S2(ρ
H(p)A) = p(2 − p) and S(ρH(p)) = h(p). Thus,

the discord of ρH(p) is given by

Q←(ρH(p)) = h(
p

2
)− h(p) + f(2p(1− p)),

see Fig.3.
Now we consider some more general rank-2 states,

ρ2 = x|φ⟩⟨φ|+ (1− x)|ϕ⟩⟨ϕ|,

where |φ⟩ = Sinθ |00⟩ + Cosθ |11⟩, |ϕ⟩ = Sinη |01⟩ +
Cosη |10⟩, x ∈ [0, 1] and θ, η ∈ [0, 2π]. Direct computa-
tion shows L = diag{L1, L2, L3}, where
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Fig. 2: The discord of the Horodecki state ρH(p).

L1 =
xSinθCosθ + (1− x)SinηCosη√

[xCos2θ + (1− x)Sin2η] [xSin2θ + (1− x)Cos2η]
,

L2 =
xSinθCosθ − (1− x)SinηCosη√

[xCos2θ + (1− x)Sin2η] [xSin2θ + (1− x)Cos2η]
,

L3 =
x2Sin2θCos2θ − (1− x)2Sin2ηCos2η

[xCos2θ + (1− x)Sin2η][xSin2θ + (1− x)Cos2η]
,

L4 = 4x(1− x) + x2Sin22θ + (1− x)2Sin22η − 4x(1− x)Cos2(θ − η)− 2x(1− x)Sin2θSin2η,

L5 = 4
[
xSin2θ + (1− x)Cos2η

] [
xCos2θ + (1− x)Sin2η

]
,

S(ρB) = h
(
xSin2θ + (1− x)Cos2η

)
, S(ρ2) = h(x), and S2(ρA) = L4. Therefore we obtain

Q←(ρAB) = h
(
xSin2θ + (1− x)Cos2η

)
− h(x) + f(L4 − max

{i=1,2,3}
{L2

i }L5).

The Horodecki state ρH(p) is a special case of ρ2 at θ =
π
2 , η = π

4 and x = 1− p.

IV. CONCLUSION AND REMARKS

By analyzing the relations among the entanglement of
formation, concurrence, tangle, linear entropy classical
correlation and von Neumann entropy classical correla-
tion, we have derived the analytical formulae of classical
correlations under both linear and von Neumann entropic
ones for arbitrary d ⊗ 2 states, From the von Neuman-
n entropy based classical correlation, we have presented
explicit formula of quantum discord for arbitrary rank-
2 two-qubit quantum states. If one can further get the
relation between τ(ρAB) and E(ρAB) for rank-2 d ⊗ 2
systems, it would be possible to compute the quantum

discord for rank-2 d⊗ 2 states. And if one is able to get
the relation between τ(ρAB) and E(ρAB) for 4⊗2 system-
s, maybe one can compute the discord for any two-qubit
states. However, for the rank-2 mixed states ρAB , the
corresponding entanglement of formation satisfies the in-
equality E(ρAB) ≤ f(τ) [18]. The tangle τ(ρAB) is not,
in general, equal to the square of the square of concur-
rence C2(ρAB). It is of difficulty to calculate the discord
of any rank-2 d ⊗ 2 quantum states and any two-qubit
states.
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