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Quantum correlations characterized by quantum entanglement and quantum discord play impor-
tant roles in many quantum information processing. We study the relations among the entanglement
of formation, concurrence, tangle, linear entropy based classical correlation and von Neumann en-
tropy based classical correlation. We present analytical formulae of both linear entropy based and
von Neumann entropy based classical correlations for arbitrary d x 2 quantum states. From the von
Neumann entropy based classical correlation, we derive an explicit formula of quantum discord for

arbitrary rank-2 two-qubit quantum states.

PACS numbers: 03.67.Mn,03.65.Ud

I. INTRODUCTION

Correlations between the subsystems of a bipartite sys-
tem play significant roles in many information process-
ing tasks and physical processes. The quantum entan-
glement [1] is an important kind of quantum correlation
which plays significant roles in many quantum tasks such
as quantum teleportation, dense coding, swapping, error
correction and remote state preparation. A bipartite s-
tate is called separable if it has zero entanglement be-
tween subsystems A and B: the probabilities of the mea-
surement outcomes from measuring the subsystem A are
independent of the probabilities of the measurement out-
comes from measuring the subsystem B. Nevertheless,
a separable state may still have quantum correlation —
quantum discord, if it is impossible to learn all the mu-
tual information by measuring one of the subsystems.
Quantum discord is the minimum amount of correlation,
as measured by mutual information, that is necessarily
lost in a local measurement of bipartite quantum states.
It has been shown that the quantum discord is required
for some information processing like assisted optimal s-
tate discrimination (2, 3].

Let pap denote the density operator of a bipartite sys-
tem H4 ® Hg. The quantum mutual information is de-
fined by

I(pag) = S(pa) + S(pB) — S(pap), (1)
where pay = Trpay(pap) are reduced density ma-
trices, S(p) = —Tr(plogp) is the Von Neumann en-

tropy. Quantum mutual information is the information-
theoretic measure of the total correlation in bipartite
quantum states. In terms of measurement-based con-
ditional density operators, the classical correlation of bi-
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partite states pap is defined by [4],

I (pan) = max[S(pa) - sz—S(pZ)}, (2)

{P;

where the maximum is taken over all positive operator-
valued measure (POVM) P; performed on subsystem B,
satisfying >, PiTB; = I with probability of i as an out-
come, p; = Tr((I4 ® P)pap(Ia @ P))], ply = Trp[(Ia ®
P)pap(Ia®P)]/p; is the conditional states of system A
associated with outcome ¢, I4 and I are the correspond-
ing identity operators.

The quantum discord is defined as the difference be-

tween the total correlation and the classical correlation
[4, 5]:

Q" (pas) =1(pas) = 1" (pan). 3)

Generally it is a challenging problem to compute the
quantum correlation Q< (pap) due to difficulty in com-
puting the classical correlation I (pap). Analytically
formulae of Q(p) can be obtained only for some special
quantum states like Bell-diagonal states [6], X-type s-
tates [7, 8] with respect to projective measurements, as
well as some special two-qubit states [9]. In stead of ana-
lytical formulae, some estimation on the lower and upper
bounds of quantum discord are also obtained [10, 11]. A
lower bound of quantum discord for the 2-qutrit systems
is obtained in [12]. In [13] a hierarchy of computationally
efficient lower bounds to the standard quantum discord
has been presented.

In this paper, by studying the classical correlations of
d ® 2 quantum states, we present the analytical formula
of quantum discord for any two-qubit states with rank-2.

II. ANALYTICAL FORMULA OF QUANTUM
DISCORD FOR RANK-2 TWO-QUBIT STATES

To derive an analytical formula of quantum discord for
rank-2 two-qubit states under von Neumann entropy, we



first study the classical correlation under linear entropy.
The linear entropy Sa(p) of a quantum state p is given by
Sa(p) = 2[1 — Tr(p?)]. The linear entropy version of the
classical correlation (2) of a bipartite state pap is given
by I3~ (pap) = max[Sz(pa) — 32, piS2(p)]-

Any d®2 bipartite quantum state p4p may be written
as

PAB :Ap®IB(|TB’B><TB/B|)7 (4)

where |rp/p) is the symmetric two qubit purification of
the reduced density operator pp on an auxiliary qubit
system B’ and A, is a qubit channel from B’ to A.

A qudit states can be written as the Bloch expression
p= I‘ime, where I; denotes the d x d identity matrix, 7'is
a d?> — 1 dimensional real vector, v = (A1, Ag, ..oy Agz_1) 7
is the vector of the generators of SU(d) and T stands

for transpose. The linear entropy written in terms of the

Bloch vector 7 of a qudit state, is given by Sg(lﬁm)
2d_2d+4lr‘. The action of a qubit channel A on a single-

qubit state p = 2H22 where 13 is the Bloch vector and

o is the vector of Pauli operators, has the following form,

Alp) = W’ (5)
where L is a (d? — 1) x 3 real matrix and [ is a three-
dimensional vector.

We first give a Lemma about the linear entropy version
of the classical correlation.

[Lemma] For arbitrary d ® 2 quantum states,

15 (pan) = - mas(E71)S2(0p), (6)

where Apnax(LTL) stands for the largest eigenvalues of
the matrix LT L.

[Proof] Any d ® 2 bipartite quantum state pp can be
written as

PAB = Ap ® Ip(|lrp'B){r'Bl),

Let pg = > A\i|d:){¢:| be the spectral decomposition of
PB- Then |VB’B> = Z\/)\»l|¢’b>|¢l> One has [16],

szsz (i) %I)]) :

where the maximization goes over all possible pure state
decompositions of pp. Taking into account (5), we have

I3 (pap) = ax (

pi Yi

SalA(pn)] = Sila(2 2%,

2d% — 2d — A(Lip + )T (Li'g + 1)
& '

In the Pauli basis, the possible pure state decomposi-
tions of pp are represented by all possible sets of prob-
ability {p;} and 7 such that pp = >, p; Iﬁr]g Set

7; = ¥ + Z;. One can easily check that the calcula-
tion of I3 (pap) reduces to determine p;, Z;, subject to
the conditions },p;@; = 0 and |7 + &;| = 1, in the
following maximization,

4 T
— max DT L LT,
d? {p; %5} Z / I

By using the method used in calculating the linear Holevo
capacity for qubit channels [16], we have (6). O

Remark By proving the Lemma, we have corrected a
error in [11], where the factor 4/d? in (6) was missed.

To get the analytical formula of classical correlation
I (pap) under von Neumann entropy from I (pap)
under linear entropy for any bipartite states pap, we
consider the relations among entanglement of formation,
concurrence, tangle, I (pap) and I3 (pap). The tangle
T(pap) is defined by

T(pap) = inf

Sa( 7
mmy }sz 2 pB ( )

where the infimum runs over all pure-state decomposi-
tions {pi,[1)i} of pap and ply = Tra(|1)i(¢|). Due to
the convexity, one has C?(pap) < 7(pap) for two-qubit
states. Generally, 7(pap) is not equal to the square of
the concurrence [14].

The entanglement of formation E(|¢)ap) [19-21]
and the concurrence C(|9))ap) [22-24] of a pure s-
tate |[Y)ap are defined by E(|Y)as) = S(pa) and
C(|¥)ap) = v/2[1 — Tr(p?)], respectively. They are ex-
tended to mixed states psp by convex-roof construc-
tion, E(pap) = infy, jy,y > piE(1¢4), Clpas) =
infy,, 14,3 2o PiC(J2bs)), with the infimum taking over all
possible pure state decompositions of pap.

For the two-qubit quantum statespsp, the entangle-
ment of formation Ef(pap) and concurrence C(pap)
have the following relation [14]:

1 - C?(paB)

Ef(pap) = (8)

where h(z) = —zlog,(z) — (1 — ) logy(1 — ).
For a tripartite pure state |¢)) apc, one has the follow-
ing relations [15],

S(pa)- (9)
h( 1+\/2ﬁ)

Ef(pac) + 17 (pap) =
In the following we denote f(x) = for sim-
plicity.
[Theorem] For rank-2 two-qubit quantum states pap,
the quantum discord is given by

Q" (paB) = S(pp) — S(pap) + f(S2(pa) — I?(PAB())-)
10

[Proof]: For two-qubit quantum states p4p with rank-

2, they have spectral decompositions, pap = A1|t)1 (W] +
)\2‘1/1>2<w|, where )\z and |1/}>2, 1= 172, )\1 + )\2 = ].,

are respectively the eigenvalues and eigenvectors. Then



the purified tripartite qubit state can be written as
V) ac = VALP)1]0) + Va|¥)s|1), satistying pap =
Tre(|Y)apc(y]). We have the following monogamy re-
lation holds [16],

7(pac) + 15 (paB) = S2(pa). (11)

As pac is a two-qubit state, one has T(pac) =
C*(pac) [18]. Moreover, S(pa) = Ej([¢)apc) =
F(C2([¥) aipe)) = f(S2(pa)),

Ef(pac) = f(C*(pac))
= [(S2(pa) =I5 (paB)) -

where the fist and second equations are due to (8) and
(11). From (9), we have

I (paB) = S(pa) — f(S2(pa) — I3 (paB)).  (12)

According to (3), we have the quantum discord for any
rank-2 two-qubit states. O

Theorem 2 provides an analytical formula (10) of quan-
tum discord in terms of the original on Von Neumann
entropy for arbitrary rank-2 two-qubit quantum states.
Besides, the Von Neumann entropy based classical cor-
relation (12) is also analytically presented. It should be
emphasized that, the analytical formula of quantum dis-
cord (10) is only for rank-2 two-qubit quantum states,
but the formula for classical correlation (12) is valid for
any d ® 2 bipartite states with any ranks. In the follow-
ing, we give some detailed examples for quantum discords
and also classical correlations.

III. EXAMPLES

Let us first consider the rank-2 of two-qubit Bell-
diagonal states,

3
1
p:Z I+Zci0j®0'j

j=1

By Theorem 2, we have S(pa) = 1 and S2(pa) = 1 and
I35 (p) = ¢*. Then

1—c 1+c

I(p) =1-f(1-¢*) = logy (1—c)+

log, (14-¢),

which coincides with the result in Ref. [9].
Example 1: Now consider the following two-qubit s-
tates,

2—=x

6
1 1+ 9_
+ S0y + Tx|1o><1o| 4 Tx|11><11\,

1 1
p1 = 100)(00] + #l(ﬂ)@ll + 5101){10[(13)

where = € [0,2]. By computation we have Sa(pp) =
1, and the qubit channel A is given by A(|0)(0]) =

3

Z2(0)(0] + H=(1)(L], A(0)(1]) = 5[1)(0], A(|1)(0]) =
§|0><b1t\ and A(|1)(1]) = 43210)(0] + 25%|1)(1]. Therefore

£ 0 0
1
0 0 1732:1:
— _ 1 (1-2z)? ;
and I3~ (p1) = maxX(,cjo.2315, —9 ) see Fig.1.
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Fig. 1: The classical correlation I3 (p1) with z € [0,2] .

The rank of p; is two when z = 2. In this case, we have
S(pp) = S2(pa) = 1 and S(pap) = logy3 — 2. Hence

Q" (paB) = % —log, 3.
Example 2: We calculate now the discord of the
Horodecki state [? ],

P (p) = ple™) ™| + (1 —p)|00){00],
where [p)T = %(|01> + [10)). The qubit channel A
can be explicitly calculated: A(]0){(0]) = 2(2%;”)|0><0| +
DAL ADO) = /0L A0 =
v/ 272510)(1] and A(|1)(1]) = [0)(0]. By applying Theo-

rem 1, we get the matrix

= 0
L=1 0 —/& o0
0 0 —5=

It is straightforward to verify that Sa(pf(p)p) =

So(pf(p)a) = p(2 — p) and S(pf(p)) = h(p). Thus,
the discord of pf(p) is given by

Q“ (p" (p) = h(E) = h(p) + F(2p(1 - p)),

see Fig.3.
Now we consider some more general rank-2 states,

p2 = xl@) (| + (1 — x)|d) (2],

where |p) = Sinf|00) + Cosf|11), |¢) = Sinn|01) +
Cosn |10), € [0,1] and 0,1 € [0,2n]. Direct computa-
tion shows L = diag{L1, Lo, L3}, where
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Fig. 2: The discord of the Horodecki state p™ (p).

xSinfCosh + (1 — x)SinnCosn

I B V[2Cos20 + (1 — z)Sin?n] [#Sin20 + (1 — 2)Cos?y]’
I _ xSinfCosh — (1 — z)SinnCosn

VI2C0s20 + (1 — x)Sin?n] [xSin20 + (1 — x)Cos?y]’
L _ 228in20Co0s%0 — (1 — z)2Sin?nCos?n

[C0s20 + (1 — x)Sin?n|[xSin20 + (1 — z)Cos?n]’

Ly = 42(1 —x) + 22Sin?20 + (1 — 2)2Sin*2n — 4x(1 — 2)Cos*(0 — n) — 2z(1 — x)Sin20Sin2y,

Ls

S(pp) = h (zSin*0 + (1 — )Cos®n) , S(p2) = h(z), and

J

4 [2Sin0 + (1 — 2)Cos’n| [xCos®0 + (1 — z)Sin’n]

(

Sa(pa) = Ly4. Therefore we obtain

Q“ (pap) = h (xSin*0 + (1 — 2)Cos®n) — h(z) + f(Ls — {Z_1:nla2x3}{L§}L5).

The Horodecki state p(p) is a special case of py at 6 =

s,m=Fandz=1-p.

IV. CONCLUSION AND REMARKS

By analyzing the relations among the entanglement of
formation, concurrence, tangle, linear entropy classical
correlation and von Neumann entropy classical correla-
tion, we have derived the analytical formulae of classical
correlations under both linear and von Neumann entropic
ones for arbitrary d ® 2 states, From the von Neuman-
n entropy based classical correlation, we have presented
explicit formula of quantum discord for arbitrary rank-
2 two-qubit quantum states. If one can further get the
relation between 7(pap) and E(pap) for rank-2 d @ 2
systems, it would be possible to compute the quantum

(

discord for rank-2 d ® 2 states. And if one is able to get
the relation between 7(pap) and E(pap) for 4®2 system-
s, maybe one can compute the discord for any two-qubit
states. However, for the rank-2 mixed states pap, the
corresponding entanglement of formation satisfies the in-
equality E(pap) < f(7) [18]. The tangle 7(pap) is not,
in general, equal to the square of the square of concur-
rence C%(pap). It is of difficulty to calculate the discord
of any rank-2 d ® 2 quantum states and any two-qubit
states.

Acknowledgments We thank Ming Li, Huihui Qin
and Tinggui Zhang for helpful discussions. This work
is supported by NSFC under numbers 11675113 and
11605083.



[1] R. Horodecki, P. Horodecki, M. Horodecki and K.
Horodecki, Rev. Mod. Phys. 81, 865 (2009).
[2] L. Roa, J. C. Retamal, andM. Alid-Vaccarezza, Phys.
Rev. Lett. 107, 080401 (2011).
[3] B. Li, S.M. Fei, Z.X. Wang and H. Fan, Phys. Rev. A 85,
022328 (2012).
[4] H.Ollivier and W. H. Zurek, Phys. Rev. Lett. 88,
017901(2001).
[5] L. Henderson and V. Vedral, J. Phys. A34, 6899(2001).
[6] S. Luo, Phys. Rev. A 77, 042303 (2008).
[7] X.N. Zhu, and S. M. Fei, Phys. Rev. A 90, 024304 (2014).
[8] B. Li, Z. X. Wang, and S. M. Fei, Phys. Rev. A 83,
022321 (2011).
[9] M. Pawlowski, Phys. Rev. A 82, 032313 (2010).
[10] Y. Ou, Phys. Rev. A 75, 034305 (2007).
[11] J. S. Kim, A. Das, and B. C. Sanders, Phys. Rev. A 79,
012329(2009).
[12] A. Uhlmann, Phys. Rev. A 62, 032307 (2000).
[13] M. Piani, Phys. Rev. Lett. 117, 080401 (2016).

[14] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[15] M. Koashi and A. Winter, Phys. Rev. A 69, 022309

(2004).

[16] T. J. Osborne, and F. Verstraete, Phys. Rev. Lett. 96,
220503(2006).

[17) H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88,
017901(2001).

[18] T. J. Osborne, Phys. Rev. A 72, 022309 (2005).

[19] F. Mintert, M. Kus, and A. Buchleitner, Phys. Rev. Lett.
92, 167902 (2004).

[20] K. Chen, S. Albeverio, and S. M. Fei, Phys. Rev. Lett.
95, 040504 (2005).

[21] H. P. Breuer, J. Phys. A: Math. Gen. 39, 11847 (2006).

[22] A. Uhlmann, Phys. Rev. A 62, 032307 (2000).

[23] P. Rungta, V. Buzek, C. M. Caves, M. Hillery, and G. J.
Milburn, Phys. Rev. A 64, 042315 (2001).

[24] S. Albeverio, S. M. Fei, J Opt B: Quantum Semiclass
Opt. 3, 223 (2001).



