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Abstract. For a tropical manifold of dimension n we show that the tropical homology classes of
degree (n− 1, n− 1) which arise as fundamental classes of tropical cycles are precisely those in the
kernel of the eigenwave map. To prove this we establish a tropical version of the Lefschetz (1, 1)-
theorem for rational polyhedral spaces that relates tropical line bundles to the kernel of the wave
homomorphism on cohomology. Our result for tropical manifolds then follows by combining this
with Poincaré duality for integral tropical homology.

MSC: Primary 14T05; Secondary 52B40, 55N35, 14C25, 14C22

1. Introduction

The classical Lefschetz (1,1)-theorem characterises the cohomology classes of complex projective
varieties which arise as Chern classes of complex line bundles. The theorem asserts that these classes
are precisely the integral classes in the (1,1)-part of the Hodge decomposition. It implies the Hodge
conjecture (over Z) for the degree 2 cohomology classes of a complex projective variety. In this
paper we establish analogous results for rational polyhedral and tropical spaces.

Tropical homology in the sense of Itenberg, Mikhalkin, Katzarkov, and Zharkov was introduced
as an invariant of tropical varieties capable of providing Hodge theoretic information about complex
projective varieties via their tropicalisations [IKMZ16]. Here we denote the tropical homology groups
with Q coefficients of a rational polyhedral space X by Hp,q(X,Q). We also consider the tropical

Borel-Moore homology groups, which are denoted by HBM
p,q (X,Q). The corresponding Borel-Moore

and usual tropical homology groups agree when X is compact.
To any tropical cycle Z in a rational polyhedral spaceX we can associate a fundamental class [Z] ∈

HBM
k,k (X,Z). In this paper, we determine exactly which tropical homology classes in HBM

n−1,n−1(X,Z)
of a tropical manifold of dimension n arise from codimension one tropical cycles. In order to
characterise these tropical homology classes, we make use of the wave homomorphism

φ̂ : HBM
p,q (X,Z)→ HBM

p+1,q−1(X,R),

which is defined for any rational polyhedral space X. This homomorphism was introduced by
Mikhalkin and Zharkov in [MZ14] and generalises the action of the monodromy operator on the
mixed Hodge structure of a family of complex algebraic varieties. On tropical cohomology, Liu
constructed an analogous operator, which he relates to the monodromy operator in the weight
spectral sequence [Liu17]. It was pointed out by Mikhalkin and Zharkov that the fundamental class

of a tropical cycle in X is in the kernel of φ̂.

Theorem 1.1. For a tropical manifold X of dimension n the kernel of the wave homomorphism

φ̂ : HBM
n−1,n−1(X,Z)→ HBM

n,n−2(X,R)

consists precisely of the fundamental classes of tropical cycles of codimension one in X.

The first author was for part of this work supported by the CRC 1085 ”Higher Invariants” by the Deutsche
Forschungsgemeinschaft and for the other part by the DFG Research Fellowship JE 856/1-1.
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To prove Theorem 1.1, we first establish an analogue of the line bundle version of the Lefschetz
(1, 1)-theorem for rational polyhedral spaces. To do so, we consider the sheaf AffZ of integral
affine functions, which play the role of invertible regular functions in tropical geometry. We also
consider tropical cohomology groups Hp,q(X,Q). The tropical Picard group of X is defined to be
Pic(X) := H1(X,AffZ) and there is a Chern class map c1 : Pic(X) → H1,1(X,Z). T hese notions
in tropical geometry have also appeared in the context of curves [MZ08] and tropical complexes
[Car13, Car15]. There is also a version of the wave homomorphism acting on tropical cohomology
namely φ : Hp,q(X,Z)→ Hp−1,q+1(X,R).

Theorem 1.2. Let X be a rational polyhedral space with polyhedral structure, then the image
of c1 : Pic(X) → H1,1(X,Z) is equal to the kernel of the wave homomorphism φ : H1,1(X,Z) →
H0,2(X,R).

The tropical cohomology can be defined as cohomology of sheaves FpQ. To prove Theorem 1.2, we

use a short exact sequence of sheaves 0→ R→ AffZ → F1
Z → 0, known as the tropical exponential

sequence [MZ08]. This produces a long exact sequence in cohomology:

· · · → Pic(X)→ H1,1(X,Z)→ H0,2(X,R)→ . . . .

For p = 0 the sheaf F0
R is the constant sheaf R, so we can identity H2(X,R) and H0,2(X,R). In

Proposition 3.5, we show that the boundary map δ : H1,q(X,Z)→ Hq+1(X,R) coincides up to sign
with the wave homomorphism. For q = 1, this implies Theorem 1.2.

When X is an abstract tropical space of dimension n, the cap product with its fundamental class
provides a map

∩[X] : Hp,q(X,Z)→ HBM
n−p,n−q(X,Z). (1.1)

This allows us to describe the kernel of the wave homomorphism on homology groups.

Theorem 1.3. Let X be a tropical space of dimension n which is regular at infinity. If α ∈
H1,1(X;Z) is such that φ(α) = 0, then α ∩ [X] ∈ HBM

n−1,n−1(X,Z) is the fundamental class of a
codimension one tropical cycle in X.

To prove Theorem 1.3 we first show that any element L ∈ Pic(X) has a rational section in the
sense of Definition 4.3. A tropical Cartier divisor is then a pair (L, s) where L ∈ Pic(X) and s is a
section of L. We can then define a map div : CaDiv(X)→ Zn−1(X), where CaDiv(X) is the group
of Cartier divisors on X and Zn−1(X) is the group of dimension one tropical cycles in X. We then
show that the map given by capping with the fundamental class (1.1) is an isomorphism when X
is a tropical manifold. This extends the version of Poincaré duality with real coefficients of Smacka
and the first and second authors [JSS15, Theorem 2]. Combining this statement with Theorem 1.3,
we are able to prove Theorem 1.1.

The last section presents corollaries and examples of our main theorems. In particular, we consider
tropical abelian surfaces and Klein bottles with a tropical structure. We also calculate the wave map
for two combinatorial types of tropical K3 surfaces. In particular we prove the following regarding
the Picard ranks of tropical K3 surfaces. The Picard rank of a K3 surface is equal to the rank of
the kernel of the wave map.

Theorem 1.4. For every 1 ≤ ρ ≤ 19 there exists a tropical K3 surface with Picard rank ρ. Moreover,
such surfaces can be chosen to have the same combinatorial type.

Acknowledgements. We are very grateful to Ilia Itenberg, Grigory Mikhalkin and Ilia Zharkov
for useful discussions and also to Andreas Gross and Arthur Renaudineau for helpful comments on
a preliminary draft. We would also like to thank the Max Planck Institute Leipzig for hosting us
during a part of this collaboration. This project was started while the last two authors were visiting
the University of Geneva. We would like to thank Grigory Mikhalkin for the kind invitation.
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2. Preliminaries

We set T = [−∞,∞) and equip this set with the topology whose basis consists of the intervals
[−∞, b) and (a, b) for a, b 6= −∞. We equip Tr with the product topology. The set Tr is a stratified
space. For a subset I ⊂ [r] define RrI = {x ∈ Tr | xi = −∞ ⇔ i ∈ I} and TrI is the closure

of RrI in Tr. We then have RrI ∼= Rr−|I| and TrI ∼= Tr−|I|. The sedentarity of a point x ∈ Tr is
sed(x) := {i ∈ [n] | xi = −∞}.

2.1. Abstract polyhedral spaces and tropical varieties. A rational polyhedron in Rr is a subset
defined by a finite system of affine (non-strict) inequalities 〈wi, v〉 ≥ ci with ci ∈ R and wi ∈ Zr. A
face of a polyhedron σ is a polyhedron which is obtained by turning some of the defining inequalities
of σ into equalities.

A rational polyhedron in Tr is the closure of a rational polyhedron in RrI ∼= Rr−|I| ⊂ Tr for some
I ⊂ [r]. A face of a polyhedron σ in Tr is the closure of a face of σ∩RJ for some J ⊂ [r]. A rational
polyhedral complex C in Tr is a finite set of polyhedra in Tr, satisfying the following properties:

(1) For a polyhedron σ ∈ C, if τ is a face of σ (denoted τ ≺ σ) we have τ ∈ C.
(2) For σ, σ′ ∈ C, if τ = σ ∩ σ′ is non-empty, then τ is a face of both σ and σ′.

The maximal polyhedra, with respect to inclusion, are called facets. If all facets of C have the same
dimension n, we say C is of pure dimension n. The support of a polyhedral complex C is the union
of all its polyhedra and is denoted |C|. If X = |C|, then X is called a rational polyhedral subspace of
Tr and C is called a rational polyhedral structure on X.

The relative interior of a polyhedron σ in Tr, denoted relint(σ), is defined to be the set obtained
after removing all of the proper faces of σ. Given a polyhedral complex C in Tr, for σ ∈ C, the closed
star of σ is St(σ) := {τ ∈ C | ∃σ′ ∈ C such that τ, σ ⊂ σ′}. The open star St(σ) of σ is the open
set which is the relative interior of the support of St(σ). Also, let CI denote the union of polyhedra
σ ∈ C for which relint(σ) ⊂ RrI . For a rational polyhedron σ in Tr, we denote σ ∩ RrI by σI .

A map f : M → N , where M ⊂ Tm and N ⊂ Tn, is an extended affine Z-linear map if it is
continuous and there exist A ∈ Mat(n×m,Z), b ∈ Rn such that f(x) = Ax+ b for all x ∈ Rm.

Definition 2.1. A rational polyhedral space X is a paracompact, second countable Hausdorff topo-
logical space with an atlas of charts (ϕα : Uα → Ωα ⊂ Xα)α∈A such that:

(1) The Uα are open subsets of X, the Ωα are open subsets of rational polyhedral subspaces
Xα ⊂ Trα, and the maps ϕα : Uα → Ωα are homeomorphisms for all α;

(2) for all α, β ∈ A the transition map

ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ)

are extended affine Z-linear maps.

Definition 2.2. Let X be a rational polyhedral space. A rational polyhedral structure on X is a
finite family of closed subsets C such that the following conditions hold:

(1) X =
⋃
σ∈C σ;

(2) for each σ there exists a chart ϕσ : U → Ω ⊂ X such that St(σ) ⊂ U and {ϕσ(τ) | τ ∈ St(σ)}
is a rational polyhedral complex in Ts × Rr−s.

2.2. Multi-(co)tangent (co)sheaves. Let C be a rational polyhedral complex in Tr. For a face
σ ∈ CI , denote by LZ(σ) ⊂ ZrI the Z-module generated by the integral vectors in ZrI tangent to σ.
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Definition 2.3. For σ ∈ CI , the p-th integral multi-tangent and integral multi-cotangent space of
C at σ are the Z-modules

FZ
p (σ) =

∑
σ′∈CI :σ≺σ′

p∧
LZ(σ′) ⊂

p∧
ZrI and Fp

Z(σ) =

 ∑
σ′∈CI :σ≺σ′

p∧
LZ(σ′)

∗ ,
respectively. If τ is a face of σ there are natural maps

ιτ,σ : FZ
p (σ)→ FZ

p (τ) and ρτ,σ : Fp
Z(τ)→ Fp

Z(σ).

For Q any ring such that Z ⊂ Q ⊂ R define Fp
Q(σ) = Fp

Z(σ)⊗Q and FQ
p (σ) = FZ

p (σ)⊗Q. When

Q = R we drop the use of the sup- and sub-scripts on Fp(σ) and Fp(σ), respectively.
From the Z-modules Fp

Z(σ), it is possible to construct a sheaf on |C| ⊂ Tr following [MZ14,
Section 2.3]. For each open set Ω ⊂ |C|, consider the poset P (Ω) whose elements are the connected
components σ of faces of C intersecting with Ω. The elements of P (Ω) are ordered by inclusion and
if τ ≺ σ recall there are maps ρτ,σ : Fp

Q(τ)→ Fp
Q(σ).

Definition 2.4 ([MZ14]). Let C be a rational polyhedral complex of Tr. For an open set Ω ⊂ |C|
define the vector space

FpQ(Ω) := lim←−
σ∈P (Ω)

Fp
Q(σ).

The sheaves FpQ are constructible and do not depend on the polyhedral structure C but only on

the support |C|. For a polyhedral space X, the sheaves Fp are defined by gluing along charts. In
fact, this definition does not require a polyhedral structure on X, see [JSS15].

2.3. Tropical (co)homology. In the following we always assume that X is a rational polyhedral
space which admits a rational polyhedral structure C. In this case, the Z-modules FZ

p (σ) and Fp
Z(σ)

and the maps ιτ,σ, ρτ,σ are well-defined for any τ ≺ σ ∈ C.
We let ∆q denote an abstract q-dimensional simplex. Again Q will be a ring satisfying Z ⊂ Q ⊂ R.

Definition 2.5. A C-stratified q-simplex in X is a continuous map δ : ∆q → X such that

• for each face ∆′ ⊂ ∆q, we have δ(relint(∆′)) ⊂ relint(τ) for some τ ∈ C;
• if ∆q = [0, . . . , q] and ϕ is a chart containing δ(∆q), then

sed(ϕ(δ(0))) ⊃ sed(ϕ(δ(1))) ⊃ . . . ⊃ sed(ϕ(δ(q))).

For τ ∈ C let Cq(τ) denote the abelian group generated by stratified q-simplices δ : ∆q → X that
satisfy relint(∆q) ⊂ relint(τ).

Definition 2.6. The groups of tropical (p, q)-chains and cochains with respect to C and with Q-
coefficients are respectively,

Cp,q(X,Q) :=
⊕
τ∈C

FQ
p (τ)⊗Z Cq(τ), (2.1)

Cp,q(X,Q) := HomQ(Cp,q(X,Q), Q) =
⊕
τ∈C

Fp
Q(τ)⊗Z HomZ(Cq(τ),Z). (2.2)

The complexes of tropical (p, •)-chains and cochains are respectively,

(Cp,•(X,Q), ∂) and (Cp,•(X,Q), d)

where the ∂ and d are the usual singular differentials composed, when necessary, with ιτ,σ and ρτ,σ
respectively.
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The tropical homology and tropical cohomology groups with coefficients in Q are respectively,

Hp,q(X,Q) := Hq(Cp,•(X,Q)) and Hp,q(X,Q) := Hq(Cp,•(X,Q)).

Definition 2.7. The tropical Borel-Moore chain groups CBM
p,q (X,Q) consist of formal infinite sums

of elements of Cp,q(X,Q) with the condition that locally only finitely many simplices have non-zero
coefficients.

The tropical Borel-Moore homology groups are denoted HBM
p,q (X,Q). They are the homology

groups of the complex (CBM
p,• (X,Q), ∂).

Remark 2.8. For computations, we will often use the simplicial version of the tropical (co)homology
groups defined above. It is possible to construct a locally finite simplicial structure D on X such
that all simplices are C-stratified (see [MZ14, Section 2.2]). We call such a structure a C-stratified
simplicial structure. Following the standard conventions for simplicial (co)homology, we obtain sim-
plicial tropical homology and cohomology groups, as well as the Borel-Moore variants respectively.
By [MZ14, Proposition 2.2], the simplicial and singular (co)homology groups are canonically iso-
morphic. We use this isomorphism implicitly throughout the rest of the sections and pass leisurely
between simplicial and singular tropical cohomology. We also use the same notation to denote both
variants of the tropical (co)homology groups.

2.4. The eigenwave homomorphism. Throughout this section X is a rational polyhedral space
equipped with a rational polyhedral structure C. Before presenting the definition of the eigenwave
homomorphism from [MZ14] we provide some notation. If δ : [0, . . . , q + 1] → X is a C-stratified
q+1-simplex, we denote the restriction of δ to the face [0, . . . , q] by δ0...q and by σ and τ the faces of
C containing the image of the relative interior of [0, . . . , q+ 1] and [0, . . . , q], respectively. Moreover,
the vector vδ[q,q+1] ∈ F1(τ) is defined to be the difference of the endpoints of δq,q+1 in a chart ϕ
containing σ. More precisely,

vδ[q,q+1] := ιτ,σ(ϕ(δ(q + 1)))− ϕ(δ(q)). (2.3)

The vector vδ[q,q+1] is in the linear space LZ(τ)⊗R. Moreover, given a vector w ∈ FZ
p−1(τ) we have

w ∧ vδ[q,q+1] ∈ Fp(τ).

Definition 2.9. The eigenwave homomorphism on singular tropical chains,

φ̂ : Cp−1,q+1(X,Z)→ Cp,q(X,R),

is defined on a tropical (p, q)-cell v ⊗ δ to be

φ̂(v ⊗ δ) = (ιτ,σ(v) ∧ vδ[q,q+1])⊗ δ0...q.

Dually, the eigenwave homomorphism on singular tropical cochains,

φ : Cp,q(X,Z)→ Cp−1,q+1(X,R),

is defined on a tropical (p, q)-cocell α to be

φ(α)(v ⊗ δ) = α(φ̂(v ⊗ δ)) = α
(
(ιτ,σ(v) ∧ vδ[q,q+1])⊗ δ0...q

)
.

A direct computation shows that these give morphisms φ̂ : Cp−1,•(X,Z)[1] → Cp,•(X,Z) and

φ : Cp,•(X,Z)→ Cp−1,•(X,R)[1]. Therefore φ̂ and φ descend to maps on homology and cohomology,

which we also denote by φ̂ and φ, respectively.
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3. Tropical exponential sequence

Here we will prove Theorem 1.2 using the tropical exponential sequence (3.1). Throughout this
section X is a rational polyhedral space with a rational polyhedral structure C.

Definition 3.1. The sheaf of real valued functions on X which are affine with integral slope in each
chart is denoted by AffZ.

Definition 3.2. Let x be a point in a polyhedral space X and ϕ : U → Tr a chart such that x ∈ U
and sed(ϕ(x)) 6= ∅. Then v ∈ Rr is a divisorial direction at x if there exists an x0 ∈ U with
sedϕ(x0) = ∅ such that for all t < 0 we have xt = ϕ(x0) + tv ∈ ϕ(U) and limt→∞ ϕ(x0) + tv = x.

Note that any affine function f ∈ Aff(U) is constant along the divisorial directions to any x ∈ U
since the value f(x) is a real number. Taking the differential of a real valued function provides a
surjective map d : AffZ → F1

Z. The kernel is the sheaf of locally constant real functions R. The
tropical exponential sequence is

0→ R→ AffZ → F1
Z → 0. (3.1)

After passing to the long exact sequence in cohomology for all q there is the coboundary map,

δ : H1,q(X;Z)→ Hq+1(X,R).

Recall that F0 is the constant sheaf R for all X, therefore we identify Hq(X,R) and H0,q(X,R).

Lemma 3.3. Let D be a C-stratified simplicial structure and U denote the cover of X by the open
stars of vertices of either C or D. Then U is a Leray cover of X for the sheaves R, AffZ and FpZ.

Proof. Firstly, we show acyclicity of any open star U of a face for the sheaves R, AffZ and FpZ. The
open set U is contractible, thus acyclic for R. Furthermore, the contraction can be chosen so that it
respects the simplicial structure on U . Following the arguments in the proof of [JSS15, Proposition
3.11], we see that U is acyclic for F1

Z. The long exact sequence associated to (3.1) implies that U is
acyclic for AffZ as well.

The intersection of stars of vertices is the star of the minimal face containing these vertices.
Therefore, all intersections of the cover are acyclic and U is a Leray cover of X. �

Remark 3.4. Let U be the open cover given by stars of vertices of a C-stratified simplicial structure
D on X. Then there is a canonical isomorphism between the tropical simplicial cohomology groups
with respect to D and the Čech cohomology of the sheaves FpQ with respect to the cover U . The

Čech chain group Cq(FpQ,U) is canonically isomorphic to the group of q-simplicial cochains with

coefficients in Fp
Q, since FpQ(Ui0,...,iq) = Fp

Q([i0, . . . , iq]) for any q-simplex [i0, . . . , iq] ∈ D. Also

the differential maps in both cases agree. We also use this identification of simplicial and Čech
cohomology groups throughout the following sections without using different notations.

Proposition 3.5. The coboundary map δ : H1,q(X,Z) → H0,q+1(X,R) coincides, up to sign, with
the eigenwave homomorphism. More precisely, we have δ = (−1)q+1φ.

Proof. Let D be a stratified simplicial structure on X. Let Dq denote the simplicies of D of dimension
q. Write [i0, . . . , iq] for the q-simplex with vertices i0, . . . , iq ∈ D with the orientation induced by
the ordering of the vertices. For a q-simplex [i0, . . . , iq], denote its open star by Ui0...iq .

We will compare the coboundary and the eigenwave maps using Čech cochains with respect to
the cover (Ui)i∈D0 . An element α ∈ H1,q(X,Z) is given by a tuple (αi0···q)[i0,...,iq ]∈Dq where αi0...iq ∈
F1
Z(Ui0...iq). We choose a collection of functions fi0...iq ∈ AffZ(Ui0...ik) such that dfi0...iq = αi0...iq

for all [i0, . . . , iq] ∈ Dq. Since the functions fi0...iq are integer affine and the vertex iq has minimal
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sedentarity among all of i0 . . . iq, each function fi0...iq extends uniquely by continuity to the vertex
iq. We normalise our choices in such a way that fi0...iq(iq) = 0.

Write f = (fi0...iq)[i0,...,iq ]∈Dq . Since (αi0...iq) is a closed Čech chain, the Čech boundary

(∂f)i0...iq+1 =
∑

(−1)kfi0...îk...iq+1

is a constant function. To compute this constant, we evaluate at iq+1 and find

(∂f)i0...iq+1(iq+1) = (−1)q+1fi0...iq(iq+1)

because of our normalisation.
Note that if iq+1 has strictly lower sedentarity than iq, then fi0...iq is constant when moving along

the divisorial direction at iq+1 towards iq. Let πτ,σ be the projection (along the divisorial direction)
between strata containing the relative interior of two faces τ and σ. In particular, if the relative
interiors of τ and σ are contained in the same strata this map is the identity. Then, whether or not
iq and iq+1 have the same sedentarity, we have fi0...iq(iq+1) = fi0...iq(πτ,σ(iq+1)), where τ and σ are
the faces containing [i0, . . . , iq] and [i0, . . . , iq+1], respectively. Therefore,

φ(α)i0...iq+1 = αi0...iq(vδ[q,q+1]) = αi0...iq(πτ,σ(iq+1)− iq) = fi0...iq(πτ,σ(iq+1)) = fi0...iq(iq+1)

since fi0...iq(iq) = 0. This completes the proof. �

Definition 3.6. The tropical Picard group is Pic(X) := H1(X,AffZ). The map from Pic(X) to
H1,1(X,Z) provided by the tropical exponential sequence is called the Chern class map and is denoted
by c1 : Pic(X)→ H1,1(X,Z).

Proof Theorem 1.2. The kernel of the boundary map δ is Pic(X) = H1(X,AffZ) by the long exact
sequence associated to (3.1) and by Propostion 3.5 this is also the kernel of the eigenwave homo-
morphism. This completes the proof. �

Remark 3.7. There is also a version of Sequence (3.1) with real coefficients namely,

0→ R→ Aff → F1 → 0, (3.2)

where Aff denote the sheaf of functions which are affine in each chart, not necessarily with integral
slopes. By the same argument the boundary map of the long exact sequence is equal to the eigenwave
map extended to cohomology with R-coefficients φ : H1,q(X,R) → H0,q+1(X,R). Mikhalkin and
Zharkov conjecture that φp−q : Hp,q(X,R) → Hq,p(X,R) is an isomorphism for all p ≥ q [MZ14,
Conjecture 5.3]. This would imply that φ : H1,q(X,R) → H0,q+1(X,R) is surjective for all q. By
the long exact sequence derived from the short exact sequence in (3.2) this happens if and only if
H0,q(X,R)→ Hq(X,Aff) is zero for all q ≥ 1, which would in turn imply that for all q the following
sequence is exact

0→ Hq(X,Aff)→ H1,q(X,R)→ H0,q+1(X,R)→ 0.

A conjecture similar to the one of Mikhalkin and Zharkov was made by Liu [Liu17] for tropical
Dolbeault cohomology, which is a cohomology theory of non-archimedean analytic spaces defined
using superforms in the sense of Lagerberg [Lag12]. We refer the reader to [CLD12, Gub16] for the
construction of these forms on analytic spaces and to [JSS15] for the relation between the cohomology
of superforms and the tropical cohomology groups considered here.

4. Tropical cycle class map

In this section we prove Theorem 1.3. To do this, we first prove the existence of sections of
tropical line bundles, and that the construction of the divisor of a section is compatible with the
Chern class map combined with capping with the fundamental class. We will restrict our attention
to rational polyhedral spaces X with the following simple behaviour at their boundaries.
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Definition 4.1. A rational polyhedral space X is regular at infinity if it has an atlas of charts
{ϕα : Uα → Ωα ⊂ Xα}α∈A such that Ωα ⊂ Tsα ×Rr−sα and Xα ∩ (Tsα ×Rr−sα) = Tsα ×X ′α, where
X ′α is a rational polyhedral subspace in Rr−sα.

Given such an atlas and x ∈ X, the cardinality of sedϕα(x) does not depend on α. We denote
this number by sed(x). Given a subset A ⊂ X, the finite part of A is

Afin := {x ∈ A : sed(x) = 0}.

4.1. Tropical line bundles and sections. Throughout this section X is a rational polyhedral
space which is regular at infinity and admits a rational polyhedral structure.

Definition 4.2. Let U ⊂ X be an open subset. A tropical rational function f on U is a continuous
function f : Ufin → R such that there exists a polyhedral structure C on X for which f |σfin is (the
restriction of) an affine Z-linear function for any σ ∈ C. The set of tropical rational functions on
U is denoted by M(U). Given f ∈ M(U), any rational polyhedral structure C satisfying the above
condition is called fine enough for f .

Definition 4.3. A section s = (si)i of an element L ∈ Pic(X) is a collection of tropical rational
functions si ∈M(Ui) which satisfies

si − sj = fij (4.1)

for all i 6= j, where L is represented by a Čech cocycle (Uij , fij) ∈ C1(U ,AffZ). A rational polyhedral
structure C which is fine enough for si for all i is called fine enough for s.

Note that since any finite number of polyhedral structures always has a common refinement, fine
enough structures exist for sections represented on finite open covers.

A tropical line bundle L ∈ Pic(X) together with a section s is a tropical Cartier divisor. The set
of tropical Cartier divisors CaDiv(X) forms an abelian group whose operation is given by addition
of the Čech cocycles and the addition of the functions defining the section. There is a forgetful map
CaDiv(X)→ Pic(X).

The next proposition asserts the existence of a section of a tropical line bundle on a polyhedral
space regular at infinity. A version of this proposition first appeared in the thesis of Torchiani in
the case when X has no points of sedentarity [Tor10, Theorem 2.3.4].

Proposition 4.4. Any line bundle L ∈ Pic(X) admits a section.

Proof. Let C be a rational polyhedral structure on X. By further subdividing, we can assume that
each face in C contains a vertex. We denote the r-skeleton of C by Cr := {σ ∈ C | dimσ ≤ r} and
Xr := |Cr|. The open stars Ui for i ∈ C0 form an acyclic open cover of X by Lemma 3.3. Hence we
can represent L by a Čech cocycle (Uij , fij) ∈ C1(U ,Aff). The sets Ui for i ∈ (C0)fin give a cover

of the finite part Xfin. We first note that it is enough to construct a section (si)i∈(C0)fin for L|Xfin .

Namely, given such a section and j ∈ C0 of higher sedentarity, we can define sj : Ufin
j → R by setting

sj(x) = si(x) + fji(x) for any x ∈ Ufin
j ∩ Ui, i ∈ (C0)fin. Since the fij form a Čech 1-cocycle, this is

well-defined and produces a section of L on all of X.
We now restrict to the case X = Xfin and inductively define rational functions sri : Xr∩Ui → R for

all i such that Equation (4.1) is satisfied on Xr ∩Uij . To begin it is easy to choose s0
i : X0∩Ui → R.

Assuming that the functions sri are defined and satisfy the desired property, we construct a collection

of functions sr+1
i : Ui ∩ Xr+1 → R. Let σ be a face of dimension r + 1 and choose a vertex i(σ)

contained in σ. We define a function s∂σ on the boundary of σ as follows. For any proper face τ ≺ σ,
we choose a vertex j such that relint τ ⊂ Uj and set s∂σ|τ = srj |τ +fi(σ)j |τ . Again, since the fij form

a cocycle, this defines a unique rational function s∂σ : ∂σ → R. Then Lemma 4.5 guarantees the
existence of an extension of s∂σ to a rational function on all of σ which we denote by sσ : σ → R.
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For any vertex k ∈ C0 we now define the function sr+1
k : Uk ∩ Xr+1 → R by requiring, for any

(r + 1)-face σ with relintσ ⊂ Uk, the equation sr+1
k |σ = sσ + fi(σ)k to hold. By construction, this

gives rise to a well-defined function such that sr+1
k |Xr = srk. Moreover, the collection of functions

sr+1
k for all k satisfies Equation (4.1) on Xr+1, which completes the induction step and proof. �

Lemma 4.5. Let σ be a rational polyhedron in Rr. If s : ∂σ → R is a rational function, then s can
be extended to a rational function on all of σ.

Proof. We can assume without loss of generality that σ is of dimension r. For a codimension one
face τ of σ, let Hτ denote the hyperplane in Rr containing τ . We can construct a rational function
hτ : Hτ → R which restricts to s on the face τ . To do this, notice that each point in Hτ can be
uniquely written as x + v where x ∈ δ ≺ τ and v lies in the normal cone of the face δ in the
polyhedron τ with respect to the standard scalar product. Then hτ (x+ v) = s(x).

For each codimension one face τ choose a vector vσ,τ ∈ Zr pointing from τ to σ such that
LZ(σ) = LZ(τ) + Zvσ,τ . Then let πτ : Rr → Hτ be defined by πτ (x) = x − dist(x,Hτ )vσ,τ . Choose
m ∈ Z and set

fm,τ (x) = hτ (πτ (x)) +mdist(x,Hτ ).

We will show that for each τ there exists mτ ∈ Z such that fmτ ,τ (x) ≤ s(x) for all x ∈ ∂σ. Since
fmτ ,τ (x) = s(x) for all x ∈ τ , this implies that the piecewise affine function

h : σ → R, x 7→ max
τ

fmτ ,τ (x), (4.2)

satisfies h|∂σ = s, as required.
To find mτ for a fixed τ , we proceed as follows. Let D ⊂ Hτ be a domain of linearity of hτ and

δ ⊂ ∂σ be a domain of linearity of s. We will show that there exists an m such that fm,τ (x) ≤ s(x)
for all x ∈ π−1

τ (D)∩ δ. Since there are only finitely many pairs D, δ to check we can find the desired
mτ .

Firstly, if D ∩ δ = ∅, then let

dist(D, δ) := min
x∈π−1

τ (D)∩δ
dist(x,Hτ ) > 0

it can be verified that it suffices to choose m ≤ −c
dist(D,δ) , where c denotes maxx∈∂σ s(x)−minx∈∂σ s(x).

If D ∩ δ 6= ∅, then let

cone(D, δ) = {v ∈ Rr | x+ εv ∈ δ for some x ∈ D ∩ δ and some ε > 0},

and take v1, . . . , vl to be generators of this cone. Notice that the differentials (dfm,τ )x(vi) and dsy(vi)
are constant over all x ∈ π−1

τ (D) and all y ∈ δ. Then choose an m satisfying (dfm,τ )x(vi) ≤ dsy(vi)
for all i, all x ∈ π−1

τ (D), and all y ∈ δ. Such a choice of m is possible since the left hand side can
be made arbitrarily small except for when vi lies in the lineality space of cone(D, δ). In this case,
both sides agree since fτ and s agree on D ∩ δ. By linearity it follows that

(dfm,τ )x(v) ≤ dsy(v)

for any v ∈ cone(D, δ), x ∈ π−1
τ (D), and every y ∈ δ. Finally, every x ∈ π−1

τ (D) ∩ δ can be written
in the form x = x0 + v, x0 ∈ D ∩ δ and v ∈ cone(D, δ). Then by choosing such an m, it follows that
for all x ∈ π−1

τ (D) ∩ δ we have fm,τ (x) ≤ s(x). This completes the proof. �
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4.2. Tropical spaces and the fundamental class. Throughout this section X is a rational
polyhedral space of pure dimension n with a polyhedral structure C and D is a C-stratified simplicial
structure on X.

A point x in a rational polyhedral subspace Y of Tr is generic if it admits an open neighbourhood
in Y which is an open set of an affine subspace of RrI for some I. Being a generic point is invariant
under integral extended affine maps and hence this notion extends to rational polyhedral spaces.
We denote the (open and dense) set of generic points by Xgen ⊂ X.

Definition 4.6. A rational polyhedral space X is weighted if it is equipped with a locally constant
function ω : Xgen → Z \ {0}. For a maximal face σ ∈ C, the function ω is constant on relintσ and
we define ω(σ) to be this value. We also denote by ω(∆) its constant value on relint(∆) ∈ Dn.

We can extend Definition 2.3 to simplicial structures. For any ∆ ∈ Dk whose relative interior is
contained in σ ∈ C we define L(∆) to be the minimal linear subspace of L(σ) which is defined over Q
and has the property that ∆ is contained in a translate of L(∆). Note that in general k ≤ dimL(∆).
We set LZ(∆) := L(∆) ∩ LZ(σ). For ∆ ∈ Dk with rankLZ(∆) = k, we define Λ∆ to be the unique

generator of
∧k LZ(∆) ∼= Z compatible with the orientation of ∆. Then for a simplex ∆, we define

F1(∆) in the same way as for polyhedra in Definition 2.3.

Definition 4.7 (Fundamental chain). The fundamental chain of X is

ch(X) :=
∑

∆∈Dn

w(∆)Λ∆ ⊗∆ ∈ CBM
n,n (X,Z).

We call X an (abstract) tropical space if ch(X) is closed. In this situation, we call [X] :=
[ch(X)] ∈ HBM

n,n (X) the fundamental class of X.

Remark 4.8. The more conventional definition of a tropical space refers to the so-called balancing
condition [MS15, Definition 3.3.1], [MR, Section 6.1]. To formulate this condition in our context,
first let us use the notation ∆′ C∆ to indicate pairs Dn−1 3 ∆′ ≺ ∆ ∈ Dn of the same sedentarity.
Let ∆′ ∈ Dn−1 be such that LZ(∆′) has rank n − 1. A primitive generator of a pair ∆′ C∆ is an
integer vector v∆,∆′ such that

v∆,∆′ ∧ Λ∆′ = ε∆,∆′Λ∆, (4.3)

where ε∆,∆′ is the sign with which ∆′ appears in ∂∆. Primitive generators are unique up to adding
an element in LZ(∆′). The rational polyhedral space X is called balanced at ∆′ if∑

∆:∆′C∆

ω(∆)v∆,∆′ ∈ LZ(∆′), (4.4)

where the v∆,∆′ are primitive generators. The space X is called balanced if it balanced at all
∆′ ∈ Dn−1 such that LZ(∆′) has rank n− 1. It follows from [MZ14, Proposition 4.3] that ch(X) is
a closed (n, n)-cycle if and only if X is balanced. In particular, whether or not X is a tropical space
does not depend on the choice of simplicial structure D.

Definition 4.9. Given l ∈ Fp
Z(σ) and v ∈ FZ

p′(σ) with p ≤ p′, the contraction 〈l; v〉 ∈ FZ
p′−p(σ) is

induced by the usual contraction map 〈 ; 〉 :
∧p(ZrI)∗ ×

∧p′ ZrI →
∧p′−p ZrI . More generally, given

τ, τ ′ ≺ σ and l ∈ Fp
Z(τ), v ∈ FZ

p′(σ), the contraction 〈l; v〉 is given by

〈l; v〉 := iτ ′,σ(〈ρτ,σ(l); v〉) ∈ FZ
p′−p(τ

′).
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Definition 4.10. The cap product with the fundamental class of X is the map

∩[X] : Cp,q(X,Z)→ CBM
n−p,n−q(X,Z)

α 7→
∑

[i0,...,in]∈Dn

ω(∆)〈α([i0, . . . , iq]); Λ∆〉 ⊗ [iq, . . . , in],

where 〈 ; 〉 denotes the contraction introduced in Definition 4.9. This map descends to a map between
cohomology and Borel-Moore homology groups

∩[X] : Hp,q(X,Z)→ HBM
n−p,n−q(X,Z).

which is independent of the simplicial structure D.

4.3. Subspaces, Divisors, and the Chern class map. In this section X is a tropical space of
dimension n, which is regular at infinity.

Definition 4.11. A subset Z ⊂ X is a rational polyhedral subspace if it is closed and the restric-
tions of the charts of an atlas of X provide an atlas as a rational polyhedral space for Z. Furthermore,
a rational polyhedral subspace Z ⊂ X is a tropical subspace or tropical cycle if it has a polyhedral
structure and is equipped with a weight function which turns it into a tropical space.

The tropical cycles of dimension k form a group under taking unions and adding up weights (see
[AR10, Lemmata 2.14 and 5.15] and [MR, Section 7.1]), which we denote by Zk(X). Note that since
we assume Z ⊂ X closed we get induced maps ιZ∗ : HBM

p,q (Z)→ HBM
p,q (X) for any polyhedral subspace

Z. This gives rise to the following map.

Definition 4.12. The cycle class map cyc: Zk(X)→ HBM
k,k (X) is defined by

cyc(Z) := ιZ∗ ([Z]) ∈ HBM
k,k (X).

We are interested in a construction which produces a tropical cycle of dimension n − 1 from a
Cartier divisor. Let (L, s) be a tropical Cartier divisor and consider the subset of X given by

D(s) := {x | sed(x) > 0 or si is not affine in a neighbourhood of x}.
It is a rational polyhedral subspace of dimension n− 1. Next we define weights on this set to turn
it into a tropical subspace following [AR10, Section 3] and [MR, Section 5.2].

Definition 4.13. The divisor map is

div : CaDiv(X)→ Zn−1(X),

where div(s) is a tropical codimension one cycle supported on D(s). The weight of a generic point
x ∈ D(s)gen is given as follows. If sed(x) = 0, fix i such that x ∈ Ui and choose

• a neighbourbood x ∈ U ⊂ Ui and simplicial structure D on U such that D(s) ∩ U ⊂ |Dn−1|
and x ∈ relint ∆′,∆′ ∈ Dn−1,
• primitive generators v∆,∆′ for any pair ∆′ C∆,

and set

wdiv(s)(x) =
∑

∆:∆′C∆

wX(∆)dsi|∆(v∆,∆′)− dsi|∆′(
∑

∆:∆′C∆

wX(∆)v∆,∆′). (4.5)

If sed(x) > 0 in X, since x is generic in D(s) we can assume that sed(x) = 1 so that there
exists a unique divisorial direction v at x. Fix a vertex i with x ∈ Ui and x0 ∈ Ui such that
limt→∞ x0 + tv = x. Then the weight of x is

wdiv(s)(x) = lim
t→∞

ωX(x0 + tv)dsi|x0+tv(v). (4.6)
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The weights wdiv(s)(x) may happen to be zero; such parts of D(s) are tacitly removed from div(s).
For details on this construction and proof of its well-definedness we refer to [AR10, Sections 3 and
6] as well as [MR, Section 5.2].

Theorem 4.14. The diagram

CaDiv(X) //

div

��

Pic(X)
c1 // H1,1(X,Z)

∩[X]
��

Zn−1(X)
cyc // HBM

n−1,n−1(X,Z)

(4.7)

commutes.

Let s = (si)i be a Cartier divisor. A simplicial structure D is fine enough for s if for any ∆ ∈ D
there exists i with relint ∆ ⊂ Ui and such that si|relint ∆ is the restriction of an affine Z-linear map.
Given a polyhedral structure C fine enough for s as in Definition 4.3, we can construct a simplicial
structure fine enough by taking e.g. higher barycentric subdivisions. Given such D, for any ∆ ∈ Dn
and i such that Ui∩∆ 6= ∅, we can consider the linear part dsi|∆ of the corresponding affine function,
considered as an element in F1(∆).

Lemma 4.15. Let s = (si)i ∈ CaDiv(X) be a Cartier divisor and let D be a simplicial structure
fine enough for s. Then

cyc(div(s)) =
∑

∆∈Dn
∆′∈Dn−1

∆′≺∆

ω(∆) · ι∆′,∆
(
〈dsi∆′ |∆; ε∆,∆′Λ∆〉

)
⊗∆′ ∈ HBM

n−1,n−1(X), (4.8)

where ε∆,∆′ = ±1 is the relative orientation of ∆ and ∆′ and i∆′ is chosen so that relint ∆′ ⊂ Ui∆′ .

Proof. Since D is a simplicial structure on X fine enough for s, the simplices {∆ ∈ D|∆ ⊂ D(s)}
form a simplicial structure for D(s). In particular, it follows that for any ∆′ ∈ Dn−1 with ∆′ ⊂ D(s)
the lattice LZ(∆′) is of rank n− 1. For any ∆′C∆ we choose primitive generators v∆,∆′ (satisfying
(4.3)) and use the notation v∆′ ∈ LZ(∆′) for the balanced sum in (4.4). If ∆′ ≺ ∆ are of different
sedentarity, then we choose v∆,∆′ to be the unique divisorial direction for ∆′ ≺ ∆ analogous to the
second case in Definition 4.13. We now want to show that for any ∆′ ∈ Dn−1 its coefficients on the
right hand and left hand side of (4.8) agree.

First assume sed(∆′) = 0 and ∆′ ⊂ D(s). Then for any facet ∆′ ≺ ∆ the rules of contracting
wedge products along 1-forms applied to equation (4.3) provide

〈dsi∆′ |∆; ε∆,∆′Λ∆〉 = dsi∆′ |∆(v∆,∆′) · Λ∆′ − v∆,∆′ ∧ 〈dsi∆′ |∆; Λ∆′〉. (4.9)

Moreover, since v∆′ ∧ Λ∆′ = 0, we have

dsi∆′ |∆(v∆′) · Λ∆′ = v∆′ ∧ 〈dsi∆′ |∆; Λ∆′〉.

Comparing with (4.5), this proves the equality of coefficients.
If ∆′ is of higher sedentarity, choose a lift Λ′∆′ such that ι∆,∆′(Λ

′
∆′) = Λ∆′ . For the unique facet

∆′ ≺ ∆, we have ε∆,∆′Λ∆ = v∆,∆′ ∧ Λ′∆′ . Using again formula (4.9) and applying ι∆′,∆ afterwards,
we obtain

ι∆′,∆
(
〈dsi∆′ |∆; ε∆,∆′Λ∆〉

)
= dsi∆′ |∆(v∆,∆′) · Λ∆′ . (4.10)

Note that the “second” term vanishes since ι∆′,∆(v∆,∆′) = 0. This agrees with the definition in
(4.6).
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Let us now consider ∆′ 6⊂ D(s). Then si∆′ is affine linear in a neighbourhood of relint(∆′)

and therefore dsi∆′ defines an element in F1(∆′) (independent of a choice of facet ∆′ ≺ ∆). The
coefficient of ∆′ in (4.8) is therefore equal to∑

∆∈Dn
∆′≺∆

ω(∆)〈dsi∆′ |∆; ε∆,∆′Λ∆〉 = 〈dsi∆′ ;
∑

ω(∆)ε∆,∆′Λ∆〉.

But the sum on the right hand side is exactly equal to the coefficient of ∆′ in ∂ ch(X), so it is zero
since ch(X) is closed. �

Proof of Theorem 4.14. Let (L, s) denote a Cartier divisor of X. Let D be a simplicial structure
on X fine enough for s. We can assume that each open star of D is fully contained in the domain
Ui of si for some i. Hence, by fixing an appropriate choice and restricting to open stars, we can
even assume that s = (si)i∈D0 is labelled by the vertices of D and that Ui is equal to the open star
around the vertex i. As usual we use the notation Ui0...in = Ui0 ∩ · · · ∩ Uin for the open stars of
higher-dimensional simplices ∆ = [i0, . . . , in] ∈ D.

We first compute the image of (L, s) following the upper right path. Since s is a section of L,
the transition functions for L are given by fij = si − sj on Uij . Using the identification of Čech
cochains and simplicial cochains explained in Remark 3.4, we conclude that c1(L) is the simplicial
(1, 1)-cochain which, when applied to an edge [i, j] ∈ D1, provides dfij ∈ F1([i, j]). Capping with
the fundamental class then gives

c1(L) ∩ [X] =
∑

∆=[i0,...,in]

ω∆ι∆,∆0〈dfi0i1 ; Λ∆〉 ⊗ [i1, . . . , in], (4.11)

where ∆j := [i0, . . . , îj , . . . , in]. Let us now compute the effect of the lower left path using Lemma
4.15. To do so, we fix the choice of indices i∆′ required in Lemma 4.15 by setting i∆′ = i1 for any
∆′ = [i1, . . . , in] ∈ Dn−1. In other words, to compute the coefficient of ∆′ we always use the function
associated to the first vertex in ∆′. Let us now fix a maximal simplex ∆ = [i0, . . . , in] ∈ Dn. Then
by Lemma 4.15 and with the convention just made, the contribution of ∆ to cyc(div(s)) in (4.8) is

ω∆

ι∆,∆0〈dsi1 ; Λ∆〉 ⊗ [i1, . . . , in] +

n∑
j=1

ι∆,∆j 〈dsi0 ; ε∆,∆jΛ∆〉 ⊗ [i0, . . . , îj , . . . , in]

 .

Since the section s satisfies si1 = fi0i1 + si0 we obtain

w∆

ι∆,∆0〈dfi0i1 ; Λ∆〉 ⊗ [i1, . . . , in] +
n∑
j=0

ε∆,∆j ι∆,∆j 〈dsi0 ; Λ∆〉 ⊗ [i0, . . . , îj , . . . , in]

 .

The first summand is precisely the sum which appears in Equation (4.11) and the second summand is
homologous to zero (namely, equal to ∂(〈dsi0 ; Λ∆〉⊗∆)). Therefore the diagram is commutative. �

Proof of Theorem 1.3. Suppose that α ∈ Ker(φ : H1,1(X,Z) → H0,2(X,R)). By Theorem 1.2 there
exists L in Pic(X) such that c1(L) = α. By Proposition 4.4 there exists a section s of L. By the
commutativity of the diagram in Theorem 4.14, we have α ∩ [X] = c1(L) ∩ [X] = cyc(div(s)). The
statement of the theorem now follows since cyc(div(s)) is the fundamental class of a codimension
one tropical cycle. �
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5. Poincaré duality with coefficients in Z

In this section we prove Theorem 1.1. To do so, we restrict to tropical manifolds and establish a
version of Poincaré duality over Z. We first introduce tropical manifolds which are tropical spaces
locally modelled on matroidal fans. We do not describe these fans here but refer the reader to the
literature for their definition and properties [AK06, Sha13b, FR13].

Definition 5.1. A tropical manifold X is a tropical space whose weight function is equal to one
and which is equipped with an atlas of charts {ϕα : Uα → Ωα ⊂ Xα}α∈A such that Ωα ⊂ Tsα×Rr−sα
and Xα ∩ (Tsα × Rr−sα) = Tsα ×X ′α, where X ′α ⊂ Rr−sα is the support of a matroidal fan.

Definition 5.2. A tropical space X satisfies Poincaré duality with integral coefficients if

∩[X] : Hp,q(X,Z)→ HBM
n−p,n−q(X,Z)

is an isomorphism for all p, q.

Theorem 5.3. A tropical manifold satisfies Poincaré duality with integral coefficients.

The above theorem is a extension of the version of Poincaré duality with real coefficients for trop-
ical manifolds previously proved in [JSS15]. This version related tropical cohomology and tropical
cohomology with compact support with real coeffcients via a pairing given by integration.

We first prove this version of Poincaré duality for matroidal fans using a cellular description of
tropical (co)homology. Let X be a polyhedral subspace in Tr × Rs and C a polyhedral structure
on X such that every cell contains a vertex. Then there are descriptions of tropical (Borel-Moore)
homology and cohomology in terms of cellular chain complexes with respect to C,

HBM
p,q (X,Z) = Hq(C

BM,cell
p,• (C,Z)), where CBM,cell

p,q (C,Z) =
⊕
σ∈Cp

FZ
p (σ), (5.1)

Hp,q(X,Z) = Hq(C
cell
p,• (C,Z)), where Ccell

p,q (C,Z) =
⊕
σ∈Cp

σ compact

FZ
p (σ) and (5.2)

Hp,q(X,Z) = Hq(Cp,•cell(C,Z)), where Cp,qcell(C,Z) =
⊕
σ∈Cp

σ compact

Fp
Z(σ). (5.3)

These identifications follow by a direct comparison with simplicial homology after choosing a locally
finite C-stratified simplicial structure (cf. Remark 2.8).

Let V be a fan in Rs and C a polyhedral fan structure on V such that 0 is a vertex of C. We
then find using (5.2) and (5.3) that Hp,0(V,Z) = Fp

Z(0) =: Fp
Z(V ), Hp,0(V ) = FZ

p (0) =: FZ
p (V ),

Hp,q(V,Z) = Hp,q(V,Z) = 0 for all p ≥ 0, q > 0.
Let X be a tropical variety in Rr and f ∈ M(X) be a tropical rational function. The graph

ΓX(f) of f is a polyhedral complex in Rr+1. For every face τ of div(f) denote by τ≤ the polyhedron
{(x, y)|x ∈ τ, y ≤ f(x)} ⊂ Rr+1. The union Y := ΓX(f) ∪ {τ≤|τ ∈ div(f)} is a tropical cycle in Rr
if we define the weights on ΓX(f) to be inherited from X and the weight on a face τ≤ is defined to
be equal to the weight of τ in div(f).

Definition 5.4. We call Y the open tropical modification of X along f and δ : Y → X an open
tropical modification. The space div(f) is called the divisor of the modification.

More details on this construction can be found in [AR10, Construction 3.3] as well as [MR,
Chapter 5]. We provide some notation useful for modifications. Let δ : V →W be an open tropical
modification of fans along a function f ∈M(W ) with divisor D and let C be a polyhedral structure
consisting of cones which contains a polyhedral structure for D. We always assume that δ is induced
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by the projection π : Rr ×R→ Rr with kernel er+1. Denote by V the closure of V in Rr ×T. Then
the polyhedra

σ̃ = (id×f)(σ) for all σ ∈ C
σ≤ = σ̃ + ({0} × [−∞, 0]) for all σ ∈ C, σ ⊂ D (5.4)

σ∞ = σ × {−∞} for all σ ∈ C, σ ⊂ D

form a polyhedral structure on V . The intersection of the first two types of cones with V form a
polyhedral structure on V .

Proposition 5.5. Let V be a matroidal fan in Rs. Then V satisfies Poincaré duality with integral
coefficients.

Proof. We use induction on s, with base case being when s = dim(V ). In this case the support of
V is Rs and the statement can be verified using the fact that FZ

p and Fp
Z are constant for all p.

If s > dim(V ), by [Sha13b, Proposition 2.2] there exists an open tropical modification δ : V →W
with divisor D where W and D are matroidal fans in Rs−1. The closure V of V in Rs−1×T satisfies
Hp,q(W,Z) = Hp,q(V ,Z) and HBM

p,q (W,Z) = HBM
p,q (V ,Z) by Proposition 5.6. We have the short exact

sequence

0→ CBM,cell
p,q (D,Z)→ CBM,cell

p,q (V ,Z)→ CBM,cell
p,q (V,Z)→ 0. (5.5)

Using the notation from (5.4), the maps in (5.5) are given by

v ⊗ σ̃ 7→ v ⊗ σ̃,
v ⊗ σ 7→ v ⊗ σ∞, and v ⊗ σ≤ 7→ v ⊗ σ≤,

v ⊗ σ∞ 7→ 0.

The same induction argument as in [JSS15, Lemma 4.26] proves that HBM
p,q (V,Z) = 0 for q 6= n and

that the long exact sequence obtained from (5.5) reduces to a short exact sequence which fits into
the following commutative diagram (see (5.7))

0 // Hp,0(W,Z) //

∩[W ]
��

Hp,0(V,Z) //

∩[V ]
��

Hp−1,0(D,Z)

∩[D]
��

// 0

0 // HBM
n−p,n(W,Z) // HBM

n−p,n(V,Z) // HBM
n−p,n−1(D,Z) // 0.

(5.6)

Arguing by induction we can assume that W and D satisfy Poincaré duality with integral coefficients.
Then the five lemma shows that V does as well. This completes the proof. �

Proposition 5.6. Let δ : V →W be an open tropical modification with divisor D, such that W , V
and D are matroidal fans. Then δ∗ : HBM

p,q (V ,Z) → HBM
p,q (W,Z) and δ∗ : Hp,q(W,Z) → Hp,q(V ,Z)

are isomorphisms for all p, q.

Proof. For cohomology, note that V has three compact cells, which we denote by τ∞, τ0 and τ≤.

We further have Fp
Z(τ∞) = Fp

Z(D), Fp
Z(τ0) = Fp

Z(V ) and Fp
Z(τ≤) = Fp

Z(D)⊕ (Fp−1
Z (D) ∧ w), where

w : Rn → R is any Z-linear form such that w(er+1) = 1. By (5.1) we thus have to show that the
cohomology of

0 // Fp
Z(D)⊕ Fp

Z(V ) // Fp
Z(D)⊕ (Fp−1

Z (D) ∧ w) // 0

is equal to Fp
Z(W ). This follows from dualising the sequence (5.7).

It remains to prove the statement about Borel-Moore homology. In the following, we always use σ
to denote arbitrary cells of W and τ for cells of codimension at least 1. On the chain level δ∗ is given
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by the map Ψ: CBM
p,q (V ,Q)→ CBM

p,q (W,Q) defined by v⊗ σ̃ 7→ π(v)⊗σ, v⊗ τ≤ 7→ 0, v⊗ τ∞ 7→ v⊗ τ .
We want to show that this is a quasi-isomorphism.

Injectivity: Let C be a closed chain in CBM
p,q (V ,Q) with Ψ(C) = ∂B being a boundary. By choosing

an arbitrary lift B̃ of B under Ψ, which is surjective, and subtracting ∂B̃, we can assume Ψ(C) = 0.
Note that the cells τ∞ can be moved in the interior by adding a suitable boundary of τ≤ cells, and
hence we can assume C =

∑
aσσ̃+

∑
bττ≤. Then Ψ(C) = 0 implies that aσ ∈ ker(π). From Lemma

5.7, it follows that if q = n then aσ = 0, and if q < n then aσ ∈ FZ
p (σ≤). Hence, by adding the

boundaries of aσσ≤, we can assume C =
∑
bττ≤. But then 0 = ∂C =

∑
bτ τ̃ +

∑
cρρ≤−

∑
π(bτ )τ∞

implies bτ = 0.
Surjectivity: Let C =

∑
aσσ be a closed chain in CBM

p,q (W,Q). We can obviously find a lift
of C of the form C1 :=

∑
ãσσ̃. Its boundary is of the form ∂C1 =

∑
bτ τ̃ . Since Ψ(∂C1) = 0,

we get π(bτ ) = 0 and hence bτ ∈ FZ
p (τ≤) by Lemma 5.7. Hence by adding bττ≤, we obtain C2

with ∂C2 =
∑

ρ cρρ≤, where ρ runs through cells of dimension q − 2. Let us compute cρ. By

construction it is a sum over the flags ρ ⊂ τ ⊂ σ, each contributing ±ãσ. But for each σ there are
exactly two such flags, and they contribute with opposite sign, which implies cρ = 0. Hence we get
Ψ(C2) = Ψ(C1) = C and ∂C2 = 0, as required. �

Lemma 5.7. Let v ∈ FZ
p (τ̃) such that π(v) = 0. Then v ∈ FZ

p (τ≤).

Proof. The statement follows from the fact that the sequence

0 // FZ
p−1(D)

w 7→w∧er+1 // FZ
p (V )

v 7→π(v) // FZ
p (W ) // 0 (5.7)

is exact. This sequence is obtained by combining a similar short exact sequence for Orlik-Solomon
algebras from [OT92, Theorem 3.65] together with the relation between the Orlik-Solomon algebras
and Fp from [Zha13]. �

Lemma 5.8. Let Y be a polyhedral space in Ts×Rr−s. Then HBM
p,q (Y,Z) = HBM

p+1,q+1(Y ×T,Z) and
Hp,q(Y,Z) = Hp,q(Y × T,Z) for all p, q.

Proof. Let C be a polyhedral structure on V . Given a face σ ∈ C, denote σ∞ := σ × {−∞} and
σ̃ := σ × T. The collection of all these polyhedra forms a polyhedral structure on Y × T. The
statement for cohomology now follows directly from (5.3) since the compact cells for the polyhedral
structure on Y × T are precisely of the form σ × {−∞} for compact cells σ of C.

For Borel-Moore homology, we prove the claimed isomorphism by constructing an explicit homo-
topy equivalence on the cellular chain complexes with respect to these polyhedral structures. Let
us first look at the behaviour of the multi-tangent spaces. There are projection and lifting maps

π : Fp(σ̃)→ Fp(σ∞) = Fp(σ) and ∧ er+1 : Fp(σ)→ Fp+1(σ̃).

The map π is induced by the linear projection Rr × R → Rr forgetting the last coordinate. The
second map is given by v 7→ v∧er+1 := ṽ∧er+1 where ṽ ∈ π−1(v) and er+1 denotes the kernel of the
map π. Note that the wedge product does not depend on the choice of preimage. Let w : Rr×R→ R
be the linear form given by projecting onto the last factor, regarded as an element w ∈ F1(σ), as in
the proof of Proposition 5.6. We define

Ψ: CBM,cell
p,q (Y,Z)→ CBM,cell

p+1,q+1(Y × T,Z); v ⊗ σ 7→ (v ∧ er+1)⊗ σ̃ and

Φ: CBM,cell
p+1,q+1(Y × T,Z)→ CBM,cell

p,q (Y,Z); v ⊗ σ̃ 7→ π(〈w; v〉)⊗ σ and v ⊗ σ∞ 7→ 0,

where 〈 ; 〉 denotes the contraction from Definition 4.9.
It easy to check Φ ◦Ψ = id since π(〈w; v ∧ er+1〉) = v. We define

h : Ccell
p+1,q(Y × T,Z)→ Ccell

p+1,q+1(Y × T,Z); v ⊗ σ∞ 7→ v ⊗ σ̃ and v ⊗ σ̃ 7→ 0,
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where v is the map Fp(σ) → Fp(σ̃) induced by mapping each vector v ∈ F1(σ) to the unique
preimage v ∈ π−1(v) with 〈w; v〉 = 0. Then h provides a chain homotopy between id and Ψ ◦ Φ,
thus the lemma is proven. �

Corollary 5.9. Let V be a matroidal fan in Rs and set Y = V × Tr. Then Y satisfies Poincaré
duality.

Proof. This follows from Proposition 5.5 and Lemma 5.8. �

Remark 5.10. In the following proof we use a local gluing argument. To do so, we need to slightly
extend our terminology. Let X be a polyhedral space with polyhedral structure C. Let U ⊂ X be
an open subset. A C-stratified q-simplex in U is a C-stratified q-simplex δ in X such that δ(∆) ⊂ U .
Using this convention, Definitions 2.6 and 2.7 can be carried over to the open set U instead of X.
In particular, we obtain groups Hp,q(U,Z) and HBM

n−p,n−q(U,Z). Moreover, if X is a tropical space

any C-stratified simplicial structure on U gives rise to a fundamental class [U ] ∈ HBM
n,n (U,Z) and a

map ∩[U ] : Hp,q(U,Z)→ HBM
n−p,n−q(U,Z) which do not depend on the simplicial structure. Again we

say that U satisfies Poincaré duality if ∩[U ] is an isomorphism for all p, q.

Proof of Theorem 5.3 . Let C be a polyhedral structure for X. The proof is completed in two steps.
Step 1: Open stars of faces satisfy Poincaré duality: A star Uσ of a face σ ∈ C of a tropical manifold

is isomorphic as a tropical manifold to a connected neighbourhood U of (0, (∞)r) in a polyhedral
complex of the form Y = V × Tr, where V is a matroidal fan. Note that C induces a polyhedral
structure C′ on Y . There is a homeomorphism f : U → Y which preserves the stratification given by
C and C′. Hence if δ is a C-stratified simplex in U , the push-forward f∗(δ) = f ◦ δ is a C′-stratified
simplex in Y . We obtain the following commutative diagram.

Hp,q(U,Z)
∩[U ] // HBM

n−p,n−q(U,Z)

f∗
��

Hp,q(Y,Z)
∩[Y ] //

f∗

OO

HBM
n−p,n−q(Y,Z)

It is straightforward to check that the two vertical arrows are isomorphisms. Since ∩[Y ] is an
isomorphism by Corollary 5.9, the map ∩[U ] is also an isomorphism.

Step 2: Finite unions of open stars of C satisfy Poincaré duality: We proceed by induction on
the number of open stars in the union with the base case covered above. Suppose that a union of k
open stars satisfy Poincaré duality. Let U be an open star and V be a union of k open stars of C.
Then U ∩ V is also a union of k open stars, so that U , V , and U ∩ V satisfy Poincaré duality. The
following short exact sequence of complexes (with respect to C)

0→ CBM,cell
p,• (U ∩ V,Z)→ CBM,cell

p,• (U,Z)⊕ CBM,cell
p,• (V,Z)→ CBM,cell

p,• (U ∪ V,Z)→ 0

induces a Mayer-Vietoris sequence MBM
p,• (U, V ) for the tropical Borel-Moore homology groups. We

further denote by Mp,•(U, V ) the Mayer-Vietoris sequence for tropical cohomology groups. We get
a map of sequences

Mp,•(U, V )→ MBM
n−p,n−•(U, V )

where in each degree we take the cap product with the appropriate fundamental class. Now the claim
follows from the five lemma, since by our assumption U , V and U ∩ V satisfy Poincaré duality. �

Corollary 5.11. If X is a compact tropical manifold of dimension n, then

Hp,q(X,Z) ' Hn−q,n−q(X,Z).
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Remark 5.12. A tropical manifold X also satisfies Hp,q
c (X,Z) ∼= Hn−p,n−q(X,Z), where Hp,q

c (X,Z)
denotes cohomology with compact support. Capping with the fundamental class of a tropical man-
ifold also produces a map

∩[X] : Hp,q
c (X,Z)→ Hn−p,n−q(X,Z), (5.8)

which again is an isomorphism for all p, q. This can be proven by essentially dualising the argument
given in this section.

The last step in order to prove Theorem 1.1 is to relate the wave homomorphism on cohomology
to its variant on homology.

Lemma 5.13. The following diagram is commutative:

H1,1(X,Z)

∩[X]
��

φ // H0,2(X,R)

∩[X]
��

HBM
n−1,n−1(X,Z)

φ̂ // HBM
n,n−2(X,R)

Proof. This follows on the level of individual simplices by the definition of φ (see Definition 2.9). �

Proof of Theorem 1.1. It is easy to check φ̂ ◦ cyc = 0 (see [MZ14, Theorem 5.4]). Conversely, let

β ∈ HBM
n−1,n−1(X,Z) such that φ̂(β) = 0. Since X satisfies Poincaré duality with integral coefficients,

there exists α ∈ H1,1(X,Z) with α ∩X = β. By Lemma 5.13 we have φ(α) ∩X = 0. Then, again
by Poincaré duality, we get φ(α) = 0 and the statement follows from Theorem 1.3. �

6. Corollaries and Examples

In this final section we deduce some corollaries of the main theorems and present some explicit
examples. In the case of tropical abelian surfaces and Klein bottles with a tropical structure, we
show how to represent (1, 1)-classes in the kernel of the wave map as fundamental classes of tropical
cycles. We also calculate the wave map for two combinatorial types of tropical K3 surfaces. We
start with some interesting consequences of Theorem 1.1.

Corollary 6.1. Let X be a tropical manifold. If H0,2(X,R) = 0, then every class in HBM
n−1,n−1(X,Z)

is the fundamental class of a tropical cycle in X.

Proof. By Poincaré duality 5.3 we find that HBM
n,n−2(X,R) = 0 and thus every element of HBM

n−1,n−1(X,Z)

is in the kernel of φ̂. The corollary now follows from Theorem 1.1. �

Corollary 6.2. Let X be a tropical manifold. If α ∈ HBM
n−1,n−1(X,Z) is a torsion class, then α is

the fundamental class of a codimension one tropical cycle.

Proof. We have φ̂(α) = 0 ∈ HBM
n,n−2(X,R). Thus the corollary follows again from Theorem 1.1. �

Remark 6.3. In some instances the image of the wave homomorphism is contained in the appro-
priate cohomology group with rational instead of real coefficients. Then the dimension of the kernel
of the extension φ : H1,1(X,Z) ⊗ Q → H0,2(X,Q) gives the rank of the free part of the kernel of
φ : H1,1(X,Z) → H0,2(X,Q). For example, for the Q-tropical projective varieties as introduced in
[IKMZ16] the wave homomorphism is always defined over Q.
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6.1. Tropical structures on the Klein bottle. et K be a Klein bottle obtained from gluing
a parallelogram P ⊂ R2 with edges a, b, c, d as follows. The edges b and d are glued using the
translation in the direction of a, and the edges a and c are glued using an (orientation-reversing)
affine transformation h which sends a to c with flipped orientation. Let H ∈ GL(2,R) be the linear
part of h. Then the tropical structure given by Z2 ⊂ R2 extends to K if and only if H ∈ GL(2,Z).
Note that det(H) = −1 and one of its eigenvalues is −1, hence the second eigenvalue is +1. It
follows that the eigenvectors have rational directions and a computation shows that the two primitive
eigenvectors either form a lattice basis or generate a sublattice of index 2. We can normalise the
two cases to the following matrices:

H1 =

(
−1 0
0 1

)
H2 =

(
−1 1
0 1

)
(6.1)

Correspondingly, the parallelogram P has vertices 0, l1e1, l1e1 + l2v2, and l2v2, where v2 is either e2

or
(

1
2

)
see (Figures 1, 2). We denote the two Klein bottles by K1 and K2.

Note that H2,0(K,Z) = Z2 so that H2,0(K,R) = 0. Hence we are in the situation of Corollary
6.1 which says that any (1, 1)-class can be represented by a tropical cycle of dimension one. Let
a = [0, l1e1] and b = [0, l2v2] denote two oriented edges of P . Any (1, 1)-class can be represented by

v ⊗ a+ λv2 ⊗ b, v ∈ Z2, λ ∈ Z.

As boundaries of (1, 2)-chains we obtain

∂(

(
x

y

)
⊗ P ) =

{
2ye2 ⊗ a if H = H1,

y
(

1
2

)
⊗ a if H = H2.

(6.2)

Hence we find H1,1(K1,Z) = Z2 ⊕ Z ⊕ Z = 〈e2 ⊗ a, e1 ⊗ a, e2 ⊗ b〉 and H1,1(K2,Z) = Z ⊕ Z =

〈
(

1
1

)
⊗a,

(
1
2

)
⊗ b〉. Among these generators, the chains e1⊗a and v2⊗ b can obviously be represented

by tropical cycles. Such representations are less obvious for the torsion class e2 ⊗ a and the class(
1
1

)
⊗ a. Explicit representations by tropical cycles are depicted for the two cases in Figures 1, 2.

Here the chains are drawn in thin red lines with framing and orientation given by simple and double
arrows respectively. The homologous tropical cycles are drawn in thick red lines and labelled with
their respective weights if not equal 1.

For the sake of completeness let us briefly discuss the full classification of tropical Klein bottles.
Instead of just a translation, we may glue the edges b and d via the affine transformation x 7→ Tx+t,
where t is the translation along a and T ∈ GL(2,Z) (before we assumed T = id). Depending on H,
the possible matrices T are of the following two types (see [Sep10])

T1,n =

(
1 0
n 1

)
, n ∈ Z T2,n =

(
1 + 2n −n

4n 1− 2n

)
, n ∈ Z. (6.3)

The obtained Klein bottles K1,n and K2,n give a full list of Klein bottles with a tropical structure.
Analogous to the case n = 0, we can compute the homology groups for n 6= 0 as H1,1(K1,n,Z) =

Z/2Z⊕Z/nZ = 〈e2⊗ a, e2⊗ b〉 and H1,1(K2,n,Z) = Z/2nZ = 〈
(

1
2

)
⊗ b〉. Again, it is clear that v2⊗ b

can be represented by tropical cycles, while for e2 ⊗ a the same trick as for K1, Figure 1, is needed.

6.2. Tropical abelian surfaces. A tropical abelian surface is S = R2/Λ where Λ is a rank two
lattice equal to 〈w1, w2〉Z for w1, w2 ∈ R2. Therefore S ∼= S1 × S1. The sheaf FpZ is the constant
sheaf

∧p Z2 for p = 0, 1, 2, and tropical homology groups Hp,q(S,Z) are free Z modules whose ranks
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v v
vv

v

−1

Figure 1. Representing the torsion class in H1,1(K1) of a Klein bottle K1 from
Subsection 6.1 as a parallel class.

−1

Figure 2. Representing a class in H1,1(K2) of the Klein bottle K2 from Subsection
6.1 as a parallel class.

are given by the follow tropical Hodge diamond,

1
2 2

1 4 1
2 2

1

.

We can choose a basis of H1,1(S,Z) as αij = ei ⊗ σj where σ1, σ2 form a basis of H1(S,Z) and e1, e2

are a lattice basis of Z2. Furthermore suppose that σi is the quotient of the oriented line in R2 in
direction wi. Then the eigenwave homomorphism is given by φ̂(αij) = ei ∧ wj .

We can explicitly describe a parallel representative of α ∈ H1,1(S,Z)∩ ker(φ̂). For α ∈ H1,1(S,Z)

we can write α = v1 ⊗ σ1 + v2 ⊗ σ2, where v1 and v2 are integer vectors. Then α is in ker(φ̂) if and
only if v1 ∧ w1 + v2 ∧ w2 = 0.

Suppose that v1 and v2 are linearly independent. Consider the triangle T in R2 with vertices
0, w1, and w2. Firstly, we claim that if v1 ∧ w1 + v2 ∧ w2 = 0, then the lines in directions v1 + v2,
v1, and v2 drawn from the vertices 0, w1, and w2, respectively, are concurrent.

Since v1 ∧ v2 6= 0, it forms a R-basis of
∧2 R2 and hence there exists an α ∈ R such that

αv1 ∧ v2 = v1 ∧ w1 = −v2 ∧ w2. Then the three lines mentioned above intersect at the point
p = α(v1 + v2) in R2. To see this notice that (x− wi) ∧ vi = 0 is the defining equation for the line
from wi. Then

(α(v1 + v2)− wi) ∧ vi = α(vj ∧ vi) + vi ∧ wi for i 6= j.

Consider the (1, 1)-cycle α′ = (v1 + v2)⊗ [0, p]− v1⊗ [w1, p]− v2⊗ [w2, p]. Then α−α′ = ∂(β1 +β2),
where βi = vi⊗τi is a (1, 2)-simplex based on the triangle τi = [0wip] (with given orientation). Then
α′ is the fundamental class of a tropical 1-cycle and it is homologous to α, see Figure 3.

If v1 and v2 are linearly dependent and α ∈ ker(φ̂) then w1 + w2 = αv1 for some α ∈ R. In
particular, w1 + w2 is a rational direction and α can be represented by a parallel cycle supported
on the diagonal of a fundamental domain for S.
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w1

w2

v1

v2

v1 + v2

•
p

k2

k1

k12

Figure 3. A (1, 1)-cycle on a tropical abelian surface in red and green on the left,
and a representative of its class by the fundamental class of a tropical 1-cycle.

6.3. Tropical hypersurfaces. A tropical hypersurface in Rn+1 or in an n+ 1-dimensional tropical
toric variety is the divisor (as in Definition 4.13) of a tropical polynomial function. It is an n-
dimensional polyhedral complex which is dual to a regular subdivision of a lattice polytope. This
implies the following statement.

Proposition 6.4. A tropical hypersurface is homotopic to a bouquet of spheres.

A tropical hypersurface is non-singular if it is a tropical manifold. This is the case if and only if it
is dual to a regular subdivision of a lattice polytope which is primitive, i.e. if every top dimensional
polytope in the subdivision is of lattice volume 1.

Corollary 6.5. If X is a non-singular tropical hypersurface in an n+ 1-dimensional tropical toric
variety for n ≥ 3 then every class in HBM

n−1,n−1(X,Z) is the fundamental class of a tropical cycle in
X.

Proof. It follows from Proposition 6.4 that H0,2(X,R) = 0, so the statement follows from Corollary
6.1. �

The first case of non-trivial wave maps for tropical hypersurfaces is given by tropical K3 surfaces.
We now look at two specific examples.

Definition 6.6. A tropical projective K3 hypersurface is dual to a primitive regular triangulation
of a size 4 tetrahedron.

There is one 2-dimensional polytopal sphere P contained in a K3 surface. It is dual to all cells of
the regular subdivision of the size 4 tetrahedron which contain the unique interior lattice point of
the size 4 simplex of dimension 3. The Betti diamond of a tropical projective K3 hypersurface is:

1
0 0

1 20 1
0 0

1

so the wave map sends a Z-module of rank 20 to a 1-dimensional real vector space. The Picard rank
of a tropical K3 surface X is the rank of Pic(X).

Example 6.7 (A tropical surface with Picard rank 19). A tropical hypersurface X with Newton
polytope n+ 1-simplex of size d is floor decomposed if the relative interior of every top dimensional
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Figure 4. The floor diagram of a tropical K3 surface with rank(H1,1(X,Z) ∩
ker(φ)) ≥ 18.

τ1

τ2

τ3

σ1

σ2

σ3

↑←
↑→

↑→

P

γ

β

Figure 5. On the left the branched path which is the support of a (2, 1)-cycle whose
boundary is τ1 + τ2 + τ3. On the right a depiction of the polytope P and the cycles
β and γ from Example 6.7.

polytope in the dual subdivision of X does not intersect the hyperplanes {xn+1 = i} for all 0 ≤ i ≤
d− 1}. For examples see [Sha13a].

A floor decomposed K3 surface is determined (up to choice of constants regulating the height of
the floors) by a collection of non-singular planar tropical curves C1, C2, C3, C4 where each Cd is of
degree d (i.e. dual to a primitive triangulation of the size d lattice triangle).

Given a floor decomposed surface X a basis of its H1,1(X,Z) tropical homology was described
in [Sha13a]. On a floor given by the curves Ci and Ci+1, there are i(i + 1) − 1 independent “floor
cycles”. This produces 11 + 5 + 1 = 17 independent (1, 1)-cycles. They can be chosen such that
their support, after projecting to the plane, forms a minimal loop in Ci ∪ Ci+1 not contained in Ci
or Ci+1. By our particular choice of curves C1, . . . , C4, any such cycle is disjoint from the cycle of
C3. Hence we can assume the floor cycles do not intersect the polytopal sphere. Additionally, there
is a cycle h, a multiple of which is the hyperplane section, which can also be made disjoint from
P . Together with the cycles α and β which are illustrated on the right hand side of Figure 5 and
completely described in [Sha13a], these cycles form a basis of H1,1(X,Z).

We now describe how (2, 0) cells behave when passing to homology depending on their supporting
point. Orient each face of P so that it is the boundary of the 3-dimensional polytope. At any edge
γ of X of sedentarity ∅ there are three faces adjacent to it: σ1, σ2, and σ3. If τi is an appropriately
oriented generator of FZ

2 (σi) we can find a (2, 1)-cell whose support is the branched path on the left
of Figure 5 and whose boundary is τ1 + τ2 + τ3. Moreover, for any point x not on the polytopal
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Figure 6. A tropical K3 surface and its bounded polytope from Example 6.8.

sphere we can find a branched path in X whose endpoints are x and points of positive sedentarity,
thus showing that a (2, 0)-cycle supported on x is homologous to 0. In addition, for two faces σ1, σ2

of the polytopal sphere, we have τ1 ∼ τ2 where τi are appropriately oriented generators of FZ
2 (σi)

and such an τi generates H2,0(X,Z). We denote the class of these τi by τ .

This implies that φ̂(h) = φ̂(γ) = 0 for all floor cycles γ. Moreover, using this description of

H2,0(X,R) we can explicitly compute φ̂(α) = lτ and φ̂(α) = hτ , where l is the lattice length of the
unique cycle in C3 (i.e., the j-invariant of C3) and k is the lattice height of the pentagonal prism
P (or, the distance between the floors connected by C3). Varying the coefficients of the defining
tropical polynomial, these two parameters can be controlled independently. In particular, we can
arrange both l

k ∈ Q and l
k /∈ Q.

We conclude that Ker(φ̂) has rank 19 or 18, depending on our choice and thus any tropical K3
surface with the combinatorial type of the one chosen above must have Picard rank equal to 18 or
19 by Theorem 1.1.

Example 6.8 (A tropical K3 surface with Picard rank 1). The second example is dual to a cone
triangulation. Fix a primitive regular triangulation of each of the four two dimensional faces of the
size 4 tetrahedron. We obtain a unique primitive regular triangulation by considering the cone over
this triangulation with the cone point being the unique interior lattice point (1, 1, 1) of the size 4
simplex. See Figure 6 for an example.

In this case all 34 bounded 2-dimensional faces of X are faces of the polytopal sphere P contained
inX. Each such face corresponds to a unique lattice point on the boundary of the tetrahedron. There
are 3 types of such points: the 4 vertices of the tetrahedron, the 3×6 = 18 lattice points on the edges
of the tetrahedron, and the 3×4 = 12 lattice points contained in the relative interior a 2-dimensional
face of the tetrahedron. Any (2, 0)-cycle whose support is not contained on the polytopal sphere
P is homologous to zero since its support is then contained in unbounded faces. Orient each two
dimensional face of P so that the collection of faces form the boundary of the bounded 3-dimensional
polytope in the complement of X in R3. As in the previous example, equipping any p ∈ σ ⊂ P with
the unique generator of FZ

2 (σ) oriented coherently with respect to σ, we obtain representatives of
the (same) generator τ ∈ H2,0(X,Z).

Each bounded 2-dimensional face σ provides a (1, 1)-cycle by taking its boundary and equipping
each with a coefficient in FZ

1 which is a vector generating Z3 together with the lattice parallel to σ.
Each bounded two dimensional face of X corresponds to a lattice point on the boundary of ∆. We
denote such a cycle by αa where a is the corresponding lattice point in ∂∆. If a is in the interior of
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a two dimensional face of ∂∆, then αa = 0 in homology. This leaves 22 such (1, 1)-cycles. Suppose

the defining polynomial of X is f(x) = “
∑

a∈∆ cax
a”. Up to sign we have φ̂(αa) = waτ where,

(1) if a in the relative interior of an edge of ∆ with primitive integer direction v, then

wa = ca+v − ca−v;

(2) if a is a vertex of ∆, let a1, a2, a3 denote the three lattice points in the relative interiors of
edges of ∆ which are of lattice distance one away from a. Then

wa = ca1 + ca2 + ca3 − 3c(1,1,1).

Let W ⊂ H1,1(X,Q) denote the subspace spanned by the 22 cycles. It turns out that dim(W ) = 19,
and that W , together with the hyperplane section h, generate H1,1(X,Q). By choosing a basis for

W among the αa’s, we can identify HomQ(W,R) with R19. Let Vcoef = R∆∩Z3
be the vector space

of polynomials f = (ca)a and let C ⊂ Vcoef denote the cone of coefficients of tropical polynomials

of the fixed combinatorial type. Then φ̂ induces a linear map w : Vcoef → R19 which is explicitly
given by formulas (1) and (2). It can be checked that s has full rank and hence w(C) ⊂ R19 has
non-empty interior. For any 1 ≤ r ≤ 19, let Yr ⊂ R19 be the subset of vectors whose entries span a
20− r-dimensional Q-subspace of R. Since Yr is dense for any r, there exists a tropical polynomial
f ∈ C with w(f) ∈ Yr. Such an f describes a tropical surface X with Picard rank equal to r. In
particular, we can produce a tropical surface of Picard rank equal to 1. This proves Theorem 1.4
from the introduction.
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Berkovich. 2012. http://arxiv.org/abs/1204.6277.
[FR13] Georges François and Johannes Rau. The diagonal of tropical matroid varieties and cycle intersections.

Collect. Math., 64(2):185–210, 2013.
[Gub16] Walter Gubler. Forms and currents on the analytification of an algebraic variety (after Chambert-Loir

and Ducros). In Matthew Baker and Sam Payne, editors, Nonarchimedean and Tropical Geometry, Simons
Symposia, pages 1–30, Switzerland, 2016. Springer.

[IKMZ16] Ilia Itenberg, Ludmil Khazarkov, Grigory Mikhalkin, and Ilia Zharkov. Tropical homology. 2016. https:
//arxiv.org/abs/1604.01838.

[JSS15] Philipp Jell, Kristin Shaw, and Jascha Smacka. Superforms, tropical cohomology and Poincaré duality.
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