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Abstract

The main goal of this paper is to extend the so-called Dirac-Frenkel Variational Principle in the
framework of tensor Banach spaces. To this end we observe that a tensor product of normed spaces can
be described as a union of disjoint connected components. Then we show that each of these connected
components, composed by tensors in Tucker format with a fixed rank, is a Banach manifold modelled in
a particular Banach space, for which we provide local charts. The description of the local charts of these
manifolds is crucial for an algorithmic treatment of high-dimensional partial differential equations and
minimization problems. In order to describe the relationship between these manifolds and the natural
ambient space we prove under natural conditions that each connected component can be immersed in
a particular ambient Banach space. This fact allows us to finally extend the Dirac-Frenkel variational
principle in the framework of topological tensor spaces.
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1 Introduction

Tensor approximation methods play a central role in the numerical solution of high-dimensional problems
arising in a wide range of applications. Low-rank tensor formats based on subspaces are widely used for
complexity reduction in the representation of high-order tensors. The construction of these formats are
usually based on a hierarchy of tensor product subspaces spanned by orthonormal bases, because in most
cases a hierarchical representation fits with the structure of the mathematical model and facilitates its
computational implementation. Two of the most popular formats are the Tucker format and the Hierarchical
Tucker format [18] (HT for short). It is possible to show that the Tensor Train format [31] (TT for short),
introduced originally by Vidal [37], is a particular case of the HT format (see e.g. Chapter 12 in [19]). An
important feature of these formats, in the framework of topological tensor spaces, is the existence of a best
approximation in each fixed set of tensors with bounded rank [11]. In particular, it allows us to construct,
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on a theoretical level, iterative minimisation methods for nonlinear convex problems over reflexive tensor
Banach spaces [12].

This paper is devoted to the use of the geometric structure of the Tucker format to construct reduced order
models of ordinary differential equations defined over tensor Banach spaces. The Dirac-Frenkel variational
principle is a well known tool in the numerical treatment of equations of quantum dynamics. It was originally
proposed by Dirac and Frenkel in 1930 to approximately solve the time-dependent Schrédinger equation. It
assumes the existence of a vector field (ordinary differential equation) over a configuration space represented
by a Hilbert space. This configuration space contains an immersed submanifold and the reduced order
model is then obtained by projecting the vector field at each point of the submanifold onto its tangent space.
Tucker tensors of fixed rank are used in the above framework for the discretisation of differential equations
arising in quantum chemical problems or in the multireference Hartree and Hartree-Fock methods (MR-HF)
in quantum dynamics [27]. In particular, for finite-dimensional ambient tensor spaces, it can be shown
that the set of Tucker tensors of fixed rank forms an immersed finite-dimensional quotient manifold [24]. A
similar approach in a complex Hilbert space setting for Tucker tensors of fixed rank is given in [4]. Then
the numerical treatment of this class of problems follows the general concepts of differential equations on
manifolds [16]. Recently, similar results have been obtained for the TT format [22] and the HT format [35]
(see also [3]). The term ”matrix-product state” (MPS) was introduced in quantum physics (see, e.g., [36]).
The related tensor representation can be found already in [37] without a special naming of the representation.
The method has been reinvented by Oseledets and Tyrtyshnikov (see [30], [31], and [32]) and called ”TT
decomposition”. For matrix product states (MPS), the differential geometry in a finite-dimensional complex
Hilbert space setting is covered in [17]. Two commonly accepted facts are the following.

(a) Even if it can be shown in finite dimension that the set of Tucker tensors with bounded rank is closed,
the existence of a manifold structure for this set is an open question. Thus the existence of minimisers
over this set can be shown, however, no first order optimality conditions are available from a geometric
point of view.

(b) Even if either in finite dimension or in a Hilbert space setting it can be shown that the set of Tucker
(respectively, in finite dimensions HT) tensors with fixed rank is a quotient manifold, an explicit
parametrisation in order to provide a manifold structure is not known.

In our opinion, these two facts are due to the lack of a common mathematical framework for developing
a mathematical analysis of these abstract objects. The main goal of this paper is to provide this common
framework by means of some of the tools developed in [11] by some of the authors of this article in order to
extend the Dirac-Frenkel variational method to the framework of tensor Banach spaces.

Our starting point are the following natural questions that arise in the mathematical theory of tensor
spaces. The first question is: It is possible to construct a parametrisation for the set of tensors of fixed rank
in order to show that it is a true manifold even in the infinite-dimensional case? In a second step, if the
answer is positive, we would like to ask: Is the set of tensors of fixed rank an immersed submanifold of the
topological tensor space, as ambient manifold, under consideration? Finally, if the above two questions have
positive answers, we would like to extend the Dirac-Frenkel variational principle on tensor Banach spaces.

The paper is organised as follows.

e In Sect. 2, we introduce some important definitions and results that we will use widely along this
paper. In particular we introduce Banach manifolds not modelled in a particular Banach space and we
give as example the Grassmann manifold of a Banach space introduced by A. Douady [9] in 1966. Our
main contribution is to give a Banach manifold structure to the set of subspaces of a normed space
with a fixed finite dimension.

e In Sect. 3, we introduce the set of tensors in Tucker format with fixed rank over a tensor product
space of normed spaces. We prove that if the tensor product space has a norm such that the tensor
product is continuous, with respect to that norm, then the set of tensors in Tucker format with
fixed rank is a C>°-Banach manifold modelled on a particular Banach space. We point out that the
regularity of the manifold depends on the regularity of the tensor product considered as a multilinear



map between normed spaces. Even if a continuous multilinear map between complex Banach spaces
is always analytic, under the authors’ knowledge, for a continuous multilinear map between normed
spaces we can only obtain a C*°—differentiability. An interesting remark is that the geometric structure
is independent of the choice of the norm on the tensor product space. We illustrate this fact by means
of an example using Sobolev spaces. Finally, we show under the above conditions that a tensor space
of normed spaces is a C*°-Banach manifold not modelled on a particular Banach space.

e In Sect. 4, we discuss the choice of a norm in the ambient tensor Banach space to prove that the set
of tensors with fixed Tucker rank is an immersed submanifold of that space (considered as Banach
manifold). To this end we assume the existence of a norm over the tensor space not weaker than the
injective norm . The same assumption is used in [11] to prove the existence of a best approximation in
the Tucker case. Then we show that the set of tensors in Tucker format with fixed rank is an immersed
submanifold of the ambient tensor Banach space. This fact is far from trivial. The main difficulty is
to prove that the tangent space is a closed and complemented subspace of the ambient tensor Banach
space under consideration. In a Hilbert space, every closed subspace is complemented, but this fact is
not true in a Banach (non Hilbert) space.

e In Sect. 5, we give a formalisation in this framework of the multi—configuration time—dependent Hartree
(MCTDH) method (see [27]) in tensor Banach spaces.

2 The Grassmann-Banach manifold and its relatives

In this section we introduce some important definitions and results that we will use (and elsewhere): through-
out this paper.

In the following, X is either a normed space or a Banach space with norm |-||. We denote by X* the
topological dual of X. The dual norm |[|-|| . on X* is

el x- = sup{[p(z)] s & € X with [[z]|y <1} =sup {|p()]/ =[x :0# 2z X}. (2.1)

We recall that if X is a normed space, then X* is always a Banach space.

By £(X,Y) we denote the space of continuous linear mappings from X into Y. The corresponding operator
norm is written as ||-||y,_y . If X and Y are normed spaces then (£L(X,Y), |- |[y«x) is a normed space. It
is well known that if Y is a Banach space then (L(X,Y), || - |[y«—x) is also a Banach space.

Let X1,...,X4 and Y be normed spaces and M : Xi:l X, — Y. We will say that M is a multilinear
map if for each fixed o € {1,2,...,d},

Ta > M(Z1,. ., a1, Ty Tatly - -5 Td)
is a linear map from X, to Y for all (21,...,Za-1,%at1,--,%d) € Xpgeqi2,. dp\{a} Xk Recall that a
multilinear map M from Xizl(Xa, I - lla) equipped with the product topology || - || to a normed space
(Y, |l - ly) is continuous if and only if | M| < oo, with
M T1y---3Ld)||Y
|M] = sup |M(z1,...,2q4)ly = sup M )| .
L1y, T4 (ml,...,md) ||1’1||1"' ||xd||d
lz11 <1, l|zalla<1

A useful result is the following (see Proposition 79 in [20]).

Proposition 2.1 Let Xq,...,Xy and Y be normed spaces and M : Xi:l Xy = Y be a continuous multi-
linear map. Then M is C*°-Fréchet differentiable and D*M (x4, ...,24) = 0 for all (z1,...,24) € X Z:l X,
and k > d.



Assume that X and Y are Banach spaces and let U C X be an open connected set. Then a map
f:U C X — X is an analytic map in U if and only if for z € U and ¢ € Y*, there exists a neighbourhood
of 0, namely V(0) C K, where K is either R or C, such that the map

V) CK =K, tes o(f(z+th))

is analytic. An immediate consequence of this definition is the fact that for |¢| sufficiently small and z € U,

PUf G+ 1) = 3 an(e, ),

n=0

where
n

an,h) = o7 + th)

t=0
The following result characterises an analytic function defined over complex Banach spaces (see Theorem
160 in [20]).

Proposition 2.2 Let X, Y be complex Banach spaces, U C X open, and f : U C X — Y. Then f is analytic
if and only if f is C'-Fréchet differentiable.

Corollary 2.3 Let X1,...,X4q and Y be complex Banach spaces and M : Xi:l Xo — Y be a continuous
multilinear map. Then M is analytic.

Definition 2.4 Let X be a Banach space and P € L(X,X). We say that P is a projection if and only if
Po P =P holds. In this situation we also say that P is a projection from X onto P(X) :=Im P parallel to
Ker P.

From now on, we will denote P o P = P2. Observe that if P is a projection then idy — P is also a
projection. Moreover, idx — P is parallel to Im P.

Observe that each projection gives rise to a pair of subspaces, namely U = Im P and W = Ker P such
that X = U @ W. It allows us to introduce the following definitions.

Definition 2.5 A subspace U of a Banach space X is said to be complemented in X if there is a projection
Pe L(X,X) from X onto U.

Definition 2.6 Let U be a closed subspace of X. We say that U is a split subspace of X if there exists W,
called (topological) complement of U in X, such that X = U®W and W is a closed subspace of X. Moreover,
we will say that (U, W) is a pair of complementary subspaces of X.

Corresponding to each pair (U, W) of complementary subspaces, there is a projection P mapping X onto
U along W, defined as follows. Since for each = there exists a unique decomposition x = u + w, where u € U
and w € W, we can define a linear map P(u+ w) := u, where Im P = U and Ker P = W. Moreover, P? = P.
In Proposition 2.8 it will follow that P € L(X, X).

Definition 2.7 The Grassmann manifold of a Banach space X, denoted by G(X), is the set of split subspaces
of X.

U € G(X) holds if and only if U is a closed subspace and there exists a closed subspace W in X such
that X = U @ W. Observe that X and {0} are in G(X). Moreover, by the proof of Proposition 4.2 of [10],
the following result can be shown.

Proposition 2.8 Let X be a Banach space. The following conditions are equivalent:
(a) U € G(X).
(b) U is a closed subspace and there exists P € L(X, X) such that P> = P and Im P = U.
(c) There exists Q € L(X,X) such that Q* = Q and Ker Q = U.



Moreover, from Theorem 4.5 in [10], the following result can be shown.
Proposition 2.9 Let X be a Banach space. Then every finite-dimensional subspace U belongs to G(X).

Let W and U be closed subspaces of a Banach space X such that X = U @& W. From now on, we will
denote by P, the projection onto U along W. Then we have P, ., = idx — P, . Let U, U’ € G(X).

We say that U and U’ have a common complementary subspace in X if X = U & W = U’ & W for some
W € G(X). The following two results will be useful (for the first one see Lemma 2.1 in [8]).

Lemma 2.10 Let X be a Banach space and assume that W, U, and U’ are in G(X). Then the following
statements are equivalent:

(o) X=UaW =U &W, ie, U and U have a common complement in X.

(b) P,y v : U — U has an inverse.

! , then @ is bounded and QQ = P,

®W|U’) U®W|U'

Furthermore, if Q = (PU

We recall that an algebra is unital or unitary if it has an identity element with respect to the multipli-
cation.

Proposition 2.11 Let X be a Banach space and U, W € G(X) be such that X = U & W and consider the
linear space

Luwy(X,X) :={Py 4, 0850P,

Upw

S e L(X,X)}.

QeU

Then the bounded linear map

L(U,W)-),C(Uy[/)(X,X), LHPW@ OLOPUEBW

U

is an isometry. Moreover, for all L,L" € Lyw)(X,X) it holds that Lo L' = L' o L = 0. Then Ly,w)(X, X)
is a sub-algebra of the unital Banach algebra L(X,X) and

oo n

L
exp(L) = ) —r =idx + L and exp(~L) = idx — L = (idx + L)~

n=0

Proof. Clearly, the map is a linear isomorphism and since

||L||W<—U = HPW@U OLOPUeBWHXﬁXa

it is an isometry. For L = P, ., 0So P, ., € Liyw)(X,X) and L' = P, 08 oP, € Luw)(X,X) we

weU vew
have
Lol =P, OSOPU@WOPW@UOS/OPUQ}W:O?

wau

because P, o P, ., = 0, then the second statement holds and the final statement follows in a straightfor-
ward way. [

Next, we recall the definition of a Banach manifold.

Definition 2.12 Let M be a set. An atlas of class CP (p > 0) or analytic on M is a family of charts with
some indexing set A, namely {(My, us) : « € A}, having the following properties:

AT1 {My}aca is a covering' of M, that is, M, C M for all « € A and Upea M, = M.

AT2 For each o € A, (Mg, us) stands for a bijection uq, : My — Uy of My onto an open set Uy, of a Banach
space X, and for any o and B the set uo (Mo N Mpg) is open in X,.

ATS3 Finally, if we let Mo, N Mg = Myg and ua(Mug) = Uag, the transition mapping ugouy' : Uns — Usa
is a diffeomorphism of class C? (p > 0) or analytic.

IThe condition of an open covering is not needed, see [25].



Since different atlases can give the same manifold, we say that two atlases are compatible if each chart of
one atlas is compatible with the charts of the other atlas in the sense of AT3. One verifies that the relation
of compatibility between atlases is an equivalence relation.

Definition 2.13 An equivalence class of atlases of class CP on M is said to define a structure of a CP-
Banach manifold on M, and hence we say that M is a Banach manifold. In a similar way, if an equivalence
class of atlases is given by analytic maps, then we say that M is an analytic Banach manifold. If X, is a
Hilbert space for all o € A, then we say that M is a Hilbert manifold.

In condition AT2 we do not require that the Banach spaces are the same for all indices «, or even that
they are isomorphic. If X, is linearly isomorphic to some Banach space X for all o, we have the following
definition.

Definition 2.14 Let M be a set and X be a Banach space. We say that M is a CP (respectively, analytic)
Banach manifold modelled on X if there exists an atlas of class CP (respectively, analytic) over M with X,
linearly isomorphic to X for all a € A.

Example 2.15 Every Banach space is a Banach manifold modelled on itself (for a Banach spaceY , simply
take (Y,idy) as atlas, where idy is the identity map on'Y ). We would point out that the trivial linear space
{0} is also a (trivial) Banach manifold modelled on itself. In particular, the set of all bounded linear maps
L(X,X) of a Banach space X is also a Banach manifold modelled on itself.

If X is a Banach space, then the set of all bounded linear automorphisms of X will be denoted by
GL(X) :={A € L(X,X) : A invertible} .
Before giving the next examples, we introduce the following definition.

Definition 2.16 Let X and Y be two Banach manifolds. Let F': X —Y be a map. We shall say that F is
a C" (respectively, analytic) morphism if given x € X there exists a chart (U, ) at x and a chart (W) at
F(z) such that F(U) C W, and the map

YoFop™ o) — (W)
is a C"-Fréchet differentiable (respectively, analytic) map.

Example 2.17 If X is a Banach space, then GL(X) is a Banach manifold modelled on L(X,X), because
it is an open set in L(X,X). Moreover, the map A — A~' is analytic (see 2.7 in [34]).

Example 2.18 If X is a Banach space, then the exponential map exp : L(X,X) — GL(X) defined by
exp(A) =Y, % is an analytic map (see 2.8 in [34]).

Example 2.19 If X is a Banach space, then GL(X) x GL(X) is a Banach manifold and the multiplication
map m : GL(X) x GL(X) — GL(X) defined by m(A, B) = Ao B is an analytic map (see Theorem 2.42(ii)

Example 2.20 Let X be a Banach space and U,W € G(X) be such that X = U & W. From Proposition
2.11 we know that Lywy(X,X) is a sub-algebra of the Banach Algebra L(X,X). Then from Theorem 8.5
of [6] we have that

GL(L(U,W)(X,X)) = {exp(L) L e E(Uy[/)(X,X)} C GL(X)

is a closed Lie subgroup with associated Lie algebra Ly,wy (X, X) and it is also an analytic Banach manifold
modelled into itself. Since exp(L) = idx + L then exp(L) is a linear isomorphism between the linear subspace
U and exp(L)(U) = {(idx + L)(u) : w € U}. We remark that for all x € X we have

exp(L)(z) = exp(L)(u +w) =exp(L)(u) +w, (z=u+w,ueclU andw e W),

because L(w) = 0, hence exp(L)|w = idw and exp(L)|y = idy+L. Moreover, the maps exp : Ly,w)(X, X) —
GL(Lww) (X, X)), m : CL(L g (X, X)) X GL(L ) (X, X)) = GL(Lwy (X, X)) and the map exp(L) —
exp(—L) are analytic.



The next example is a Banach manifold not modelled on a particular Banach space.

Example 2.21 (Grassmann—Banach manifold) Let X be a Banach space. Then, following [9] (see also
[84] and [28]), it is possible to construct an atlas for G(X). To do this, let us denote one of the complements
of U eG(X) by W, ie., X =U@®W. Then we define the Banach Grassmannian of U relative to W by

GW,X)={VeGX): X=VaW}.
By using Lemma 2.10 it is possible to introduce a bijection
\DUGBW : G(VV, X) — ﬁ(U, W)

defined by
Vpew (U') = Pwoulv o Praw|v = Pweulv o (Prew|o) ™!

It can be shown that the inverse
Uow LU W) — G(W, X)
is given by
Uybw (L) =G(L) == {(idx + L)(u) :u € U}.
From Proposition 2.11 we can identify L(U, W) with Ly,w)(X,X). Hence can write

(tdx + L) = exp(L),

which following Example 2.20 can be proved to be a linear isomorphism from U to G(L). Observe that
G0)=U and G(L)® W = X for oall L € L(U,W). Finally, to prove that this manifold is analytic we need
to describe the overlap maps. To ezplain the behaviour of one overlap map, assume that X = UW = U'@W'
and the existence of U" € G(IW, X)NG(W', X). Let L € L(U,W) and L' € L(U',W") be such that

Vypw (L) = G(L) = U" = G(L') = Wyigy (L).
Then it follows that
X=UaW=UoW=GL)oW=G(L)oW'.
Finally, it can be shown that the map (Y gw: o \If[_]éaw) LU,W) — LU, W) given by

(Yurgw o Vo) (L) = Yugw (exp(L)(U)) = L'

is analytic. Then we have that the collection {G(W, X), Vyaw fueg(x) 5 an analytic atlas, and therefore,
G(X) i4s an analytic Banach manifold. In particular, for each U € G(X) the set G(W, X) is a Banach
manifold modelled on L(U,W). Observe that if U and U’ are finite-dimensional subspaces of X such that
dimU # dimU’ and X =U W =U' @ W', then LU, W) is not linearly isomorphic to L(U', W').

Example 2.22 Let X be a Banach space. From Proposition 2.9, every finite-dimensional subspace belongs
to G(X). It allows to introduce G, (X), the space of all n-dimensional subspaces of X (n > 0). It can be
shown (see [28]) that G,(X) is a connected component of G(X), and hence it is also a Banach manifold
modelled on LU, W), here U € G,,(X) and X = U & W. Moreover,

G<p(X) = Gu(X)
n<r
is also a Banach manifold for each fized r < co.
The next example introduces the Banach-Grassmannian manifold for a normed (non-Banach) space.

To the authors knowledge there is no reference in the literature about this (non-trivial) Banach manifold
structure. We need the following lemma.

Lemma 2.23 Assume that (X, || - ||) is a normed space and let X be the Banach space obtained as the
completion of X. Let U € G,(X) be such that U C X and X = U & W for some W € G(X). Then every
subspace U’ € G(W, X) is a subspace of X, that is, U' C X.



Proof. First of all observe that X = U @ (W N X) where W N X is a linear subspace dense in W =
W N X. Assume that the lemma is not true. Then there exists U’ € G(W, X) such that U’ @ W = X and
U NX #U'. Clearly U' N X # {0}, otherwise W N X = X and hence U = {0}, a contradiction. We have
X = (U'NnX)® (WnX), which implies X = (U’'NX) @ W, that is, U' N X € G(W, X), a contradiction with
dim(U’' N X) < dim U’ = n. Thus the lemma follows. |

Example 2.24 Assume that (X, - ||) is a normed space and let X be the Banach space obtained as the
completion of X. We define the set G, (X) as follows. We say that U € G,(X) if and only if U € G,(X)
and U C X. Then G,(X) is also a Banach manifold. To see this observe that, by Lemma 2.23, for each
U € G,(X) such that X = U @ W for some W € G(X), we have G(W,X) C G,(X). Then the collection
{Voew, GW, X)}vee, (x) is an analytic atlas on G, (X), and therefore, G, (X) is an analytic Banach
manifold modelled on L(U,W), here U € G,(X) and X = U @ W. Moreover, as in Evample 2.22, we can
define a Banach manifold G<,(X) for each fized r < oco.

Let M be a Banach manifold of class C? (p > 1) or analytic. Let m be a point of M. We consider triples
(U, p,v) where (U, ) is a chart at m and v is an element of the vector space in which ¢(U) lies. We say
that two of such triples (U, p,v) and (V,1,w) are equivalent if the derivative of 1) o o™1 at ¢(m) maps v
on w. Thanks to the chain rule it is an equivalence relation. An equivalence class of such triples is called a
tangent vector of M at m.

Definition 2.25 The set of such tangent vectors is called the tangent space of M at m and it is denoted by
T, (M).

Each chart (U, ) determines a bijection of T,,(M) on a Banach space, namely the equivalence class
of (U, p,v) corresponds to the vector v. By means of such a bijection it is possible to equip T,,(M) with
the structure of a topological vector space given by the chart, and it is immediate that this structure is
independent of the selected chart.

Example 2.26 If X is a Banach space, then T,(X) =X for all z € X.
Example 2.27 Let X be a Banach space and take A € GL(X). Then TAo(GL(X)) = L(X, X).
Example 2.28 For U € G(X) such that X =U @& W for some W € G(X), we have Ty (G(X)) = L(U, W).

Example 2.29 For a Hilbert space X with associated inner product (-,-) and norm || - ||, its unit sphere
denoted by
Sx :={x e X :|z|| =1}

is a Hilbert manifold of co-dimension one. Moreover, for each x € Sx, its tangent space is

T.(Sx) = span {z}* = {2/ € X : (x,2/) = 0}.

3 The manifold of tensors in Tucker format with fixed rank

The MCTDH method is based on the construction of approximations of the wave function which, at every
time ¢, lie in the algebraic tensor space , ®Z:1 V,, where V,, = L?(R3) for a = 1,2,...,d (see [27]). Clearly,
this set is a linear space. However it is not clear whether or not it is a (Hilbert/Banach) manifold, because
it is a dense subspace of the Hilbert tensor space L?(R3?). In this section, we will show that every algebraic
tensor product of normed spaces can be seen as a Banach-Grassmann-like manifold.

3.1 Tensor Spaces and the tensor product map

All along this paper we consider a finite index set D := {1,2,...,d} of ‘spatial directions’, with d > 2.

Concerning the definition of the algebraic tensor space 4 @, Vo generated from vector spaces V,, (o € D),



we refer to Greub [14]. As underlying field we choose R, but the results hold also for C. The suffix ‘a’ in
a @ ucp Va refers to the ‘algebraic’ nature. By definition, all elements of

Vo =0 Q) Va
aED

are finite linear combinations of elementary tensors v = @, cp Va (Vo € Vo). In the sequel, the index sets
D\{a} will appear. Here, we use the abbreviations

Vig = a ® Vs, where ® means ®
B B peD\{a}

Similarly, elementary tensors ) Gta UB ATE denoted by v[,]. We notice that there exists a linear isomorphism
O, : Vp — Vi o® V[y for each a € D, and in order to simplify notation we will identify along the text
a tensor v € Vp with ®,(v) € V,, 4® V|o. This allows us to write v.€ Vp as well as v € V, ® Vi, for
a € D. Moreover, by the universal property of the tensor product, there exists a unique multilinear map,

also denoted by &)
® : >< Va — a ® Voc )

aeD aeD
defined by @ ((v1,...,v4)) = @qcp Vo and such that for each multilinear map M : X ,cp Vo, — Z, where

Z is a given vector space, there exists a unique map M Vp — Z such that M = Mo &) . The following
notations, definitions and results will be useful.

Let (Vo, |l - l|la) be normed spaces for a € D and assume that || - || is a norm on the tensor space
Vp=., ®aeD V. . Then consider the tensor product map

®: <>< VO””'x) — (G®Vav||'”>a (3.1)
acD «a€D

where the product space X ,ecp Vo is equipped with the product topology induced by the maximum norm
[[(v1,y...,v4)||x = maxaep ||Valla- Next, we discuss the conditions for having the Fréchet differentiability of
the tensor product map (3.1). The next result is a consequence of Proposition 2.1.

Proposition 3.1 Let (V,,| - |la) be normed spaces for o € D. Assume that || - || is a norm on the tensor
space Vp = o @Quep Va such that the tensor product map (5.1) is continuous. Then it is also C*°-Fréchet
differentiable and its differential is given by

D<®(Ul7"'7vd)) (wla"'vwd): ZU1®"'®UQ—1 ®U}a®’l}a+1®...vd'

Now, we recall the definition of some topological tensor spaces and we will give some examples.

Definition 3.2 We say that Vp,  is a Banach tensor space if there exists an algebraic tensor space Vp

and a norm ||-|| on Vp such that Vp,  is the completion of Vp with respect to the norm |||, i.e.
—
Vo = ® Vo = a®aep Voo o
aeD

If Vp,, is a Hilbert space, we say that Vp,  is a Hilbert tensor space.

Next, we give some examples of Banach and Hilbert tensor spaces.

Example 3.3 For I, CR (a € D) and 1 < p < oo, the Sobolev space HN'P(1,) consists of all univariate

functions f in LP(I,) with bounded norm?

N 1/p
T (Z / |8"f|”dx) ,
n=0""‘«

2Tt suffices to have in (3.2) the terms n = 0 and n = N. The derivatives are to be understood as weak derivatives.




whereas the space HN'P(I) of d-variate functions on T =1, x Iy x ... x Iy C R? consists of all functions f

in LP(I) with bounded norm
= ( X [ionsrax)
0<|n|<N

with n € N§ being a multi-index of length |n| := Y pna. For p > 1 it is well known that HY"?(I,) and
HN-P(1) are reflevive and separable Banach spaces. Moreover, for p = 2, the Sobolev spaces H™ (I,) =
HN2(1,) and HN(I) := HN2(I) are Hilbert spaces. As a first example,

HVP (D) =y, @ HY? (L)
aeD

is a Banach tensor space. FExamples of Hilbert tensor spaces are

D=, ® L*(I,) and HY(I) = . Ly 2 ® HY(1,) for N € N.
aeD aeD

The next result is a consequence of Corollary 2.2.

Proposition 3.4 Let (V,,|| - |la) be complex Banach spaces for o € D. Assume that || - || is a norm on
the complex tensor space Vp = 4 Q,cp Va such that the tensor product map (5.1) is continuous. Let
1:Vp = | Quep Va be the standard inclusion map, i.e. i(v) =v. Then

(i°®)i><(m|||| <|||®Va7||||)

a€D a€ED

is an analytic map between complex Banach spaces.

For vector spaces V, and W,, over R, let linear mappings A, : V, — W, (a € D) be given. Then the
definition of the elementary tensor

A=QRA: Vp=0QRQ Ve —Wp=,Q Wa
aeD a€eD acD

is given by

A (@ va> = (X) (Aava) . (3.3)

a€eD a€D

Note that (3.3) uniquely defines the linear mapping A : Vp — Wp. We recall that L(V, W) is the space
of linear maps from V into W, while V' = L(V,R) is the algebraic dual of V. For metric spaces, L(V, W)
denotes the continuous linear maps, while V* = £(V,R) is the topological dual of V.

Proposition 3.5 Let (V,,|| - |la) be normed spaces for o € D and assume that || - || is a norm on the tensor
space Vp = o @ cp Vo such that the tensor product map (8.1) is continuous. Let Uy be a finite-dimensional
subspace of Vi, for a € D. Then

o Q) LUa, Va) < Q) Ua ,VD> (3.4)
a€D aeD
and the tensor product map
Q) : X LUaVa) = L ( &) Ua ,VD> (Aa)acp = A= (X) Aa, (3.5)
a€eD a€D aeD

is continuous and hence C°°-Fréchet differentiable.
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Proof. Recall that L(U, X) = £(U, X) holds for every finite-dimensional subspace U of a normed space X.
Then (3.4) follows from Proposition 3.49 of [19]. To prove the second statement we need to show that the
tensor product map (3.5) is bounded, that is,

IR = sup {|| Q) Aalvoen®,.pve : 1Aallvaen, <1for 1<a< d} < 0. (3.6)

acD

For A = @ ,cp Aa;

|A(®aenua)ll = || ®acp Aal(ua)| < C ] a(wa)lla < C ] Ialvacv.llualla
aceD aeD

holds by the continuity of the tensor product map (3.1). Therefore,

AV o ®ucpta = Sup{IIA(u)II i€ Q) Ua, uf < 1} < [T 1allv. v..,

aeD a€D

for some constant C’ depending on the dimension of the spaces U,, a € D, and (3.6) follows. From
Proposition 2.1 the second statement holds. [

3.2 The set of tensors in Tucker format with fixed rank

Before introducing the manifold of tensors in Tucker format with fixed rank in a Banach space framework,
we need to define the minimal subspace of a tensor in an algebraic tensor space. The following statement
summarises the results given in Section 2.2 in [11].

Proposition 3.6 Given a finite index set D = {1,2,...,d}, let V,, be a vector space for each o € D and let
v € o ®uep Va - Then for each o € D there exists a unique subspace US™(v) with dim U™ (v) = ro for
some 1 < 00, and such that the following statements hold.

() IV € o« @uep Ua then UP™(v) C Uy (€ D), while v € o @uep US™(V) -

(b) For each o € D there exists a unique subspace Ugli“l{a}(v) C Vg such that v € UP™(v) @, Ub“{?a}(v)

min

and dim Upt 1 (V) = Ta.

For a tensor v € Vp = ¢ ®,cp Va the linear subspaces U™ (v) (a € D) are called minimal subspaces
and 7, = dim U™ (v) is called the a-rank of v.

Let Z4 be the set of non-negative integers. We will say that v = (r1,...,rq) € fo_ is an admussible rank
for Vp := 4 @uep Vo if and only if there exists v € Vp such that r, = dim Umin(y) for a € D. We will
denote the set of all admissible ranks of a tensor space Vp by AD(Vp), and hence

AD(Vp) = {(dim U™ (v))aep € Z% : v € Vp}.
It is not difficult to see that 0 = (0,...,0) € AD(Vp)and 1 = (1,...,1) € AD(Vp) if and only if dim V,, > 1
for all « € D.

Now, we define in an algebraic tensor space Vp = , & Vi, the set of tensors in Tucker format with

fixed rank v = (r1,...,rq) € AD(Vp) by

aeD

M(Vp) :={veVp:dimUM(v)=r,, a € D}.

Then
Vo= (J M(Vp).
t€AD(Vp)
Before introducing the representation of a tensor with a fixed rank v we need to define the set of coefficients
of that tensors. To this end, we recall the definition of the ‘matricisation’ (or ‘unfolding’) of a tensor in a
finite-dimensional setting.

11



Definition 3.7 For a finite index set D = {1,2,...,d}, d > 2, and each p € D the map M, is defined as
the isomorphism
M, RXseprms RT#X(HéeD\{u} T“)7
C( —

ig)geD Ciw(ia)aen\m)

It allows us to introduce the following definition.

Definition 3.8 For a finite index set D = {1,2,...,d}, d > 2, let C'P) ¢ R¥wep e, We say that CP) €

R*X P it and only if rank M, (CP)) = r,,, where M, (CP)) € R (Mseny ”3)7 for each u € D.

Remark 3.9 We have that CP) e ]R*X”ED " if and only if M, (CPHYM,(CPHT € GL(R™) for u € D.

neD Tu

mce e aeterminant 1S a conititnuous Jjunction * S an open set 1n H® an ence a finite-
Since the det t ¢ tion, R t in R¥uep™ and h t

dimensional manifold. We point out that if r, = 1 for all p € D then R*X“EDT“ = R, = R\ {0}, which
coincides with the Lie group GL(R).

In the next lemma we give a characterisation of the representation of tensors in M. (Vp).

Lemma 3.10 Let Vp = 4 Q,cp Va be an algebraic tensor space. Then the following statements are
equivalent.

(a) v € M(Vp).

(b) For each a € D there exists a set By, = {ugj) 11 < iy < 1o} of linearly independent vectors and a

unique CP) € RFO‘EDT", once By, is fized (o € D), such that

ve Y s Qul (37)

1<iq<ro a€eD
aeD

(c) For each o € D there exist linearly independent vectors {ugj) 11 <y <7ro} inV, and

linearly independent vectors {UE:) 11 <iq <o} in Vig) = 4 ®5€D\{a} Vi such that

v= Y ueu®. (3.8)
1<ia <rq
Furthermore, if (3.7) holds, then
(@) _ (D) (8)
Uia - Z Ciou(iﬁ)ﬁeD\{a} ®uiﬂ (3'9)
1<ig<rg BeD
BeD\{a}

for1<i, <ry,anda € D.

Proof. First, we prove that (a) and (c) are equivalent. If (a) holds, then from Proposition 3.6(b) we know
that ' .
v € UL (v) @0 Uiy (v

where dim UM (v) = dim g{‘%a}(v) = r, for each a € D. Then there exists linearly independent vectors
{ugj) 11 <4 <74} in V, and linearly independent vectors {Ul(.:) 11 <iq <rafin Vg =4 ®ﬁ€D\{a} Vs
such that (3.8) holds and hence (c) is true. Conversely, if (c) holds then clearly dim UM (v) = r, for each
a € D, and hence (a) is also true.

Now, we prove that (b) and (c) are equivalent. Clearly (b) implies (c). To prove that (c) implies (b)
assume that (c) holds. By the definition of minimal subspace we have that

U&ni“(v) = span {uz(-:) 11 <y <7y}

12



UMin(v) there exists C(P) € RXaep” gsuch that (3.7) holds. To

conclude the proof we only need to show that C(P) ¢ R*X"GDT“. To this end observe that (3.9) must
hold for 1 < i, < r, and each « € D, and hence rankMQ(C’(D)) = r, for each o € D. In consequence,

o) ¢ R*X"EDTQ and (b) is true. ]

for each o € D. Since v € 4 Q,cp

Remark 3.11 From the proof of Lemma 3.10 we have that U™ (v) = span {ugj) 21 < dp < 1o} and
Umin | (v) = span {Ugj‘) 11 <y < 7o} for each a € D. Furthermore, for

P\ {a}
v= > )., Qul em(Vp),

1<ian<ra aeD
a€eD

there exists a natural diffeomorphism

m<a®U;‘1in(v)>—>R§<aeD“, S BD Qul s EP),

aceD 1<iq<rq aeD
aeD

Thus we will identify each u € M (o @ pep UMM (v)) with an element EP) € R Ceep " once a basis
{uij) 11 <o < 1o} of UMN(v) is fived for each o € D, by means of the equality

u=uE?) = 37 ., Qul

1<iqg<rq a€eD
aeD

3.3 The manifold of tensors in Tucker format with fixed rank

Assume that (Va, [|-[|o) is a normed space and denote by V,,,  the Banach space obtained by the completion
of V,, for each a € D. Moreover, we also assume that || - || p is a norm on the tensor space Vp = ¢ @ cp Va
such that the tensor product map (3.1) is continuous and hence, by Proposition 3.1, it is also C*°-Fréchet
differentiable.

Now, we proceed to provide a geometric structure for the set 9, (Vp). By Proposition 3.6 and Exam-
ple 2.24 we have that for each v € Vp the set U™ (v) € G, (V,) for some r, < oo and a € D. Since
Vp = UteAD(VD) M. (Vp), thanks to Proposition 3.6 we can deﬁne a surjective map from a tensor space
to an analytic Banach manifold:

0:Vp — U < X G, (Va)> ;v (UP(V) e
(P1yees7a) EAD(Vp) \@ED
It allows us to consider for a fixed v € AD(Vp), t # 0, the restricted map
O = Q|93?,(VD) : mt(vD) = Qil ( >< (G’ra (Va)> — >< Gra (Va)a V= (U(ryx,lin(v))ozeDv
aeD aeD

which is also surjective. For each a € D the linear subspace UM% (v) C V,, C Va,.,. belongs to the Banach

manifold G, (V,) and hence there exists a closed subspace Wi (v) such that Vo, = Umin(v) @ Wmin(v)
and a bijection (local chart)

W GV (v), Va, ) = LUS (v), W2 (v))

v

given by
\IJE,Q)(UQ) =L, = PWg‘i“(v)EBUg’in(v)|Ua o (PUglin(v)@W&nin(v)|Ua)71
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Moreover, U, = (\Ils,a))_l(La) = G(Ly) = span{(ida + Lo ) (ua) : uq € UMM(v)}. Clearly, the map

Ty X G (v), Vay ) = X LUS™(v), WE(v)),
aeD a€D

defined as ¥, := X ep \I/(a) is also bijective. Furthermore, it is a local chart for an element g.(v) in the
product mamfold X aep Gy, (Vo) such that ¥y (o:(v)) = 0 := (0)keb.

Now, for each v € 9 (Vp) introduce the set

acD

UWV) = o7 " < X G(W™Min(v), Va)> ={w eM(Vp): UM (w) € GWI"(v),Va), @ € D}.

Recall that from Proposition 2.11 we can identify the linear space £(UD"(v), Win(v)) with a sub-algebra
of L(Va.,.+Vay.,,) for a € D. Then, from Example 2.20, the map

X LU (v), Wt (v) = X LU (v), Va)
aeD aeD

between normed spaces given by

£ = (La)aep = ((ida + La)|U;“i"(v))aeD = (eXP(LaNU;ﬂin(v))aeD

is clearly C*°-Fréchet differentiable. Finally, from Proposition 3.5, the map

X LUZ™ (), W (v)) = L <a &) Ua(v) ,VD>

aeD aeD

given by

£ = Oc aeD = ® eXp Umm (v)
aceD

is also C*°-Fréchet differentiable.

Our next step is to characterise the representation of tensors that belong to U(v) by using the following
lemma.

Lemma 3.12 Assume that (Va, | - ||la) is a normed space for each o € D and that || - ||p is a norm on the
tensor space Vp = ®a€D Vo such that the tensor product map (3.1) is continuous. For v € M (Vp) the
following statements are equivalent.

(a) welU(v).
(b) There exists a unique

(L, u(EP) = ((La)aep, u(ED)) € X LU (v), WE™(v)) x Me (a 034 U?“(V))

aeD aeD

such that
w = <® exp(L ) (u(ED)).
aeD
Proof. Assume that w € U(v). Then we have the following facts:

(i) From Lemma 3.10(b) there exist bases B, = {u; (@1 <, < To}, @ € D, and a unique C(P) ¢
R ~eP "* once the bases are fixed, such that v = > 1<i <. C(D) Rachd ugj) € M(v). From
a€D

Za)aeD
Remark 3.11, we know that B, is a basis of U™ (v) for o € D. Now, we will consider that the bases
By, a € D, are fixed.
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(ii) Since UMin(w) € G(WMin(v), Vay.. ), for a € D, there exists a unique

L= (La)aep € X LUFM(v), W (v))
aeD

such that Wy (o.(w)) = £, that is, UM% (w) = G(L,) = span {(id, + La)(ugs)) 11 <y <1y} for all
o € D. Then _
(U™ (W))aep = ¥, (L)

and we can construct from B,, a basis of U™ (w). In particular we have ¥y (0.(v)) = (0)aep-

(iii) Now by Lemma 3.10(b), since a basis of U™*(w) = G(L,) = span {(id, + La)(ul(-j)) 01 <iq <71o}
for a € D is fixed, there exists a unique E(P) € Rt such that

w= > B Qlida+ L)) = ) (ida + La) <U(E(D))) : (3.10)

1<ia Sra a€D a€D
aeD
where

D a min X aeD Ta
wEP) = Y B Qul em, (a QR ues (v)> =R 2T,

1<iq<ra a€D aeD

aeD
It follows (b). From what was said above, (b) clearly implies (a). ]

Remark 3.13 We can interpret Lemma 3.12 as follows. w € U(v) holds if and only if

we <® exp<La>> (fm ( X U;“i“<v>>>

aeD aeD

for some £ = (Lo)aep € X gep LIURR(v), WRiR(v)). In consequence, each neighbourhood of v in M.(Vp)
can be written as

Uv) = U (@ exp(La)> (imr <a X Ué““(V))) ) (3.11)

e X ep LUZm (V). Wpin(v) \E€D aeD

aeD Ta)

that is, a union of manifolds (each of them diffeormeorphic to R*X indexed by a Banach manifold.

Now, also by using Lemma 3.12, we construct an explicit manifold structure for 9.(Vp). Indeed,
Lemma 3.12 allows us to define for each v € 9, (v), once a basis of UM"(v) for each a € D is fixed, a
bijective map

v UWV) = <>< £(U§“i“(v),W;“in(v)>> x RS =en ™

acD

& ((@ exp(La>> <u<c<D>>>> = (g,C),

aeD

where £ := (Ly)aep. Clearly, &, is a bijective map and hence U(v) can be identified with the Banach
manifold

acD

<>< G(W;ﬂ%v),va)) x RXeeoT,
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which is modelled on the Banach space

( X c<U§““<v>,W3“<v>>> x RXocn e,
a€eD

The next lemma allows us to prove that {(U(v),&v)}vem,(vp) is a local chart system for the set of
tensors in Tucker format with fixed rank t.

Lemma 3.14 Assume that (Va, | - |la) s a normed space for each a € D and that || - ||p is a norm on the
tensor space Vp = o @ qcp Va such that the tensor product map (3.1) is continuous. Let v,v' € M.(Vp)
be such that U(v) NU(V') # 0. Then the bijective map

Ev o0& & UV)NUN)) = & UNV)NUN))
is C°-Fréchet differentiable.
Proof. Let w € U(v) NU(V') be such that & (w) = (£, u(CP))) and &/ (w) = (£, v/ (EP)), that is,
(& 0 &)L u(C?)) = (£, u/(EP))).

Since w € U(v) NU(v') then

0:(w) = (U™ (W))aep € (X G(W&“in(V%Va)) n (X G(W(Ti“(V’),Va)>

aeD a€D
and
(Wyr 0 W) (Uy (UF™(W))aeD)) = Uur (UF™(W))aeb),
that is,
(U, oW H(L) = ¢
Hence

Ev(w) = (v 0 UL 1)(2), u' (BD)),

where ¥,/ o U1 is an analytic map. On the other hand, since

w=¢"(¢,0P) = (@exp ) (u(CP))) = ffl(slaE(D)):<®exp(L;)>(u’(E(D))),

aeD a€eD
we have
EDP)) <® exp(—L.) oexp(Lqa )) (u( (@ exp(Lao — L, ) (u(C'P)y),
aceD aeD

because from Proposition 2.11 L, o L!, = L/, o L, = 0 holds. In consequence,

(B = f8uE <® exp(Lo — (0 o <\If<f‘)>—1><La>> (a(CP))

acD

where

o X LUEM V), Wit (v)) x M, ( X U;“i“<v)> - M ( X Uz:ﬁ“<v’>> :
aeD a€D a€D
To prove the lemma we claim that the map f is C*°-Fréchet differentiable.

Recall that for each o € D the map given by

L= (05 0 (W) ™) (La)
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is analytic because G, (V,,) is an analytic Banach manifold. Since we can identify the linear space £L(UM1 (v), Wit (v))
with a sub-algebra of E(Van-ua Vo ), from Example 2.20, we know that
exp : LIUZ™(v), W™ (v)) = GL(L(UZ™ (v), Wa™ (v)))

is analytic for each o € D. In consequence, the map
Lo exp (Lo = (07 0 (967) ") (La))

is also analytic for each a € D. Finally, we conclude by using Proposition 3.5 that the map

X LUZ™(v), W (v)) = L <a &) Ua(v) ,VD>

aeD aeD

given by

(La)aED — ® exp (La - (\IIE;O'[) © (\Dga))_l) (La))‘

UUmin
a€eD &)

is C*°-Fréchet differentiable. Observe that f can be written by using the evaluation map

eval : £ (a ® U;“in(v) a ® Ug’in(v/)> X q ® U,Eni“(v) — 4 ® Upmin (v

aeD acD keD keD

given by

(D) ()| _ (D) (@)
eval F, Z E(ia)aED ® ui& - F Z E(ia)aeDuia ’

1<io<rq aeD 1<in<ra
aeD aeD

which is multilinear and continuous. From Proposition 2.1, it is also C*°-Fréchet differentiable. Since

f(ﬂ,u(C(D))) = eval <<® exp (La - (\IIE,O,‘) o (\IIE,“))_l)(La))> ,u(C(D))> ’

aeD

the claim follows. We recall that

Wi ( X UF“(v’)) =M. ( (09) U,;“in(v)> = RSeP T,

keD keD

Thus the lemma is proved. [

Remark 3.15 Observe that if we assume that (Va,| - ||a) is a complex Banach space for each o € D and
|l - lp is @ norm on the complex tensor space Vp = o @ cp Vo such that the tensor product map (3.1) is
continuous, from Proposition 3.4, we have that the extension of the tensor product map (3.1) is analytic.
Moreover, the map

X LOF™(v), W (v)) = X LUZMV),Va),  £= (La)aep = (ida + La)aep = (exp(La))acp
aeD aeD
between the product of complexr Banach spaces is clearly analytic. In consequence, under the above assump-
tions it can be shown that the bijective map &y 0 £,1 is analytic.

Before stating the next result we recall the definition of a fibre bundle.

Definition 3.16 A C*-fibre bundle (E, B, ), where k > 0, with typical fibre F (a given manifold) is a C*-
surjective morphism of C* manifolds m : E — B which is locally a product, that is, the C*-manifold B has
an open atlas {(Uy,€a)}aca such that for each o € A there is a C* diffeomorphism xo : 71 (Uy) — Uy x F
such that pa © Xa = T, where py : Uy x F' — U, is the projection. The C* manifolds E and B are called the
total space and base of the fibre bundle, respectively. For each b € B, 7= 1(b) = E} is called the fibre over b.
The C* diffeomorphisms X« are called fibre bundle charts.
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Theorem 3.17 Assume that (Va, || - ||a) i @ normed space for each o € D and that || - |p is a norm on the
tensor space Vp = 4 @ ocp Va such that the tensor product map (3.1) is continuous. Then the collection
{UV), & Fvem. (vp) s a C-atlas for M. (V p) and hence it is a C*>°-Banach manifold modelled on a Banach
space

( X L(Ua,WQ)> x R™acn o

aceD

here U, € G, (V) and Vo a = Ua @ Wo, where Vo is the completion of Vi, for o € D. Moreover,

a€D

<9:nt(VD)7 X Gr, (Va)?gt>

is a C*°-fibre bundle with typical fibre R}O‘ED e

Proof. Since {(U(V),&v) bvem, (vp) satisfies AT1, Lemma 3.12 implies AT2 and AT3 follows from Lemma
3.14, we obtain the first statement. To prove the second one we observe that the local chart system
{(U(v), &)} for the manifold M. (Vp) allows us to write the morphism

Oc: mt(VD) - >< Gra (Va)v V= (U;nin(v))ozeDv
aeD

locally as a map

<>< E(UE““(V)vWé“i“(V))> X REPT o X LUR (v), W (v)),
aeD a€D

given by
((La)aeDvE(D)) = (La)a€D~

Thus, . is a C'*°-surjective morphism. Moreover, by construction of the atlases, for each v € M, (Vp) the
map Xy := (¥y X ideaeD ro ) 0 &y Where

Xv i UW) = ot (X G(W(Ti“(v),va)> - <>< G(Wg‘i“(v),vu)> « RXaenTa

acD a€eD
is a C'°-diffeomorphism satisfying 7y o xv = ¢ where
min X Ta min
s ( X G (), Va>> <RI X G Va), (Udaen, B®) o (Us)acn.
aeD aeD

In consequence, the second statement is proved. [

Remark 3.18 We point out that for d = 2 the typical fibre is the Lie group GL(R") for some r > 1 and for
vt =1 (and any d > 2) the typical fibre is the Lie group GL(R) = R\ {0}. Then in both cases we have that
the fibre bundle is a principal bundle, that is, a fibre bundle which has as a typical fibre a Lie group.

Remark 3.19 Assume that (Va, | - ||a) is a complex Banach space for each o € D and || - ||p is a norm
on the complex tensor space Vp = ®a€D Vo such that the tensor product map (3.1) is continuous. From
Remark 3.15 we have that the collection {U(V), &y }vem, (v 95 an analytic atlas for M(Vp) and hence it
is an analytic Banach manifold modelled on a Banach space

(x L‘(U(,,Wa)> x CXaepTa

a€D

here U, € G, (V) and V,, = U, ® W, for a € D.
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We point out that the norm || - ||p in Vp is only used in the proof of Lemma 3.14 in order to endow
the finite-dimensional tensor space , @ ,cp US""(v) with a structure of finite-dimensional Banach space for
each v € M (Vp). Thus, the geometric structure of manifold is independent of the choice of the norm || - || p

over the tensor space Vp. We illustrate this assertion with the following example.

Example 3.20 Let Vi = H"(Iy) and V= H"P(Iz), with || - |o = || - [l1p.1
Vp = HY (1) ®, H'P(I5). Now, we can consider as ambient Banach space either

and 1 < p < co. Take

a’

V—DII-HD,1 = H"P(I; x 1),

with || - |px = |- l1,p, or

Voo = () @y, HY (D),

where || - ||p2 := || - l(0,1),p 1 the norm given by

of

p\ /P
2 p> .

7o = <|f||§ +] 52

The tensor product map (3.1) is continuous for both norms (see Examples 4.41 and 4.42 in [19]) and hence
from Theorem 3.17 we obtain that for each r > 1 the set M,.,)(Vp) is a C>°-Banach manifold modelled on

E(Uh Wl) X E(UQ, WQ) X GL(RT),
here U; € G,.(H*?(I;)) and HP(I;) = U; ® W; fori=1,2.
The next result gives us the conditions to have a Hilbert manifold.

Corollary 3.21 Assume that (Va, || - [la) is a normed space such that Vi, —is a Hilbert space for each
a € D and let || - ||p be a norm on the tensor space Vp = o @ ,cp Va such that the tensor product map
(3.1) is continuous. Then M. (Vp) is a C>°-Hilbert manifold modelled on a Hilbert space

X Wi x RXaenTa,
aeD

here Vo, ... = Ua ® Wy, for some Uy € Gy, (Vo) for a € D.

Proof. We can identify each L, € £ (U™ (v), WZin(v)) with a set of vectors (wg‘jj))jzja € Wmin(y)re,
where wgf) = L, (ugi‘)) and UMM (v) = span {uga), e ,u&i‘)} for v € D. Thus we can identify each (£,C")) €
& (U(v)) with a pair
(W, & X Wain(yrs x RXwe0™,
aeD
where W = ((ng)):;’:l)aep. Take X pcp WHin(v)re x R °€P ™ an open subset of the Hilbert space

X qep Whin(v)re x R X aep e endowed with the inner product norm

| (W, CP) 2y = ICPE+ 30 D w2,
a€Din=1
with || - || the Frobenius norm. It allows us to define local charts, also denoted by &, by

&1 X WIR(v)re x RSP U(v),
a€eD

where ¢! (W,C(D)) = w, putting La(u(a)) = w(a), 1 < i, <71y and a € D. Since each local chart is

defined over an open subset of the Hilbert space X ,cp WX (v)" x RXaepTe the corollary follows. ]
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Using the definition of the local charts for the manifold 91,(Vp), we can identify its tangent space at
v with Ty (9 (VD)) := X aep LU (v), Wi (v)) x R ecn 7 We will consider Ty (9(Vp)) endowed
with the product norm

11, CPNllv = ICP e + Y I Lallwainv)evpin -
a€eD

Finally, the fact that Vp = U.cap(v,,) P:(Vp) allows us to state the following.

Corollary 3.22 Assume that (Va, | - |la) is a normed space for each o € D and that || - || p is a norm on the
tensor space Vp = o Qqecp Va such that the tensor product map (8.1) is continuous. Then the algebraic
tensor space Vp is a C*°-Banach manifold not modelled on a particular Banach space.

4 The manifold of tensors in Tucker format with fixed rank and
its natural ambient tensor Banach space

Consider the tensor space Vp = , ®a€ p Vo and assume that for each a € D the vector space V, is a
normed space with a norm || - ||,. We start with a brief discussion about the choice of the ambient manifold

for M. (Vp). Recall that in Example 3.20 we have two norms || - ||p,1 and ||- || p,2 on Vp such that the tensor

product map (3.1) is continuous for both norms. Then we have two natural embeddings Vp C Vipu'HD’1

and Vp C VDH.”D’z. In this context a natural question about the choice of a norm || - ||p for the algebraic
tensor space Vp appears: What is the good choice for this norm to show that 9%.(Vp) is an immersed
submanifold?

More precisely, assume that (V,, || - ||o) is a normed space for each « € D and let || - ||p be a norm on

the tensor space Vp = 4 & ,cp Vo such that the tensor product map (3.1) is continuous. Then we have

a natural ambient space for 9M.(Vp) given by a Banach tensor space VDH'HD = VDH-HD' Since the natural

inclusion
i: i)jtt(‘/vD) — VDH'HD7

given by i(v) = v, is an injective map we will study i as a function between Banach manifolds. To this end
we recall the definition of an immersion between manifolds.

Definition 4.1 Let F': X — Y be a morphism between Banach manifolds and let x € X. We shall say that
F is an immersion at x if there exists an open neighbourhood X, of x in X such that the restriction of F
to X, induces an isomorphism from X, onto a submanifold of Y. We say that F is an immersion if it is an
immersion at each point of X.

Our next step is to recall the definition of the differential as a morphism which gives a linear map between
the tangent spaces of the manifolds involved with the morphism.

Definition 4.2 Let X and Y be two Banach manifolds. Let F : X —Y be a C" morphism, i.e.,
YoFopt:pU) = (W)

is a C"-Fréchet differentiable map, where (U, p) is a chart in X at x and (W,v) is a chart in'Y at F(z).
For x € X, we define

ToF : To(X) — Try(Y), v [(Wo Fop™) (p(x))]e.
For Banach manifolds we have the following criterion for immersions (see Theorem 3.5.7 in [28]).

Proposition 4.3 Let X, Y be Banach manifolds of class C? (p > 1). Let F : X =Y be a CP morphism and
x € X. Then F is an immersion at x if and only if T, F is injective and T, F (T, (X)) € G(Tp) (Y)).

20



A concept related to an immersion between Banach manifolds is introduced in the following definition.

Definition 4.4 Assume that X and Y are Banach manifolds and let f : X — Y be a C" morphism. If f
is an injective immersion, then f(X) is called an immersed submanifold of Y.

In consequence, to prove that the standard inclusion map i is an immersion we shall prove, under the
appropriate conditions, that if i is a differentiable morphism then for each v € 9,(Vp) the linear map Ty i
is injective and Tvi(Ty(M:(Vp))) belongs to G(Vp, ).

4.1 The linear map T,i is injective
To describe i as a morphism, we proceed as follows. Given v = 1<;, <,«a cP) ®a€D i ) e M. (Vp),
€D

(ia)aepD

we consider U (v), a neighbourhood of v, and

(io&gh) s X LUFM(v), W™ (v)) x RE = V.
aceD

From the proof of Lemma 3.14 the map (io &, 1) is given by

(io 5;1) (2,E(D)> = eval <®(ida + La),u(E(D))> = Z ((ZIZ)QGD (ido + La) (o,)),

a€eD 1<ia<rqa a€D
aeD

Remark 4.5 Observe that it allows us to define a left local action of the Lie group X 4ep GL(L(UZ™(v), Wit (v)))
onto the local manifold U(v) as follows:

X GLILUZ™(v), Wit (v))) x U(v) = UW),  ((exp(La))aen, W) = () exp(L

acD aeD

Moreover, we can also define a right local action using the Lie group X ocp GL(UM™(v)) by

U(v)x ( X GLW&@“("))) —U(v), <® exp(La)(u(E™))), (G a)aeD> = @) (exp(La)oGa) (u(ED)).
a€D €D aeD

The next lemma describes the tangent map Tyi.

Proposition 4.6 Assume that (V| - ||a) is a normed space for each a € D and let || - ||p be a norm

on the tensor space Vp = 4 Q@qcp Va such that the tensor product map (5.1) is continuous. For v =
Zl<za<ra c'”) Racp Ui ( ) e m, (Vp) the following statements hold.

(Za)aeD

(a) Th:lf Zlap (io&5Y) from X yep LIUMM (v), WXin(v)) x RXacp " o Vbp,.,, i Fréchet differentiable,
and hence

Tyie L (Tv(mt(VD))7VDH'\|D) :

(b) Assume (£,CP)) € Ty (M (Vp)), where CP) € RXeep ™ and £ = (Ly)aep is in X yep LU (v), WDin(v)).
Then w = Tvi(i}, CP)Y if and only if

W= 3 G, Quls 3 (i eu?), (4.1)

1<ia<rq aeD 1<in<rq
acD a€D
where (a) (D) (8)
a) D B
Uia - Z Cim(iﬁ)ﬁeD\{a} ® Uiy -
1<ig<rg peD
BED\{a}
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Proof. To prove statement (a), from the results of section 3.3 we know that (io &, 1) is C*°-Fréchet differen-
tiable and that &, (v) = (0, C(?)). Now, to prove (b) observe that

Tyi: X LUNM(v), WIR (v)) x RXeep e — V)|
aeD
is given by the chain rule:
Tui(£,CP) = [0 &) (Lo & (W)L, CP)
(10651 (0, CN)(E,C))

Z ('La)aED ® u(a) + Z Z zm(w)ﬁeo\{a} )@ ® “(ﬂ)

1<ig<rq aED 1<iq<rq 1<ig<rg BED

€D €D ” geD\{a} B#a
_ (D) (o) (o)
= Y DL Qul+ Y (Lawm)eul).
1<ia<rq aeD 1<in<rq
aeD a€D
This implies statement (b). ]

In the next proposition we prove that Tyi is injective when we consider v in the manifold M. (Vp). It
allows us to characterise the tangent space of 9,.(Vp) inside the tensor space VDH_”D. We recall that from
Remark 3.11 we have _

Up\{ay(V) = span {UE—Z‘) 01 <y <7},

for € D. In order to simplify notations we introduce the following definition. For each v € M, (Vp) we
denote by Z(P)(v) the linear subspace in Vo, defined by

(D) V) =, ® U(;nin (@ Wmm ®a Uglir%a}( )>

aeD aeD

Proposition 4.7 Assume that (V,, || - |la) is a normed space for each a € D and let || -||p be a norm on the
tensor space Vp = o @ cp Va such that the tensor product map (3.1) is continuous. Let v € M.(Vp), then

the linear map Tyi is injective and Tyi(Ty (M (Vp))) = ZP)(v) is linearly isomorphic to Ty(M(Vp)).

Proof. First, observe that if v € 9.(Vp) and w = Tyi(£, C(P)), then by Proposition 4.6(b)

w= > O, Qul+ Y ((a ®U(Q))

1<in<rq a€eD 1<in<rq
aceD a€D

where

(o) _ (D) pmin
Uia - Z (w)ﬁeD ®u \{a}( v),
ISZ';;ST;g BeD
pBeD\{a}

and UES) = La(ufz)) € Wrin(y) for all a € D. Hence Tyi(Ty(M:(Vp))) C Z(P)(v). Next, we claim that
ZP)(v) C Tyi(Ty(M:(Vp))). To prove the claim take w € Z(P)(v). Then we can write

w= > ()i Qui+ Y ( a)®U(a))

1<ia<rq aeD 1<iq<rq
aEeD aeD

where w(a) Woin(v) for 1 < i, < 7o and a € D. Now, define L, € LU (v), W™ (v)) by L (u (a))
(a) for 1 < i, <7y and a € D. Then the claim follows from w = Tvi((La)aeD,C’(D)). To conclude the
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proof of the proposition we need to show that the map T,i is an injective linear operator. To prove this
consider that

Toi ((Lg)sen, CP)) =0,

that is,
0= 3 )0 Qu¥+ > > (Ul
1<iq<ra aeD 1<ia<rq 1<iq <rq
aeD a€D

with () = Lo (u{®). Thus,

(2 o

S Py Qui =0,

1<ia<rq aeD
acD

Z (ugj) ® Ug?) =0foracD,

1<ia<ra

and hence CP) = o, because {®a€D uz(-:)} is a basis of @ ,cp Umin(y) | and uij‘) =0for 1 <iy < rg,

because the {Ugj) : 1 < iy < 1o} are linearly independent for o« € D. Then L, =0 forall « € D. We
conclude that

(()sen, €P)) = ((0)pep, o)

and, in consequence, T i is injective. [

4.2 The linear subspace T.i(T(9M:(Vp))) belongs to G(Vp,, )

Finally, to show that i is an immersion, and hence 9. (Vp) is an immersed submanifold of VD”_”D, by

Proposition 4.7, we need to prove that Z(P)(v) € G(V|.|»)- To reach it we need a slightly stronger condition
than the continuity of the tensor product map. To this end we introduce the crossnorms.
4.2.1 Crossnorms

Let [|-]|,, , & € D, be the norms of the vector spaces V,, appearing in Vp = 4 @ V. . By ||| we denote the

aeD
norm on the tensor space V. Note that ||-|| is not determined by ||-||, , for a € D, but there are relations
which are ‘reasonable’. Any norm |- on @, p Vo satisfying
H ®aeD V|l = HaED Vel a for all v, € V,, (v € D) (4.2)

is called a crossnorm. As usual, the dual norm of |-|| is denoted by |[|-||*. If ||-|| is a crossnorm and also ||-||*

is a crossnorm on , @,.p Vi, ie.,
@]" = ()% () x
1R, e =TL_, ¢ s  forall ¢ e Vi (aeD), (4.3)
then ||| is called a reasonable crossnorm.

Remark 4.8 Eq. (4.2) implies the inequality || @ cp Vall S [aep IValla which is equivalent to the conti-
nuity of the multilinear tensor product map (3.1).

Grothendieck [15] named the following norm ||-||,, the injective norm.

Definition 4.9 Let V,, be a Banach space with norm ||-||, for a € D. Then forv € V = 4 Q,cp Va define
I-llven....va) by
P1® P2 ®...® pa) (V)] *
Vv, iy = { 204 g, eviaen). m
[oep leall
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It is well known that the injective norm is a reasonable crossnorm (see Lemma 1.6 in [26] and (4.2)-(4.3)).
Further properties are given by the next proposition (see Lemma 4.96 and Section 4.2.4 in [19]).

Proposition 4.10 Let V, be a Banach space with norm |||, for o € D, and || - || be a norm on Vp =
aQucp Vo - The following statements hold.

(a) For each oo € D introduce the tensor Banach space Xo = | v, v V) Qpra Vs - Then

I lvo,ove = T veva,xa) (4.5)
holds for a € D.

(b) The injective norm is the weakest reasonable crossnorm on 'V, i.e., if ||-|| is a reasonable crossnorm on

V, then
-2 v v - (4.6)
(¢) For any norm ||-|| on 'V satisfying |||\, v;,.. v,y < Il the map (5.1) is continuous, and hence Fréchet
differentiable.

The following result shows an interesting use of the injective norm.

Corollary 4.11 Assume that (Va, || ||la) is a normed space for each o € D. Then the algebraic tensor space
V = 4 Qucp Va is a C*-Banach manifold not modelled on a particular Banach space.

Proof. Let V,
Then we have

be the Banach space obtained by the completion of V,, by using the norm || - ||, for a € D.

V:a(g)vacv*:a(g)va“_“a.

acD aeD

Il

From Proposition 4.10(c) the map

X < X Vay o ”) — (V*’ I ||V(V1»1""’Vd|-||d))

aceD

is continuous and hence

R <>< va,|~||> — (V, I- ||v<v1_h,...,vd”,,d>)

aceD
is also continuous. Then Corollary 3.22 proves the desired conclusion. ]
Remark 4.12 Observe that from the proof of the above corollary, we can conclude that V* = o @ cp Vo
is also a C*°-Banach manifold not modelled on a particular Banach space.
4.2.2 Tui(Tv(M(Vp))) belongs to G(Vp, )
We will assume that the norm ||-||, on Vp satisfies
s, S (4.7

and hence, by Proposition 4.10(c), under this condition, Proposition 4.7 also holds. A first useful result is
the following lemma.

Lemma 4.13 Assume that (Va, || ||la) is @ normed space for each o € D and let ||-||p be a norm on the tensor
space Vp = ¢ Q@ qcp Va such that (4.7) holds. Let € D. If Wg € G(Vﬂu-llg) satisfies Vi, =Us®Wp for
some finite-dimensional subspace Ug in Vﬂ”_Hﬁ, then Wg @4 Ul € G(VD”_”D) for every finite-dimensional
subspace Ujg) C V5] = a®5€D\{B} Vi, -
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Proof. First, observe that if W is a finite-dimensional subspace, then W3 @, Uy is also finite-dimensional,
and hence the lemma follows. Thus, assume that Wy is an infinite-dimensional closed subspace of Vﬁu-ug’

and to simplify the notation write

seD\{5}

If Upg) € X is a finite-dimensional subspace, then there exists Wiz € G(Xg) such that Xz = Ui @ Wig).
Since the tensor product map

® : (‘/'B”'Hﬂ7 H ' ||5) x (XIB7 || ’ ||\/(V17"'7Vﬁ*11VB+17"'7Vd)) - (\/-DHHD7 || ' ||D)

is continuous and by Lemma 3.18 in [11], for each elementary tensor vg ® vig € VﬁH'Hg ®q Xg we have

1Gids ® Py ow,,) ) (Ve @ Vig)lla < Cy/dimUg [|Vsllsllvigllv....vsr Vesr.va)

= C \/ dlm U[ﬁ] ||Vﬂ ® V[ﬂ] ||\/(Vl,‘..,ngl,Vg,Vngh...,Vd)

< ¢\ /dim U [[vs @ vig | p-

Thus, (idg ® Pu[ﬁ]eaw[m) is continuous over Vﬂn-uﬁ ®q X, and hence in VDH-HD' Now, take into account the
fact that
idﬁ = PUBEBW;; + PW,;@UB7
so that
idp @ PU[m@W[m - PUBEBWﬂ ® PU[m@le + PWwUzs ® PU[m@W[m'
Observe that idg ® PU[ﬁ]@W[Bl and Py, oy ® PU[ﬂ]@W[B] are continuous linear maps over V[;Mﬁ ®q Xg, and
then Py, o, © PUw]@W[B] is a continuous linear map over V/3H~ug ®q Xg. Thus,
P = PWﬂ@Uﬁ ® PU[g]®W[5] = E(VDH-IID’VDII-HD)
and PoP = P. Since P(Vp, ) = Ws ®q Upg), the lemma follows by Proposition 2.8. ]

Lemma 4.14 Let X be a Banach space and assume that U,V € G(X). IfUNV = {0}, then UV € G(X).
Moreover, UNV € G(X) holds.

Proof. To prove the first statement assume that U NV = {0}. Since U,V € G(X) there exist U', V' € G(X),
such that X = UG U’ = V@V’ Then U = XNU = (Ve V)NU =UNV' and V = XNV = (UaU)NV =
V NU'. In consequence, we can write

UaVaeU'nV)=UnVYe(VnUYeU'NV)=UaU)N(VaoV')=X,

and the first statement follows. To prove the second one, observe that X = (UNV)®({UNV)®(VNU')®
o' nv). =

An important consequence of the above two lemmas is the following theorem.

Theorem 4.15 Assume that (Va,|| - ||la) s a normed space for each o € D and let || - ||p be a norm on
the tensor space Vp = o @ cp Vo such that (4.7) holds. Then for each v € M(Vp) we have ZP)(v) €
G(Vp,, ). and hence M(Vp) is an immersed submanifold of Vp, .

Proof. For each a € D we have Whin(v) € G(Vay.,,) and min | (v) C o Qsep\(ay Vo, is a finite-

, D\{a}
dimensional subspace. From Lemma 4.13 we have WM™ (v) ®, Ug’{‘%a}(v) € G(Vp,, ) for all a € D. Since
0 Quep U™ (v) € G(Vp,,, ), by Lemma 4.14, we obtain that Z(P)(v) e G(Vp,,,) ]
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Example 4.16 Let us recall the topological tensor spaces introduced in Example 3.3. Let I, C R (a € D)
and1 <p < oo. Let1:= X cp Io. Hence LP(I) is a tensor Banach space for all « € Tp. In this example we
denote the usual norm of LP(I) by || - |lo,p- Since ||-|lo,p is a reasonable crossnorm (see Example 4.72 in [19]),
then (4.7) holds. From Theorem 4.15 we obtain that M (o @uep LP(1a)) is an immersed submanifold of
Lr(I).

Example 4.17 Now, we return to Example 3.20. From Ezample 4.42 in [19] we know that the norm

I ll0,1),p is a crossnorm on HY“P(Iy) ®q H"P(I3), and hence it is not weaker than the injective norm. In
consequence, from Theorem 4.15, we obtain that M (HYP(I1) @, HP(I3)) is an immersed submanifold in
Hl’p(Il) ®H‘H(o,1),p Hl’p(Ig).

Since in a reflexive Banach space every closed linear subspace is proximinal (see p. 61 in [13]), we have
the following corollary.

Corollary 4.18 Assume that (Vy, | - |«) is a normed space for each o € D and let || - ||p be a norm on the
tensor space Vp = o @Qqecp Va such that (4.7) holds and Vp, = |, Qqecp Va is a reflexive Banach

space. Then for any v € M (Vp) and u € VDII-HD’ there exists Vpest € Z(D)(v) such that

[0 = Viest|| = min  [Ja—v].
veZ(D) (v)

5 On the Dirac—Frenkel variational principle on tensor Banach
spaces

5.1 Model reduction in tensor Banach spaces

In this section we consider the abstract ordinary differential equation in a reflexive tensor Banach space
Vb, given by

u(t) = F(t,u(t)), for t >0, (5.1)

u(0) = uy,

where we assume ug # 0 and F : [0,00) x Vp =~ — Vp satisfying the usual conditions to have
existence and uniqueness of solutions. As usual we assume that (V] - ||o) is a normed space for each
a € D and let | - [[p be a norm on the tensor space Vp = 4 &,cp Vo such that (4.7) holds. We want to
approximate u(t), for ¢t € I := (0,T) for some T' > 0, by a differentiable curve ¢ — v,.(t) from I to M.(Vp),
where v € AD(Vp) (v # 0), such that v,.(0) = vo € M.(Vp) is an approximation of ug.?

Our main goal is to construct a reduced order model of (5.1)—(5.2) over the Banach manifold 9. (Vp).
Since F(t,v,(t)) € Vp,,, for each t € I, and ZP)(v,.(t)) is a closed linear subspace in Vb, . we have

the existence of a v,.(t) € Z(P)(v,.(t)) such that

[ver(t) = F(t, v (1) lp = v =F(t v (t))lp-

min
veZ(D) (v, (t))
It is well known that, if Vp s a Hilbert space, then v, (t) = Py, ) (F(t,vr(t))), where

Py..t) = Pz (v, (£) @2 (v, (1)) -

is called the metric projection. It has the following important property: v,.(t) = Py, ) (F(t,v,(t))) if and
only if
(V. (t) = F(t, v, (t)),v)p = 0 for all v € ZP) (v,.(t)).

The concept of a metric projection can be extended to the Banach space setting. To this end we recall
the following definitions. A Banach space X with norm || - || is said to be strictly convez if ||z + y||/2 < 1

3vp can be chosen as the best approximation of ug in 9:(Vp) because a best approximation exists [11].
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for all x,y € X with ||z|| = |ly|| = 1 and z # y. It is uniformly convex if lim,,_, o ||z, — yn|| = 0 for any two
sequences {2y }nen and {yn tnen such that [, = [lyall = 1 and limy o0 |2 + yn||/2 = 1. It is known that
a uniformly convex Banach space is reflexive and strictly convex. A Banach space X is said to be smooth if
the limit

ety o]

t—0 4
exists for all z,y € Sx = {2 € X : ||z|| = 1}. Finally, a Banach space X is said to be uniformly smooth if its

modulus of smoothness
|z + 7yl + llz — 7yl

p(T) = sup 1p,7>0,
z,yESx 2

satisfies the condition lim,_,o p(7) = 0. In uniformly smooth spaces, and only in such spaces, the norm is
uniformly Fréchet differentiable. A uniformly smooth Banach space is smooth. The converse is true if the
Banach space is finite-dimensional. It is known that the space LP (1 < p < o0) is a uniformly convex and
uniformly smooth Banach space.

Let {-,-) : X x X* — R denote the duality pairing, i.e.,
(z,f) = f(z).
The normalised duality mapping J : X — 2% is defined by
J(z) = {f e X" (z, f) = |z* = (If1")*},
and it has the following properties (see [2]):
(a) If X is smooth, the map J is single-valued;
(b) if X is smooth, then J is norm-to—weak* continuous;

(¢) if X is uniformly smooth, then J is uniformly norm—to-norm continuous on each bounded subset of
X.

Remark 5.1 In a Hilbert space, the normalised duality mapping is the Riesz map. Notice that after identi-
fying X with X*, it can be shown (see Proposition 4.8(i) in [7]) that the normalised duality mapping is the
identity operator.

Assume that (Va, || - [la) is a normed space for each a € D. Let Vp | = |, @uep Va be a reflexive
and strictly convex tensor Banach space such that (4.7) holds. For F(¢,v,(t)) in Vp ., with a fixed t € I,
it is known that the set

{vr<t>:vr<t>—F<t,vr<t>>D= i |v—F<t,vr<t>>|D}

vEZD) (v,.(t))

is always a singleton. Let Py ;) be the mapping from Vp onto ZP)(v,.(t)) defined by v,(t) :=

Py, ) (F(t,v-(t))) if and only if

I o

V(1) — F(t, v, (t = i v —F(t, v, ()| p.
[¥0(6) = F(t.vo (0o = wmin | = F(t.vo (1)) o

It is also called the metric projection. The classical characterisation of the metric projection together with
Proposition 2.10 of [2] allows us to state the next result.

Theorem 5.2 Assume that (Va, || - [la) is a normed space for each o € D. Let Vip | = .1, Qnep Va be
a reflexive and strictly convex tensor Banach space such that (4.7) holds. Then for each t € I the following
statements are equivalent.

(a) Vo (t) = Py, ) (F(t, v+ (1))
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(b) (Vp(t) =¥, J(F(t,v.(t)) — V(1)) > 0 for all v € ZP)(v,.(t)).
(c) (v, J(F(t,v,.(t)) — V,.(t))) = 0 for all v € Z(P)(v,.(t)).

An alternative approach is the use of the so-called generalised projection operator (see also [2]). To
formulate this, we will use the following framework. Let V Diip be a reflexive, strictly convex and smooth
tensor Banach space. Following [23], we can define a function ¢ : VDH_”D X VDH_”D — R by

¢(u,v) = [[ul|p — 2(u, J(v)) + | vI[D,
where (-, ) denotes the duality pairing and J is the normalised duality mapping. It is known that the set

{Vr(t) oV (), F(t, vr(t))) = min ¢(VaF(t,Vr(t)))}

VEZD) (v, (1))

is always a singleton. It allows us to defineamap Ily, ) : Vp, ,  — ZP) (v, (1) by Vi (t) := Ly, (1) (F(t, v,(2)))
if and only if
v F = i v, F .
S F Vi) = min 6. F(t.v,(1)
The map Il ) is called the generalised projection. It coincides with the metric projection when VD“_HD is
a Hilbert space.

Remark 5.3 We point out that, in general, the operators Py ) and Il ) are nonlinear in Banach (not
Hilbert) spaces.

Again, a classical characterisation of the generalised projection gives us the following theorem.

Theorem 5.4 Assume that (Va, || - [la) is a normed space for each o € D. Let Vp | = ., Qnep Va be
a reflexive and strictly convex tensor Banach space such that (4.7) holds. Then for each t € I we have

Vi (t) = Iy, @) (F (£, v (1))
if and only if
(Vo (t) =¥, J(F(t, v, (t)) = J(Vo(t))) > 0 for all v € ZP)(v,.(t)).
5.2 The time—dependent Hartree method

Assume that (V,, | - [|) is a Banach space for each o € D. Let V. = |1, @acp Vo be a reflexive and
strictly convex tensor Banach space such that (4.7) holds. Let us consider in V. a flow generated by
a densely defined operator A € L(V|., V). More precisely, there exists a collection of bijective maps
¢, : D(A) — D(A), here D(A) denotes the domain of A, satisfying

(i) ¢ =id,
(ii) @i =@y 0@, and
(iii) for ug € D(A), the map t > ¢, is differentiable as a curve in V., and u(t) := ¢,(uo) satisfies
u = Au,

u(0) = up.

In this framework we want to study the approximation of a solution u(t) = ¢,(ug) € V., by a curve
V(1) == A(t) ®aep va(t) in the Banach manifold M, . 1)(V), also called in [27] the Hartree manifold. The
time—dependent Hartree method consists in the use of the Dirac—Frenkel variational principle on the Hartree
manifold. More precisely, we want to solve the following reduced order model:

V() = Py, 1) (Av,(t)) for t € I,
v,-(0) = vy,
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with vg = Ao ®aeb ’U(()a) € Mq,...1)(V) being an approximation of ug. By using the characterisation of the
metric projection in a Banach space, for each ¢ > 0 we would like to find v,.(t) € T, )i (']I‘vr(t) (M, (V)))
such that

(v, J(Vi(t) = Av,(t))) = 0 for all v € Ty, ()i (Ty, @) (M,...1y(V))), (5.3)

VT(O) = Vg = )\0 ®a€D ’U(()a).

A first result is the following Lemma.

Lemma 5.5 Letv € C'(I,U(vy)), where v(0) = vo € M1, 1y(V) and (U(vo), Ov,) is a local chart at vq in
Ma,...1)(V). Assume that v is also a Ct-morphism between the manifolds I C R and U(vo) C Ma,..1)(V)
such that v(t) = At) @ e p va(t) for some X € C*(I,R) and vy € CY(I,Vy) for a € D. Then

V(1) = A1) R) vat) + A) D ta(t) @ @) vs(t) = Turi(Tev(1)), * (5.4)
aeD aeD BED
B#a

where A(t) € R and 0, (t) € W™ (vo) fort € I and a € D. Moreover, if we assume that for each oo € D,
Vo is a Hilbert space and v, (t) € Sy, i.e., ||va(t)||la = 1 fort € I, then 04(t) € T, 1)(Sv,) fort € I and
a€D.

Proof. First of all, we recall that by the construction of U(vq) it follows that WXt (vo) = WDhin(v(¢))

and that UMM (vg) = span{véa)} is linearly isomorphic to UM (v(t)) for all t € I and @ € D. Assume
Oy, (vV(t)) = (A(t), L1(t), ..., La(t)), Le.,

v(t) == Mt) ) (ide + La(t)) (v§"),

aeD

where A € C1(I,R\{0}), Lo € CY(I, L(U™"(vq), WXin(vg))) and (ida—i—La(t))(véa)) € UM (v(t)) for a € D.
We point out that the linear map Tyv : R — Ty ) (M1, 1)(V)) is characterised by

Tyv(1) = (Oy, ov)'(t) = (A(t), L1(t), ..., La(t)). (5.5)

Since Lo € CH(I, L(UM (vq), WX (vg))) then Lo € CO(I, L(UM™ (vq), W2 (v())). Observe that UM (vy)
and UM (v (t)) have W™ (v() as a common complement. From Lemma 2.10 we know that

PU(anin(vO)@W{g]in(vO) ‘U{x;]in(v(t)) . U(;nm(v(t)) — U;nln (VO)
is a linear isomorphism. We can write
La(t) = La (t)PU&nin(vo)@Wénin(vo) and La(t) = La(t)PUg““(vo)éBWg‘i“(vo)7
and then in (5.5) we identify L, (t) € L(UR(vq), WX (vy))) with
Lo (t) Pysin (vo)ewmin (vo) lrm (v(e)) € LIUT™ (v (1)), W™ (vo)))-
Introduce v, (t) := (idy + Lo (t))(véa)) for a € D. Then
La(t)(va(t)) = La(t) Pumin (vo)owmin (vo) lomin v (1) (05" + La () (0§™)) = La(t)(v§™)
holds for all t € I and o € D. Hence

D0 (t) = La(t) (") = La(t)(va(1)) (5.6)

4Observe that the derivative at ¢ of a map v : [ — 9M(1,...,1)(V) considered as a morphism between manifolds is given by
a linear map T¢v : R — Ty 4y (9M(y,... 1)(V)) which is characterised by the fact that T¢v (i) = gT¢v(1) holds for all 4 € R. Tt
allows us to identify the linear map T¢v with the vector T;v(1), that represents the derivative of the curve v(t) by using local
coordinates which is usually written as v(¢) by abuse of notation.
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holds for all ¢t € I and a € D. From Lemma 4.6(b) and (5.5), we have
Toi(Tiv(1) = A1) Q) valt) + At) D La(t)(va(t) @ Q) vs(t),
a€eD aceD B#a

and, by using (5.6) for v(t) = A(t) @ ,cp Va(t), we obtain (5.4). _ _
To prove the second statement, recall that UM (v(t)) = span {v,(t)} and V, = UPR(v(t)) & Wit (vy)
for « € D. Let (-,-),, be the scalar product defined on V,, (o € D). Then we consider

Wi (v) = span {va ()} = {ta € Vi @ (e, va(t))o = 0} for a € D,
and hence (04(t)),va(t))o = 0 holds for & € D. From Remark 2.29, we have (01(t), ..., 04(t)) € C(I, X yep Ty, +)(Sv,)),
because W (vq) = T,_ () (Sv,) for a € D. |

The next result, where we assume that A\(¢) = A\g = 1 holds for all time ¢, gives us the time dependent
Hartree method on tensor Banach (not necessarily Hilbert) spaces (compare with Theorem 3.1 in [27]).

Theorem 5.6 (Time dependent Hartree method on tensor Banach spaces) The solution v,.(t) =
R pep Valt), with (vi(t),...,va(t)) € X oep Va, of
Vir(t) = Py, 1) (Av,(t)) fort €I,
v,(0) = vo,
satisfies
<u';a ® (® vg(t)), J(v,(t) — Avr(t))> =0 forallw,€V,, «a€D.
BeD

o

Proof. From Lemma 5.5 we have T, () (9)2(17,__,1)(V)) = R x X ,cp WM (vg), Thus, for each w €
Tyt (Tv(t) (931(17___71)(V))) there exists (7,11, . . .,Wq) € R X X ocp WS (vg), such that

W= () valt) + Y tha @ (X) vs(t)).

€D aeD BeD
Ba

Observe that (5.3) holds if and only if
<z'v @) valt) + Y ta ® (@) vs(t)), J(Vr(t) — AVr(t))> =

for all (co,11,...,1Wq) € R x X oep W2 (vg). In particular, for a fixed o € D take wg = 0 for all 8 # «
and w = 0 then

<wa ® (® ’Uﬁ(t)), J (Ve (t) — Avr(t))> =0
BED
B#a

holds for all W, € WX (vg). By taking ¢ = 1 and wg = 0 for all 8 € D it holds

<® ’Ua<t), J(Vr(t> - Avr(t))> =0.

aeD

Since UM (v(t)) = span {v, ()} and V,, = UM (v(t)) ® WRin(v) for a € D the theorem follows. |

Let (-, -),, be ascalar product defined on V,, (o € D), i.e., V,, is a pre-Hilbert space. Then V = ; @ cp Va
is again a pre-Hilbert space with a scalar product which is defined for elementary tensors v = &, p v(®)
and w = ®,.pw® by

(v,w) = <® 0@, ® w("‘)> = H <v(a),w(a)> for all v, w(® € V. (5.7)

aeD aeD aeD
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This bilinear form has a unique extension (-,-) : V. x V — R. One verifies that (-,-) is a scalar product,
called the induced scalar product. Let V be equipped with the norm ||-|| corresponding to the induced scalar
product (-,-) . As usual, the Hilbert tensor space V.| = || ®ocp Vo is the completion of V with respect
to ||||. Since the norm ||-|| is derived via (5.7), it is easy to see that ||-|| is a reasonable and even uniform

crossnorm. Moreover, without loss of generality, we can assume ||v(()a) lo =1 for a € D.
Before stating the next result, we introduce for v,.(t) = A(t) @,cp va(t) the following time dependent

bilinear forms
ag(t; ) Vo x V, — R,
defined by
Bt 20 Yo) 1= <A(za @@ ust)), (1o ® @ vﬁ<t>)>
BeD BeD
B#a B

for each o € D. Now, we will show the next result (compare with Theorem 3.1 in [27]).

Theorem 5.7 (Time dependent Hartree method on tensor Hilbert spaces) The solution v,.(t) =
A(t) Qupep Valt) with (vi(t),...,va(t)) € X 4epSv,, of

V() = Py, 1) (Av,(t)) fort € I,

v, (0) = vo,

satisfies
(Va(t), Wa)a — aa(t; va(t), W) =0 for allw, € Ty, )(Sv,), «€ D,

and

A(t) = Ao exp (/Ot (A (®aepva(s)), ®aepva(s)) d8> :

Proof. From Lemma 5.5 we have T, (m(lﬁ..,,l)(V)) = R x X,ep Ty, t)(Sv, ), Thus, for each w €
Tyt (’]I‘v(t) (zm(l _____ 1)(V))) there exists (0,1, ...,wq) € R x X ,cp Ty (1)(Sv, ), such that

W= Q) vat) + At) Y e ® (X) va(t)).

a€eD aeD BeD
BFo

Then (5.3) holds if and only if

<w Q) va(t) + A1) Y tha @ () vs(t)), Vir(t) — Avr(t)> =0

a€D a€D BeD
B#a

for all (¢, 1, .. .,14) € R X X qep Ty (1) (Sv,). Then

A + A0 D | (Walt) tha)a — (A Q) vu(t), 106 ® (R) va(t)))

aED neD BeD

B#a
AOBA R v (t), @ va(t)) =0,
aeD a€eD
& (M) = MOA®ucp valt). ®acp val®))) .
5.8
A2 e (@a(t),wam ~ (ABcp ult) 10 © By va(t))>> 0
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holds for all @ € R and (1, ...,waq) € X aep To, 1) (Sv, ). If A(t) solves the differential equation

A(t) = (A (®aepva(t))  ®aepval(t)) A(t)
A(0) = Ao,

ie., () = Ao exp </0t (A (®aepva(s)) s ®aepVa(s)) d8> )

then the first term of (5.8) is equal to 0. Therefore, from (5.8) we obtain that for all « € D,

(Da(t), Wa)a — (A ® Uu(t), e @ (® vs(t))) =0,

pneD BeD
B#a
that is,
(Ve (t), Wa)a — aa(t;va(t), Wa) =0
holds for all W, € T,_ ) (Sy,), and the theorem follows. ]

5.3 Concluding Remarks

We would point out that when we assume that V, = V for all @ € D then the theory presented above
covers the classical MCTDH approximation for molecules (see for example Section 1.9 in [21]). In fact the
approximate wave function v,.(t) computed on M, .. 1)(V) does not conform the Pauli’s exclusion principle.
To take into account the antisymmetry of the wave function we need to use the so-called multi-configuration
time—dependent Hartree-Fock (MCTDHF) approximation. The MCTDHF is based on the use of the so-
called Hartree-Fock manifold. This manifold is constructed by using the existence of a projection Pg from
V to the linear subspace of antisymmetric tensors of V (corresponding to fermions). Then the Hartree-Fock
manifold is defined as
SDT?;,_“’I)(V) ={Ps(v1 @ - ®uq) : vy € Vo, @ € D}.

In a similar way, the use of a projection onto the linear subspace of symmetric tensors of V (corresponding
to bosons) allows us to introduce a manifold, namely img 1)(V). The extension of the results given in this

.....

paper to im?ll """" 1)(V) and smg 1)(V) are part of a work in progress and will be published elsewhere.
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