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KHOVANSKII-FINITE VALUATIONS, RATIONAL CURVES, AND

TORUS ACTIONS

NATHAN ILTEN AND MILENA WROBEL

Abstract. We study full rank homogeneous valuations on (multi)-graded do-
mains and ask when they have finite Khovanskii bases. We show that there
is a natural reduction from multigraded to simply graded domains. As spe-
cial cases, we consider projective coordinate rings of rational curves, and al-

most toric varieties. Our results relate to several problems posed by Kaveh
and Manon, and imply that the procedure of Bossinger-Lamboglia-Mincheva-
Mohammadi for producing tropical prime cones will not terminate in general.

1. Introduction

1.1. Setting and Motivation. Let K be an algebraically closed field, and X =
SpecR an irreducible affine variety over K. We will be studying valuations ν of
R which are trivial on K, see §2.1. The image of R under such a valuation forms
a semigroup S(R, ν) known as the value semigroup. We say that a valuation ν is
Khovanskii-finite (with respect to R) if S(R, ν) is finitely generated as a semigroup.

It is an important question as to when ν is Khovanskii-finite. For example, when
ν is Khovanskii-finite and has full rank, the variety X admits a flat degeneration to
the toric variety associated to S(R, ν), see e.g. [And13, Proposition 5.1]. This may
be used to obtain valuable geometric information concerning X . Taking a slightly
different point of view, for fixed R it is interesting to try to produce Khovanskii-finite
valuations ν.

When X admits an action by an algebraic torus T , or equivalently, R is graded by
the character lattice M of T , it is natural to consider only homogeneous valuations,
that is, valuations which are completely determined by their values on homogeneous
elements of R, see Definition 2.3. For example, when X is the affine cone over an
embedded projective variety Y , homogeneous valuations deliver information about
Y together with its polarization.

When we are in the situation that R is M -graded, we will say that R (or equiv-
alently X) is homogeneously Khovanskii-finite if every full rank homogeneous val-
uation ν is Khovanskii-finite. An affine (not-necessarily-normal) toric variety X
is homogeneously Khovanskii-finite for essentially trivial reasons, see Example 2.9.
N. Ilten and C. Manon have shown that when X is a normal rational variety with
a faithful action by a codimension-one torus, it is also homogeneously Khovanskii-
finite [IM, Theorem 5.4].

1.2. Results. We now highlight our main results. We are interested in criteria
when a valuation is Khovanskii-finite, or similarly, when an M -graded domain R is
homogeneously Khovanskii-finite. Our first main result shows that when considering
Khovanskii-finiteness for homogeneous valuations, it is always possible to reduce to
the Z-graded case:

Theorem 1.1 (See Theorem 2.14). Let ν be a full rank homogeneous valuation
of an M -graded domain R. Assume that the closure C of the cone generated by
S(R, ν) is polyhedral, and let π denote the natural projection from C to MR. Then
ν is Khovanskii-finite with respect to R if and only if for every ray ρ ≺ C, ν is
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2 NATHAN ILTEN AND MILENA WROBEL

Khovanskii-finite with respect to the Z-graded domain

Rπ(ρ) =
⊕

u∈M∩π(ρ)

Ru

and π−1(π(ρ)) is the closure of the cone generated by S(Rπ(ρ), ν).

An almost toric variety is a rational not-necessarily-normal variety with a faithful
action by a codimension-one torus, see e.g. [Lin16]. In contrast to the result of Ilten
and Manon cited above, such varieties are typically not homogeneously Khovanskii-
finite:

Theorem 1.2 (See Theorem 4.5). Assume that K is uncountable. An affine almost
toric variety X = SpecR with R0 = K is homogeneously Khovanskii-finite if and
only if there exists some λ ∈ N such that the Veronese subring

⊕

u∈M

Rλ·u

is normal.

The analysis of Khovanskii-finiteness for almost toric varieties follows from the
reduction in Theorem 1.1 together with an analysis of Khovanskii-finiteness for
affine cones over projective rational curves. In this setting, we obtain the following
results:

Theorem 1.3 (See Corollary 3.10). Let X be the affine cone over a projective inte-
gral rational curve Y and assume that K is uncountable. Then X is homogeneously
Khovanskii-finite if and only if Y is smooth.

Theorem 1.4 ((See Corollary 3.14). Let X = SpecR be the affine cone over a very
general integral rational projective plane curve of degree d > 3. Then there is no
homogeneous valuation ν which is Khovanskii-finite with respect to R.

1.3. Connections to Tropical Geometry. Given X and R as above, one may
seek to construct a full rank valuation ν which is Khovanskii-finite. One approach,
due to K. Kaveh and C. Manon, is via tropical geometry [KM]. After fixing an
affine embeddingX →֒ An and intersecting with the torus (K∗)n, the tropicalization
map yields a polyhedral fan Trop(X◦) whose cones σ correspond to certain initial
degenerations Inσ(IX) of the ideal IX of X . Maximal cones σ with prime initial
ideal Inσ(IX) give rise to Khovanskii-finite full rank valuations [KM, Theorem 1],
and in some sense all ‘reasonable’ Khovanskii-finite valuations may be obtained in
this fashion [KM, Theorem 2].

Kaveh and Manon ask [KM, Problem 1] if every projective variety Y may be
embedded in such a way that the resulting tropicalization contains a maximal
cone with prime initial ideal; this would guarantee the existence of a full rank
Khovanskii-finite valuation for X , the affine cone over some projective embedding
of Y . L. Bossinger, S. Lamboglia, K. Mincheva, and F. Mohammadi propose an
algorithm [BLMM17, Procedure 1] to produce such an embedding. The algorithm
starts with some embedding of Y in projective space, and then proceeds to repair
the embedding by essentially taking Veronese re-embeddings coupled with projec-
tive changes of coordinates.

Our Theorem 1.4 shows that there are examples for which this algorithm will
never terminate, see Remark 3.16. In particular, to solve Problem 1 from [KM], in
general one will be forced to alter the polarization of Y in a non-trivial fashion, i.e.
one cannot simply take a multiple. In a similar vein, Kaveh and Manon ask [KM,
Problem 2] for an algorithm to construct a full rank Khovanskii-finite valuation ν for
a given domain R. Our Theorem 1.4 again shows that this is impossible in general
if one imposes the additional constraint that the valuation be Z-homogeneous.
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1.4. Organization. We now describe the organization of the remainder of the pa-
per. §2.1 introduces the central concepts surrounding (homogeneous) valuations and
Khovanskii-finiteness. §2.2 studies the relationship between Khovanskii-finiteness
and proves our first main result, Theorem 1.1. In §2.3 we show that passing to
the normalization of a domain doesn’t change Khovanskii-finiteness properties. §2.4
contains a discussion of a sufficient criterion for the valuation cone of a homogeneous
valuation to be polyhedral, an important prerequisite for Khovanskii-finiteness.

In the remaining two sections, we turn our attention to special cases. In §3 we
discuss projective coordinate rings for rational curves and prove Theorems 1.3 and
1.4. Finally, §4 concerns itself with almost toric varieties, where we prove Theorem
1.2 along with other related results.

Acknowledgements. We thank Bernd Sturmfels for useful discussions, and ac-
knowledge partial support from NSERC.

2. Valuations and Gradings

2.1. Preliminaries. Let R be a finitely generated K-domain of Krull dimension
d, and (Γ, >) a totally ordered finitely generated free abelian group. We call a
map ν : R \ {0} → Γ a K-valuation with values in Γ if ν(K∗) = 0 holds and for
all f, g ∈ R \ {0} we have ν(fg) = ν(f) + ν(g) and ν(f + g) ≥ min {ν(f), ν(g)}.
The image S(ν,R) of ν in Γ is a subsemigroup; the so-called value semigroup. The
valuation cone C(R, ν) of R with respect to ν is the closure in ΓR = Γ⊗ R of the
convex cone generated by S(R, ν). The convex cone generated by S(R, ν) is not
closed in general. For details on valuations, see e.g. [ZS75, VI].

The rank r(ν) of a valuation ν is the rank of the lattice generated by S(R, ν).
By possibly shrinking Γ, we may (and will) always assume that this lattice is Γ.
The rank r(ν) is always at most the Krull dimension of R and we call ν a full rank
valuation if equality holds.

Remark 2.1. Let R be a finitely generated K-domain and ν a valuation. Then
one may extend ν to the field of fractions K(R) of R via ν(f/g) = ν(f) − ν(g). In
particular if R′ is a subalgebra of the field of fractions of R, the valuation ν gives
rise to a unique valuation on R′ and in the following we denote this valuation also
with ν.

We will be particularly interested in homogeneous valuations. For this, let M be
a lattice and R an M -graded finitely generated K-domain.

Definition 2.2. The weight monoid of R is the set

S(R) := {w ∈M ; Rw 6= {0}}

and we call the cone ω(R) := cone(S(R)) ⊆MR =M ⊗ R the weight cone of R.

When R is finitely generated, this cone is always rational and polyhedral. The
lattice generated by S(R) is a sublattice of M ; by replacing M by it, we may (and
will) always assume that S(R) generates M .

Definition 2.3 (See [IM, §5.2]). We call a valuation ν as above M -homogeneous if
for all f ∈ R

ν(f) = min {ν(fu)}

holds, where f =
∑

u∈M fu is the decomposition of f in homogeneous elements.
Moreover we call ν fully homogeneous if Γ = M × Γ′ and for each u ∈ M and
fu ∈ Ru, π(ν(fu)) = u, where π : Γ →M denotes the projection.

Example 2.4. Consider the ring R := K[tx, t2x, (1+ t4)x] with grading defined by
deg(f(t)xa) = a. The weight monoid is Z≥0, and the weight cone is R≥0.
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We consider the homogeneous valuation given by

ν∞ : R → Z2, f(t)xa 7→ (a, deg(f(t))).

A straightforward calculation shows that for k > 1, the degree k piece of R has a
K-basis consisting of

t2xk, . . . , t4k−4xk, (t+ t4k−3)xk, t4k−2xk, (1 + t4k)xk.

It follows that the value semigroup S(R, ν) is minimally generated by the infinite
set {((1, 4), (1, 2), (1, 1), (k, 2) | for k > 2}.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
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•

•

•

•

•

•

•
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•
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◦

◦ ◦

◦ ◦

◦

◦

◦

◦

◦

◦

The cone generated by this semigroup is not closed. The closure is C(R, ν) =
cone((1, 0), (1, 4)).

We will later see in Example 3.8 that for any full rank homogeneous valuation of
this domain R, the associated semigroup is not finitely generated.

Remark 2.5. Given a fully homogeneous valuation

ν : R \ {0} →M × Γ′,

the projection to Γ′ determines a valuation ν′ on the field of homogeneous fractions
of R. On the other hand, the image of S(R, ν) under π is exactly S(R). Likewise,
the image of C(R, ν) under π is ω(R).

Remark 2.6. We may obtain any full rank homogeneous valuation from a fully
homogeneous one by composing with an isomorphism of semigroups. Hence, when
studying the value semigroups of full rank homogeneous valuations, we will restrict
our attention to fully homogeneous ones.

Not every fully homogeneous valuation has full rank, as the following example
shows:

Example 2.7. Consider the Z-graded ring R := K[tx, t2x, (1 + t4)x] with grading
defined by deg(f(t)xa) = a as in Example 2.4. Then

ν : R→ Z, f(t)xa → a

is a fully homogeneous valuation that is not of full rank.

We now define the key concepts we will be studying:

Definition 2.8. Let R be a K-domain.

(1) We call a valuation ν Khovanskii-finite (with respect to R) if the value
semigroup S(R, ν) is finitely generated.

(2) Assume R isM -graded. We call R homogeneously Khovanskii-finite if every
full rank homogeneous valuation ν is Khovanskii-finite.

Example 2.9. Let R be the coordinate ring of an affine (not-necessarily-normal)
toric variety X . Then R = K[S] holds for some finitely generated semigroup S. For
any full rank homogeneous valuation ν, the value semigroup S(R, ν) is isomorphic
to S, in particular it is finitely generated. Hence, R is homogeneously Khovanskii-
finite.

Example 2.10 (Example 2.4 continued). From Example 2.4 we see that

R = K[tx, t2x, (1 + t4)x]

is not homogeneously Khovanskii-finite.
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Our terminology “Khovanskii-finite” arises from the fact that for full rank val-
uations, Khovanskii-finiteness is equivalent to the existence of a finite Khovanskii
basis, see e.g. [KM]. The following lemma gives a useful criterion for Khovanskii-
finiteness:

Lemma 2.11. Let S be a sub-semigroup of Zn. Then S is finitely generated if and
only if the convex cone σ ⊂ Rn generated by S is rational polyhedral and closed.

Proof. Assume σ is closed and rational polyhedral. Then for each ray ρ � σ there
exists an element uρ ∈ S that generates ρ. Consider the lattice M generated by S;
this is in fact generated by finitely many elements of S, say u1, . . . , uk. Let S′ be
the semigroup generated by u1, . . . , uk and uρ as ρ ranges over the rays of σ.

The saturation of S′ in M is σ ∩M , which in particular contains S. Since K[S′]
is noetherian, K[σ ∩M ] is a finitely-generated K[S′]-module, hence so is K[S]. It
follows that S is finitely generated as an S′-module, in particular, it is finitely
generated as a semigroup.

The other direction of the lemma is clear. �

We now recall the connection between S(R, ν), Newton-Okounkov bodies, and
degree. Let R be a Z≥0-graded finitely generated K-domain and ν : R\{0} → Z×Γ
a homogeneous full rank valuation. The Newton-Okounkov body is the convex set

∆(R, ν) := π2(C(R, ν) ∩ π
−1
1 (1)),

where π1, π2 are the projections of (Z× Γ)R to ZR and ΓR.

Remark 2.12 (See [KK12, Theorem 2.31]). Let Y ⊆ Pn be a projective variety
of dimension d and let R be its homogeneous coordinate ring. Then R comes with
a natural Z≥0-grading. Consider a homogeneous full rank valuation ν. Then the
dimension of the Newton-Okounkov body ∆(R, ν) equals the degree of the Hilbert
polynomial. Its volume is the leading coefficient of the Hilbert polynomial, and thus
1/ dim(Y )! times the degree of Y .

2.2. Veronese Subalgebras. In studying Khovanskii-finiteness of a domain R,
one natural operation at our disposal is that of passing to a Veronese subalgebra:

Definition 2.13. Let R be a finitely generated M -graded K-domain and L ⊆ M
a submonoid. The Veronese subalgebra associated to L is

R(L) :=
⊕

w∈L

Rw ⊆ R.

If σ ⊆MQ is a cone we set for short Rσ := R(σ ∩M).

If L is a finitely generated submonoid ofM , then R(L) will also be finitely generated,
see e.g. [ADHL15, Proposition 1.1.2.4]. In particular, If σ is a rational polyhedral
cone, then Rσ is finitely generated. By Remark 2.1, if ν is any valuation on R, we
may also view it as a valuation on any Veronese subalgebra R(L).

Our main result in this section says that to check Khovanskii-finiteness of a fully
homogeneous valuation, one may essentially reduce to the Z-graded case. Geo-
metrically, this says that instead of considering SpecR, we may consider its GIT
quotients under the torus action induced by the grading.

Theorem 2.14. Let R be a finitely generated M -graded K-domain with R0 = K

and ν : R → Γ a fully homogeneous valuation. Assume that C(R, ν) is rational
polyhedral, and let π : ΓR → MR be the projection. Then the following statements
are equivalent:

(1) ν is Khovanskii-finite with respect to R.
(2) For all rational rays ρ ⊆ C(R, ν), ν is Khovanskii-finite with respect to the

Veronese subalgebra Rπ(ρ) and the valuation cone of Rπ(ρ) equals π
−1(π(ρ)).
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(3) For all rays ρ � C(R, ν), ν is Khovanskii-finite with respect to the Veronese
subalgebra Rπ(ρ) and the valuation cone of Rπ(ρ) equals π−1(π(ρ)).

Proof. Assume ν is Khovanskii-finite with respect to R. Then S(R, ν) is finitely
generated and thus for every ray ρ � C(R, ν) there exists an element fρ ∈ Rπ(ρ)
such that ν(fρ) generates ρ. By considering products of such elements, the same
claim follows for every rational ray ρ ⊆ C(R, ν).

For any such ray ρ, we have

S(Rπ(ρ), ν) = S(R, ν) ∩ π−1(π(ρ)).

Since S(R, ν) is finitely generated, so is S(R, ν) ∩ π−1(π(ρ)). This shows that 1
implies 2. Condition 3 follows trivially from 2.

Suppose finally that condition 3 holds and consider a ray ρ of C(R, ν). Since the
valuation ν is Khovanskii-finite with respect to Rπ(ρ) and

C(Rπ(ρ), ν) = π−1(π(ρ))

holds, there exists an element fρ ∈ Rπ(ρ) such that ν(fρ) generates ρ. The first
condition now follows from Lemma 2.11. �

For an illustration of this theorem at work in a special case, see Example 4.2.
We will next show that the second condition in Theorem 2.14 can be weak-

ened somewhat. For Khovanskii-finiteness, it is enough to check the condition
π−1(π(ρ)) = C(Rπ(ρ), ν) only for the rays ρ with π(ρ) ∩ ω(R)◦ = ∅:

Lemma 2.15. Let R be a finitely generated M -graded K-domain with R0 = K and

ν : R \ {0} → M × Γ

a fully homogeneous valuation. Consider rational hyperplanes H1, . . . , Hr ⊆ MR

such that H1 ∩ . . . ∩Hr ∩ ω(R)◦ 6= ∅. Then for R′ := R(H1 ∩ . . . ∩Hr ∩ S(R)) we
have

C(R′, ν) = π−1(ω(R′)) ∩ C(R, ν),

where π : C(R, ν) → MR denotes the projection.

Proof. Let S(R) ⊆ M be the weight monoid and ω(R) the weight cone of R. Let
a1, . . . , ar be generators for ω(R)∩M . Then λiai ∈ S(R) holds for suitable λi ∈ Z≥1,
since S(R) is pointed and generates M . Setting λ := lcm(λ1, . . . , λr) we obtain a
saturated submonoid S′ := S(R)∩ λM ⊆ S(R) and the Veronese subalgebra R(S′)
of R has the same valuation cone as R. So in the following considerations we may
restrict to the case that S(R) is saturated. Using M ∼= Zm and Γ ∼= Zn for some
m,n ∈ Z≥0 we may furthermore assume ν : R \ {0} → Zm+n.

In a first step we show the statement for Veronese subalgebras R′ defined by
an intersection of one hyperplane with the weight monoid. Let H ⊆ Qm be any
hyperplane with H ∩ ω(R)◦ 6= ∅ and fix elements v ∈ Zm, u+, u− ∈ S(R, ν) such
that v is primitive and 〈v,H〉 = 0, 〈v, π(u+)〉 = 1 and 〈v, π(u−)〉 = −1. These
exist since S(R) is saturated. We have to show that for any point x in the relative
boundary of

π−1(ω(R′)) ∩ C(R, ν))

and any ǫ > 0 there is a point x′ ∈ S(R′, ν) and µ ∈ Q with |x− µx′| < ǫ.
Let a 6= 0 be any point in the relative boundary. As R0 = K and ν(K∗) = 0 holds

we may assume a := (1, a2, . . . , am+n) ∈ Qm+n
≥0 with π(a) = (1, a2, . . . , am) ∈ ω(R)

the corresponding weight. Fix ǫ′ > 0. Then there exists a point (k, a′2, . . . , a
′
m+n) ∈

S(R, ν) such that |a′i−k·ai| < k·ǫ′ holds for all i. Let π(a′) = (k, a′2, . . . , a
′
m) ∈ ω(R)

be the corresponding weight.
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Consider λ := −〈v, π(a′)〉; if this is zero, then π(a′) ∈ H and we are done. So
without loss of generality, we assume λ > 0. Then π(a′) +λπ(u+) ∈ H ∩S(R). We
obtain

0 ≤ λ = 〈−v, π(a′)〉 = 〈−v, π(a′)− kπ(a)〉

≤

∣

∣

∣

∣

∣

m
∑

i=2

vi(a
′
i − kai)

∣

∣

∣

∣

∣

≤
m
∑

i=2

|vi||a
′
i − kai| <

(

m
∑

i=2

|vi|

)

kǫ′

and thus
∣

∣

∣

∣

1

k + λu+1
(a′i + λu+i − aik − aiλu

+
1 )

∣

∣

∣

∣

≤

∣

∣

∣

∣

a′i − aik

k + λu+1

∣

∣

∣

∣

+

∣

∣

∣

∣

λu+i
k + λu+1

∣

∣

∣

∣

+

∣

∣

∣

∣

aiλu
+
1

k + λu+1

∣

∣

∣

∣

< ǫ′ + u+i (
∑

|vi|)ǫ
′ + aiu

+
1 (
∑

|vi|)ǫ
′.

As a, v and u+ are fixed we conclude | 1
k+λu+

1

(a′+λu+)−a| < ǫ for suitably chosen ǫ′.

This proves the claim for a single hyperplane.
By using this argument inductively we obtain the statement for Veronese sub-

algebras R′ defined by the intersection of several rational hyperplanes H1, . . . , Hr

with the weight cone such that H1 ∩ . . . ∩Hr ∩ ω(R)◦ 6= ∅. �

2.3. Normalization. The second natural operation at our disposal is that of pass-
ing to the normalization R̄ of R, that is, its integral closure in its field of fractions.
In general, it is not true that normalization and taking Veronese subalgebras com-
mute. There are some special circumstances where this is however true.

Lemma 2.16. Let R be an M -graded K-domain.

(1) If M ′ is a finite index sublattice of M , then

R(M ′) = R̄(M ′).

(2) Suppose R has simplicial weight cone ω(R), and is generated by elements
whose weights lie on the rays of ω(R). Then for any ray ρ � ω(R),

R(ρ ∩M) = R̄(ρ ∩M).

Proof. For the first claim, let a ∈ R̄(M ′) be a homogeneous element of degree
u ∈ M ′. Then a = a1/a2 for homogeneous ai ∈ R, whose difference of degrees
lies in M ′, and after multiplying by an appropriate element of R, we may assume
ai ∈ R(M ′). The element a satisfies an integral equation

ak = ck−1a
k−1 + . . .+ c0

for homogeneous ci ∈ R of degree (k − i) · u, so ci ∈ R(M ′). It follows that

R̄(M ′) ⊂ R(M ′). The opposite inclusion is straightforward.
For the second claim, we proceed similarly with a ∈ R̄(ρ ∩M) homogeneous of

degree u. As the degrees of the generators of R lie on the rays of the simplicial cone
ω(R) we conclude a = a1/a2 for ai ∈ R where deg(ai) ∈ ρ. Moreover

ak = ck−1a
k−1 + . . .+ c0

for homogeneous ci ∈ R of degree (k− i) ·u. In particular a1, a2, ci ∈ R(ρ∩M) and

thus a ∈ R(ρ ∩M) holds. The opposite inclusion is again straightforward. �

Lemma 2.17. Let R be a finitely generated Z-graded K-domain such that R0 = K

holds and let R̄ denote its normalization. Assume R and R̄ are generated in degree
one and set X := Proj(R) and X̄ := Proj(R̄). Then deg(X) = deg(X̄) holds.
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Proof. We have the following commutative diagram

Proj(R̄) = X̄ ⊆

p

��

Pn

π

��

Proj(R) = X ⊆ Pm

where p : X̄ → X denotes the normalization map and π is a linear projection. Let
L be a codim(X)-dimensional linear subspace of Pm in general position. Then
degX = X · L and deg X̄ = X̄ · (π∗L) holds and we conclude

deg X̄ = X̄ · (π∗L) = (π∗X̄) · L = (deg(p)π(X̄)) · L = X · L = degX

by the projection formula. �

We are now able to show that the valuation cone does not change under normal-
ization:

Proposition 2.18. Let R be an M -graded K-domain with R0 = K, normalization
R̄ and let ν be a homogeneous full rank valuation. Then we have

C(R, ν) = C(R̄, ν).

Proof. By fixing a positive Z-grading given by a projection λ : MQ → ZQ we reduce
to the case that M = Z. Fixing minimal sets of generators of R and R̄, and letting
λ be the least common multiple of the degrees of these generators, we replace R
by the Veronese subalgebra R(λZ). After rescaling the grading, this is generated

in degree one, and by Lemma 2.16 we obtain R(λZ) = R̄(λZ). This is also gener-
ated in degree one. Furthermore, C(R, ν) = C(R(λZ), ν) and a similar statement
holds for R̄. Thus, we may assume that R and R̄ are generated in degree one.
Then the corresponding projective varieties X and X̄ share the same degree due to
Lemma 2.17.

We may assume that the Z-homogeneous valuation ν is of the form

ν : R \ {0} → Z× Γ, fk → (k, ν′(fk)),

where fk ∈ Rk for k ∈ Z≥0 and ν′ : R → Γ is a valuation. Denote by π1 the
projection of (Z × Γ)R to ZR. Using [KK12, Theorem 2.31] (see Remark 2.12) we
obtain

vol(C(R, ν) ∩ π−1
1 (1)) = vol(∆(R, ν)) = vol(∆(R̄, ν)) = vol(C(R̄, ν) ∩ π−1

1 (1)).

The desired equality follows since S(R, ν) ⊆ S(R̄, ν) holds. �

Example 2.19 (Example 2.4 continued). Consider the ring R as in Example 2.4.
Then its normalization is given as R̄ = K[x, xt, xt2, xt3, xt4]. In particular the value
semigroup S(R̄, ν∞) is the saturated semigroup of the cone cone((1, 0), (1, 4)) =
C(R, ν∞).

2.4. When is C(R, ν) rational polyhedral? If C(R, ν) is not rational polyhedral,
then S(R, ν) cannot be finitely generated, that is, R is not Khovanskii-finite with
respect to ν. It thus becomes interesting to obtain a criterion for C(R, ν) to be
rational polyhedral. By Proposition 2.18, we may replace a non-normal R by R̄
without changing C(R, ν), so in the following we will assume that R is normal. We
will give a sufficient condition in this case for C(R, ν) to be rational polyhedral.

Assume that R is normal with R0 = K. In this case, R may be constructed as

R =
⊕

u∈ω(R)∩M

H0(Y,O(⌊(D(u)⌋))) · χu

where Y is a normal projective variety and D : ω ∩MQ → DivQ(Y ) is a so-called
p-divisor, see [AH06]. This means that D is a piecewise linear concave map taking
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values in semiample Q-Cartier divisors, with D(u) big for u in the interior of ω.
Furthermore, D has only finitely many regions of linearity.

A distinguished class of full rank valuations on K(Y ) comes from a choice of a
full flag F0 ⊂ F1 ⊂ . . . ⊂ Fd = Y of irreducible subvarieties of Y , where the point
F0 is a smooth point in each Fi (see [LMta09, §1.1], [KK12, Example 2.13]). For
f ∈ K(Y ) one computes the value νF (f) = (a1, . . . , ad) ∈ Zd recursively, where Zd

is endowed with the lexicographic ordering. The first component a1 is the order of
vanishing of f along the divisor Fd−1. If s is a local equation for Fd−1 at p, s−a1f
can be regarded as a non-zero rational function on Fd−1. This allows the procedure
to be repeated with the divisor Fd−2 ⊂ Fd−1 to produce a2, and so on until the
process terminates with ad, the order of vanishing at F0.

The valuation νF extends naturally to give a full rank homogeneous valuation
on R, which we also denote by νF :

νF : R \ {0} →M × Zd

f · χu 7→ (u, νF(f)) f ∈ K(Y ).

Given a divisor D on Y , one may consider the section ring

S(D) :=
⊕

k∈Z≥0

H0(Y,O(kD))χk.

This is equipped with a natural homogeneous valuation νF ,D [LMta09]: if fD is a
local equation for D at the point F0, for a section s ∈ H0(X,O(kD)) we have

νF ,D(s) = (k, νF (s) + kνF(fD)) ∈ Z× Zd.

Let N1
R(Y ) denote the Néron-Severi space of Y . The global Newton-Okounkov body

∆(Y, νF ) is a closed convex cone in N1
R(Y )×Rd such that for any big divisor D, the

fiber of ∆(Y, νF ) over the ray of N1
R generated by the class [D] of D is the image

of C(S(D), νF ,D) under the inclusion induced by (1, a) 7→ ([D], a), see [LMta09,
Theorem B] for precise details.

Theorem 2.20. Let R be a normal M -graded domain with R = K0 and Y,F as
above. If the global Newton-Okounkov body ∆(Y, νF ) is rational polyhedral, then so
is C(R, νF ).

Proof. Set ν = νF . We consider the linear extension of the map D to D : ω∩MR →
DivR Y . The weight cone ω(R) decomposes into finitely many regions of linearity
ωi, each of which is still a rational polyhedral cone. Since C(R, ν) is the closure of
the convex hull of the C(Rωi

, ν), it suffices to show that each C(Rωi
, ν) is rational

polyhedral. Hence, we reduce to the case that D is linear on ω.
We have a commutative diagram

MR × Rd
φ

//

π

��

N1
R(Y )× Rd

p

��

MR

ψ
// N1

R(Y )

whose maps we now describe. The map ψ sends u to the class [D(u)]. The two
vertical arrows π, p are just projections. For u ∈M , let c(u) = ν(fλD(u))/λ, where
λ ∈ N is such that λD(u) is Cartier, and fλD(u) is a local equation for λD(u) at F0.

This extends to a linear map c : MR → Rd, which we use to construct the linear
map φ(u, a) = (ψ(u), a+ c(u)).

Let σ denote the closure of the cone of big divisor classes in N1
R(Y ). Then ψ(ω)

is contained in σ. By the construction of ∆(Y, ν) and the description of φ we have
that for any rational ray ρ in ω,

(2.1) C(Rρ, ν) ⊆ {(u, a) ∈ ρ× Rd | φ(a) ∈ p−1(ψ(u)) ∩∆(Y, ν)}
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with equality if ρ is in the interior of ω. If ∆(Y, ν) is polyhedral, so is

{(u, a) ∈ σ × Rd | φ(a) ∈ p−1(ψ(u)) ∩∆(Y, ν)}

and by (2.1) this must equal C(R, ν). �

3. Rational Curves

As a simplest case of the Z-graded domains arising in Theorem 2.14, we will
consider in this section finitely generated Z-graded domains R with R0 = K, and
with the field of homogeneous fractions of R a rational function field. Geometrically,
this means that we are considering Z-graded domains R such that Proj(R) is a
(possibly singular) rational curve. Such curves have been studied from a different
point of view in e.g. [CI15].

Since we are interested in Khovanskii-finiteness properties of R, we may always
replace R with a Veronese subalgebra R(λZ) for some λ ∈ N to ensure that R is
generated in degree one. By considering the inclusion of R in its normalization R̄,
it is straightforward to show that all such domains may be constructed as follows:

Construction 3.1. Consider an m-dimensional linear subspace L ⊆ Syma(K2) ∼=
K[s, t]a and define

R(L) :=
⊕

k≥0

Lk ⊆
⊕

k≥0

Symka(K2),

where Lk denotes the linear span of elements of the form l1 · · · lk for li ∈ L. We
endow R(L) with its natural K-algebra structure.

The space Syma(K2) has dimension a+ 1 and thus m ≤ a+ 1. Moreover, if m = 1
then R(L) ∼= K[x] and if m = 2 then R(L) ∼= K[x, y]. Henceforth, for any further
considerations we will assume m ≥ 3.

Definition 3.2. Let L ⊆ Syma(K2). The degree of L is the leading coefficient of
the Hilbert polynomial of R(L) i.e. the degree of Proj R(L). The arithmetic genus
of L is 1− a0, where a0 is the constant coefficient of the Hilbert polynomial, i.e., it
is the arithmetic genus of Proj R(L).

Setting Y = ProjR(L), the arithmetic genus of L equals the arithmetic genus of
Y . In particular, Y is smooth if and only if L has arithmetic genus 0.

Lemma 3.3. Let L ⊆ Syma(K2) be a very general linear subspace of dimension m,
where 3 ≤ m ≤ a+ 1. Then the degree of L equals a.

Proof. For each k, the condition dim(Lk) < j is a closed condition in
Gr(m, Syma(K2)). Let Zk,j denote the corresponding subvariety and set

Zk(d, g) :=
⋂

i∈Z≥0

Zk+i,d(k+i)−g+1.

The locus in Gr(m, Syma(K2)) such that deg(L) < d is the countable union of the
Zk(d, g) as k, g vary.

To conclude the proof we show that for every m there exists an m-dimensional
linear subspace L of degree a. Consider the followingm-dimensional linear subspace

L := 〈sa, sa−1t, . . . , sa−m+2tm−2, ta〉 ⊆ K[s, t]a.

A straightforward computation shows that R(L) has degree a and the assertion
follows. �

Remark 3.4. If L is a 3-dimensional linear subspace of Syma(K2), then ProjR(L)
is a rational plane curve and hence has arithmetic genus

g =
(d− 1)(d− 2)

2
,
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where d is the degree of L.
Furthermore, since R(L) ∼= K[x, y, z]/f for a degree d form f , we have

dim(Lk) = k · d+ 1− g as long as k ≥ d. This means that d = a if and only if
L is not in the variety Zd,d2−g+1 from the proof of Lemma 3.3. In particular, any
general L in Gr(3, Syma(K2)) has degree d and genus g.

Let L ⊆ Syma(K2) be a linear subspace and Q ∈ P1 any point. Then the
following assignment defines a homogeneous full rank valuation on R(L):

νQ : R(L) → Z2, f 7→ (k, ordQ(f)) for f ∈ Lk,

where Z2 is order lexicographically. Any full rank homogeneous valuation on R(L)
will have value semigroup isomorphic to S(R(L), νQ) for some Q ∈ P1 [IM, §5.2],
so in the following we may restrict our attention homogeneous valuations of the
form νQ.

Theorem 3.5. Let L ⊆ Symd(K2) be a linear subspace of degree d. Then for
Q = (α : β) ∈ P1, νQ is Khovanskii-finite with respect to R(L) if and only if there
exists k > 0 such that Lk contains (βs− αt)dk.

Proof. Since R(L) has degree d and νQ is of full rank, the valuation cone C(R, νQ)
equals cone((1, 0), (1, d)), see Remark 2.12. Suppose that νQ is Khovanskii-finite
with respect to R(L). Then by Lemma 2.11 the value semigroup S(R, νQ) contains
ray generators (k1, 0), (k2, k2d) for k1, k2 ∈ Z≥0. Setting k := k1 · k2 we obtain
(k, 0), (k, kd) ∈ S(R, ν). Thus there exists f ∈ Lk such that νQ(f) = (k, kd), that
is, f is divisible by (βs− αt)dk, which implies (βs− αt)dk ∈ Lk.

Conversely suppose that (βs − αt)dk ∈ Lk holds. Then (k, dk) ∈ S(R, ν(α,β)).
Now let b1 be the smallest integer such that (1, b1) ∈ S. Then, since R(L) is
generated in degree one, (k, b2) ∈ S implies b2 ≥ kb1. As deg(R(L)) = d holds it
follows that b1 = 0. By Lemma 2.11 this implies that R(L) is Khovanskii-finite with
respect to νQ. �

Remark 3.6. Viewing P1 as P(K[s, t]1) and Pkd as P(K[s, t]kd), the rational normal
curve Ckd of degree kd is the image of

κ : P1 → Pkd, (βs− αt) 7→ (βs− αt)kd.

We may rephrase the above theorem in the following way: the valuation vQ is
Khovanskii-finite with respect to R(L) if and only if there exists k > 0 such that

Lk ⊆ Symkd(K2) contains the image of Q in Ckd. We conclude that R(L) admits a

Khovanskii-finite homogeneous valuation if and only if Lk ⊆ Symkd(K2) intersects
Ckd non-trivially for some k.

Example 3.7. Consider the 3-dimensional linear subspace L of Sym3(K2) gener-
ated by

s3, s2t, t3.

For each k > 0, Lk = R(L)k has the basis

s3k, s3k−1t, . . . , s2t3k−2, t3k.

Then by looking at the coefficient of st3k−1, we observe that (βs−αk)3k ∈ Lk if and
only if βα3k−1 = 0, that is, α = 0 or β = 0. From Theorem 3.5 we infer that νQ is
Khovanskii-finite with respect to R = R(L) if and only if Q = (1 : 0) or Q = (0 : 1).

Observe that R is actually a toric algebra: it is isomorphic to the semigroup
algebra K[S], where S is generated by (0, 1), (1, 1), (3, 1). So despite being homoge-
neously Khovanskii-finite with respect to this Z2-grading, it is not homogeneously
Khovanskii-finite with respect to the Z-grading from above.
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Example 3.8. For d ≥ 4, consider the (d − 1)-dimensional linear subspace L of

Symd(K2) generated by

sd−1t, . . . , s2td−2, sd + td

For k > 1, R(L)k may be described as follows:
Case d = 4 (see also Example 2.4): R(L)k has a basis

skd−2t2, . . . , s4tkd−4, s3tkd−3 + skd−1t, s2tkd−2, skd + tkd

Case d ≥ 5: R(L)k has a basis

skd−1t, . . . , s2tkd−2, skd + tkd.

We immediately see that in all cases, L has degree d.
Applying Theorem 3.5 we obtain that there exists no homogeneous valuation

that is Khovanskii-finite with respect to R(L). Indeed (βs − αt)dk has either a
non-zero stkd−1 component if α 6= 0 or equals βdktdk. In particular, for every k > 0
we obtain Lk ∩Cdk = ∅, where Cdk denotes the rational normal curve of degree dk.

Consider the linear subspace L′ := 〈sd−1t, sd−2t2, sd + td〉 ⊆ L. Then

R(L′) = K[sd−1t, sd−2t2, sd + td] ∼= K[x1, x2, x3]/〈x
d
1 + xd2 − xd−2

1 x2x3〉

holds and thus R(L′) is of degree d. Note that Lk∩Cdk = ∅ implies (L′)k ∩Cdk = ∅
and thus there exists no valuation which is Khovanskii-finite with respect to R(L′).
In particular for every integer d ≥ 4 there exists a rational plane curve C of degree
d admitting no Khovanskii-finite homogeneous valuation.

Theorem 3.9. Let L ⊆ Symd(K2) be of degree d and arithmetic genus g. If g ≤ 1
then there exists a homogeneous valuation that is Khovanskii-finite with respect to
R(L). Furthermore, R(L) is homogeneously Khovanskii-finite if g = 0, and the
converse is true as long as K is uncountable.

Proof. If the genus of L equals one then for k ≫ 0 we have dim(Lk) = kd =

dim(Symkd(K2))− 1. In particular Lk has codimension one in Symkd(K2) and thus
intersects the rational normal curve Ckd of degree kd non-trivially. Hence Theorem
3.5 implies that R(L) has a Khovanskii-finite valuation. If the genus of L is equal

to zero there exists a k ≫ 0 such that the vector space Lk equals Symd(K2).
In particular Lk includes the rational normal curve of degree dk and thus R is
homogeneously Khovanskii-finite.

Suppose instead that g ≥ 1. Then for each k, Ckd intersects L
k in at most finitely

many points. This implies that there are at most countably many Q for which νQ
is Khovanskii-finite with respect to R(L). Assuming K is uncountable, this shows
that R(L) cannot be homogeneously Khovanskii-finite. �

Corollary 3.10. Let X be the affine cone over a projective integral rational curve
Y and assume that K is uncountable. Then X is homogeneously Khovanskii-finite
if and only if Y is smooth.

Proof. If X is SpecR, then R is generated in degree one and has degree say d.
Embedding R into its normalization R̄ ∼=

⊕

k≥0 Sym
ka(K2) we set L = R1. Then

a = d by Proposition 2.18 and R ∼= R(L). We now apply the above theorem. �

Remark 3.11. Corollary 3.10 applies to any X = SpecR for which ProjR = Y ,
not just those with R generated in degree one. Indeed, since passing to a standard
Veronese subalgebra changes neither the value semigroups nor the curve Y = ProjR,
we may assume that R is generated in degree one.

Example 3.12. Even if R is not Khovanskii-finite, there may be an infinite number
of valuations of the form νQ which are Khovanskii finite. For example, consider the
domain

R(L), L = 〈s2t, st2, s3 + t3〉.
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It is straightforward to show that the degree k piece Lk of R(L) has basis

s3k−1t, s3k−2t2, . . . , st3k−1, s3k + t3k.

Using this basis of Lk, it follows that the condition (βs − αt)3k ∈ Lk is equivalent
to

β3k = (−α)3k.

By Theorem 3.5, νQ is thus Khovanskii-finite with respect to R if and only if
Q = (1 : η) for some root of unity η. In particular, R is not Khovanskii-finite, but
there are infinitely many Khovanskii-finite valuations.

Theorem 3.13. Let L ⊆ Symd(K2) be a very general 3-dimensional linear subspace
for d ≥ 4. Then there exists no homogeneous valuation which is Khovanskii-finite
with respect to R(L).

Proof. Setting

g :=
(d− 1)(d− 2)

2
,

we consider the incidence variety

Wk = {(V, P ) ∈ Gr(kd+ 1− g, kd+ 1)× Ckd | P ∈ V }

inside of
Gr(kd+ 1− g, kd+ 1)× Ckd.

This incidence variety is closed as it is locally given by the vanishing of minors, and
hence projective. So its image Yk in Gr(kd+ 1− g, kd+ 1) is closed.

For k ≥ d, consider the rational map

φk : Gr(3, Symd(K2)) → Gr(kd+ 1− g, kd+ 1)

sending L to Lk. The indeterminacy locus of this map is contained in a fixed proper
subvariety Zd,dk−g+1, see Remark 3.4.

Let Y ′
k be the preimage in Gr(3, Symd(K2)) of Yk under the rational map φk.

By Example 3.8 above the inclusion Y ′
k ⊂ Gr(3, Symd(K2)) is proper. Thus

Gr(3, Symd(K2)) properly contains ∆ = ∪k≥0Y ′
k. Choosing L in the complement

of ∆ and Zd,dk−g+1, it follows that there exists no homogeneous valuation which is
Khovanskii-finite with respect to R(L). �

Corollary 3.14. Let X = SpecR be the affine cone over a very general integral
rational plane curves of degree d > 3. Then there is no homogeneous valuation ν
which is Khovanskii-finite with respect to R.

Proof. This is just a geometric reformulation of Theorem 3.13. �

Example 3.15. While Corollary 3.14 guarantees that the affine cone over a very
general rational plane curve of degree at least four has no homogeneous Khovanskii-
finite valuations, there do exist special rational plane curves of arbitrary degree with
homogeneous Khovanskii-finite valuations. Consider for example the toric variety
ProjK[s4, s3t, t4], which is a plane projective curve of degree 4 and genus 3. We
consider the valuation νQ on R := K[s4, s3t, t4] for Q = (0, 1). The value semigroup
is generated by (4, 1), (3, 1), and (0, 1), in particular it is finitely generated.

Remark 3.16. In [BLMM17, Procedure 1], an algorithm is proposed which, given
a presentation K[x0, . . . , xn]/I of a finitely generated K-algebra A, attempts to
compute a new presentation such that the corresponding tropicalization has more
so-called prime cones. By [KM], this will lead to a Khovanskii-finite full rank
valuation ν on A.

The algorithm proceeds by adding certain new generators y1, . . . , ys to the al-
ready existing generators x0, . . . , xn. In the case that A is M -graded and the gen-
erators xi are homogeneous with respect to M , then the new generators yi the
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algorithm produces will also be homogeneous. This implies that, should the algo-
rithm produce an embedding with a new prime cone, the corresponding valuation
will be M -homogeneous.

From this we conclude: if A is M -homogeneous, and has no full rank homoge-
neous valuations which are Khovanskii-finite, then the algorithm [BLMM17, Pro-
cedure 1] will not terminate if its input is any homogeneous presentation of A. In
particular, Corollary 3.14 shows that for any very general plane curve of degree at
least four, this algorithm will not terminate.

Remark 3.17. One might instead ask about Khovanskii-finiteness properties for
affine cones over smooth, non-rational curves Y . Here, the homogeneous valuations
one must consider are not as straightforward as in the rational case. However,
we do remark that every smooth projective curve Y admits an embedding such
that there exists a homogeneous valuation ν which is Khovanskii-finite with respect
to the corresponding homogeneous coordinate ring. Indeed, let g be the genus
of C, let P ∈ C be any point and consider the divisor D := (2g + 1)P . Set
R =

⊕

k∈Z≥0
H0(Y,O(kD)). Since degD = 2g+1, D is very ample, R is generated

in degree one, and Y = ProjR. We consider the homogeneous valuation ν sending
a section f of H0(Y,O(kD)) to (k, νP (f)) ∈ Z2, where νP denotes the order of
vanishing at the point P .

We consider the valuation ν sending a section f of H0(Y,O(kD)) to (k, νP (f).
As D is basepoint free there exists an f ∈ H0(Y,O(D)) with ordP (f) = −d, and as
D−P is base point free there exists an f ′ ∈ H0(Y,O(D)) with ordP (f

′) = −d+1.
Note that 1 ∈ H0(Y,O(D)) holds. So the value semigroup S = S(R(D), ν) contains
(1, 0), (1,−d) and (1, 1 − d). Since deg(R(D)) = d holds these are ray generators
for the valuation cone and thus by Lemma 2.11, S is finitely generated.

While Theorem 3.5 gives a criterion for checking whether the affine cone over a
rational curve admits a homogeneous Khovanskii-finite valuation, it is not effective:
one must check countably many conditions to show that the ring R admits no such
valuation. It would be interesting to solve the following problem:

Problem 3.18. Find an effective algorithm to determine whether an affine cone
over a rational curve admits a homogeneous Khovanskii-finite valuation.

One might naively hope to show that the degree and genus of a curve give an upper
bound on the values of k for which one must check the criterion of Theorem 3.5
for any fixed valuation νQ. However, Example 3.12 shows that this is impossible.
Nonetheless, one could hope for a bound of k in terms of degree and genus such
that if Lk ∩ Cdk = ∅, then Lk

′

∩Cdk′ = ∅ for all k′ > k.

4. Almost Toric Varieties

Recall that an almost toric variety is a rational not-necessarily normal variety
X equipped with a faithful action by a codimension-one torus. Any affine almost
toric variety is parametrized by functions which are products of monomials with
univariate rational functions. As such they are a natural generalization of toric
varieties, and appear naturally in more applied settings such as algebraic statistics,
see e.g. [SZ13, Equation (18)].

In this section, we will study Khovanskii-finiteness for almost toric varieties. As
a first step, we improve on Theorem 2.14 in this special case. See §2.2 for notation
on Veronese subalgebras.

Theorem 4.1. Let R be a rational finitely generated M -graded K-domain of com-
plexity one with R0 = K and ν : R→ Γ a fully homogeneous valuation. Let π denote
the projection C(R, ν) →MR. Then C(R, ν) is rational polyhedral and the following
statements are equivalent:
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(1) ν is Khovanskii-finite with respect to R.
(2) ν is Khovanskii-finite with respect to the Veronese subalgebras Rπ(ρ), where

ρ runs over all rays of C(R, ν).

Before proving the theorem, we illustrate with an example:

Example 4.2. Consider the Z2-graded domain

R = K[x, (t− 1)x, (t− 1)3x, ty, t2y, (1 + t3)y]

with deg(x) = (1, 0) and deg(y) = (0, 1). This has weight cone R2
≥0. Using Theorem

4.1, we will see that a full rank homogeneous valuation ν is Khovanskii-finite with
respect to R if and only if the restriction of ν to K(t) is equivalent to the valuation
ν1 with ν1(t− 1) = 1.

In order to apply the theorem, we need to know the rays of the valuation cone.
Following [Lan13], we may describe R̄ as

⊕

u∈ω∩M

H0(P1,O(D(u))) · χu

for D(u) = 3(u1 + u2) · {∞} ∈ Div(P1), where we are viewing t as a local pa-
rameter on P1 whose principal divisor is {0} − {∞}, and we are identifying x
with χ(1,0) and y with χ(0,1). Alternatively, an explicit calculation shows that
R̄ = K[x, tx, t2x, t3x, y, ty, t2y, t3y].

However, the previous description in terms of D is more useful for us. From this
description and [IM, Corollary 5.5], it follows that for any full rank homogeneous
valuation ν, the valuation cone C(R, ν) is lattice equivalent to

cone{(1, 0, 0), (1, 0, 3), (0, 1, 0), (0, 1, 3)} ⊂MR × R.

In particular, any ray of C(R, ν) projects to the ray ρ1 generated by (1, 0) or ρ2
generated by (0, 1) in ω.

Thus, to apply the theorem, we must consider the Veronese subalgebras

Rρ1 =K[x, (t− 1)x, (t− 1)3x]

Rρ2 =K[ty, t2y, (1 + t3)y]

For Rρ1 , we obtain Example 3.7 after homogenization and change of coordinates,
so ν is Khovanskii-finite with respect to Rρ1 if and only if the restriction of ν to
K(t) is equivalent to ν1 above, or ν∞, the valuation with ν∞(t) = −1.

ForRρ2 , we obtain Example 3.12 after homogenization and change of coordinates,
so ν is Khovanskii-finite with respect to Rρ2 if and only if the restriction of ν to K(t)
is equivalent to νη for some root of unity η, where νη(t− η) = 1. Combining these
two criteria, it follows from Theorem 4.1 that ν is Khovanskii-finite with respect to
R if and only if its restriction to K(t) is equivalent to ν1.

Proof of Theorem 4.1. Due to Proposition 2.18 we have C(R, ν) = C(R̄, ν), where
R̄ denotes the normalization of R. Thus C(R, ν) is rational polyhedral due to [IM,
Theorem 1.3] and Lemma 2.11.

The second condition follows from the first by Theorem 2.14. Likewise, to show
that the second condition implies the first, we may use Theorem 2.14 and Lemma
2.15 to reduce to showing that for any ray ρ of C(R, ν) with π(ρ) in the relative
boundary of ω = ω(R), π−1(π(ρ)) = C(Rπ(ρ), ν) holds. If ω is one-dimensional,
there is nothing to show, so we assume that dim(ω) ≥ 2. We will prove the claim
by a series of reductions. First, we reduce to the case that dim(ω) = 2, then we
reduce to the case that the degrees of the generators of R lie on the rays of ω, from
which we then reduce to the case that R is normal.

Consider a ray ρ with π(ρ) in the relative boundary of ω. Then there exists
an intersection of hyperplanes H1, . . . , Hr with H1 ∩ . . . ∩ Hr ∩ ω(R)◦ 6= ∅ such
that H1 ∩ . . . ∩ Hr is two-dimensional and contains π(ρ). In particular π(ρ) �
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H1 ∩ . . . ∩Hr ∩ ω(R). Using Lemma 2.15 we thus may reduce to the case that ω is
two-dimensional.

ρ1
ρ2

y1xi

y2, . . . , yr

Set ρ1 = π(ρ). Let x1, . . . , xt, y1, . . . , yr be be homogeneous generators of R such
that deg(xi) ∈ ρ1 holds and deg(y1) generates the ray ρ2 that is the closest to ρ1
among all rays generated by deg(yi). Consider the subcone ω′ generated by ρ1 and
ρ2 and note that π−1(π(ρ)) = π−1(ρ1) ⊆ C(Rω′ , ν) holds.

The subalgebra Rω′ is finitely generated by homogeneous elements

x1, . . . , xt, y1, z1, . . . , zs with zj =

t
∏

i=1

x
aji
i ·

r
∏

k=1

y
bjk
k

for some aji, bjk ∈ Z≥0. Furthermore, we may find rational numbers µj ∈ Q≥0 such
that deg(zj)−

∑

i µjaji deg(xi) ∈ ρ2 and 0 ≤ µj ≤ 1 holds.
Let α ∈ N be such that α·µj ∈ Z≥0. Consider the subalgebra R

′ of Rσ′ generated
by the elements x1, . . . , xt, y1 and

ẑj := zαj /(
t
∏

i=1

x
µjaji·α

i ) =
t
∏

i=1

x
α(1−µj)aji
i ·

r
∏

k=1

y
αbjk
k

for j = 1, . . . , s. The degree of each ẑj lies on ρ2, so R
′ is generated by elements

whose degrees lie on the rays of ω′. Moreover, R′ contains the αth Veronese sub-
algebra of R′

ω , so C(R
′, ν) = C(Rω′ , ν). Thus, replacing R by R′ and ω by ω′, we

may assume that R is generated by elements whose degrees lie on the rays of ω.
In this situation, we may apply Lemma 2.16 and Proposition 2.18 to conclude that

C(Rπ(ρ), ν) = C(R̄π(ρ), ν). Hence, we may replace R by R̄, that is, we may assume
that R is normal. But by [IM, Theorem 1.3] R is homogeneously Khovanskii-finite.
In particular π−1(π(ρ)) = C(Rπ(ρ), ν) holds for every ray ρ � C(R, ν). �

Remark 4.3. It is straightforward to adapt Theorem 4.1 by replacing the assump-
tion that R is rational of complexity one with the assumption that (the extension
of) ν is Khovanskii-finite with respect to R̄.

In the remainder of this section, we provide two characterizations of homogeneous
Khovanskii-finiteness for almost toric varieties. The first characterization has to do
with GIT:

Let R be a finitely generated M -graded K-domain with R0 = K. Then the
torus H := Spec(K[M ]) acts on the affine variety X := Spec(R). For any weight
w ∈ ω(R) the set of semistable points with respect to w is the H-invariant open
subset

Xss(w) := {x ∈ X | f(x) 6= 0 for some f ∈ Rnw, n > 0} ⊆ X,

and the H-action on Xss(w) admits a good quotient Xss(w) → Xss(w)//H =:
Y (w). Moreover

Y (w) = Proj(R(w)) = Proj





⊕

k≥0

Rkw





holds and Y (w) is a projective variety. Note that there are only finitely many
different varieties Y (w); see e.g. [ADHL15, Section 3.1] for details.
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Corollary 4.4. Let X be an affine almost toric variety with coordinate ring R such
that R0 = K holds, and assume that K is uncountable. Then X is homogeneously
Khovanskii-finite if and only if the GIT-quotients Y (w), where w ∈ ω(R), are all
smooth.

Proof. Let ν be any homogeneous full rank valuation on R. Then ν is fully ho-
mogeneous and we denote the projection C(R, ν) → MR with π, where C(R, ν)
is rational polyhedral due to Theorem 4.1. For each ray ρ � C(R, ν) we have
Rπ(ρ) = R(w) for some w ∈ ω(R). Theorem 4.1 and Theorem 2.14 imply that ν is
Khovanskii-finite with respect to R if and only if it is Khovanskii-finite with respect
to R(w) for each w. But by Corollary 3.10 and Remark 3.11, R(w) is homogeneously
Khovanskii-finite if and only if Y (w) is smooth. �

The results of [IM] show that normal almost toric varieties are homogeneously
Khovanskii-finite. The following characterization shows that after taking appropri-
ate Veronese subalgebras, these are in fact the only homogeneously Khovanskii-finite
almost toric varieties:

Theorem 4.5. Assume that K is uncountable. An affine almost toric variety X =
SpecR with R0 = K is homogeneously Khovanskii-finite if and only if there exists
some λ ∈ N such that the Veronese subring

⊕

u∈M

Rλ·u

is normal.

Proof. Let λ ∈ Z≥0 be any positive integer such that R′ :=
⊕

u∈M Rλ·u is a nor-
mal almost toric variety. Then due to [IM, Theorem 1.3] R′ is homogeneously
Khovanskii-finite and thus S(R′, ν) is finitely generated for every homogeneous val-
uation ν. Due to Lemma 2.11 this implies that cone(S(R′, ν)) = C(R′, ν) = C(R, ν)
is rational polyhedral and for each ray ρ � C(R′, ν) there exists a homoge-
neous element fu ∈ R′ such that ν(fu) generates ρ. As R′ ⊆ R we conclude
cone(S(R, ν)) = C(R, ν) and applying Lemma 2.11 once more the assertion follows.

Assume instead that R is homogeneously Khovanskii-finite and let R̄ be its nor-
malization. As discussed in §2.4, R̄ has the form

R̄ =
⊕

u∈ω(R)∩M

H0(P1,O(⌊(D(u)⌋))) · χu

for some p-divisor D. Consider any smooth subdivision Σ of the weight cone of
ω(R) = ω(R̄) such that the map

D : ω(R̄) → DivR(P
1), u 7→ D(u)

is linear on each of the cones σ ∈ Σ. As R is homogeneously Khovanskii-finite
Theorem 2.14 implies that for each ray ρ ∈ Σ(1) the Veronese subalgebra Rρ is
homogeneously Khovanskii-finite and due to Theorem 3.9 there exists an integer
λρ ∈ N such that Rρ(λρ · Z) is normal. Set λ := µ

∏

ρ∈Σ(1) λρ with µ ≥ 1 such that

D(u) ∈ DivZ(P
1) for each u ∈ ρ ∩ λM , where ρ ∈ Σ(1). We claim that

R(λM) = R̄(λM) =
⊕

u∈λM∩ω

H0(P1,O(D(u)))

and thus R(λM) is normal. Note that by the choice of λ we have Ru = R̄u for all
u ∈ ρ∩λM with ρ ∈ Σ(1). Consider any u ∈ σ∩λM with σ ∈ Σ. Then there exists
a unique decomposition u = u1 + . . . + ur, where ui ∈ λM are generators of the
rays of σ and as D is linear on σ we obtain D(u) = D(u1)+ . . .+D(ur) ∈ DivZ(P

1).
Since the map

H0(P1,OP1(D1))×H0(P1,OP1(D2)) → H0(P1,OP1(D1 +D2))
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is surjective for any two divisors semiample divisors D1, D2 ∈ DivZ(P
1) we conclude

R̄u = Ru1
· Ru2

· · ·Rur
= Ru for each u ∈ λM and the assertion follows. �

Remark 4.6. Let R be a Z-graded domain with R0 = K. Then there exists some
λ ∈ N such that R(λZ) is normal if and only if the projective variety Proj(R)
is normal. Indeed, if R(λZ) is normal, then so is Proj(R) = Proj(R(λZ)). The
converse follows by e.g. [Har77, II Ex 5.14(c)].

We apply this in our setting as follows: let X be the affine cone over a projective
almost toric variety Y . Then Theorem 4.5 coupled with this remark imply that X
is homogeneously Khovanskii-finite if and only if Y is normal.

Remark 4.7. It would be interesting and useful to have an effective algorithm for
determining if an affine almost toric variety X admits a full rank Khovanskii-finite
valuation. Using Theorem 4.1 together with a description of all possible valuation
cones from [IM], it is possible to reduce to the case of an almost toric surface.
Solving Problem 3.18 would then deliver such an algorithm.
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