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We plot the curves of coherence for the Bell-diagonal states including l1-norm of coherence and
relative entropy of coherence under the Markovian channels in the first subsystem once. For a special
Bell-diagonal state under bit-phase flip channel, we find frozen coherence under l1 norm occurs, but
relative entropy of coherence decrease. It illustrates that the occurrence of frozen coherence depends
on the type of the measure of coherence. We study the coherence evolution of Bell-diagonal states
under Markovian channels in the first subsystem n times and find coherence under depolarizing
channel decreases initially then increases for small n and tend to zero for large n. We discuss the
dynamics of coherence of the Bell-diagonal state under two independent same type local Markovian
channels. We depict the dynamic behaviors of relative entropy of coherence for Bell-diagonal state
under the bi-side different Markovian channel. We depict the dynamic behaviors of relative entropy
of coherence for Bell-diagonal state under the bi-side different Markovian channel.

I. INTRODUCTION

Quantum coherence, stemming from quantum superposition rule, is thought of a special feature of quan-

tum mechanic like entanglement and other quantum correlations. Quantum coherence is an essential ingredi-

ent in quantum information processing[1–3], quantum metrology[4–6], quantum optics[7–9], low-temperature

thermodynamics[10–17] and quantum biology[18–23]. Recently, a framework to quantify coherence has been

proposed[24], and various quantum coherence measures, such as the l1 norm of coherence[24], relative en-

tropy of coherence[24], trace norm of coherence[25], Tsallis relative α entropies[26] and Relative Rényi α

monotones[27], have been defined. By means of the coherence measures, a variety of properties of quantum

coherence, such as the relations between quantum coherence and quantum correlations[28–32], the freezing

phenomenon of coherence[33, 34], have been investigated.

Quantum coherence is a useful physical resource. However, quantum systems inevitably subject to noise,

which may result in the disappearance of coherence[35]. It is important to study the conditions under

which the quantum coherence does not deteriorate under evolution of the system. Hence, the concept

of frozen coherence was proposed, and the authors in Ref. [33] studied the dynamical conditions under

which quantum coherence is totally unaffected by quantum noise. For one qubit system, it has been shown

that no nontrival condition exists such that the relative entropy coherence and the l1 norm coherence are

simultaneously frozen under any quantum channel.

In this article, we investigate the coherence evolution in Bell-diagonal states based on l1-norm of coherence

and relative entropy of coherence, when the first subsystem undergoes Markovian channels. We find that

the relative entropy and the l1 norm of coherence of the Bell-diagonal states under depolarizing channel

decreases at first and then increases. In particular, we find the phenomenon of frozen coherence occurs for

special Bell-diagonal states under bit-phase flip channel in terms of the l1 norm of coherence. It is shown

that the occurrence of frozen coherence depends on the type of measures of coherence. We also study the
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coherence evolution of Bell-diagonal states when the first subsystem undergoes n times Markovian channels.

We find that the relative entropy of coherence for Bell-diagonal states under depolarizing channel decreases

initially then increases for small n and tends to 0 for large n. We discuss the dynamics of coherence of the

Bell-diagonal states under two independent local Markovian channels of the same type.

II. COHERENCE EVOLUTION OF BELL-DIAGONAL STATES UNDER MARKOVIAN
CHANNELS WITH ONE PARAMETER OF DECOHERENCE PROBABILITY P

Under fixed reference basis, the l1 norm of coherence of state ρ is defined by

Cl1(ρ) =
∑
i ̸=j

|ρi,j |, (1)

and the relative entropy of coherence is given by

Cr(ρ) = S(ρdiag)− S(ρ), (2)

where S(ρ) = −Trρ log ρ is von Neumann entropy. Through out the paper, we take {|00⟩, |01⟩, |10⟩ and

|11⟩} the standard computational basis for two-qubit states.

A two-qubit Bell-diagonal state can be written as

ρ =
1

4
(I ⊗ I +

3∑
i=1

ciσi ⊗ σi), (3)

where {σi}3i=1 are the Pauli matrices.

(1) Coherence evolution of Bell-diagonal states under Markovian channels on the first subsystem

We will consider the evolution of a quantum state ρ under a trace-preserving quantum operation ε(ρ)[36],

ε(ρ) =
∑
i,j

(Ei ⊗ Ej) ρ (Ei ⊗ Ej)
†
,

where {Ek} is the set of Kraus operators associated to a decohering process of a single qubit, with∑
k E

†
kEk = I. Typical channels are listed by the Kraus operators in Table I [37].

The decoherence processes BF, PF, BPF, and DEP in Table I preserve the Bell-diagonal form of the

density operator ρ. For the case of GAD, the Bell-diagonal form is kept for arbitrary γ and p = 1/2. In

this situation, one has

ε(ρ) =
1

4
(I ⊗ I +

3∑
i=1

c′iσi ⊗ σi), (4)

where the values of the c′1, c′2, c′3 are given in Table II [37]. In the standard computational basis

{|00⟩, |01⟩, |10⟩, |11⟩}, the density matrix has the form,

ρ′ =
1

4


1 + c′3 0 0 c′1 − c′2

0 1− c′3 c′1 + c′2 0

0 c′1 + c′2 1− c′3 0

c′1 − c′2 0 0 1 + c′3

 , (5)
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Kraus operators

BF E0 =
√

1− p/2 I, E1 =
√

p/2σ1

PF E0 =
√

1− p/2 I, E1 =
√

p/2σ3

BPF E0 =
√

1− p/2 I, E1 =
√

p/2σ2

DEP E0 =
√
1− p I, E1 =

√
p/3σ1

E2 =
√

p/3σ2, E3 =
√

p/3σ3

GAD E0 =
√
p

(
1 0

0
√
1− γ

)
, E2 =

√
1− p

( √
1− γ 0

0 1

)

E1 =
√
p

(
0

√
γ

0 0

)
, E3 =

√
1− p

(
0 0
√
γ 0

)

TABLE I: Kraus operators for the quantum channels: bit flip (BF), phase flip (PF), bit-phase flip (BPF), depolarizing
channel (DEP), and generalized amplitude damping (GAD), where p and γ are decoherence probabilities, 0 < p < 1,
0 < γ < 1.

where c′1, c
′
2, c

′
3 ∈ [−1, 1]. From (1) and (2) we have

Cl1(ρ
′) =

1

2
(|c′1 + c′2|+ |c′1 − c′2|), (6)

and

Cr(ρ
′) = S(ρ′diag)− S(ρ′)

=
1

4
(1− c′1 − c′2 − c′3) log(1− c′1 − c′2 − c′3)

+
1

4
(1− c′1 + c′2 + c′3) log(1− c′1 + c′2 + c′3)

+
1

4
(1 + c′1 − c′2 + c′3) log(1 + c′1 − c′2 + c′3)

+
1

4
(1 + c′1 + c′2 − c′3) log(1 + c′1 + c′2 − c′3)

− 1 + c′3
2

log(1 + c′3)−
1− c′3

2
log(1− c′3). (7)

From Eq. (6) and Eq. (7) we have the evolution of the l1 norm coherence and the relative entropy

of coherence for Bell-diagonal state, with c1 = 0.3, c2 = −0.4 and c3 = 0.56 under local nondissipative

channels, see Fig. 1.

For amplitude damping channel the Kraus operators are given by,

E0 =

(
1 0

0
√
1− p

)
, E1 =

(
0

√
p

0 0

)
,

0 ≤ p ≤ 1. Under the amplitude damping channel the Bell-diagonal states are mapped to the output state
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Channel c′1 c′2 c′3

BF c1 c2(1− p)2 c3(1− p)2

PF c1(1− p)2 c2(1− p)2 c3

BPF c1(1− p)2 c2 c3(1− p)2

DEP c1(1− 4p/3) c2(1− 4p/3) c3(1− 4p/3)

GAD c1(1− p) c2(1− p) c3(1− p)2

TABLE II: Correlation coefficients for the quantum operations: bit flip (BF), phase flip (PF), bit-phase flip (BPF),
depolarizing channel (DEP), and generalized amplitude damping (GAD). For GAD, we have fixed p = 1/2 and
replaced γ by p.

ρadc,

ρadc =
1

4


2− (1− c3)(1− p) 0 0 (c1 − c2)(1− p)

1
2

0 2− (1 + c3)(1− p) (c1 + c2)(1− p)
1
2 0

0 (c1 + c2)(1− p)
1
2 (1− c3)(1− p) 0

(c1 − c2)(1− p)
1
2 0 0 (1 + c3)(1− p)

 , (8)

where c1, c2, c3 ∈ [−1, 1]. The l1 norm coherence and the relative entropy of coherence can be directly

calculated by using Eq. (1) and Eq. (2) for c1 = 0.3, c2 = −0.4 and c3 = 0.56, see Fig. 1.
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FIG. 1: (a) Relative entropy of coherence for Bell-diagonal states {c1 = 0.3, c2 = −0.4, c3 = 0.56} under bit
flip(Cbf), phase flip(Cpf), bit-phase flip(Cbpf), depolarizing(Cdep), amplitude damping(Cad), generalized amplitude
damping(Cgad) as a function of p. (b) l1 norm of coherence for Bell-diagonal states {c1 = 0.3, c2 = −0.4, c3 = 0.56}
under bit flip(cbf), phase flip(cpf), bit-phase flip(cbpf), depolarizing(cdep), amplitude damping(cad), generalized
amplitude damping(cgad).

We see that the coherence under the relative entropy and the l1 norm of coherence behaviours similarly.

Under the depolarizing channel, both the relative entropy and the l1 norm of coherence decrease first and

then increase. As 0 ≤ p ≤ 1, according to Tabel II and Eq. (6), the l1 norm of coherence of the Bell-diagonal

states under bit-phase flip channel is 1
2 (|0.3(1 − p)2 − 0.4| + |0.3(1 − p)2 + 0.4|) = 0.4. Hence if the first

subsystem goes through bit-phase flip channel, frozen coherence under l1 norm occurs[see blue line in Fig.

1(b)]. On the other hand, the relative entropy of coherence for the same Bell-diagonal state under bit-phase

flip channel decreases as p increases. Above all, the occurrence of frozen coherence depends on the type of
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Channel c′1 c′2 c′3

BFn c1 c2(1− p)2n c3(1− p)2n

PFn c1(1− p)2n c2(1− p)2n c3

BPFn c1(1− p)2n c2 c3(1− p)2n

DEPn c1(1− 4p/3)n c2(1− 4p/3)n c3(1− 4p/3)n

GADn c1(1− p)n c2(1− p)n c3(1− p)2n

TABLE III: Correlation coefficients for n times quantum operations: bit flip (BFn), phase flip (PFn), bit-phase
flip (BPFn), depolarizing channel (DEPn), and generalized amplitude damping (GADn). For GAD, we have fixed
p = 1/2 and replaced γ by p.

measures of coherence. The same phenomenon shows up for the case of bit flip channel.

(2) Coherence evolution under n times Markovian channels on the first subsystem

Next, we consider the coherence dynamics of Bell-diagonal states under n times Markovian channels on

the first subsystem. As the decoherence processes BF, PF, BPF, DEP and GAD preserve the Bell-diagonal

form of the density operator, if a Bell-diagonal state goes through the channel n times, the parameters

of the output state are given by c′1, c
′
2, c

′
3 given in tabel III. Using Eq. (7), we can obtain the relative

entropy of coherence for Bell-diagonal state with {c1 = 0.3, c2 = −0.4 and c3 = 0.56} under n times various

Markovian noise channels, see Fig. 2.

On the other hand, if the first subsystem of Bell-diagonal state goes through the amplitude damping

channel, the output state ρ
(1)
adc is given by

ρ
(1)
adc = E0 ⊗ IρabE†

0 ⊗ I + E1 ⊗ IρabE†
1 ⊗ I, (9)

If the first subsystem goes through this channel twice, the output state ρ
(2)
adc is as follows:

ρ
(2)
adc = E0 ⊗ Iρ

(1)
adcE

†
0 ⊗ I + E1 ⊗ Iρ

(1)
adcE

†
1 ⊗ I. (10)

If the first subsystem goes through the amplitude damping channel n times, then the output state ρ
(n)
adc is

of the form

ρ
(n)
adc = E0 ⊗ Iρ

(n−1)
adc E†

0 ⊗ I + E1 ⊗ Iρ
(n−1)
adc E†

1 ⊗ I, (11)

which can be rewritten as

ρ
(n)
adc =

∑
i1,i2,··· ,in=0,1

Ei1i2···in ⊗ IρabE†
i1i2···in ⊗ I (12)

with Ei1i2···in = Ei1Ei2 · · ·Ein . Due to the properties of operators E0 and E1 in the amplitude damping

channel,

E2
1 = 0, E0E1 = E1, E1E0 =

√
1− pE1, (13)
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ρ
(n)
adc is reduced to the following form,

ρ
(n)
adc = En

0 ⊗ Iρab(En
0 )

† ⊗ I +
n−1∑
i=0

E1E
n−i−1
0 ⊗ Iρab(E1E

n−i−1
0 )† ⊗ I. (14)

By straightforward calculation, we obtain

ρ
(n)
adc =

1

4


2− (1− c3)(1− p)n 0 0 (c1 − c2)(1− p)

n
2

0 2− (1 + c3)(1− p)n (c1 + c2)(1− p)
n
2 0

0 (c1 + c2)(1− p)
n
2 (1− c3)(1− p)n 0

(c1 − c2)(1− p)
n
2 0 0 (1 + c3)(1− p)n

 . (15)

As an example, the relative entropy of coherence of ρ
(n)
adc for Bell-diagonal state {c1 = 0.3, c2 = −0.4 and

c3 = 0.56} is shown in Fig. 2 (f). One can see that when p approaches to 1, the relative entropy of coherence

approaches to a constant for large n, that is, frozen coherence almost appears, see Fig. 2 (a). A similar

behaviour can be seen in the relative entropy of coherence for Bell-diagonal states under n times bit-phase

flip channel. But these coherences gather together independent of n, see Fig. 2 (c). When p increases, the

relative entropy of coherence for Bell-diagonal state under depolarizing channel decreases initially and then

increases. It is worth mentioning that the coherence tends to 0 as p approaches to 1 for large n, see Fig. 2

(d). Relative entropy of coherence for Bell-diagonal states under n times phase flip channel and generalized

amplitude damping channel decreases as p increases. The curvature gradually become large for large n, see

Fig. 2 (b) and (e). When p increases, the relative entropy of coherence for Bell-diagonal states under n

times amplitude damping channel also decreases. But the curvature gets smaller at first and then larger as

n increases, see Fig. 2 (f).
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FIG. 2: Relative entropy of coherence for Bell-diagonal state {c1 = 0.3, c2 = −0.4 and c3 = 0.56}: (a) under bit flip
channel n times, (b) under phase flip channel n times, (c) under bit-phase flip channel n times, (d) under depolarizing
channel n times, (e) under generalized amplitude damping channel n times, (f) under amplitude damping channel n
times.

(3) Coherence evolution under n times amplitude damping channel on both two subsystems of Bell-diagonal

states
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Furthermore, if two subsystems both go through the amplitude damping channel n times, the output

state is given by

ρ(n) =
∑

i1,i2,··· ,in,j1,j2,··· ,jn=0,1

Ei1i2···in ⊗ Ej1j2···jnρE
†
i1i2···in ⊗ E†

j1j2···jn . (16)

By straightforward calculation, we obtain the output state ρ
(n,n)
adc of Bell-diagonal state under bi-side am-

plitude damping channel,

ρ
(n,n)
adc =

1

4


x 0 0 (c1 − c2)(1− p)n

0 y (c1 + c2)(1− p)n 0

0 (c1 + c2)(1− p)n y 0

(c1 − c2)(1− p)n 0 0 (1 + c3)(1− p)2n

 , (17)

where x = 4− 4(1− p)n + (1 + c3)(1− p)2n, y = 2(1− p)n − (1 + c3)(1− p)2n.

Using Eq. (2), we have the relative entropy of coherence for the case that both of the subsystems of

Bell-diagonal states undergo n times amplitude damping channel, see Fig. 3, for {c1 = 0.3, c2 = −0.4 and

c3 = 0.56}. We find that the relative entropy of coherence decreases as p increases. As n increases, the

curves have larger curvature.
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FIG. 3: Relative entropy of coherence for that both subsystems of Bell-diagonal states {c1 = 0.3, c2 = −0.4, c3 = 0.56}
undergo the amplitude damping channel n times: n=1(black line), n=2(orange line), n=3(blue line), n=10(green
line), n=100(red line).

III. COHERENCE DYNAMICS OF BELL-DIAGONAL STATES UNDER BI-SIDE
MARKOVIAN CHANNELS OF THE SAME TYPE

In this section, we discuss the dynamics of coherence of a two-qubit Bell-diagonal state undergoing two

independent local Markovian channels of the same type but of different decoherence rates. There are three

types of local Markovian channels: bit-flip noise, phase-flip noise, and bit-phase-flip, described by the Kraus

operators in Table IV, respectively.

Any Bell-diagonal state ρ given by (3) evolves to another Bell-diagonal state Eq. (5) under these channels.

The corresponding coefficients are listed on the Table V. As an example, from Eq. (7) we have the dynamical
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Kraus operators

PF-PF E
(A)
0 =

√
1− p

2
IA ⊗ IB , E

(A)
1 =

√
p
2
σA
3 ⊗ IB

E
(B)
0 = IA ⊗

√
1− q

2
IB , E

(B)
1 = IA ⊗

√
q
2
σB
3

BF-BF E
(A)
0 =

√
1− p

2
IA ⊗ IB , E

(A)
1 =

√
p
2
σA
1 ⊗ IB

E
(B)
0 = IA ⊗

√
1− q

2
IB , E

(B)
1 = IA ⊗

√
q
2
σB
1

BPF-BPF E
(A)
0 =

√
1− p

2
IA ⊗ IB , E

(A)
1 =

√
p
2
σA
2 ⊗ IB

E
(B)
0 = IA ⊗

√
1− q

2
IB , E

(B)
1 = IA ⊗

√
q
2
σB
2

TABLE IV: Kraus operators for two independent local Markovian channels: two independent local phase-flip channels
(PF-PF), two independent local bit-flip channels(BF-BF), two independent local bit-phase-flip channels (BPF-BPF),
where p = 1− exp(−γt), q = 1− exp(−γ′t), and γ and γ′ are the phase damping rates for the channels on the qubits
A and B, respectively.

Channel c′1 c′2 c′3

PF-PF (1− p)(1− q)c1 (1− p)(1− q)c2 c3

BF-BF c1 (1− p)(1− q)c2 (1− p)(1− q)c3

BPF-BPF (1− p)(1− q)c1 c2 (1− p)(1− q)c3

TABLE V: Correlation coefficients for the quantum operations: two independent local phase-flip channels (PF-PF),
two independent local bit-flip channels(BF-BF), two independent local bit-phase-flip channels (BPF-BPF), where
p = 1 − exp(−γt), q = 1 − exp(−γ′t), and γ and γ′ are the phase damping rates for the channels on the qubits A
and B, respectively.

behaviors of the relative entropy of coherence for Bell-diagonal state {c1 = 0.3, c2 = −0.4 and c3 = 0.56}

under the bi-side same type Markovian channel of bit flip (cbf), phase flip (cpf), bit-phase flip (cbpf), see

Fig. 4. Interestingly, the corresponding coherences have the relation, cbfp>cbf>cpf. When p and q increase,

the coherence decrease and the coherence under phase flip channel tends to 0.

Furthermore, if both two subsystems go through the same type channel n times, the Bell-diagonal state

ρ given by (3) also evolves to another Bell-diagonal state (5). The corresponding coefficients are listed in

Table VI. As an example, from Eq. (7) we obtain the relative entropy of coherence for Bell-diagonal state

{c1 = 0.3, c2 = −0.4, c3 = 0.56} under bi-side same type Markovian channel n times. In Fig. 5, we can see

that when n becomes larger, the relative entropy of coherence for Bell-diagonal state under bi-side same

type Markovian channel tends to a constant quickly as p and n increase.
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FIG. 4: Relative entropy of coherence for Bell-diagonal state {c1 = 0.3, c2 = −0.4, c3 = 0.56} under bi-side Markovian
channels of the same type: bit flip channel (cbf) [green surface], phase flip channel (cpf) [orange surface], bit-phase
flip channel (cbpf) [blue surface]

.

Channel c′1 c′2 c′3

PFn − PFn (1− p)n(1− q)nc1 (1− p)n(1− q)nc2 c3

BFn −BFn c1 (1− p)n(1− q)nc2 (1− p)n(1− q)nc3

BPFn −BPFn (1− p)n(1− q)nc1 c2 (1− p)n(1− q)nc3

TABLE VI: Correlation coefficients for n times quantum operations: two independent local phase-flip channels
(PFn − PFn), two independent local bit-flip channels(BFn − BFn), two independent local bit-phase-flip channels
(BPFn − BPFn), where p = 1 − exp(−γt), q = 1 − exp(−γ′t), and γ and γ′ are the phase damping rates for the
channels on qubits A and B, respectively.

IV. COHERENCE DYNAMICS OF BELL-DIAGONAL STATES UNDER BI-SIDE
MARKOVIAN CHANNELS OF DIFFERENT TYPES

In this section, we discuss the dynamics of coherence of a two-qubit Bell-diagonal state under two different

local Markovian channels. From the phase-flip channel, bit-flip channel and bit-phase-flip channel given by

the Kraus operators in Table VII, respectively, any Bell-diagonal state ρ given by (3) evolves to another

Bell-diagonal state (5) under two different local Markovian channels. The corresponding coefficients are

listed in Table VIII. As an example, from (7) the dynamical behavior of the relative entropy of coherence

for Bell-diagonal state {c1 = 0.3, c2 = −0.4, c3 = 0.56} under the bi-side different Markovian channels are

shown in Fig. 6. It can be seen that when p and q increase, the relative entropy of coherence decreases

under all bi-side channels. In particular, when q and p approach to 1, the coherences for Cbf-pf and Cpf-bpf

tend to 0, see Fig. 6 (a) and (c). When q and p approach 1 simultaneously , the coherences for Cbf-bpf

approaches 0, see Fig. 6 (b).

Furthermore, we discuss the dynamics of coherence of a two-qubit Bell-diagonal state under two different

local Markovian channels n times. Any Bell-diagonal state ρ given by (3) evolves to another Bell-diagonal

state (5) under two different local Markovian channels n times. The corresponding coefficients are listed in

Table IX. In Fig. 7, as an example, from Eq. (7) we have the dynamical behaviors of the relative entropy
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(a)
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(b)
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Coherence

FIG. 5: Relative entropy of coherence for Bell-diagonal state {c1 = 0.3, c2 = −0.4, c3 = 0.56} under n times bi-side
Markovian channel of the same type: bit flip channel (cbf) [green surface], phase flip channel (cpf) [orange surface],
bit-phase flip channel (cbpf) [blue surface], (a) n = 10 and (b) n = 100.

Kraus operators

BF-PF E
(A)
0 =

√
1− p

2
IA ⊗ IB , E

(A)
1 =

√
p
2
σA
1 ⊗ IB ,

E
(B)
0 = IA ⊗

√
1− q

2
IB , E

(B)
1 = IA ⊗

√
q
2
σB
3

BF-BPF E
(A)
0 =

√
1− p

2
IA ⊗ IB , E

(A)
1 =

√
p
2
σA
1 ⊗ IB ,

E
(B)
0 = IA ⊗

√
1− q

2
IB , E

(B)
1 = IA ⊗

√
q
2
σB
2

PF-BPF E
(A)
0 =

√
1− p

2
IA ⊗ IB , E

(A)
1 =

√
p
2
σA
3 ⊗ IB ,

E
(B)
0 = IA ⊗

√
1− q

2
IB , E

(B)
1 = IA ⊗

√
q
2
σB
2

TABLE VII: Kraus operators for two-qubit sysems under two different local Markovian channels: a bit-flip channel
and a phase-flip channel (BF-PF), a bit-flip channel and a bit-phase-flip channel(BF-BPF), a phase-flip channel and
a bit-phase-flip channel (PF-BPF), where p = 1− exp(−γt), q = 1− exp(−γ′t), and γ and γ′ are the phase damping
rates for the channels on qubits A and B, respectively.

of coherence for Bell-diagonal state {c1 = 0.3, c2 = −0.4, c3 = 0.56} under the bi-side different Markovian

channels 10 times. Comparing with Fig. 6, as soon as p and q increase, the relative entropy of coherence

under all the bi-side channel tends to 0 suddenly. The changing trend of the relative entropy of coherence is

controlled by q, see Fig. 7 (a). The relative entropy of coherence under the phase-flip channel and bit-phase-

flip channel n = 10 times is controlled by p, see Fig. 7 (c). Soon as q and p increase simultaneously, the

relative entropy of coherence under the bit-flip channel and bit-phase-flip channel n = 10 times approaches

0, see Fig. 7 (b).

V. SUMMARY

In this work, we have investigated the l1-norm of coherence and the relative entropy of coherence under

the channels of bit flip, phase flip, bit-phase flip, depolarizing, amplitude damping, generalized amplitude

damping on the first subsystem for Bell-diagonal states. For special Bell-diagonal states, we find that the

dynamical behaviors of the coherence for Bell-diagonal states are similar for the relative entropy and the l1
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Channel c′1 c′2 c′3

BF-PF (1− q)c1 (1− p)(1− q)c2 (1− p)c3

BF-BPF (1− q)c1 (1− p)c2 (1− p)(1− q)c3

PF-BPF (1− p)(1− q)c1 (1− p)c2 (1− q)c3

TABLE VIII: Correlation coefficients for the quantum operations: a bit-flip channel and a phase-flip channel (BF-
PF), a bit-flip channel and a bit-phase-flip channel(BF-BPF), a phase-flip channel and a bit-phase-flip channel
(PF-BPF), where p = 1− exp(−γt), q = 1− exp(−γ′t), and γ and γ′ are the phase damping rates for the channels
on qubits A and B, respectively.

(a)

0.0

0.5

1.0

p

0.0
0.5

1.0q

0.00

0.05

0.10

Cbf-pf

(b)

0.0

0.5

1.0

p

0.0
0.5

1.0q

0.00

0.05

0.10

Cbf-bpf

(c)

0.0

0.5

1.0

p

0.0
0.5

1.0q

0.00

0.05

0.10

Cpf-bpf

FIG. 6: For Bell-diagonal state {c1 = 0.3, c2 = −0.4, c3 = 0.56}: (a) Relative entropy of coherence under the bit-flip
channel and phase-flip channel as a function of p and q (Cbf-pf). (b) Relative entropy of coherence under the bit-flip
channel and bit-phase-flip channel as a function of p and q (Cbf-bpf). (c) Relative entropy of coherence under the
phase-flip channel and bit-phase-flip channel as a function of p and q (Cpf-bpf).

norm coherence under all kinds of channel. After the Bell-diagonal states undergo depolarizing channel, the

relative entropy and the l1 norm of coherence decreases first and then increases. In particular, we find that

the l1 norm of coherence of the special Bell-diagonal state under bit-phase flip channel is constant: frozen

coherence under l1 norm occurs. On the other hand, the relative entropy of coherence for the same Bell-

diagonal state under bit-phase flip channel decreases as p increases. It has been shown that the occurrence

of frozen coherence depends on the type of measures of coherence.

We have studied the coherence evolution under Markovian channels on the first subsystem n times. It has

been shown that the relative entropy of coherence for Bell-diagonal state under bit flip channel approaches

constant for large n, namely, frozen coherence almost appears. A similar dynamical behaviour can be seen

Channel c′1 c′2 c′3

BFn − PFn (1− q)nc1 (1− p)n(1− q)nc2 (1− p)nc3

BFn −BPFn (1− q)nc1 (1− p)nc2 (1− p)n(1− q)nc3

PFn −BPFn (1− p)n(1− q)nc1 (1− p)nc2 (1− q)nc3

TABLE IX: Correlation coefficients for the n times quantum operations: a bit-flip channel and a phase-flip channel
(BFn−PFn), a bit-flip channel and a bit-phase-flip channel(BFn−BPFn), a phase-flip channel and a bit-phase-flip
channel (PFn −BPFn), where p = 1− exp(−γt), q = 1− exp(−γ′t), and γ and γ′ are the phase damping rates for
the channels on qubits A and B, respectively.
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(c)
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FIG. 7: For Bell-diagonal state {c1 = 0.3, c2 = −0.4, c3 = 0.56}: (a) Relative entropy of coherence under the bit-flip
channel and phase-flip channel n = 10 times (Cbf-pf). (b) Relative entropy of coherence under the bit-flip channel
and bit-phase-flip channel n = 10 times (Cbf-bpf) (c) Relative entropy of coherence under the phase-flip channel
and bit-phase-flip channel n = 10 times (Cpf-bpf).

in the relative entropy of coherence for Bell-diagonal state under bit-phase flip channel n times. But the

coherences gather together regardless of n. The relative entropy of coherence for Bell-diagonal state under

depolarizing channel decreases initially, and then increases as p increases and tends to 0 as p approaches 1 for

large n. The relative entropy of coherence for Bell-diagonal state under phase flip channel and generalized

amplitude damping channel n times decreases as p increases. The curvature gradually becomes large for

large n. And the relative entropy of coherence for Bell-diagonal state under amplitude damping channel n

times also decreases as p increases. Nevertheless, the curvature gets smaller at first and then larger as n

increases.

We have shown the relative entropy of coherence for the case that both of subsystems of Bell-diagonal

states undergo the amplitude damping channel n times. It has been shown that the relative entropy of

coherence for Bell-diagonal states undergoing amplitude damping channel n times decreases as p increases,

meanwhile its curvature gets larger as n increases.

We have discussed the dynamics of coherence of the Bell-diagonal states under two independent same type

local Markovian channels of bit-flip, phase-flip, and bit-phase-flip. We have shown that the corresponding

coherences satisfy the relation: cbfp>cbf>cpf. The coherence decreases and the coherence under phase flip

channel tends to 0 as p and q increase. Furthermore, if both subsystems go through three kind of channels

n times, we have obtained that the relative entropy of coherence tends to constant quickly as n gets large.

We have shown the dynamical behaviors of the relative entropy of coherence for Bell-diagonal states under

the bi-side different Markovian channel. It has been shown that the relative entropy of coherence under all

such bi-side channels decreases as p and q increase. In particular, when q and p approach 1, the coherences

for Cbf-pf and Cpf-bpf tend to 0, respectively. When q and p approach 1 simultaneously, the coherence for

Cbf-bpf approaches 0. Furthermore, we have discussed the dynamics of coherence of Bell-diagonal states

under two different local Markovian channels n times. We have shown that the relative entropy of coherence

under all these bi-side channels tends to 0 suddenly soon as p and q increase. It has been shown that the

changing trend of the relative entropy of coherence under the bit-flip channel and phase-flip channel n times

is controlled by q. And the relative entropy of coherence under the phase-flip channel and bit-phase-flip

channel n times is controlled by p. When q and p get greater than 0, the relative entropy of coherence under
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the bit-flip channel and bit-phase-flip channel n times approaches 0. Our results highlight the investigations

of coherence evolution under local quantum channels.
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