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Abstract

We propose a quantitative direct method of proving the stability result for Gaussian rough
differential equations in the sense of Gubinelli [21]. Under the strongly dissipative assumption of
the drift coefficient function, we prove that the trivial solution of the system under small noise
is exponentially stable.
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1 Introduction

The paper continues our study in the first part [11] to deal with the asymptotic stability criteria
for rough differential equations of the form

dyy = [Aye + f(ye)dt + g(ye)dxy, (1.1)

or in the integral form

e = o + / Ay + ()] du + / o()dz,,  te[a,T (1.2)

where the nonlinear part f : R — R? is globally Lipschitz function for simplicity and g =
(91,---,9m) is a collection of vector fields g; : R? — R? such that gj € Cg’(Rd,Rd). Equation
(1.1) can be viewed as a controlled differential equation driven by rough path x € C¥([a,T],R™)
for v € (,3), in the sense of Lyons [32], [33] where z can also be considered as an element of the
space CP~¥* ([a, T],R™) of finite p - variation norm, with pv > 1. For instance, given » € (3, 1], the
path z might be a realization of a R"-valued centered Gaussian process satisfying: there exists for
any T > 0 a constant C'r such that for all p > %

E||X; — X||P < Op|t — sP”, Vs, t € [0,T]. (1.3)

By Kolmogorov theorem, for any v € (0,7) and any interval [0, 7] almost all realization of X will
be in C¥([0,7]). Such a stochastic process, in particular, can be a fractional Brownian motion B
[34] with Hurst exponent H € (3, 3), i.e. a family of Bf = {B}!},cr with continuous sample paths
and

E|BE — BH|| = |t — s|?",vt,5 € R.

In this paper, we would like to approach system (1.1), where the second integral is well-understood
as rough integral in the sense of Gubinelli [21]. Such system satisfies the existence and uniqueness of
solution given initial conditions, see e.g. [21] or [14] for a version without drift coefficient function,
and [38] for a full version using p - variation norms.



To study the local stability, we impose conditions for matrices A € R%*¢ such that A is negative
definite, i.e. there exists a A > 0 such that

{y, Ay) < =Aallyll>. (1.4)
We also assume that the nonlinear part f : R — R¢ is locally Lipschitz function such that
f(0)=0 and [[f(y)ll < llyllrlyl) (1.5)

where h : Rt — RT is an increasing function which is bounded above by a constant Cy. Our
assumption is somehow still global, but it has an advantage of being able to treat the local dynamics
as well. We refer to [18] and [20] for real local versions on a small neighborhood B(0, p) of the trivial
solution, using the cutoff technique.

In this paper, we also assume that g(0) = 0 and g € C} in case v € (3, 1) with bounded derivatives
Cy (which also include the Lipschit coefficient of the highest derivative). System (1.1) then admits
an equilibrium which is the trivial solution. Our main stability results are then formulated as
follows.

Theorem 1.1 (Stability for rough systems) Assume X.(w) is a centered Gaussian process with
stationary increments satisfying (1.3), and % >SU>v> % 1s fired. Assume further that conditions
(1.4), (1.5) are satisfied, where Ay > h(0).Then there ezists an € > 0 such that given Cy < €, and for
almost sure all realizations r. = X.(w), the zero solution of (1.1) is locally exponentially stable. If
in addition Ay > C', then we can choose € so that the zero solution of (1.1) is globally exponentially
stable a.s.

Our method motivates from the direct method of Lyapunov, which aims to estimate the norm growth
(or a Lyapunov-type function) of the solution in discrete intervals using the rough estimates for the
angular equation which is feasible thanks to the change of variable formula for rough integral defined
in the sense of Gubinelli. It is then sufficient to study the local and global exponential stablity of
the corresponding random differential inequality, which can be done with random norm techniques
in [1]. A necessary assumption is the integrability of solution, which is straightforward for Young
equations but difficult for the rough case under the Holder norm. Fortunately, we are able to
build a modified version of greedy times in [4] for elements in the CP? space, which is a little more
regular than CP~Y?" by respecting also a small Holder regularity o. In addition, under the stronger
assumption that the rectangular increments of the covariance defined by

R( 5 tt, ) = B(Xor® Xy )
is of finite (g, o) - variation, we prove a similar result to [4, Theorem 6.3] on the main tail estimate
of the number of greedy time under the new (p,o) - norm. The integrability of the solution under
the new (p, o) - variation seminorm is then proved in Theorem 2.7.

We close the introduction part with a note that our method still works for the case v € (i, %]
with an extension of Gubinelli derivative to the second order, although the computation would be
rather complicated. Moreover, it could also be applied for proving the general case in which g is
unbounded, even though we then need to prove the existence and uniqueness theorem first. The
reader is referred to [31] and [8] for this approach, in which the differential equation is understood
in the sense of Davie [10].

2 Rough differential equations

We would like to give a brief introduction to Young integrals. Given any compact time interval
I C R, let C(I,R?) denote the space of all continuous paths y : I — R? equipped with sup



norm || - ||eo.s given by ||y|lco.s = supsey ||yell, where || - || is the Euclidean norm in R%. We write
Yst := Yt — Ys. For p > 1, denote by CP~V(I,R?) C C(I,RY) the space of all continuous path
y : I — R% which is of finite p-variation

n 1/p
”|ymp-var,l = (SUP Z |’yti7ti+1 Hp> < 00, (2'1)
(1) ;=

where the supremum is taken over the whole class of finite partition of I. CP~v' (I, R?) equipped
with the p—var norm

[Yllp-var,r = Nymin ]l + Nyl var

is a nonseparable Banach space [16, Theorem 5.25, p. 92]. Also for each 0 < o < 1, we denote by
C(I,R%) the space of Holder continuous functions with exponent a on I equipped with the norm

(2
= |ly(a)|| + sup ———,
a,l ” ( )” sctel (t — S)a

[Ylla.r := lymin 2]l + 1yl

A continuous map @ : A?(I) — RT, A%(I) := {(s,t) : min I < s <t < max I} is called a control if
it is zero on the diagonal and superadditive, i.e. W;; = 0 for all t € I, and Wy, + Wy < Wsy for all
s<u<tinl.

Now, consider y € CIV (I, L(R™,R%)) and = € CP~V(I,R™) with % + % > 1, the Young integral

J; yedx; can be defined as
/I‘ysdxs = |1111|r£0[ Z YuTuyv,

u,v]€Il

where the limit is taken on all the finite partition II = {minl =ty < ¢t; < --- < t,, = max I} of
I with |II| := [m?xn |v — ul (see [39, p. 264-265]). This integral satisfies additive property by the
Ve

)

construction, and the so-called Young-Loeve estimate [16, Theorem 6.8, p. 116]

t
| [ s = yevaa| < K@) Wllpane o Il pane o
S
1.1
< K@l = 57 Iyl o ol s 22)
for all [s,t] C I, where
1 1
K(p.q) = (1-2'757 1) (23)

We also introduce the construction of the integral using rough paths for the case 3,z € C?(I)
when f € (%, v). To do that, we need to introduce the concept of rough paths. Following [14], a
couple x = (z,X), with z € C5(I,R™) and X € C;B(Az(f),Rm @ R™) = {X: sup, ‘!nglg'}; < o0}
where the tensor product R™ ® R™ can be indentified with the matrix space R™*" is called a rough
path if they satisfies Chen’s relation

Xot — Xy — Xyt = Tyt @ T, Vmin] < s <wu <t <max]. (2.4)

X is viewed as postulating the value of the quantity fst Tsr @dz, := X, where the right hand side is

taken as a definition for the left hand side. Denote by C#(I) c C# @ 022'3 the set of all rough paths
in I, then C? is a closed set but not a linear space, equipped with the rough path semi-norm

1
Il g := Bl g g + X025 po ) < oo (2.5)

3



Let 3 >p>2,v > %. Throughout this paper, we will assume that z(w) : I — R™ and X(w) :
I x I — R™®R™ are random funtions that satisfy Chen’s relation relation (2.4) and

1

1 2
(Euxs,tup)" <Ot — s, and (E]]Xs¢H§)p <Ot — s Vst el (2.6)

for some constant C. Then, due to the Kolmogorov criterion for rough paths [16, Appendix A.3]
for all 8 € (%, v) there is a version of w—wise (z,X) and random variables Kg € LP Kz € L%, such
that, w—wise speaking, for all s,t € I,

||5Us,t|| < Kot - 5|Ba HXs,t < KB’t - 3‘%:

so that (x,X) € C#. Moreover, we could choose 3 such that

: Tt
reC%():={zecC’:lim sup H¥:0 ,
t 0-00<t—s<s [t — s|° J

st

X e COP(A%D) = (X e C¥(AD) : lim sup =55 =0},

—00<t—s<6

then COP(I) ¢ COP(I)@C 28 (A2(I)) is separable due to the separability of C%#(I) and C%2°(A2(I)).

2.1 Controlled rough paths

A path y € C8(I, L(R™,R%)) is then called to be controlled by x € CP(I,R™) if there exists a tube
(v, RY) with o/ € C8(I, L(R™, L(R™, R?))), RY € C*(A%(I), L(R™,R?)) such that
Yst = Yalst + Ry, Vmin/ < s <t < max]I.

y' is called Gubinelli derivative of y, which is uniquely defined as long as z € C?\ C?8 (see [14,
Proposition 6.4]). The space D2’ (I) of all the couple (y,y’) that is controlled by x will be a Banach
space equipped with the norm

2280 = |Ymingll + Woinrll + |99, 55, where

228, T my/|Hﬂ,1+|HRy|||2,3,I>

Ny, y'
ly. ']

where we omit the value space for simplicity of presentation. Now fix a rough path (z,X), then for
any (y,y') € D2 (I), it can be proved that the function F € C?(A2(I),R?) defined by

Fs,t = YsTst + ygxs,t
belongs to the space

cy¥(r) = {Fecﬁ(AQ([))IFt,t =0 and

HFS,t - Fs,u - Fu,t”
|t — 5|38

I5Fllys0 == sup < oo},

min [ <s<u<t<max I

Thanks to the sewing lemma [14, Lemma 4.2], the integral fst Yudx, can be defined as

t
/ yudxu = lim [yuxu,v + y;Xu,U]
s



where the limit is taken on all the finite partition II of I with |II] := m?x lv — ul (see [21]).
i

U,V
Moreover, there exists a constant Cg = Cg ;) > 1 with |I| := max I — min I, such that

t
H / yudxu - ysxat + y;XS,t
s

| < Calt— s ( Iz

o W3 8200+ 1 W g DU pp ) (27)

From now on, if no other emphasis, we will simply write ||z 5 or ||X[|,; without addressing the

domain in I or A?(I). In particular, for any f € C} (RY,R%) we get the formula for integration by
composition

fla) = fw) + [ Vi@, + 5 [ T2 f()dlsleo

where the last integral is understood in the Young sense and [z]; 1= x5 ®@xs;—2 Sym (X;4) € Cc?8.
Notice that for geometric rough path X ; = fst ZTsy @ dxy, then Sym (Xg;) = %xs,t ® g4, thus
[z]s: = 0.

The following lemma is from [11].

Lemma 2.1 (Change of variables formula) Assume that 5 > %, V e CE(Rd,R) and y €
CB(I,R) is a solution of the rough differential equation

t t
Yt = Ys +/ f(yu)du + / 9(yu)dxy, Vminl <s<t<maxl. (2.8)

Then one get the change of variable formula

Vi) = Vi) + / (DyV (). f(ya))du + / (DyV ()9 () )

43 [ DV @150 90l (2.9

where

[DyV (1) 9] = (DyV (ys), Dyg(ys)g(ys)) + Dy V (ys) 19 (ys), 9(ys)]-

In practice, we would use the p-var norm

Iy v leps = Nosmin |+ 0l + [l /)], - where
0 s = 19 s + IRV s

Thanks to the sewing lemma [7], we can use a similar version to (2.7) under p—var norm as follows.

‘ < Cﬁ ( “’x|||p—var,[s,t] |||Ry||‘g—var,A2[S,t] + H|y/mpfvar,[s,t] WX”@—WLAQ[W] )
(2.10)

t
H / YudTy — YsTst + y;Xs,t
s

2.2 Greedy times and integrability

In this part, we would like to develop a modified version of greedy times as in [4], for which we need
a little more regularity. Given fixed v € (%, %),% € (%,I/),O‘ € (0,v — %) and 8 = % + o, on each

compact interval I such that |I| = max] —min/ < 1, consider a rough path x = (z,X) € CP7(I)
1
with the modified (p, o) - norm ||x[,, , := ||z[l, , + [IX[l4 defined by
1

1 1
elyo = (00 3= NrwelPlo—ul™?)", [Kly, = (sup 3 [Kuellffo—ul™)",  (211)

[u,v] €Il [u,v]€ll

The following lemma is easy to prove.

where ¢ = £.



Lemma 2.2 |X||? and ||z} , are control functions. In addition, CP(I) c cPo(I) c CP~v™ (1) and
for x € CP(I) we have the estimates

(2.12)

17l ars < Bl gy < 17 Iy sors HI7 I g—var,r < IXllg.0,r < 1] X1l

+o,l °

Given % e(t,v)ando e (0,v— p) we construct for any fixed v € (0, 1) the sequence of greedy

times {7;(7,I,p,0)}ieny w.r.t. Holder norms

To =minl, 741 :=inf {t > 1% 7} Amax . (2.13)

polrit] —

Denote by Ny 1po(x) :=sup{i € N: 7, <maxI}. Also, we construct another sequence of greedy
time {7;(v,I,p,0)}ien given by

To=minl, 741 :=inf {t > 7 (0=T7)7 1%l 0 70 = 7} Amax I, (2.14)

ql=

and denote by N, ;- (x) :=sup{i € N: 7; < maxI}. Then on any interval J such that |.J| = (%)
and with the sequence {7;(3, J,p, o) }ien it follows that

i
2

-
T3

(it =727 + Ul ] < —y

hence there is a most one greedy time of the sequence 7; lying in each interval [7;(, J,p, o), 7i4-1(3, J, p, 0)].
1

That being said, if we divide I into sub-interval J of length |J;| = |J| = ( ) then it follows that

S I
'y Ipa Z ’2Y7Jk7p7 m = IVH—‘ . (215)

k=1

We need to show that exp{N, 1, ,(x)} is also integrable for any interval I such that |[I| < 1.

Translated rough paths

Given ¢ = §, % € (%, v)and o € (0,v— %) then %—l—% > 1. Following [14, Chapter 10 & Chapter 11],
let W = C(I,R™) be the probability space equipped with a Gaussian measure P and let (X;) be a
continuous, mean zero Gaussian process, parameterized over a compact interval I. The associated
Cameron-Martin space H C W consists of paths t — h. = E(ZX.) where Z € W! is an element
in the so-called first Wiener chaos. If h. = E(ZX.) denotes another element in A then the inner
product (h,h)y := E(ZZ) makes H a Hilbert space and Z + h is an isometry between W' and H.
The triple (W, H,P) is then called the abstract Wiener space.

We need a little more regularity for the rectangular increments of the covariance

s t
R( J t ) = E(Xst ® Xop)

which seems to be natural for Gaussian processes with stationary increments.

IR, 52 < oo, where (2.16)
s t\|¢ 3
WRlyorxr = ( sup R( 5 )| = s = 7o)
q,0,IxI H(I)’H(I,)[ Z s

s,t]el(T),[s,t]eII(I")



Given (2.16), we prove a modified version of [14, Proposition 11.2] that # is continuously embedded
in the space of continuous paths of finite (g, o)-variation, i.e. H < C%°(I,R%), and there exists a
constant Cepp > 0 such that for all h € H and all s < tin I,

1AM 05,0 < WPellay /IRl g 06,2 < Clombl[ P34

The proof goes line in line with the one of [14, Proposition 11.2] except that we need to add terms
|tjis1 —tj]779 and [tgy1 — x| 779 in the expression of elements in 19 and its dual space [, where
s to=1

That means h € C77V?"(I,R™) is of complementary Young regularity, but ”respecful” of o-Holder
regularity in the sense that ||h[|,, ; < co. It then makes sense (see e.g. [16] or [4]) to define the
so-called translated rough path Tpx as

tax:<x+mx+/ﬁ®dm+/x®dh+/h®d@.
We are going to prove that

Lemma 2.3 Given |I| <1, the translated map Ty, : CP7 — CP7 such that for any [s,t] C I we have
the estimate

Tl s < 0 0) (Il gy 16— 515 1l g ) (2.17)

Proof: The proof is quite direct and similar to [4, Lemma 3.1]. By assigning K := (1— 215 )t
observe that

[Tixll gy <l + Bl + (1Kl s + 'H / heods| 4+ 'H / vodh|  + m / h& dh
q7G7J Q70'7J q,O’,J
< Nﬂth+ﬂJVNMMUJ+WXMUAz)
2 2 2
s frew +W/x®dh +‘H/h®dh
q,0,02(J q,a AZ(J 3,0,42(J)
< Al + 11 MBll s + 2K2|I]5 aJWhW20J4'K”\J!2Wth¢J
< Il + 15 Wlly g g + K2 (Ul g5 + 112 B0l ) + K212 2l
1 g
< (4 2K2)(lIxll, 6,5 + T2 101l 6.0)-
Hence (2.17) holds by assigning K (p,o) := 1+ 2K, O

Theorem 2.4 (Tail estimate and integrability) Assume that X has a natural lift to a geomet-
ric (p,o)- variation rough path X and there ezists Cemn € (0,00) with |h|l,, ; < Cempllh|% for
all h € H. Then for a fized I with |I| < 1, there exists a set E C W of P-full measure, with the

property: for allw € E;h € H and v > 0, if

IX(w =Bl or <7 then (112 IRIIG . 1 7% = Nokc(poyy,1po (X (W) (2.18)
Moreover,
g 2
: < -1 2 _Trnt .
P{w s Narcpp i (X(@)) > n} < exp {207/ (B(B,)) }exp{wzmbuﬁ}’ (2.19)

where ®~1 is the inverse of the standard normal cumulative distribution function and By :={we

w . |||X(w)”|p707] <~}. In particular, exp{NQK(p’U)%Lpp(X(w))} is integrable.

7
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Proof:  We follows the arguments in [4, Proposition 6.2 & Theorem 6.3] line by line. From
the definition of the sequence 7; and the integer Nax (p.0)y,1p,0(X(w)) we have |X(w)ll, 5 (7 ri00] =
2K (p,0)y. Consider E :={w € W : T}, X(w) = X(w + h),Vh € H} then P(E) =1 by [14, Theorem
11.5] or [4, Lemma 5.4] or [16, Lemma 15.58]. For every w € E and h € F,, = {h € H :
IX(w =), <~} using (2.17) we have

2K(p7 0)7 = H’X(w)”|p,o',[7'i,T¢+1] =
K(p7 J)( H X(w - h)” D,0,[Ti,Tig1] + ‘Ti—i-l - TZ‘% H‘hmq,a,[n,n+1] )
< K(p,o)y+ K(p, o)1 — 7l2 |,

170X (w = h)

|||P,U,[Ti,7'¢+1]

IN

o,[Ti,mig1]

which leads to |41 — 7|2 || >~ and

q,0,[7:,Ti41]

q
10576, Tig1] Z7

g0
17172 Al

Hence using the fact that ||h]|? ; is a control function, by taking the summation on all possible
interval [1;, 7;41], we get

Nokory,I,p,0(X(w))-1
q0
Nok (p,o)y, 1 po (X(@))y? < 1] 07

q,U,V,[Ti,Ti-q-l]
—0

9o a0
< 12 IBlG 0. r < 112 Chup IRl

<

which follows (2.18). As a result,
{U) . NZK(p,O’)’y,I,p,o’(X(w)) > n} NE C W\ (B'y + Tn/C)

where K denotes the unit ball in %, B, + r,K := {z + r,y : € B,y € K} is the Minkowski sum,
2

ynd

and 7, := ERTLE The rest applies Borell’s inequality as in [4, Theorem 6.1 & Theorem 6.3] so
that )

P Nakc(poyn, po(X(@)) > n} < exp(263) exp (= 2).
where P(B,) =: ®(b,). This proves (2.19) and the integrability of exp{Nog (p,0)y,1,p,0(X(w))} (see
also [4, Remark 6.4]. O

Corollary 2.5 For |I| <1, then exp{Ny 1,,(x)} is integrable. Moreover, there exists a limit
1 n—1
Jim =3 P(exp {ANﬁy[MHma(x)}) - EP( exp {ANTMOMJ(X)}) < 0. (2.20)
k=0

Proof: The conclusion follows directly from the integrability of exp {mN 1, Jhp’a(x)} and the
Cauchy inequality that

m m
_ 1 1]
exp{Ny 190 ()} < [] exp{Ng 5 pr ()} < —> Jexp {mN %kapva(x)}’ "= [\Jﬂ '
k=1 k=1

Since X also generates a rough cocycle [2], it it easy to prove that

I%(Ba)lly.o15.0) = 1%y o (s 4a,t4a)

so that N i k1] p.0(X) = Ny j0,1]p.0(X(0rw)). (2.20) is then followed from the ergodic Birkhorff
theorem. O



2.3 Existence, uniqueness and integrability of the solution

Theorem 2.6 (Existence and uniqueness of the solution) Under the mild assumptions, there
exists a unique solution of equation (1.1) and also of the backward equation on any interval [a,b].

Proof:  Since there are similar versions for p - variation norm in [21] and [38], we would only
sketch out the proof here. We first solve the rough differential equation

dz = g(z)dxy. (2.21)

From [21], we could apply Schauder-Tichonorff theorem to conclude that there exists a unique
solution of (2.21) on Dﬁﬁ([a,b]) where = % + 0. Moreover, denote ¢(t,x,z,) = 2 to be the

solution mapping of (2.21) then we can prove that ¢ is C! w.r.t. z, and in the |-, |l .o - nOTM.
More specifically, by using Lemmas 4.2, 4.3, 4.4 and the greedy time sequence {7;(547, [a, b], p, o) }ien
in (2.14), where pu € (0,1) is fixed and M > % is a constant dependent of Cy, o, we can prove that

there exists a generic constant A = A([a, b], z4, Cy,x) such that

2M>

12— 2loogon < Allza = zall (14 exp {AN & 00 (0 }) (2.22)

2M

1.2 = Mgy < V20 = zallexp {AN & (a0 () }

A

In fact denote by ®(¢,z, z,) the solution matrix of the time dependent linearized system

d&; = ng(SO(ta x, Za))gtdxta

then & = ®(t,x, z4)(Z4 — 2q) is the solution of the linearized system given initial point £, = Z, — zq.
Assign ry := Z; — 2 — &, then r, = 0 and

to ol t
re = / [/ D,g(zs +n(zs — 25)) — D.g(zs) | (Zs — zs)dndxs +/ D.g(zs)rsdxs,
a 0 a
t
= e +/ D,g(z5)rsdxs, Vit € |a,b], (2.23)
where e is also controlled by = with e, = 0 and

: ! 1 )
leall < /0 1D29(2a +n(2a = 2a)) = D2g(za)lllZa — 2alldn < 5C4lIZa — zall".

From (2.23) it can be proved that

I lootas VIt s pogany < (el el ppian ) 5P {AN & 0ty p0(0)}
< Az = zallPexp { AN (o pr(X)], (2.24)

which proves o(t,z,2,) to be C! w.r.t. z,, with corresponding derivative ®(t,x, z,).
Using the integration by parts for the transformation y; = (¢, x,4;), it can be proved that there is
a one-one corresponding between the solution of

dyr = [Aye + f(ye)|dt + g(ye)dae = F(y)dt + g(ye)day. (2.25)
and the solution of the ordinary differential equation

0

U= {%(t7$7§t)} _IF(SD(t7$aZ7t))- (2.26)

9



Since the right hand side of (2.26) satisfies the global Lipschitz continuity and linear growth, by
similar arguments as in [38] there exists a unique solution given the initial value. That in turn
proves the existence and uniqueness of system (2.25). A similar conclusion holds for the backward
equation see e.g. [14, Section 5.4].

[
Thanks to the integrability of exp{N, (44 po(X)}, Wwe can prove the integrability of the solution
under the supremum norm || - || and the I+l .o semi-norm. The reader is also referred to [38] for
a similar version for the integrability of the solutions, defined in the sense of Friz-Victoir, of rough
differential equation (1.1). Notice that the solutions of rough differential equation (1.1) in the sense
of Gubinelli and in the sense of Friz-Victoir could be proved to coincide.

Theorem 2.7 (Integrability of the solution) For any interval a < b < a + 1, the seminorm
”|y7y/”|x’p7g’7[a’b] and the supremum norm ||y« (a5 are integrable.

Proof: Consider the solution mapping

M : D2 (ya, 9(ya)) = D2’ (ya, 9(¥a)),

t t
My = (o), where iy, =va+ [ Fludds+ [ glu)do.
Given 8 = ]% +o,q=5%and (y,y) € D , we would use the modified seminorm

H|y’ y/ma:,p,a,l = H‘y/‘”p_vau + ”’Ry ”|q,0,[7 where

[T

mlnl,max]”'

gt = (s 2 IRY I —ul” W) 2 17 Ry > [T

[u,v]€ll

Observe that
9(yt) — 9(ys)

1
B / Dyg(ys + nys,t) (Ystss + RY,)dn
0

1 1
= Dyg(ys)yss; + / [Dyg(ys + MYst) — Dyg(ys)} Yss,pdn + / Dyg(ys + nys) RY ydn
0 0
(2.27)

hence ¢(y); = Dyg(ys)y, where y' = g(y). Notice that

lg)'lle < Colly'lloo < Cylllyell + 9/l —var) < Collvall + Co lly. ¥l .0
lgllp—var < Collyllp—var;
o)l —var < 1Pyg@ oo 1911, —var + P9 19 llo0 < Co 99|10 + C Nl 3

where

Wl e < 118 lloo l2llysar + (T = )7 RV,
< Collvall Il + (T = 07 + lallyar ) N, (2.28)

A

On the other hand, it follows from (2.27) that

IRZY|| < Cyl|RY, || + c (e

10



which, combined with (2.28), implies

7]
S ColRlyar + 5Ol oo 1y o Wl
< Colt = s IRy + 5C2 Ny Nl
< SO e el + (Cylt =517 + 5O Nl Ul e+ 12 = 51%)) oI,

Now we compute

IRESOU = (¢ = 9 {IFwa)ll + Ly(Collgall + |

+H /St[g(yu) = g(ys))dzy

U |l o) 12l + Lp (T = @) RV, }

< (=) {Lelall + L Collyall + 199 ] p o) Voo + Ly (T = ) IRV, }
o @Ml + Co (el [ B0+ 1Ky 9@ ] oo )
thus MRH (v:9) can be estimated as follows
q70
‘HRH(y,y’)
q7U

< |T- all_"{LnyaH + Lp(Collyall + .9/l p o) N2l v + L (T = @) ||,/ }
+(C2yall + Co lly 5l ) 1N
1 1 1
+Ca llzlr {5C3 Nl all + (Co + 5C2 U0+ 5CE Malymrr ) 0¥ M }

+Ca Xl o { Co 5l o + Colall N2l ar + C2((T = &) + Wl ) W99l |-

In summary, we then get

D9 W)l ar + || B

< all{O2 Ul + LT = ) + Ly Cy(T = @)~ el g + C2 K
+5CaC3 1l ae Dl + CaC3 el e U1, |
HOIT ~ al” + Cyllellyue + Lo (T~ @)~ el + Ly 1T — ol + Cy X
+Calzly (Cot 502 Ml + 5C3 el
FCa Kl (Cy + CHT — )" + 2l ) } 19 - (2.29)
Denote by

1
M :=max{CaCy(1 + C}),Ls(Cy+ 1), 3}
the maximum of all the coefficients in the above estimates, then using the fact that

Izl —var < 1T = a|” [l

po <z

p70—7

11



we derive from (2.29) that

< 3M{IXl,,

x?p7o- -

x?p7o—

+ (T = 0)" } (Il

Defining for any fixed p € (0,1) a sequence of greedy time {7;(v, I, @)}ien as in (2.14) then the

estimate ||y, ||, , on each interval [7;, 7;11] has the form

e 1 1 S R Lt

Therefore by applying Lemma 4.1, we get

Ng% [a b] (x)—l
x7p707[a7b} S Nﬁ’[a’b}’a(x) Z x7p70-7[77-75777-’i+1]
=0
Nt (a8].p.0 ()1 .
< N faplpo(X) > HH%H- (2.30)
=0

To estimate ||yz || we use the fact that y is controlled by z to get

197all < MYllos,mmien < Nyl + Collymll 2l —var 7, 7] + (Tir = 72)7

p 1+p
< ly= 1 S
< lyzlli( +M+1*M)_

Z,p,0 7—177-14»1}

Hyn I, (2.31)
hence by induction

L+p ) -
Il < (T2 Tl ¥ =00 N gy )
We then conclude that
N [a,5],p S(x)—1
3870180
_ wo/l4p
z.p,0,[a,b] < Ngi[,[a,b],p,o(x) Z 1 _FL< ) H aH
=0
1 _ — 14+ u
< 5I8alN g oo exp { [N iy po(0)| log T2} (2.32)
Meanwhile the same estimate as (2.31) also shows that
_ 1+p
19l 01 < Nall exp { [N 1031000 log 7= ). (2.33)

Finally, the integrability of solution is a direct consequence of Corollary 2.5 on the integrability of
XPIN 10110 ()} .

3 Stability results

We now formulate the main result of our paper.

Theorem 3.1 (Asymptotic stability for rough differential equations) Assume% >U>v>
% and X.(w) is a centered Gaussian process with stationary increments satisfying (1.3). Assume
further that conditions (1.4), (1.5) are satisfied, where g € C} with coefficient Cy and X > h(0).
Then there exists an € > 0 such that given Cy < €, the zero solution of (1.1) is locally exponentially
stable for almost all realization x of X. If in addition X\ > Cy, then we can choose € so that the zero
solution of (1.1) is globally exponentially stable a.s.

12



Proof:  The sketch of the proof is as follows. We derive the equation for log ||y:|| in (3.1) and
the equation for ¢ in (3.2). With the help of Proposition 3.2 the estimate of [|(6, 6")[|, 24, (4, 15 then
given in (3.3). Notice that for Gaussian geometric rough path, then [z].. = 0, but we still compute

the estimates here for general rough paths. Step 2 is to compute all components in (3.5), in order
to derive (3.10) and (3.12) for log||y,||.- The integrability of exp {Nﬁ“[kj k+1}7p70(x)} then helps to
choose C, < € small enough so that the arguments in [11, Lemma 3.3] can be applied to prove the

local exponential stability. Finally, under the assumption Aq > Cf, we derive (3.13) and (3.15)
in Step 3. The estimates for Young and rough integrals help to conclude that there exists an in-
tegrable x satisfying (3.21), which follows the globally exponential stability for C;y < e small enough.

Step 1. We use similar arguments in [13] to prove that the solution of the pathwise solution of
the linear rough differential equation (1.1) generates a linear rough flow on R?, and that y; = 0 iff
yo = 0. Hence it remains to prove all the formula for y; and r;. By direct computations using (2.9),
we can show the following equations.

o |ly:||? satisfies the RDE
dllyell* = 2{ye, Aye + F(y))dt + 2{ye. g(yo))dae + (o) | dllos,

where 2(y, 9(y))s = 2(ys, 9(ys)) + 2(ys. [9(v)]5)-
o ||yl satisfies the RDE

1
dllyl| = m(yt,Ayt+f(yt))dt+

(g1

1
(e, g(yt)) dy
||Z/t”

(Yt g(yt)ﬂ d[z]o,s,

1 1
T el
/

where [y, 9(0))] =[] sr900)) + 1y [t 90)]

S

e log ||y:|| satisfies the RDE

o _ f(ye) 9(ye) 7()2 g(yt)Qx
dlogllyl = (6 A6+ T N+ {00, e+ [N = (60, T dleloa,

where [(0, %ﬁ; = (0, g(ys)> + (s, [M]/>-

e 0, satisfies the RDE

do, = [46,- (60, 406, + L) _ g, Tt )>9t}dt+[( Y _ g, 9W )>0t]dxt

Tl % Tl Tl % Tl
9) o o) o) 9(u) 12
w3 {300 =200, QDT — 15 P Yl
where
M_ M ,:M/_ M/_ 9(ys)\ 1’
Tl ~ @) = e = e gpee = [0 ip) oo
Assign

Glye. 0) = IWs) _ 909) =9(0) _ Jo Dyg(nys)ysdn
T s Iy lys|

1
= /0 Dy g(nys)8sdn,

13



then it is easy to check that

1G(y, Dllo < Cgi NG O)llp—var < Collylly—var + 16llp—var)-

Rewrite 6; in the form

6, = 9a+/ [Ae (05, A6 +"|0|§JSH) <98,Ji(y?j)>es]ds

+/ [G(ys,es) - <93,G(ys,es)>es}dxs
+/ %{3<93,G(ys,05)>293 — 2(05, G(ys, 05))G(ys, 0s) — ||G(?/s’93)\|293}d[x]0,5

t t t
- / P(ys, 0,)ds + / Qs 0,)dys + / H(ys 02)dz]o. (3.2)

We can prove an estimate for ||(6,6')| z20,ay- (The proof is provided in the Appendix).

Proposition 3.2 For all 0 < a < b, there exist a generic constant P = P(b — a,v — «) and a
generic increasing function Q(-) = Qp—qv—al-) such that

16,0 5., .
(b—a)*(3M)?
- et + (1l o) + 10y, p2a gy + Dol a2 g
41— it { s, ( 0.0 ([a.) ( 1))
Ly :
gl Iy + 5 (\uxm a1 + WXl 2oy + 1oy a2ary ) o (33)
where )
M := max {2(0f + | A]]), 96 Ko (1 + Co) C2(1+ Cy), 5} (3.4)

Step 2. It is now sufficient to estimate the quantity in (3.1). For any integer n > 1, rewrite
(3.1) in the integral form

f(ys)
[1ys |

t t
log el = logllyell + / (6, A0, + L)y 4 / (05, Gy, 0,)) s

* /: E!\G(ys,esw = {05, G(ys, 02))? ] dlelos

IA

S (y8798)>d:’v8

t
log lyall — Aa(t — a) + / h(llysl)

[ (3160017 = (62,1 00) 2] dich | (35

a

|

The Young integral in the last line of (3.5) can be estimated as

2
*C’ H Lla,t

/t [lllG(ys,Os)H2 — (0, G(ys,ﬁs»g]d[ﬂa,s

a

IN

[+ Ko Vel oy | (51600017 = 6,600

p—var,[a,t}

IA

2
509 ”| [l’] H| £ —var,A2([a,t])

+Kq ||| [LL‘] |||g—var7A2([a,t]) |:Cg2(my”|p—var + |||0|||p—var) + 2C§(|”y”|p—var +2 |||0|||p—var):|
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< %6‘3 Il e —var, a2 (fa.) + 3KaCy ] Iz —var,a2(a.0) (Cg Il —var + \HM’\Hx,p)
+5KaC2 115 varaz(iay (205 Wellyvar + 110€/[., )

< 2N, so(iany + 13K NN ro(in ) Dl
KGNl —var s2ay (3191, 50100,

< 2Oy s20)  1BKaCE NN sar 5210 17y e

1
v, + 22 o0, 69)

1
HITEEC] NI} —var a2 (o + 5C5 |

Meanwhile the rough integral can be estimated as

<]

[ 0.6t 0)a.
(B> Gy 00)) 22 — all + |10, G5, 0)),
+Ca (Il var o | RO

[pew|

+ H‘ <97 G(:U: 0)>/H‘p—var,[a,t] ”|Xm %7var,A2([a,tD )

L —var,[a,t]

< Cg |||‘T|||p—var,[a,t] + 503 |||X|”g—var,A2([a,t})
+Coz< mx’”pfvar,[a,t] H‘R<97G(y,9)> + H‘ <9, G(y7 9)>/H‘p—var,[a,t] ”’Xm 5 —var,A2([a,t]) ) :

(3.7)

£ —var,[a,t]

To estimate the brackets of the last line of (3.7), we apply (4.8) and (4.9) to get
116, G, )|l -

16", 60O, + [0 55 00
Co IO/l vnr + Collvllysae + 190, ) [0l + Cyll s 1Ol
0y (Wl o 110+ 100, 18+ 15[

Oyl oe 16, var + Co (Nl var 1910 + 11, or )

< 100G (Colelly—var + [19:¥/ll..,, ) +13C3 (2Cs lelly—var + (16 ¢/l
P P

IN

e ,

p—var p—var

IN

which, together with Cauchy inequality follows that

23
146, G (s 0)' e XKW g v a2(ta) < 36CG Nty 1Kz v 20ty + % C5 WX v, a2 10,1
13

2 2 2 2
+5C5 v v/ I, + 5 C5 19,911, (3.8)
In addition,
m R{0.G.0))
%—Var
< Wy 6Ol 16O [P+ [0,
2 2
< Colloll,—var Wyl p—var + N101l,—var) + Cy H)Rf’ -
2
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0
+Cy (IR g v+ 19 oo Wl Wl + | B, 167 U 06 )
2

< Cylly.v'll,., +2C 16,6l + C2Uolyar (Co Uzl + w1,
202 ellyae (20 Dol vur + 16,911, )
Cy (26, 1l e+ 100, ) {3C0 ol —one + (1l3-¥/]

which together with Cauchy inequality gives

o 1000, ) }

(0,G(y,9))
”|xmp—var R g—var
i 9
< 500 lolpmsme+ Co llyn I+ Co 0,01, + 565 Wl v+ 66 Bl + 56 Bl
29 L L . :
+ 2 C Nl + 5C2 o0 I3, + 5C2 N8N, + 5o llws ¥ I, + 5Co 10011,
)
< SO Il e + 11CE Nl + 17C2 [l o
+(Cy + Cg2)< v, y’mim + |6, gxmip + v, y/mip + |16, H'H‘ip ) (3.9)

Combining (3.6), (3.7),(3.8), (3.9) to (3.5), we conclude that there exists a generic constant A and
a generic polynomial k1 (Jzlly , Xl  I[e]lla) such that

t
log el < log el + / [ Aa+ h(llysl)ds
gt (Ul g+ 1K 2 s 2y D2 v (1)

FOA( 0O iy W Iy 1001 oy + M-

i,p,[a,t] ) :

Using (3.3) and Cauchy inquality, and with the generic constant A and the generic polynomial x4
if necessary (that is possible since o < v), we conclude that

log [y
t
< g uall + [ [~ da el + Cy) s

4 / %
z,p,|a,t] + my’y mx,p,[a,t] }
(3.10)

+Cqr1 (Il o, » XN 20, A2 0,07) > NN —var. a2 fa)) + CgA{ Jlv: /|

To estimate [ly, y'l,, (a,]> We apply (2.32) with generic constant A to conclude that for any a <t <
b<a+1,

m m

my’ y/mz,p,[a,t] =< |Hy’ y/mz,p,o,[a,t] < AHyaHmN:iM,[a,b],p,a (X) exp{mANﬁv[a»t]apﬂ (X)}

A

1 2m 1 N
Allyal®™ + SA exp {QmANﬁia’t],na(x)}. (3.11)

By replacing (3.11) into (3.10), there exists a generic polynomials with all positive coefficients

P ( exp {N S Jatlpo (X) })

such that

t
log ] < 1ogllwll + [ [ = Aa bl + Cy]ds

16



+Cg’%1 ( mepfvar,[a,t} ) ’”Xmgfvar,A%[a,t]) ) m [JE] |H%7var,A2([a,t]) )
+CyP(ex0 {N . f0pe)}) + Comallall). (3.12)

M
where !
ko(z) = iA(z8 + z%>,
for some generic constant A. Using (2.6) and (2.20), there exists for almost sure all = the limit

n—1

nhjgo " kzo H1(|H96’|||p_var,[k,k+1} ) ”’X|”g_var,A2([k,k+1]) M) |||g_var,A2([k,k+1]))

= Bra(lllp—var o1 - IXN 2 —var, 220,17y > W21 —var, a2(i0,17)) = #1 < 003

and lim 72P<exp{ NLN [l ke+1],p,or (X )}) :EP<exp{AN [0.1]p0 (X )}) = P < oo,

n—oo N

we can use (2.33) and the same arguments in [11, Lemma 3.3 & Lemma 3.4] to conclude that the
zero solution of (1.1) is locally exponentially stable.

Step 3. Assume that A4 > Cy and assign A := A4 — Cy, then e?'||y;||? satisfies the RDE

AP el = 262 (Nl + (s Aye -+ () )i+ 262 (e, g0y + € g |Pdlalo, (3.13)

where

/

P g@)] = el 9) + e a2 | + 226 (0, 9(02)
= 2 [lg ()l + (s Dy()g(us))| + 2262 11, 9(52))-

Rewrite in the integral form
t
yll> = yoll® +2 /0 e (Nl + (s, Ays + £ (1)) ) ds
t t
w2 [ gude, +2 [ gt Palel (3.14)

Using (1.4), the first integral in (3.14) is then non-positive, thus for any n € N

A yall? < |ryou2+22H [ e estune,

2H [ s,

(3.15)

The Young integral in (3.15) can be estimated as

| / gy Pzl

oo (G2 sl + K e o)) )
< Moy vnen { O3 Mol K (|| N2 g + 206 oo sl @) o DOy ) }

Nl var sy { €262 sl + 5 (CR = )y, 1y + 2026yl oy Wl o)) -

IN

IN
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Since

N

wymp—var,[s,t] — ||y ”OO S t] |||x|||p var [5 t] + (t - S |Hy’ y |H 7p’0.7 s t]
Cy ] oo ls,] T (£ —5)

IN

p—var, 7p707[87t] ’

by using (2.32) and (2.33), we conclude that there exists a function r1(t—s, [|£]l,_var 5.4 » [ g—var,(s.49)
with

Er(1, mep var,[0,1] HH ]H’q—var,[O,l]) <00 (3.16)
such that

|/ g ) Pl

< Cg’%l(t -5 |||:E”|p—var,[s,t] ) ||| [l’] |||q—var,[s,t])€2>\s||ysHQ- (317)

Meanwhile the rough integral in (3.15) can be estimated as

t
H / X (Y, 9(yu) ) day,

< XClys| =]

p—var, [Svt} +

RO [ —"

+Cq (Illﬂflllp var,s,{] H‘Re s ‘H "

g—var,[s,t]

[ (00 LI —

(3.18)

p—var,[s,t]

Hence by using estimates (2.32) and (2.33) and similar technique in Step 2 for estimating the right
hand side of (3.18) we conclude that there exists a function ra(t—s, ]|, _var (s, + IXll g—var, 5.4 > 12 g—var (5.9
with
Era (1 12/, —var, 0,17 - 1M g v, 0,17 » 1] lg v o,17) < 00 (3.19)
such that

t
H /S M (s 9(yu)) e

S CQHQ (t - 8’ |||:L‘|Hp—var7[s7t} Y H|X”|q—var7[s7t] Y m [IE] |||q—var7[s7t})e2>\5||y5||2‘ (320)

By replacing (3.17) and (3.20) into (3.15), we conclude that there exists an integrable function
k(...) = k1(...) 4+ Ks(...) such that

n—1

62/\n”ynH2 < Hy0||2 + Z 2095(17 ”|xmp—var,[k,k+1] ’ |||X”’q—var,[k,k+1] ’ w [IL’] ‘Hq—var,[k,k—l—l])62)\k“ykHQ‘
k=0
(3.21)

Similar to the arguments in Step 3 of [11, Theorem 3.5], we apply the discrete Gronwall lemma in
[12, Lemma 4] to conclude that

. 1 1
hiisup 2 lOg ||yt|| < -A+ §E10g |:1 + 209H<17 |||x|||p—var,[0,1] ) |||X”|q—var,[0,l] ) ||| [.7)] |||q—var,[0,1} >:| :
00

Hence there exists a e small enough such that for any C; < ¢, the zero solution is globally expo-
nentially stable a.s. We note that unlike the local stability, the integrability of functions s is not
necessary, but only the integrability of log(1 + Cyk(...)).

]
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4 Appendix

4.1 Some technical lemmas

Lemma 4.1 Let z € CP([a,b],RY), p>1. Ifa=70 <7 < --- <7y =b, then

N-1
p—1
lellpvarary < N7 D Mellpvar
=0

N-1
p=1
N » E |||$|||p,a,[Ti,Ti+l] '
=0

IN

11,00

Proof: The first estimate is a direct consequence of [6, Lemma 2.1]. The second estimate is
followed from the inequality that

(a1 +...+ap)P(by+...+bp) P < kp‘1<a§’b1"’p +..+ agb,;"p), Va;,b; >0,i=1,...,k.
O

Lemma 4.2 Given § = % + o, , assume that (y,y') € D (I) and [y = fst yudy. Then (I,TV) €
DQZC'B(I) with T = y. Moreover for any I such that |I| <1

1Tl s < (Wit + Cogrt + D N W ) (017 + Wl + WKl ) (41)
Proof: Tt follows directly from (2.7) that (I',I") € D2°(I,R%) with I, = y,. As a result,

W, v r = Wlpvars < 19 oot Nlp—vars + IR g 1
(lymin £+ 119l e, ) Wl v g + 7 MR - (4:2)

IN

On the other hand,

t
IRE = [ e,
S

which implies

< 9 oo 11X

+ Colt = 517 (12l var DRy + 1191 150 )

IR, o < it 11911, ) WKl + ot Ul + UKDy ) 1928 - (4:3)

Combining (4.2) and (4.3) and using |I| < 1 we get

(e
< Wit + 19 D Wt UKl ) + 1217 1958, 00
+Cop 1) (U2l va + W g ) N1 501
< Wi 102y s + 0% ) + (117 + Bl sars + WXl 0 ) Cpgr + D 195
which implies (4.1). O

Lemma 4.3 Assume that g € C3 with coefficient Cy and z, = g(yu). Then (z,2') € DgB(I) with
2t = Dg(ys)y. and for any |I| <1 we get

2

2ot )| (1t + |

1
pod + 5 12 09 s ) (40)

3
< Cy[ 1+ 11y oo (117 + 5 lle

/
252 mz,pp',f
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Proof: Since
1 1
9(y) —glys) = / Dg(ys + nys,t)ysedn = / Dy (ys + nys1) (Yswss + R, )dn
0 0
1 1
= Dg(ys)ystss + | Dg(ys +nys:)RY dn + / [Dg(ys +nys.) — Dg(ys)]yswsdn,
0 0
it follows that 2. = Dg(ys)y, and

1
17541 < Coll B, +/0 Conllysellly lloc,r |5 ¢lldn,

so that

1
1R y,0,r < Co IR N g.0,1 + 5Co 119 lloo,r N2l

”q,a,] p—var,[ ?

where

Iy —ars < 19 ooyt Wl + 1117 R s
(e (A 1Y g T WP g 2

(11 4+ Ul ) (Wi 1+ 199 s )

IN

IN

On the other hand,
12— var < NP9 s < Co 1]z + Cooll oot Nyl -

Hence given |I]| <1 we get

z,2a,1
< Colly s + Col ot Wl s+ Co RN s + 5 Coll et Wy 1 Wl
< Colly 9 lyns + Coll e (14 5 Wl ) U1+ Wy ) (Wi sl 4 191
which follows (4.4) due to |I] < 1. O

Lemma 4.4 Assume that g € C} with coefficient Cy and z, = g(§Ju) — g(yu). Then (z,2') € D%B(I)
with 2, = Dg(ys)y. — Dg(ys) v, In addition for any |I| <1 we get

H}Z’ Z,‘Hx,p,a,[
/ z,p,o,1 + my’y/mx,p,cr,l} X

X (Hgminl - yminIH + Hy;ninl - yénin[H + my - Y, :U/ - y/mw,p,a,[ ) . (45)

< AC (1 + Nl o + 1117)2 15

Proof: A direct computation shows that

zst = 9(U) — 9(yt) — 9(¥s) + 9(vs)

Dg(ys + 0Ts,t) st — Dg(Ys +0Ys,t)Ys, t} dn

9s +ns.) R, — Dg(ys + nys t)Ri’,t] dn
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1
+ /0 [Dg(?is + N¥s,t)Ys — Dy(ys + nys,t)y;} s ¢dn
1 —
= /0 | Dy (s + 0ot RY, — Dglys + nyse) RY, | dn + [Dg ()5 — Do (ys)yils
! ! 2 2
+ /0 /O [D 9( s + Gs,) [Tt Us) — D9(Ys + m1Ys,t) Ws,ts Yo | NI T 5 e,

This shows that 2, = Dg(ys)y., — Dg(ys)y, and

ot = Dg()y — Dg(ys)ys — Dg(ys)is + Dg(ys)ye
= [Dg(y:) — Dg(us)5: — [Dg(ye) — Dg(ys)lyi + [Dg(Fs) — Dg(ys)|Fs.e — Dg(ys)[Fs,e — s 4]

1
= / [D2g@s + ngs,t)[gs,ta gé] - DQQ(QS + nys,t)[ys,t’ y{t]} dT]
0
+[Dg(ys) — Dg(ys)Fs.s — Dg(ys) [Fs,e — Ys.ol:

which implies that

12/ vme < CollF = oo + 15 = 3lloo| 1Tl var 15 o0 + C 1T = Yl 17l
+Co Iyl 17 = oo+ Collg = Yllow 15—y + Co 17 = ¥/ (46)

A similar estimate shows that

IRy < CollBON,, (15— ylloo +117. = 3.lloc| +Cy || B — RY|

q?o.

+ 1l { CollT oo N —var (17 = Ylloe + 117 = 9.l
+Coll oo 17 = ¥lp—sas + Co Il 17 = ¥l -

Therefore

Iz 2'[l, .o (4.7)

< {II.@ ~Ylloo + 17 = lloo 17 = Yl pevar + 17" = ¥ Nl + |17 = V[, + I BY — B[ ., } X

x {(CgHﬂ'Hoo 171, —var + Co 1l —var) X + 20, 0) + Cg + Coll loo (1 + N2l ) + Co 17,7 |, }
Note that
17 = ylloo < NFmint = Yminzll + [Finin 1 = Yrin 2117 N2l + (17 + Nl o) |7 = 9.5 =¥, 0
17 = Yillo < NFtmins = Yonin M7 N2l + A7+ D2l ) 17 = 9.7 = V[, 05
19 = lp—var < I N2l o 10min s = Ymmin g+ (L7 + D2ly ) 15— 9.7 = ¥l 0
17 =Yoo < Tmins — Ymin 1]l + m?]—yaﬂ/—y/mx,na;
|||ijp_var < HgminIH + Hg;nlnfmj‘g |||x“|p,o' + (’I|0— + Wx p,o') H'Zj’ gle,p,U )
Il —var < 9min 2l + 9 N1 D2l + (217 D2l o) 96,0 -
Replacing all the above estimates into (4.7), we get (4.5). O
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4.2 Proofs of auxilliary propositions

Proof: [Proposition 3.2] We are going to estimate the Holder norm of 6 using equation (3.2).
Consider the solution mapping M : D2¥(04, Q(za, 04)) — D2*(04, Q(4,0,)) defined by

M(ea 0,)15 - (F(Q, Hl)ta Q(yta 915))7

where F' is defined as the right hand side of (3.2), together with the seminorm

16N, = 1M, —oar + |2

s MO0, 0 = 1ROl e + || 7O

L _var

p_
5 —var 3

We are going to estimate these seminorms. From ' = Q(y,6) and y' = g(y), it follows that

10w < Mo U+ |, < 2C Wl + (10,91, (48)
Whyoew < 119l B2l + 1R < C Nl + [l (4.9)
1QCW, D) —var < 201G, Ol —var T 2C 0]l )—var < 4Cq 101l ,—var + 2Cq 91l var ; (4.10)
QY. 0)le < 2(|G(y,0)]lec < 2Cg;
IH(y,0)e < 3|G(y,0)]% <12C75;
IH (@, 0, var < OIG W, ONZ MO, var + 1G(; O)lloo 1G(y; Ol yar < 6C (2 ([ M—— |||y“|p—var>'
Meanwhile
0Q oQ
r o Y% o, Y% /
[Q(y7'9)]s - ay (ySa 05)y3 + 60 (y87 98)95
. 0G , 0G , 0G ,
= 8y (yéh Qs)ys <95a &U (ym 08)y5>08 + o0 (y& 93)93

oG

_<0;7 G(y8798)>95 - <987 G(ysa 98)>9; - <98> %

(ys,05)0,)0s,

where ) .
oG oG
— = D Ond — = D dn;
oy /0 yg (ny)0ndn, -5 /0 y9(ny)dn;
which, together with 6/ = Q(y, 0) and y' = g(y), derive

QG 0l ar

< Cy(IWhpvar 1 oo + 000 19 o + (11— )

+Co (21 lloo W00+ U9 15"l + 100 15"l + 151,y )

2 (161, e + 18"l BOU, i + 216" N0, + 216l Ml v )

+C (U5l 19 oo+ 101 ) + C (206 10— var + 10—+ 16 Wl )
< 20 (19l var 19 e + 18 + 2 000 181+ 2 0]y

3 10l —var 19100 + 416 lloc 101 )
<

20!] (Cg |||y|||p—var + mg(y) |||p—var + QCQ |||'9Wp—var + 2 H’Q(y7 9)”|p—var

+6C; Iyl —var +8Cs 160 )
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< 1202 (2ol var + 3100, )

and
1Q(w.6) llco < 2C, (1 loe + 2161 ) <20, (C, +4C,) < 1002,

Hence by using Holder inequality, we get

IR

/ 1P, )+ 1@, Ol + I (5, 0) oo+ Kot R, Ol N5
+Ca (el [|E20],_ L+ 190 Ny 12—

2(Cy + Al — ) + 1007 | Xy el| + 12C7 || [2]s.¢

6K C2 1z var (2100 e + 150 )

+Ca (Nl || RO, +12C2@ Uyl v+ 3100 ae) XK g s ) (4.11)
2

IN

IN

On the other hand

0
IR < Q000 = QUunnb) — G208kt

0
+ Q(ys7 Qt) — Q(y87 95) - ??(y& 98)0;1'5715
1 ] 0
5 o = 1.00) = G200l s
1 aQ 8@ /
+/0 H%Gpsjes + 77(015 — 95)) - %(:L’&es) ”65"”$57t“dn

+ /01 H??? (ys +0(ye — ¥s), ef) Hd” IRY 1| + /01 H%Cg (ys, Os + (0 — 95)) Hdn 1R

thus
| rew)
2 _var
< CollRNg—an + Coll oo el Wolly—sns + Co [| ]+ Col e Wl 1o
< (1 |, )+ M Ul + 205 el U
S PRNES 1 PN Eater] T M (7 R [T M

Combining these above estimates into (4.11) and using (4.10), we get

e

e T 1QE Ol

< 2(Cr + AT ~ @) + 1065 Xl _ o, + 1265 2]l

—var var

+65aC2 s —var (2160 -var + Wy ) +2Co (Wl s + 2000, )

0 2 2
+Ca{ Colltly e (VMg | R, )+ COMI e (Wl + 2100, 1)
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F12C2 (20l + 30Oy ) UK }
< 2Cy+ AT - @) +10C2 X, + 12C2 ]

—var ||| g—var

+(2C5 + 6KaC2 Il s sur + CaC2 Il v + 24CaC2 Xl s vy ) Il var

||| £ —var
+(4C, + 12K C2 ]
+CoCy |

+ 202 C2 a2 gy +36CaC2 Xl s v, ) 161

”| £ —var p—var

Ys y/H‘x,p + Can H}07 QIH‘x,p :

p—var

Using (4.8) and (4.9), it follows that for any a < T such that T'—a < 1 we get

[zren|, + 16w O,
< 2ACs + AT — @) + 10C2 1KYy +12C2 2]l 5 var
+(2C, + 6KaC2 allly —var + CaC2 Il — s + 24CaC IR N5 _var ) (Co Il o + |
+ (4G, + 12KaC2 Ul _yay + 2CaC2 1l + 36CaC2 IXllz v ) (2Cy lolyovar + |
+CaCy ||y, ,, + CaCy 6,6,
< 2(Cs+ AT — @) + 10C2 1Kl _py +12C2 2]z var

+(10C; + 30KaC2 allly ur +5CaC2 N2l g +96CaC2 XI5y ) Co l]

||| £ —var p—var

2 2 2
+ CaC2 ]2 e + 24CaC2 Iy _vor ) |

p—var

p—var

+(2C, + 6K, C2 1 [2] .9 |l

[
S —var

+(4C, + 12K C2 ] + 2CaC2 20} s +36CaC2 XN 5 _ya ) 16,0,

||| g—var p—var

Using (3.4), it is easy to check that

e

UG Ol

2

< M{T = at X0 + 1llp s + 1l var
2
(¥ e + 021 + W2l s ) Ul } (1 18001, + 9., )
< M{T =0+ IXlp_ e + 2l var + 1ol var

vvl.,)

0.,,)

o (U e + 022+ g e ) Bl (1 sl ) (14 16,970, )-

Now construct for any fixed pu € (0,1) a sequence of stopping times {73 }ren such that 79 = a and

Tk+1 — Tk + Wx|”p—var,[7'kﬂ'k+1] - ”|XW%‘Var,AQ([Tkﬁkﬂ]) +[lf«] ”|12’)_Var’A2([T’“’T’c+1D
7
= <1,
2M (X +ly, 'z o))

for all k € N, then it follows that

£ —var, [,k 41]

H‘Q(y’ 9)”|p*"arv[‘rkﬂ'k+1] + H‘RF(GW)

SM—FMH}H’QIH‘JJ,;)

Hence using the fact that 6’ = Q(y, 0) and F(0,6) = 6 we conclude that

.00, <t

7p7[Tvak+1} 1 — /J/
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(4.12)

(4.13)



Therefore by applying Lemma 4.1, it follows that

N-1

p—1 p=2
[CZT D DY G ] RS L M.
=0 : o
< LN1+% < LNZ,
1—p L—p

where N = N [a,b],p(X) is the number of greedy times 74 defined in (4.12) in the interval

[ S
2M (1 ly [l )

[a,b]. It is easy to see that

b—a > (x) x

Y U —
2M<1+|”y’y/mz‘p) J[a.b],p

N

«{ L (1 4+ 0l gy + WKl 20y + Nl ooy )}
2M(1 + ”’yu Y H‘x,p,[a,b]) Y ' ' ' '

All in all, we have just shown that for all 0 <a <b <1

(1A Hl)mx,p,[a,b]
: (bu)m(jM){ (1 B 0+ Wb ) (14 W )}
= m [1 +lv. ylma%:,p,[a,b]] [1 + (”’xmv,[a,b} IRl 82 10,61 + H2ll20, 82 (a0 ) 2}
< SO W+ (Vs Wb+ ol )
% [ ?/IHf,p,[a,bJ + %( 8ol gty + Xl 520y + N1z, 02 ) ) % -
which proves (3.3). -
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