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Abstract. We prove existence of global minimizers for a class of attractive-repulsive
interaction potentials that are in general not radially symmetric. The global mini-
mizers have compact support. For potentials including degenerate power-law diffusion
the interaction potential can be unbounded from below. Further, a formal calculation
indicates that for non-symmetric potentials global minimizers may neither be radial
symmetric nor unique.
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1. Introduction

Energy functionals with attractive-repulsive interaction potentials have received a lot
of attention in the recent years. In most cases, however, the interaction potential is
assumed to be symmetric. To the best of our knowledge there are only few results
available so far for non-symmetric potentials. Examples are [14] and [7]. In this paper
we analyze minimizers for not necessarily symmetric attractive-repulsive potentials and
consider the following energy functional

(1.1) E(ρ) =
ε

m

∫
Rd
ρm(x)dx+

1

2

∫
Rd

∫
Rd
W (x− y)ρ(x)ρ(y)dxdy , ε ≥ 0,m > 1, d ≥ 1.

Here ρ ∈ Lm ∩ P(Rd) for ε > 0, and ρ ∈ P(Rd) for ε = 0, where P(Rd) is the set of all
Borel probability measures on Rd.
The potential W may be non-symmetric and is not necessarily negative, and there-
fore may contribute to repulsive effects. For symmetric potentials many results on the
existence of minimizers have been obtained.

For ε = 0, it was shown in [3] that a minimizer of (1.1) exists if

(H1) W is bounded from below, i.e. W (x) > −C1 for a suitable constant C1 > 0.
(H2) W ∈ L1

loc(Rd).
(H3) W is symmetric, i.e. W (x) = W (−x) for all x ∈ Rd.
(H4) lim|x|→∞W−(x) = W∞ exists, where W− denotes the negative part of W , and

w.l.o.g. W∞ = 0. Furthermore, W is unstable, i.e. there exists ρ ∈ P(Rd) such
that E(ρ) < 0.

(H5) W is lower semicontinuous.
(H6) There exists an R6 > 0 such that W is strictly increasing on Rk−1×[R6,∞)×Rd−k

as function of the k−th variable, for all k ∈ {1, 2, · · · , d}.
Remark 1. (H6) is needed to obtain compactness of minimizers. (H6) is weaker than
assuming that there exists an R6 > 0 such that
W (x) > W (y), for all |x| > |y| ≥ R6.
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For ε > 0, minimizers of (1.1) are well studied when W is radially symmetric and
purely attractive (see e.g. [11], [10] for details and further related references, [15] for
m = 1 and not necessarily negative W in the periodic setting, and some more recent
results in [6], [4]).
Our main aim in this paper is to prove existence of minimizers for non-symmetric and
not necessarily negative W , and to analyze their characteristics. Thus condition (H3) is
not needed for our considerations, and we have to replace (H6) as indicated in [3, Rem.
2.8] by e.g.

• There exists an R6 > 0 and an 0 < δk ≤ R6 for every k ∈ {1, . . . , d} such that
W (x− δ) < W (x), for all x ∈ Rd with xk ≥ R6.
Further W (x+ δ) < W (x) for all x ∈ Rd with xk ≤ −R6.
Here δ := (0, . . . , 0, δk, 0, . . . , 0) ∈ Rd with the k-th coordinate being δk.

We assume even more generally that

(H6) There exists an R6 > 0 and an 0 < δk ≤ R6 for every k ∈ {1, ..., d} such that
1
2
(W + W−)(x − δ) < 1

2
(W + W−)(x) for all x ∈ Rd with xk ≥ R6, where

δ := (0, . . . , 0, δk, 0, . . . , 0) ∈ Rd with the k-th coordinate being δk.

Remark 2. An equivalent statement to (H6) would be, that there exists an R6 > 0 and
an 0 < δk ≤ R6 for every k ∈ {1, . . . , d} such that 1

2
(W +W−)(x+ δ) < 1

2
(W +W−)(x)

for all x ∈ Rd with xk ≤ −R6 where δ = (0, . . . , δk, . . . , 0).

Condition (H6) is needed to prove that two separated parts of the support of a minimizer
of E cannot be arbitrarily far from each other.
For ε > 0, we can relax some of the previous conditions. More precisely, we consider a
not necessarily symmetric potential W which fulfills (H4), (H6) and

(H2) W+ ∈ L1
loc(Rd) and W− ∈ Lp,∞(Rd), where p > max

{
1, 1

m−1

}
,

instead of (H2). Here W+ denotes the positive part and W− the negative part of W .

Remark 3. An example satisfying (H1), (H2), (H4), (H5) and (H6) is

W (x) =
C1

|x|α + 1
− C2

|x− x∗|β + 1
, 0 < β < α, 0 6= x∗ ∈ Rd, and constants 0 < C2 < C1.

First, we briefly review some known results regarding minimizers of E .
As already mentioned, for ε = 0, the existence of a compactly supported minimizer of
(1.1) was proved in [3], assuming (H1)-(H6). See also [16] and further references therein.

The case ε > 0:
For d = 3, and m > 4

3
it was proved in [1] that a minimizer exists, when (−W ) is the

Newtonian potential.
In [13, Prop. IV.1, IV.3 and Rem. IV.8] existence of minimizers was proved for
0 ≥ W ∈ Lp,∞(Rd) being radially symmetric, 1 < p < ∞, m > p+1

p
, inf
ρ∈Lm∩P

E(ρ) < 0

and either m ≤ 2 or W (r)d+W ′(r)r ≥ 0 for almost every r ≥ 0.
In [14] existence of minimizers for E(ρ) with non-symmetric potential W was proved
by showing that every minimizing sequence is relatively compact if and only if strict
subadditivity holds for E(ρ). This is the case for m ≤ 2, when there exists a ρ with
negative energy. For m > 2 the result was shown under suitable growth conditions on
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W in [14], Cor. II.1 and Rem. II.5.
In [2], existence of a minimizer was ensured for 0 ≥ W ∈ Lp,∞(B1(0)) ∩ Lq(Rd \ B1(0))
being radially symmetric and monotonically decreasing, 1 < p ≤ ∞, 1 ≤ q < ∞, and
either m = 2 and ε < ‖W‖L1 , or m > 2.

One could consider the critical case m = p
p+1

too, in case ε > C for a suitable

C = C(W ) > 0, as it was done in [1], [13], and [10]. This is quite technical, since one
roughly has to specify the constant C. Therefore we do not deal with this case here.

Our main result for possibly non-symmetric potentials W reads as follows:

Theorem 1. (a) ε = 0:
Let W : Rd → R∪{∞} satisfy (H1), (H2), (H4), (H5), (H6). Then, there exists a global
minimizer ρ ∈ P(Rd) of E in (1.1). Furthermore, there exists a K = K(W,d) > 0, such
that every minimizer of E has compact support with diameter ≤ K.
(b) ε > 0 and m > 2:
Let (H2), (H4) and (H6) be satisfied. Then, there exists a global minimizer
ρ ∈ Lm(Rd)∩P(Rd) of E. Furthermore, there exists a constant K = K(W,d) > 0, such
that every minimizer of E has compact support with diameter ≤ K.
(c) ε > 0 and 1 < m ≤ 2:
Let (H2) and (H4) be satisfied. Then, there exists a global minimizer ρ ∈ Lm(Rd)∩P(Rd)
of E. If additionally (H6) is satisfied, then there exists a constant K = K(W,d) > 0,
such that every minimizer of E has compact support with diameter ≤ K.

Remark 4. (i) For ε > 0 and 1 < m ≤ 2, one can show that every global minimizer
has compact support by assuming (H2) and (H4). A uniformly bounded size of
the support is, however, not clear, unless (H6) is assumed (see [3, Rem. 1.6]).

(ii) Suppose that W− ∈ Lp,∞(Rd), W+ ∈ L1
loc(Rd), 1 < p ≤ ∞, W (x) → 0 as

|x| → ∞, inf
ρ∈Lm∩P

E(ρ) < 0, and either m > 2 and (H6), or m ≤ 2. Our results

do not need radial symmetry as was assumed in [2]. Further, our potential W is
not necessarily negative and may not fulfill all conditions assumed in [14]. We
generalize the results for m > 2 here and recover the cases for m ≤ 2.

(iii) The method of our proof is based on the strategy given in [3], where an attractive-
repulsive energy without a diffusive part is considered. We extend the approach in
[11] where, among others, the method from [3] is used to prove existence of mini-
mizers for ε > 0 and W being radially symmetric, bounded and purely attractive.
The ideas in [3] share similarities with the approach in [1], by first reducing the
problem in Rd to BR(0), the ball with radius R around 0.

(iv) In (H4) it is assumed that W is unstable. For general potentials, this is certainly
not true. We give some conditions for m, ε and W such that

inf
ρ∈Lm∩P

E(ρ) < 0 (see Lem. 6 and 7).

Our paper is organized as follows. In Section 2, we present the proof of Theorem 1.
Section 3 provides some conditions for unstable potentials. Further, we give a formal
argument for a non-radial minimizer in case of a non-symmetric potential.
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2. Proof of Theorem 1

For convenience define
f−(x) := f(−x) and PR(Rd) := {ρ ∈ P(Rd) : supp ρ ⊂ BR} for all R > 0.
Case (a) ε = 0 in Theorem 1 is the simplest one to prove.

Proof of (a), Theorem 1: First note that a minimizer of the energy E in (1.1) with
potential W is also a minimizer of the same energy with potential W−, since∫
Rd

(W ∗ ρ)(x)ρ(x)dx =

∫
Rd

∫
Rd
W (x− y)ρ(y)ρ(x)dydx =

∫
Rd

∫
Rd
W (x− y)ρ(y)ρ(x)dxdy

=

∫
Rd

∫
Rd
W−(y − x)ρ(y)ρ(x) dxdy =

∫
Rd

(W− ∗ ρ)(y)ρ(y) dy.

Thus assuming (H6) would not be sufficient. We need to control W− at infinity, therefore
we assume (H6) instead of (H6). The problem can now be reduced to the symmetric
case via the symmetrized potential 1

2
(W +W−), and thus (following the same procedure

as in [3]) the case ε = 0 is also valid for non-symmetric potentials. This completes the
proof.

Now consider ε > 0. For any m > 1 a minimizer ρm of E satisfies

(2.1) ερm−1m +
1

2
(W +W−) ∗ ρm = 2E [ρm]−

∫
Rd
ε
( 2

m
− 1
)
ρmm(y) dy

in supp ρm (see e.g. [10], [11]). Since in our situation W + W− is in general not purely
attractive, we have to modify existing techniques in a subtle way. From now on, we
assume any of the hypotheses (H1)-(H6) and (H2), (H6) only, if this is explicitely
stated. We will prove both cases, (b) and (c), in Theorem 1 via a series of lemmas. The
first step is to show that E is lower semicontinuous. By modifying the proof in [14, Th.
2.1] (also used in [8, Lem. 3.3] and [9]) for our problem in BR(0), we obtain

Lemma 2. Let W− ∈ Lp,∞(Rd) with p > 1 and m > p+1
p

. Then the energy E in (1.1) is

weakly lower semicontinuous in Lm(BR(0)).

Proof. Obviously, the first term of the energy E is weakly lower semicontinuous. There-
fore, it is left to prove that∫

Rd

∫
Rd
W (x− y)ρ(y)ρ(x) dydx ≤ lim inf

n→∞

∫
Rd

∫
Rd
W (x− y)ρn(y)ρn(x) dydx

for a sequence (ρn)n∈N ⊂ Lm(BR(0)) converging weakly to some ρ ∈ Lm(BR(0)).
It is sufficient to consider WS := WχBS(0) for some S > 0, which is large enough, e.g.

S > 2R. Rewriting WS = WS,+ −WS,− with WS,+,WS,− ≥ 0, being the positive and
negative part of WS, it holds that∫

Rd

∫
Rd
WS,+(x− y)ρn(y)ρn(x) dydx ≥

∫
Rd

∫
Rd

(WS,+ ∧M)(x− y)ρn(y)ρn(x) dydx
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for all M > 0. Let us define WM
S := (WS ∧M) ∨ (−M), then we have due to Hölder’s

and Young’s inequality for convolutions that∫
Rd

∫
Rd

(WS,− − [WS,− ∧ (M)]) (x− y)ρn(y)ρn(x) dydx

≤ ‖ρn‖
L

2q
2q−1 (BR(0))

‖(WS,− − [WS,− ∧ (M)]) ∗ ρn‖L2q

≤ ‖ρn‖2
L

2q
2q−1 (BR(0))

‖WS,− − [WS,− ∧ (M)] ‖Lq

≤ C‖WS,− − [WS,− ∧ (M)] ‖Lq(1+δ)
∣∣{x ∈ Rd

∣∣W−(x) > M
}∣∣ δ

1+δ ≤ CM− pδ
1+δ ,

where p+1
2
< q < p, i.e. p > 1, and δ > 0 is sufficiently small such that q(1 + δ) < p.

The last expression is getting arbitrarily small by choosing M > 0 large enough.
Hence, it is sufficient to prove for each fixed M > 0 that∫

Rd

∫
Rd
WM
S (x− y)ρn(y)ρn(x) dydx→

∫
Rd

∫
Rd
WM
S (x− y)ρ(y)ρ(x)dydx

for n→∞ in order to obtain weak lower semicontinuity of E .
Since WM

S ∈ L1 ∩ L∞, we know that by weak convergence

(WM
S ∗ ρn)(x)→ (WM

S ∗ ρ)(x) almost everywhere in x ∈ BR(0)

for n→∞ and that

‖WM
S ∗ ρn‖Lm′ ≤ ‖WM

S ‖L m
2m−2
‖ρn‖Lm ≤ C for

1

m
+

1

m′
= 1 .

We note that the above integral is uniform, since WM
S is bounded and compactly sup-

ported. By Vitali’s convergence theorem, it follows that WM
S ∗ ρn → WM

S ∗ ρ in
Lm

′
(BR(0)). Thus we obtain∣∣∣ ∫

Rd

∫
Rd
WM
S (x− y)ρn(y)ρn(x) dydx−

∫
Rd

∫
Rd
WM
S (x− y)ρ(y)ρ(x) dydx

∣∣∣
≤
∣∣∣ ∫

Rd

∫
Rd
WM
S (x− y)ρn(y)

(
ρn(x)− ρ(x)

)
dydx

∣∣∣
+
∣∣∣ ∫

Rd

∫
Rd
WM
S (x− y)

(
ρn(y)− ρ(y)

)
ρ(x) dydx

∣∣∣
≤ ‖WM

S ∗ ρn −WM
S ∗ ρ‖Lm′ (BR(0))‖ρn‖Lm +

∣∣∣ ∫
Rd

(
ρn(y)− ρ(y)

)
(WM

S ∗ ρ)(y) dy
∣∣∣

→ 0 for n→∞. �

Remark 5. Due to our assumptions on p and m, the energy E is bounded from below.
This follows from Hölder’s inequality and Young’s inequality for convolutions.

Let ρR ∈ PR(Rd) be a global minimizer of (1.1), which exists due to Lemma 2 and
Remark 5. Now we prove that (ρR)R≥R′ is uniformly bounded in L∞, by using uniform
boundedness of (ρR)R≥R′ in Lm and

(2.2) ερm−1R (x) +

(
1

2
(W +W−) ∗ ρR

)
(x) = 2E [ρR]−

∫
Rd
ε
( 2

m
− 1
)
ρmR (y) dy

in supp ρR. With assumption (H4), there exists an R′ > 0 such that E [ρR′ ] < 0.



6 GUNNAR KAIB, KYUNGKEUN KANG AND ANGELA STEVENS

Lemma 3. Let (H2) and (H4) be satisfied. Let (ρR)R≥R′ be a sequence of minimizers

in BR(0) and let R′ > 0 be large enough such that E [ρR′ ] < K̃ < 0 for some constant K̃.
Then, there exists a constant C > 0 such that ‖ρR‖L∞ ≤ C for all R ≥ R′.

Proof. Since (ρR)R≥R′ is a minimizing sequence for E in Lm(Rd) ∩ P(Rd), we have that
‖ρR‖Lm is uniformly bounded, i.e. ‖ρR‖Lm ≤ Cm.

Due to W− ∈ Lp,∞(Rd) and (H4), there exists a constant S > 0 such that
(W−)χBS(0) ∈ Lq1(Rd) for 1 ≤ q1 < p, and W−(x) ≤ 1 for x ∈ Rd \BS(0). Therefore, for
q2 > p we can see that∫

Rd\BS(0)
|W−|q2 ≤

∫ 1

0

αq2dλW−(α) ≤ C̃

∫ 1

0

αq2−p−1dα <∞,

where λW−(α) := |{x| |W−| > α}| < C̃α−p. Thus (W−)χRd\BS(0) ∈ Lq2(Rd).
In order to obtain a uniform bound in L∞, we extend some ideas of the proofs in

[1, Prop. 5 and Th. A] to our more general case. Due to (2.2) we have

(2.3)

ερm−1R (x) < −
(

1

2
(W +W−) ∗ ρR

)
(x)− ε

( 2

m
− 1
)
‖ρR‖mLm

≤
(

1

2
(W +W−)− ∗ ρR

)
(x)− ε

( 2

m
− 1
)
‖ρR‖mLm

in supp ρR. Now we consider integrability.

1 < m ≤ 2:
Using W− ∈ Lp,∞(Rd) gives integrability of the convolution term on the right hand side
of (2.3) and thus integrability of ρm−1R for 1 < m ≤ 2. More precisely, ‖ρR‖Ll is finite
for 1 ≤ l ≤ m, since ρR ∈ L1 ∩ Lm. In case p > m

m−1 , choose q1 = m
m−1 , then Young’s

inequality for convolutions yields

‖[(W +W−)−]χBS(0) ∗ ρR‖L∞ ≤ ‖[(W +W−)−]χBS(0)‖Lq1 ‖ρR‖Lm .

Similarly, since for the Hölder conjugate we have q′2 < m for q2 > p, we obtain that

(2.4) ‖[(W +W−)−]χRd\BS(0) ∗ ρR‖L∞ ≤ ‖[(W +W−)−]χRd\BS(0)‖Lq2‖ρR‖Lq′2 .

In case p ≤ m
m−1 , and for q2 >

m
m−1 , the estimate (2.4) holds as well.

Next we estimate [(W +W−)−]χBS(0) ∗ ρR, for m = 2 and for 1 < m < 2.

m = 2: There exists a 1 < q1 < p such that

‖[(W +W−)−]χBS(0) ∗ ρR‖Lα ≤ ‖[(W +W−)−]χBS(0)‖Lq1‖ρR‖L2 ,

for 1/α = 1/q1 − 1/2. Now consider the iterative formula

(2.5) ‖[(W +W−)−]χBS(0) ∗ ρR‖Lαi ≤ ‖[(W +W−)−]χBS(0)‖Lq1‖ρR‖Lαi−1 ,

where α0 = 2,

αk =
q1

1− q1 + q1
αk−1

, k ∈ N \ {0}.
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The sequence {αk} is strictly increasing as long as its elements are positive. We stop
the iteration in (2.5), when αk−1 ≥ q1/(q1 − 1) and then obtain by Young’s convolution
inequality that

(2.6) ‖[(W +W−)−]χBS(0) ∗ ρR‖L∞ ≤ ‖[(W +W−)−]χBS(0)‖Lq1‖ρR‖
L

q1
q1−1

.

1 < m < 2 and p > 1
m−1 : We have

‖[(W +W−)−]χBS(0) ∗ ρR‖
L

m
(m−1)2

≤ ‖[(W +W−)−]χBS(0)‖L 1
m−1
‖ρR‖Lm ,

therefore ρR ∈ L
m
m−1 . Define m0 = m/(m− 1)2 and consider the iterative inequality

(2.7) ‖[(W+W−)−]χBS(0)∗ρR‖Lmk ≤ ‖[(W+W−)−]χBS(0)‖L 1
m−1
‖ρR‖L(m−1)mk−1 , where

(2.8)
1

mk

=
1

(m− 1)mk−1
+m− 2, k = 1, 2, · · · .

Repeat the iteration (2.7)as long as the mk are positive.
Obviously we have m0 > 1/(m− 1). Now suppose that mk−1 > 1/(m− 1). Then

1

mk

=
1

(m− 1)mk−1
+m− 2 < 1 +m− 2 = (m− 1) , so mk >

1

m− 1
.

Further, mk > mk−1 as long as mk > 0, due to

1 + (1−m)

(m− 1)mk−1
+m− 2 =

1

(m− 1)mk−1
+m− 2− 1

mk−1
< 0.

Therefore, also in this case the sequence {mk} is strictly increasing as long as all its
elements are positive. Iterating until mk ≥ 1

(m−1)(2−m)
and then stopping, gives

(2.9) ‖[(W +W−)−]χBS(0) ∗ ρR‖L∞ ≤ ‖[(W +W−)−]χBS(0)‖L 1
m−1
‖ρR‖

L
1

2−m
.

Therefore, from (2.6)-(2.9) it follows due to (2.3) that ‖ρR‖L∞(Rd) is uniformly bounded
for m ≤ 2.

m > 2: Here we only consider the set where ρm−1R (x) > −ε
(

2
m
− 1
)
Cm
m , with

Cm := ‖ρR‖Lm , and derive (2.9) via an L∞-estimate and integrability of the convolution
term. We have ρR ∈ L1. If the above set is empty, ρR is bounded. Further

‖(W +W−)− ∗ ρR‖Lr

≤ C
(
‖[(W +W−)−]χBS(0) ∗ ρR‖Lr + ‖[(W +W−)−]χRd\BS(0) ∗ ρR‖Lr

)
.

Using Young’s inequality for convolutions, it follows that

‖[(W +W−)−]χBS(0) ∗ ρR‖Lr ≤ ‖[(W +W−)−]χBS(0)‖Lq1‖ρR‖Lm

with q1 < p and r =
(

1
m
−
(

1− 1
q1

))−1
= q1m

q1−(q1−1)m , for m < q1
q1−1 .

For m = q1
q1−1 we take r =∞. Analogously,

‖[(W +W−)−]χRd\BS(0) ∗ ρR‖Lr ≤ ‖[(W +W−)−]χRd\BS(0)‖Lq2‖ρR‖Lm
with q2 > p,

r =
q2m

q2 − (q2 − 1)m
for m <

q2
q2 − 1

, and r =∞ for m =
q2

q2 − 1
.



8 GUNNAR KAIB, KYUNGKEUN KANG AND ANGELA STEVENS

Since ‖ρR‖Lm ≤ Cm, we have ‖(W +W−)− ∗ ρR‖Lr(Rd) ≤ Cr for any r with
p < r < pm

p−(p−1)m and m ≤ p
p−1 . This is due to the following. Since q1 < p < q2, we have

q1m

q1 − (q1 − 1)m
<

pm

p− (p− 1)m
<

q2m

q2 − (q2 − 1)m
.

We also observe that

‖[(W +W−)−]χBS(0) ∗ ρR‖Lq1 ≤ ‖[(W +W−)−]χBS(0)‖Lq1‖ρR‖L1 <∞,

and thus [(W +W−)−]χBS(0) ∗ ρR ∈ Lq1 ∩ L
q1m

q1−(q1−1)m . Similarly,

‖[(W +W−)−]χRd\BS(0) ∗ ρR‖Lq2 ≤ ‖[(W +W−)−]χRd\BS(0)‖Lq2‖ρR‖L1 <∞,

and so [(W +W−)−]χRd\BS(0) ∗ ρR ∈ Lq2 ∩ L
q2m

q2−(q2−1)m .

Thus, [(W +W−)−] ∗ ρR ∈ Lr(Rd) with the following range of r:

q2 = max{q1, q2} ≤ r ≤ min

{
q1m

q1 − (q1 − 1)m
,

q2m

q2 − (q2 − 1)m

}
=

q1m

q1 − (q1 − 1)m
.

Since q1 and q2 are arbitrary with q1 < p < q2, we get p < r < pm
p−(p−1)m .

If m > p
p−1 , then we already have ‖(W+W−)−∗ρR‖L∞(Rd) ≤ C∞, and thus ‖ρR‖L∞(Rd) is

uniformly bounded, due to the following. Take 1 < q1 < p, so that m = q1/(q1−1). This
is always possible since q1/(q1 − 1) > p/(p− 1). We then have via Young’s inequality.

‖[(W +W−)−]χBS(0) ∗ ρR‖L∞ ≤ ‖[(W +W−)−]χBS(0)‖Lq1‖ρR‖Lm .

Next, we choose m2 with 1 < m2 < p/(p − 1). We note that ρR ∈ Lm2(Rd), since
m > p

p−1 . Taking q2 > p so that m2 = q2/(q2 − 1), we have

‖[(W +W−)−]χRd\BS(0) ∗ ρR‖L∞ ≤ ‖[(W +W−)−]χRd\BS(0)‖Lq2‖ρR‖Lm2 .

Therefore due to (2.3) we obtain uniform boundedness of ρR.
Consider the case p+1

p
< m ≤ p

p−1 . There exists δ > 0 such that m = p+1
p

+ δ and,

since ρR ∈ L1(Rd) and ερm−1R < −1
2
(W + W−)− ∗ ρR − ε

(
2
m
− 1
)
‖ρR‖mLm , we have that

‖ρR‖Ls(Rd) is uniformly bounded for s = (m− 1)r and

pm
/(

p− (p− 1)p+1
p

)
= mp2 < r < pm

/
(p− (p− 1)m). This can be seen as follows.

Using the previous range of r, i.e. p < r < pm
p−(p−1)m , in case that

(p + 1)/p < m ≤ p/(p − 1), we replace m in the denominator by (p + 1)/p, and then
obtain

p <
pm

p− (p− 1)p+1
p

= mp2 < r <
pm

p− (p− 1)m
.

We can estimate

(m− 1)r > (m− 1)mp2 >
(1

p
+ δ
)(

1 +
1

p
+ δ
)
p >

p+ 1

p
+ (2 + p)δ >

p+ 1

p
+ 2δ.

Hence, ρR is uniformly bounded in Lm̃(Rd) where m̃ = p+1
p

+ 2δ. Thus ρR is uniformly

bounded in Ls̃(Rd) where s̃ = (m − 1)r̃ and r̃ = pm̃
p−(p−1)m̃ . In case m̃ > p

p−1 , then,

as computed earlier, we have ‖(W + W−)− ∗ ρR‖L∞(Rd) < ∞. Therefore ‖ρR‖L∞(Rd)
is uniformly bounded due to (2.3). In case m̃ ≤ p

p−1 , we repeat the above calculations

obtain that ρR is uniformly bounded in L
˜̃m(Rd) with ˜̃m = p+1

p
+3δ. With a bootstrapping
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argument via (2.3), we obtain, after k > 1/(δp(p−1)) iterations, that ρR ∈ Ll(Rd), where
l = p+1

p
+ kδ > p

p−1 . This implies that ρR is bounded.
�

Now, we prove that the mass cannot become too broadly distributed. This result is
analogous to [3, Lemma 2.6], but in our case the potential W is not necessarily bounded
from below.

Lemma 4. Let (H2) and (H4) be satisfied. Let R′ be as introduced in Lemma 3. Then
there exist constants r = r(W ) and c = c(W ) such that for all R ≥ R′ global minimizers
ρR of (1.1) satisfy ∫

Br(x0)

ρR(x)dx ≥ c > 0 for all x0 ∈ supp ρR .

Proof. Since W− ∈ Lp,∞(Rd) with p > max
{

1, 1
m−1

}
, we have

Mp
∣∣{x ∈ Rd : W−(x) > M

}∣∣ ≤ C for all M > 0.

Define SM := {x ∈ Rd : W−(x) > M} and S{M := Rd\SM , then |SM | ≤ CM−p. Rewrite

(W ∗ ρR)(x0) =

∫
SM

W (y)ρR(x0 − y) dy +

∫
S{
M

W (y)ρR(x0 − y) dy.

For every µ > 0 there exists a sufficiently large M > 0, such that for some q < p we
have ∣∣∣∣∫

SM

W−(y)ρR(x0 − y) dy

∣∣∣∣ ≤ ‖ρR‖L∞ ‖W−‖Lq(SM ) |SM |
q−1
q ≤ Cµ,

since ρR is uniformly bounded in L∞ and |SM | ≤ CM−p. For each A < 0 there exists
an r > 0 such that W−(x) < −A for all |x| > r, due to (H4). Therefore∫
S{
M

W (y)ρR(x0 − y) dy =

∫
S{
M∩Br(0)

W (y)ρR(x0 − y) dy +

∫
S{
M\Br(0)

W (y)ρR(x0 − y) dy

≥ −M
∫
S{
M∩Br(0)

ρR(x0 − y) dy + A

∫
S{
M\Br(0)

ρR(x0 − y) dy

= −M
∫
S{
M∩Br(x0)

ρR(y) dy + A− A
∫
Rd\{S{

M\Br(0)}
ρR(x0 − y) dy

≥ −(M + A)

∫
Br(x0)

ρR(y) dy + A.

Summing up, we obtain

2E(ρR)−
∫
Rd
ε

(
2

m
− 1

)
ρmR (y) dy − ερm−1R (x0)

=
(W +W−)

2
∗ ρR(x0) ≥ −(M + A)

∫
Br(x0)

ρR(y) dy + A− Cµ.

Since E(ρR) < K < 0, this implies

(M + A)

∫
Br(x0)

ρR(y) dy ≥ A− Cµ− 2K +

∫
Rd
ε

(
2

m
− 1

)
ρmR (y) dy + ερm−1R (x0).
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Testing both sides with ρR(x0)dx0, we obtain

(M + A)

∫
Br(x0)

ρR(y) dy ≥ A− Cµ− 2K +

∫
Rd
ε

(
2

m
− 1

)
ρmR (y) dy + ε

∫
Rd
ρmR (x0) dx0

= A− Cµ− 2K +
2ε

m

∫
Rd
ρmR (y) dy > A− Cµ− 2K.

Thus ∫
Br(x0)

ρR(y) dy ≥ A− Cµ− 2K

M + A
:= c > 0,

since |A| can be chosen small compared to K and µ is very small. �

Next, we prove that there exists a uniform bound for the distance between two arbi-
trary disconnected subsets of the support of the minimizers in BR(0). For 1 < m ≤ 2, we
use the strategy in the proof of [16, Th. 3.2]. We do not need any growth assumption
on W . For m > 2, we use the strategy in [3, Lem. 2.7]. Here we need the growth
assumption (H6).

For 1 < m ≤ 2, we consider one of the disconnected parts, rescale its mass to one,
and prove that its respective energy is smaller than the minimizing one. In this case
the diffusive part of the energy does not grow faster than the interaction part when
considering αρ, α > 1 instead of ρ in E .
For m > 2, this is not the case, and we need a growth condition for W in order to move
the disconnected parts of the support together. It would be interesting to see, whether
there is another method of proof, which could do without a growth condition like (H6).

Lemma 5. Let (H2), (H4) hold, and ρR be a minimizer of E in Lm(Rd) ∩ PR(Rd).

(i) Let 1 < m ≤ 2 and R > 0 large enough such that E [ρR] <
1

2
inf

ρ∈Lm∩P
E(ρ). If

ρR = ρR,1+ρR,2 with supp ρR,1, supp ρR,2 6= ∅, then there exists a constant D > 0
such that dist(supp ρR,1, supp ρR,2) < D for all R > 0 and for all possible choices
of ρR,1 and ρR,2.

(ii) Let m > 2 and let additionally (H6) hold. Then, for all R > 0 each coordinate
of the support of ρR cannot have gaps larger than 2R6, where R6 is the constant
in (H6).

Proof. 1 < m ≤ 2:
Suppose there exists a splitting such that dist(supp ρR,1, supp ρR,2) > D for some R > 0.
Define |ρR,i| :=

∫
Rd ρR,i(x) dx for i ∈ {1, 2}. Due to Lemma 4, for D > 0 large enough

we have m̃ ≤ |ρR,1|, |ρR,2| ≤ 1− m̃ for some 0 < m̃ ≤ 1
2
. In order to rule out dichotomy,

as in the proof of [16, Th. 3.2], we choose D > 0 such that

W− <
m̃

8(1− m̃)

∣∣∣ inf
ρ∈Lm∩P

E(ρ)
∣∣∣ for all |x| > D.

This is possible due to (H4). Since supp ρR,1 ∩ supp ρR,2 = ∅ it holds that

E [ρR] ≥ E [ρR,1] + E [ρR,2]−
m̃

8(1− m̃)
| inf E|.

Now we assume w.l.o.g. that
E [ρR,1]

|ρR,1|
≤ E [ρR,2]

|ρR,2|
=
E [ρR,2]

1− |ρR,1|
.
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Since
E [ρR,2]

1− |ρR,1|
≤ 1

1− |ρR,1|

(
E [ρR] +

1

8
| inf E| − E [ρR,1]

)
,

we have (
1

|ρR,1|
+

1

1− |ρR,1|

)
E [ρR,1] ≤

1

1− |ρR,1|

(
E [ρR] +

1

8
| inf E|

)
. Thus

1

|ρR,1|
E [ρR,1] ≤ E [ρR] +

1

8
| inf E| ≤ 1

2
inf E +

1

8
| inf E| ≤ 1

2
inf E − 1

8
inf E < 1

4
inf E .

Since 1 < m ≤ 2, we obtain a contradiction, because ρR is a minimizer and

E
[ ρR,1
|ρR,1|

]
− E [ρR] ≤

( 1

|ρR,1|2
− 1− 1− |ρR,1|

|ρR,1|

)
E [ρR,1] +

m̃

8(1− m̃)
| inf E|

≤ 1

|ρR,1|

( 1

|ρR,1|
− 1
)
E [ρR,1] +

|ρR,1|
8(1− |ρR,1|)

| inf E|

≤
( 1

|ρR,1|
− 1
)(1

4
inf E +

1

8
| inf E|

)
< 0,

where we used in the last inequality that |ρR,1| < 1 and inf E < 0. And also for m > 2 we
assume, as in [3, Lem. 2.7], that the claim is not true. Consider HR ⊂ Rd and HL ⊂ Rd

with gap in k-direction of at least R6. Hereby, HR denotes the “right side”, and HL the
“left side”, respectively. Assume that the support of some minimizer is split into two
parts such that we can write ρ = ρ|HL + ρ|HR . Use δk from (H6) to move ρ|HR towards
ρ|HL , i.e. consider ρδ(x) := ρδ|HL(x) + ρδ|HR(x), where

ρδ|HL(x) = ρ|HL(x), ρδ|HR(x) = ρ|HR(x+ δ), δ = (0, . . . , δk, . . . , 0).

Direct computations show that

E [ρR,l + ρR,r−δ]−
ε

m

∫
Rd
ρmδ

=
1

2

∫
Rd

∫
Rd
W (x− y)ρHL(y)ρHL(x) dydx+

1

2

∫
Rd

∫
Rd
W (x− y)ρHR(y + δ)ρHR(x+ δ) dydx

+
1

2

∫
Rd

∫
Rd
W (x− y)ρHL(y)ρHR(x+ δ) dydx+

1

2

∫
Rd

∫
Rd
W (x− y)ρHR(y + δ)ρHL(x) dydx

=
1

2

∫
Rd

∫
Rd
W (x− y)ρHL(y)ρHL(x) dydx+

1

2

∫
Rd

∫
Rd
W (x− y)ρHR(y)ρHR(x) dydx

+
1

2

∫
Rd

∫
Rd
W (x− y − δ)ρHL(y)ρHR(x) dydx+

1

2

∫
Rd

∫
Rd
W (x− y + δ)ρHR(y)ρHL(x) dydx

=
1

2

∫
Rd

∫
Rd
W (x− y)ρHL(y)ρHL(x) dydx+

1

2

∫
Rd

∫
Rd
W (x− y)ρHR(y)ρHR(x) dydx

+
1

2

∫
Rd

∫
Rd
W (x− y − δ) +W (−x+ y + δ)ρHL(y)ρHR(x) dydx

< E [ρR]− ε

m

∫
Rd
ρmR

since x ∈ HR and y ∈ HL, i.e. xk − yk ≥ R6. Due to ‖ρδ‖Lm = ‖ρR‖Lm , we obtain
E [ρδ] < E [ρR]. Thus we have a contradiction, since ρR is a minimizer. �
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The above computations also work for the case ε = 0, which is a part of the proof for
Theorem 1 (a). There details were omitted.

Proof of (b) and (c) in Theorem 1 Using Lemma 4 and 5 we conclude that there
exists a constant S > 0 such that the global minimizers ρR in Lm ∩ P are identical for
all R > S, and thus a minimizer belongs to Lm∩P (see [3, Lem. 2.10] or [11, Lem. 16]).
Hence, there exists a global minimizer of E in Lm ∩ P which is compactly supported.
Since the support of ρR is independent of R we can use the analogous result for ρ in
Lemma 4 to conclude that every global minimizer of E in Lm ∩ P with negative energy
has compact support (compare [3, Cor. 1.5]). This completes the proof.

3. Conditions for unstable potentials

Now we provide some conditions for (H4) to be satisfied, i.e. there exists
ρ ∈ Lm(Rd) ∩ P(Rd) with E [ρ] < 0. For m ≥ 2 we extend the approach in [2, Lem. 1].

Lemma 6. Let W− ∈ Lp,∞(Rd), W+ ∈ L1(Rd) and
∫
RdW (x) dx < 0. Suppose either

m > 2 and ε > 0, or m = 2 and 0 < ε < −
∫
RdW (x) dx. Then, there exists a function

ρ ∈ Lm(Rd) ∩ P(Rd) with E [ρ] < 0.

Proof. Let ρ ∈ Lm(Rd) ∩ P(Rd), then ρλ(x) := λdρ(λx) is also an admissible function
for λ > 0. It holds that

E [ρλ] = λd
(
λ(md−2d)

ε

m
‖ρ‖mLm +

1

2
λ−d

∫
Rd

∫
Rd
W
(x− y

λ

)
ρ(y)ρ(x) dydx

)
.

Splitting up the second term into its positive and negative part, we consider

λ−d
∫
Rd

∫
Rd
W+

(x− y
λ

)
ρ(y)ρ(x) dydx− λ−d

∫
Rd

∫
Rd
W−

(x− y
λ

)
ρ(y)ρ(x) dydx,

with W = W+ −W− and W−,W+ ≥ 0. Then

λ−d
∫
Rd

∫
Rd
W+

(x− y
λ

)
ρ(y)ρ(x) dydx ≤ ‖W+‖L1‖ρ‖2L2 , and

−λ−d
∫
Rd

∫
Rd
W−

(x− y
λ

)
ρ(y)ρ(x) dydx

≤ −λ−d
∫
Rd

∫
Rd
W−

(x− y
λ

)
χBλR(0)(|x− y|)ρ

2(x) dydx

−λ−d
∫
Rd

∫
Rd
W−

(x− y
λ

)
χBλR(0)(|x− y|)

(
ρ(y)− ρ(x)

)
ρ(x) dydx

= −‖W−χBR(0)‖L1‖ρ‖2L2 − λ−d
∫
Rd

∫
Rd
W−

(y
λ

)
χBλR(0)(|y|)

(
ρ(x− y)− ρ(x)

)
ρ(x) dydx

= A1 + A2.

Here the first equality follows from Fubini and since ρ does not depend on y.
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Following the strategy in the proof of [12, Th. 2.16], and using Hölder’s inequality
and a change of variables, we obtain

A2 ≤ ‖ρ‖L2

[
λ−d

∫
Rd

(∫
Rd
W−

(y
λ

)
χBλR(0)(|y|)

∣∣ρ(x− y)− ρ(x)
∣∣ dy)2dx] 1

2

≤ ‖ρ‖L2

[
‖W−χBR(0)‖L1

∫
Rd
W−(y)χBR(0)(|y|)

∫
Rd

(
ρ(x)− ρ(x− λy)

)2
dxdy

] 1
2

≤ ‖ρ‖L2

[
‖W−χBR(0)‖L1

∫
Rd
W−(y)χBR(0)(|y|)

( ∫
Rd

(
ρ(x)− ρ(x− λy)

)
ρ(x) dxdy

+

∫
Rd

(
ρ(x)− ρ(x+ λy)

)
ρ(x) dxdy

)] 1
2
.

Hence, by dominated convergence, this term converges to zero for λ→ 0. Therefore, for
every δ > 0 there exists 1 >> λ > 0 such that for large R > 0 we have

E [ρλ] ≤ λd
(
λmd−2d

ε

m
‖ρ‖mLm +

1

2
‖W+‖L1‖ρ‖2L2 −

1

2
‖W−χBR(0)‖L1‖ρ‖2L2 + δ

)
≤ λd

(
λmd−2d

ε

m
‖ρ‖mLm +

1

2

∫
Rd

(WχBR(0))(x) dx‖ρ‖2L2 + 2δ
)
.

�

Remark 6. For m = 2 and W− /∈ L1(Rd), the potential W is unstable for all ε > 0.

Lemma 7. Let 1 < m < 2, p > 1, and W− ∈ Lp,∞(Rd), W+ ∈ L
1

m−1 (Rd). Let q ≤ p.

If m > q+1
q

and W−(x) ≥ C|x|−
d
q for all |x| > R ≥ 0, then there exists a function

ρ ∈ Lm(Rd) ∩ P(Rd) with E [ρ] < 0 for all ε > 0.

Proof. As in the proof of Lemma 6, consider the rescaled function ρλ and split up W
into its positive and negative part. Denoting W+,λ(x) = W+(x/λ) and using Hölder’s
inequality, we obtain∫

Rd

∫
Rd
W+

(x− y
λ

)
ρ(y)ρm−1(x)ρ2−m(x) dydx

≤ ‖W+ ∗ ρ‖
L

m
(m−1)2

∥∥ρm−1∥∥
L

m
m−1

∥∥ρ2−m∥∥
L

1
2−m

≤ ‖W+,λ ∗ ρ‖
L

m
(m−1)2

‖ρ‖m−1Lm ‖ρ‖
2−m
L1 ≤ ‖W+,λ ∗ ρ‖

L
m

(m−1)2
‖ρ‖m−1Lm

≤ λ(m−1)d ‖W+‖
L

1
m−1
‖ρ‖mLm .

Here we used Young’s inequality and a change of variables in the last inequality. More-
over, for λ < 1 it holds that

−
∫
Rd

∫
Rd
W−

(x− y
λ

)
ρ(y)ρ(x) dydx

≤ −
∫
Rd

∫
Rd
W−

(x− y
λ

)
χRd\BλR(0)(|x− y|)ρ(y)ρ(x) dydx

≤ −λ
d
qC

∫
Rd

∫
Rd
|x− y|−

d
qχRd\BR(0)(|x− y|)ρ(y)ρ(x) dydx.
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Therefore, we have

E [ρλ] ≤ λ(m−1)d
( ε
m
‖ρ‖mLm +

1

2
‖W+‖

L
1

m−1
‖ρ‖mLm

)
− λ

d
q C̃(ρ,R, q).

For λ > 0 sufficiently small this gives our statement, since (m− 1)d > d
q

and choosing ρ

not only being concentrated in BR(0). This completes the proof. �

Appendix:
Generally it is an open question, whether or not global minimizers are radial, even
for radial symmetric potentials. Some specific cases for existence and non-existence of
radial minimizers for radial symmetric potentials are given in [8], [5], and [6]. We expect
that global minimizers are not radial for non-symmetric potentials W with non-radially
symmetric, symmetrized potential 1

2
(W + W−), in two and higher dimensions, but do

not have a rigorous proof yet. Below, we give a formal example in the limiting case
where the potential is non-symmetric and the interaction is local, i.e. a dirac delta.

Let e1 = (1, 0, · · · , 0) ∈ Rd, d ≥ 2. Consider

(3.1) E(ρ) =
1

2

∫
Rd

∫
Rd
W (x− y − e1)dρ(x)dρ(y),

where W (x) = −δ0. First note that for

E0(ρ) =
1

2

∫
Rd

∫
Rd
W (x− y)dρ(x)dρ(y),

and with W (x) = −δ0, the minimizer is the dirac mass at the origin (up to translation),
i.e. ρmin = δ0 and E0(ρmin) = −1.

On the other hand, for the above given asymmetric potential E , we look for minimizers
that are compactly supported. It turns out that the minimizers are

(3.2) ρmin = αδ−e1 +
1

2
δ0 +

(
1

2
− α

)
δe1 ,

where α ∈ [0, 1/2] (up to translation), and E(ρmin) = −1/8. Thus minimizers are neither
radially symmetric nor unique.

Indeed, if compactly supported, minimizers must be of the form

ρmin =
k∑
j=1

mjδz0+je1 ,

k∑
j=1

mj = 1 , 0 < mi < 1.

Therefore, we have the following minimizing problem

E(ρmin) = −
k−1∑
j=1

mjmj+1 ,
k∑
j=1

mj = 1 , 0 < mi < 1.

This can be reformulated as a maximizing problem in the following way:

maximize
k−1∑
j=1

mjmj+1 ,

k∑
j=1

mj = 1, , 0 < mi < 1.

Due to the method of Lagrange multiplers, there exists a constant λ such that

λ〈1, 1, · · · , 1〉 = 〈m2, (m1 +m3), (m2 +m4), · · · , (mk−2 +mk),mk−1〉.
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If k ≥ 4, then m2 = λ = m2 + m4, therefore m4 = 0, which contradicts our hypothesis
that mi > 0. Therefore, k ≤ 3. The case k = 2 implies

(3.3) λ〈1, 1〉 = 〈m2,m1〉 =⇒ m1 = m2 =
1

2
.

This is a special case of (3.2). For k = 3, we obtain

(3.4) λ〈1, 1, 1〉 = 〈m2,m1 +m3,m2〉 =⇒ m2 =
1

2
, m1 +m3 =

1

2
.

From (3.3) and (3.4), we obtain (3.2).
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