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We investigate the polygamy relations of multipartite quantum states. General polygamy inequal-
ities are given in the ath (a > 2) power of concurrence of assistance, Sth (8 > 1) power of entan-
glement of assistance, and the squared convex-roof extended negativity of assistance (SCRENoA).
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INTRODUCTION

Quantum entanglement is an important kind of quan-
tum correlation, plays essential roles in quantum infor-
mation processing [1-8]. One of the fundamental differ-
ences between classical and quantum correlations lies on
the sharability among the subsystems. Different from
the classical correlation, quantum correlation cannot be
freely shared. Monogamy relation is important in the
sense that it gives rise to the distribution of correlation
in the multipartite quantum system and has a unique
feature of keeping security in quantum key distribution
[9].

For the systems of three qubits, a kind of monogamy
of bipartite quantum entanglement in concurrence [10]
can be described by Coffman-Kundu-Wootters CKW in-
equality [11], Eqipc > Eap + Eac, where £, pc denotes
the entanglement between systems A and BC. Whereas
monogamy of entanglement shows the restricted shara-
bility of multipartite entanglement, the distribution of
entanglement, or entanglement of assistance [12], in mul-
tipartite quantum systems was shown to have a du-
ally monogamous (polygamous) property. Note that the
monogamy of entanglement inequalities provide an up-
per bound for bipartite sharability of entanglement in a
multipartite system, and the same quantity sets a lower
bound for the distribution of bipartite entanglement in
a multipartite system, i.e., Eoapc < Eaap + Faac
for a tripartite quantum state papc, where Eq4pc is
the assisted entanglement [12] between A and BC. The
polygamy inequality was first obtained in terms of the
tangle of assistance [12] among three-qubit systems, and
it was generalized to the multiqubit system with the help
of additional entanglement measures [13-15]. In [16-18],
people derived a general polygamy inequality of multi-
partite entanglement beyond qubit based on the entan-
glement of assistance.

Recently, monogamy and polygamy relations of multi-
qubit entanglement have been studied in terms of non-
negative power of entanglement measures and assisted

entanglement measures. In [19-21], the authors have
shown that the xth power of the entanglement of for-
mation ((x > v/2)) and the concurrence (z > 2) satisfy
multiqubit monogamy inequalities. Monogamy relations
for quantum steering have also been demonstrated in [22—
26]. Later, polygamy inequalities were also proposed in
terms of ath (0 < o < 1) power of square of convex-roof
extended negativity (SCREN) and the entanglement of
assistance [27, 28]. In [29], the authors introduced a def-
inition of polygamy relations without inequalities. How-
ever, it is still not clear for the polygamy relation of the
concurrence of assistance 7 (o > 2) and the gth (8 > 1)
power of entanglement of assistance E and the SCREN
of assistance (SCRENoA) (N2.)?. In this paper, we study
the general polygamy inequalities of 7&, E# and (N2,)?
with o > 2 and 8 > 1, respectively.

We first recall monogamy and polygamy inequalities
related to concurrence and concurrence of assistance. Let
Hx denote a discrete finite-dimensional complex vector
space associated with a quantum subsystem X. For a
bipartite pure state [¢)) 4 € Ha ® Hp, the concurrence
is given by [30-32], C(|¢)ag) = /2[1 — Tr(p?)], where
pA is the reduced density matrix obtained by tracing over
the subsystem B, p4 = Trg(|t)) a5 (¢|). The concurrence
for a bipartite mixed state pap is defined by the con-
vex roof extension, C(pap) = ming,, |4} >, PiC(|1i)),
where the minimum is taken over all possible pure state
decompositions of pap = Y. pi|:) (W], with p; > 0,

K3
> pi=1and |¢p;) e Hy @ Hp.
i

For a tripartite state |¢))apc, the concurrence of as-
sistance is defined by [33, 34], Co(|¢)apc) = Cu(pap) =

{mlax>}zi piC(|1s)), where the maximum is taken
Pis|i
over all possible pure state decompositions of pap =

Tro(|Y)apc (W) = D pilti)ap{yi|. For pure states

7
pap = |[¢)ap (Y|, one has C(|¢)ap) = Ca(pan).
For an N-qubit state pap,.By. , € Ha ® Hp, ®
--®Hpy_,, the concurrence C(pa|,...By_, ) of the state
PAB,--By_,, viewed as a bipartite state under the par-



tition A and By, Bs,---,Byn_1, satisfies the Coffman-
Kundu-Wootters inequality [35, 36],

N—-1
C*(pA|By, By By_1) = Z C*(pas,) ; (1)
=1
where pap, = Trp,..B,_1B,1By_1 (PAByBy_,)- Fur-

ther improved monogamy relations are presented in
[19, 21]. The dual inequality in terms of the concurrence
of assistance for N-qubit states has the form [37],

N-1
CQ(pA‘BlvBZ'“aBN—l) < Z Cg(pABi) : (2)
i=1

Now, let us consider a bipartite pure state of arbi-

. . d d .
trary dimension dy X da, |¢)ap = D> ;11 > 2 @ik|ik)aB
in 4 © C42. The squared concurrence of |¢) 45 can be

expressed as [38]

di da

C*(|¢)ap) = 2(1 — Tr(p%)) = 42 Z |aikaj — ailajk'|2~(3)

i<j k<l

For a mixed state pap = Y, pi|¢i) a(¢i], its concur-
rence of assistance satisfies [39]

Co(paB) = max ZPzO(W)v»

{pi;l¢:)}
Dy Do
< 3% (max S pilll(L © L1160
m=1n=1 i
Dy Do
= Z Z Oa((pAB)mn) = Ta(pAB) s (4)
m=1n=1
where
Dy = di(dy —1)/2, Dy =dz(d2—1)/2,  (5)
Ly = P (—|)al +17)a)PL (6)
Ly = Pg(=|k)s(l| + [) (k) Pp (7)

with Pt = [i)a(i] + [/)a(j| and Pg = |k)p(k| +
[1)s(l| being the projectors to the subspaces spanned
by {|i)a,|j)a} and {|k)B,|l)s}, respectively. A gen-
eral polygamy inequality for any multipartite pure state
|§)a,...a, € CU @ -+ @ C% was established as [39)],

Ta2(|¢>A1|A2"-An) < ZTaQ(pAlAi)’ (8)
1=2

where py, 4, is the reduced density matrix [¢)4,|4,...4,,
with respect to subsystem A Ay, k=2,--- ,n.

POLYGAMY RELATION FOR CONCURRENCE
OF ASSISTANCE

[Lemma 1]. For any real numbers z and ¢, ¢t > 1,
x> 1, we have (1+1¢)* <1+ (2% — 1)t*.

[Proof]. Let f(x,y) = (14+y)*—y* withz > 1, 0 <y <
1, % = z[(1+y)* ! —y®~1] > 0. Therefore, f(z,y) is an
increasing function of y, ie., f(z,y) < f(z,1) = 2% — 1.
Set y = 1, t > 1. We obtain (1 +¢)* <14 (2% — 1)¢".
Notice when ¢t = 1, the inequality is true. [J

The following theorem provides a class of polygamy in-
equalities satisfied by the a-power of 7,. For convenience,
we denote T,(paB,) = Toap, the concurrence of assis-
tance pap, and T,(PA|ByB,--By_1) = TaA|BoBy--By_1-

[Theorem 1]. For any tripartite pure state papc €
Hy® Hg ® He:

(1) if Taap > Taac, the concurrence of assistance sat-
isfies

Ta AlBC < Ta ac T 2% =178 45 (9)

for a > 2.
(2) if T4 a5 < Taac, the concurrence of assistance sat-
isfies

Ta AlBc < Ta ap T 2% —1)78 40 (10)

for o > 2.

[Proof]. For arbitrary tripartite pure state papc, one
has [39], 77 4 pe < Toac + Toap: U Taan (Taac) =0,
the inequality (9) or (10) are true obviously. Therefore,
assuming 7o ap > Taac > 0, we have

S (124 + 72 a0)”

7'2 v
_ 2z aAB
=7," AC (1 + -2 )
a AC

> 720 (1 + (27 - 1) (Tf%AB) >
= 'a AC T2
a AC

_ 2z

=74+ (2= D12 4, (11)

2z
Ta A|BC

where the second inequality is true due to the inequality
2
(1+6)* <142 —1)t" forz > 1 and t = $A8 > 1.

Denote 22 = o«. We obtain o« > 2 as z > 1. Gfﬁen we
have the inequality (9). If 7oap < Taac, Similarly we
get (10).

Ezample 1. Let us consider the three-qubit state |¢))
in the generalized Schmidt decomposition form,

[9) = Xo|000) + A1€™|100) + X2|101)
+A3/110) + Aq|111), (12)

where \; > 0, i = 0,1,2,3,4 and 24: A? = 1. We have
i=0
Taaipe = 220V A3+ A+ AL, Taap = 200/ A3+ AL
and T,ac = 2Xoy/ A2+ A3 Without loss of gener-
ality, we set A\g = cosfy, A1 = sinfycosfy, o =
sinfgsinfy cosfy, A3 = sinfysinf; sinfs cosfs, and
A4 = sinf sin 0, sin 6y sin b3, 0; € [0, 5].
For )\3 > )\2, ie. Ta AC > TaAB:



(a) if 92 = %7

TgA\BC —TaAB (2% — D7 ac
= (20)" (A + AT+ DT - (A3 + A%

- (27 )+ XD ]

e

= 2% cos® Oy sin® fp sin® 01 (2 — sin® O — 27)
<0

— )

where o > 2 and the inequality is due to sinf3 > 0.
(b) If 5 # T, we denote t; = 5‘“222 > 1, then we have

e Ao — To ap — 2F = )78 40
= 20)° [+ A+ XD - 0+ D)%
-2 -G+ ADF
= 2% cos® Oy sin® O sin® 04 _1 — (cos? B3 + sin? 6 sin? 93)%
— (2% —1)sin® 92}
< 2% cos™ Oy sin® O sin® 01 _1 — cos® 0y — (2% — 1) sin® 02}
= 2% cos® gy sin® O sin® 04 _1 — cos™ 0, <1 + (2% — 1)t1%) ]

< 2% cos® B sin® Oy sin® 0, _1 —cos®Oa(1 + tl)%}

i 2 B
sin“ 6
= 2% cos® Oy sin® Oy sin® 01 |1 — cos® Oy (1 + 1n2 2 ) ]
L cos? 05

207

where a > 2 and the second inequality is due to Lemma
1.

Therefore, we have 7¢ 4 po < 79 ap + (27 — )7 40
for o > 2.

When A3 < A, i.e. Toac < TaAB; from similar analysis
we can obtain 7' 4 o < 74 et (@2 =118, 5 fora > 2.

Specially, when 0y = 7,0 = 2,03 = 0, ie. [¢)) =
cos 6p|000) + sin Oy cos 61€*#]100) + sin Oy sin 61]110), the
inequality in (9) is saturated. Generalizing the conclusion
in Theorem 1 to N partite case, we have the following
result.

[Theorem 2]. For any multipartite pure state
PABg-By_1» i Toap, < Z 7,+1 Toap, for i =
0,1,---,m, and TgAB Zk =j+1 T2 up, for j = m+

17...7N—27V1§m§N 3, N > 4, we have

TgA\BOBl---BN,l <

Toagy + (2% = D1 up -+ (25 = 1)1 45
+(27 = 1) (19 4 e T T Ay L)

+(22 = )™M gL (13)

for o > 2.

[Proof]. From the inequality (8) and Theorem 1, we
have

(e}
Ta A|ByBy-Bn_1

N—-1 >
<Toap, + (27 —1) (Z 73A3i>
i—1

N-1
+ (2% 1)m+1 73,4131) (14)
i=m-+1
Similarly, as 77,5 > ZkN:_JlJrl Tiap, for j = m +
, N —2, we get

wlR

N-1

(3 )
1=m-+1

(22 =1, + ( Z TaAB)

1=m-+2

wlR

IN

< (2% —1)(84p s Tt T Ay )
+a ABN-1" (15)

Combining (14) and (15) we have Theorem 2.0
In Theorem 2, if TaAB < Zj —it1 aAB for all ¢+ =
0,1,--- N — 2, then we have the following conclusion:
[Theorem 3]. For any multlpartlte pure state

. 2 N—-1 .
PABy---Bn_1> if Ta AB; < Z] i+1 aAB for all i =
1,--+-N — 2, we have

N—
TfA|BOBI...BN,1 Z (2% — 1) aAB ; (16)

for o > 2.
Example 2. We consider again the pure state (12).

Setting A\g = A1 = 2, Ao = A3 = M\ = \ég, one has

— \/5
TaAlBC = %, Taap = Taac = 5. Let y = 70,5 +
(0%
(2% = D7 a0 — (?A\BC:%(@) , @ 2 2, be the
residual concurrence of assistance. From our results, one

can see that y > 0 for a > 2, which is the case that does
not given in [28], see Fig. 1.

Sl

POLYGAMY RELATIONS FOR
ENTANGLEMENT OF ASSISTANCE

For polygamy inequality beyond qubits, it was shown
that the von Neumann entropy can be used to estab-
lish a polygamy inequality of tripartite quantum sys-
tems [16]. For any arbitrary dimensional tripartite
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FIG. 1: y is the “residual” entanglement as a function of «
with o > 2.

pure state |)apc, one has E(|1)apc) < Eu(pap) +
Eq(pac), where E([Y)ac) = S(pa) is the en-
tropy of entanglement between A and BC in terms
of the von Neumann entropy S(p) = —Trplnp, and
Eo(pap) = max)_,p;E(]1;)ap), with the maximiza-
tion taking over all possible pure state decompositions
of pap = Y, pilYi)ap(i|. Later, a general polygamy
inequality for any multipartite state pa,|4,...4, Was es-
tabliSheda Ea(pAlA2"'An) < Z?:Q Ea(pAlAi) [17}

Recently, another class of multipartite polygamy in-
equalities in terms of the Bth power of entanglement
of assistance (EOA) has been introduced [28]. For any
multipartite state pap,B,..By_, and 0 < g < 1, if

Eopp, > Zjv;ilEaAB for i = 0,1,---,N — 2, then
N=1

EgA\BOBl Byn_1 > Z i—o B EaAB , where E,(pap,) =

Eq,ap, is the entanglement of assistance pap;, and

Eo(paiBoBi--By_,) = EaaiBop,.-By_,- But, for g >1
the polygamy relations for the Sth power of the entan-
glement of assistance is still not clear.

[Theorem 4]. For any multipartite state pap,...By_1,

if Eqap, < Zk 1+1 Equp, for i = 0,1,---,

Eap, 2 Y41 Baap, for j =m+1, N -2,V
1<m< N -3, N >4, we have

m, and

B8
By A\BoBy-By 1 =
EaBABO +(2° - 1)EﬂAB ot (27 - 1)mEgABm
+(2° - )m+2(E5ABm+1 +ot EgABN,z)
+(2° - 1)m+1EgABN 1, (17)
for 5 > 1.

[Proof]. From Lemma 1, we have

N-1 B
) <Z EaAB;,)

DE] op, + (27 —

B
Ea AlBgBl--~BN71

<El g, +(2° -

< L’ﬁgma0 + (2 -

N-1 B
? ( Z EaABi>
i—2

< .
< Egap, + (28 - 1)E¢'§A31 + (2° 1)mE£ABm
N-1 B
+ (20 —mH! ( EaA&) (18)
i=m-+1

Similarly, as Eqap, > chV:_J{H Egap, for j = m +

1,--- N — 2, we get

(¥ 5

i=m-+1

B
< (2ﬁ - 1)Ea ABpt1 ( Z EaAB )

1=m-+2
<(2° - 1)(E5ABm+1 +-+Ef 4p, )
+E gy, (19)

Combining (18) and (19), we have Theorem 4. O
As a special case of Theorem 4, if E,sp, <

S Yt Baap, for all i = 0,1,---N — 2, we have the

following conclusion:
[Theorem 5] For any multipartite state pap,...By_;»

lellAB <Z] i1 GABj foralli:0717...N_2,We
have
N-1
EgA\BoB1 aAB ) (20)
]=0
for p > 1.
Ezample 3. Let consider the three-qubit W state

W)ape = 25(]100) + [010) + |001>) We have

Eo([W)ajpc) = S(pa) = logy3 —

Ey(pac) = 5. Set y = E;(pap) + (2° — 1)Ef (pac) —
EZ(IW) ajpc) = 2°(3)? — (logy 3— 2)” to be the residual
entanglement of assistance. Fig. 2 shows our polygamy
inequality for 8 > 1.

§ and F,(pap) =

POLYGAMY RELATIONS FOR SCRENOA

Given a bipartite state pap in H4® Hp, the negat1v1ty
is defined by [41], N(pag) = (||p%]| — 1)/2, where p%
is the partially transposed pap Wlth respect to the sub-
system A, || X|| denotes the trace norm of X, i.e., || X|| =



s B

“residual” entanglement as a function of g

1 2 3 4 5 6 7

FIG. 2: y is the
with 8 > 1.

Trv X XT. For the purpose of discussion, we use the fol-
lowing definition of negativity, N (pap) = ||p4%||—1. For
any bipartite pure state 1)) 45, the negativity N(pap) is
given by N(|¢)ap) = 221<]‘ VA = (Tr\/p7)2 -

where \; are the eigenvalues for the reduced density ma-
trix pa of |¥)ap. For a mixed state psp, the square of
convex-roof extended negativity (SCREN) is defined by

Nsc(pap) = mlHZPz ([i)aB)]”, (21)

where the minimum is taken over all possible pure state
decompositions {p;, |[¥;)ap} of pap. Similar to the du-
ality between concurrence and concurrence of assistance,
we also define a dual quantity to SCREN as

[max Z piN

Ngc(pAB |7/}z AB a (22)

which we refer to as the SCREN of assistance
(SCRENoA), where the maximum is taken over
all possible pure state decompositions {p;, [¥;)ap}
of pan. For convenience, we denote N ,p =
N¢.(pap;) the SCRENOA of pap, and Ng.,p g, =

N§C(|¢>ABO ‘Bn-— 1)
In [27] it has been shown that N, p 5.5y, <
ZN ! Nieap,- It is further improved that for 0 < 8 <1
a N—1 5i/nra -
(NscA|BUBl~~BN,1)ﬂ < Zj:ol B](NSCABj)B' But, it is
still not clear whether the polygamy relation still holds
for the Sth (8 > 1) power of SCRENoA. With a similar

consideration to Tap,...By_,, We have the following result
of SCRENoA for g > 1.

[Theorem 6]. For any multipartite state pap,...By_;,
if Njeap, < Zk z+1N§cAB for i =0,1,--,
NSCAB > Zk =j+1 NSCAB)C for ] =m+ ]‘ - 2’ v

m7 and

1<m< N -3, N >4, we have
(NgcA\BOBlmBN,l)ﬁ < (NsacABO)B
+(2° = 1)(Noyp)’ +- 4+ (27 = 1) (Niup,)’

+(27 = 1" (N, )+ + Neap, L))
+27 = 1) (N gy, ) (23)

for g > 1.
[Proof]. From Lemma 1, we have

(z N:CABQ)B

B
Ea A‘B()Blu'BN_l

< (Nfeap,)” +

IN

(Ngean,) )P+ (27 -

IN I/\

(NgcABO)B +(2° - 1)(N§CA31)B +o
+(2° - D™(Ngoag,, )?

B
+(2 - m+1< Z NscAB) . (24)

1=m-+1

Similarly, as N 5, =
,N - 27 we th

N-1 B
< Z N:aAB,;)

1=m-+1

Zk —j+1 Neeap, for j = m +

N-1 B
< (27 - 1)(NgcABm+1)B + ( Z NgcA&)

i=m-+2
< (@ = 1) ((Venp, )"+ o+ (Noap, )")
+ (NgCABNfl)B' (25)

Combining (24) and (25), we have the Theorem 6. [J

Particularly, the equality in (23) can be established
for 4-qubit generlized W-class states |W)ap,B,B, =
1(1000)+]0100)+|0010)+]0001)), with 8 = 1, which can
be seen clearly in example 4 below Theorem 7. Specially,
from Theorem 6 we have

[Theorem 7]. For any multipartite state pap,...By_1,
if Eaap, < Y iyy Faap, foralli=0,1,---N -2, we
have

N—
(NgcA\BOBlmBN 1 Z NgcAB )B (26)

7=0

for 8 > 1.
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The “residual” entanglement y as a function of 8

Ezample 4. Let us consider the 4-qubit generlized W-
class states,

1
W) aB, BBy = §(|1000> + 10100) + |0010) + |0001))(27)

We have NsacA\BleBg = %, Ngoap, = i, 1=1,2,3. Let
y be the difference between the right and left hand of
inequality (26). One has y = [2° + (27 —1)?](3)7 — (3)%;
see Fig. 3.

CONCLUSION

Entanglement monogamy and polygamy are funda-
mental properties of multipartite entangled states. We
have investigated in this work the polygamy relations re-
lated to the concurrence of assistance, entanglement of
assistance, and SCREN generally for multipartite states.
We have found a class of polygamy inequalities of multi-
partite entanglement in arbitrary-dimensional quantum
systems in the ath (o > 2) power of concurrence of assis-
tance, a case that has not been studied before. Moreover,
the Sth power of polygamy inequalities have been ob-
tained for the entanglement of assistance and SCRENoA
for > 1. The approach developed in this work is ap-
plicable to the study of monogamy properties in other
quantum entanglement measures and quantum correla-
tions.
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