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We investigate the measurement uncertainties of a triple of positive operator-valued measures
(POVMs) based on statistical distance, and formulate state-independent tight uncertainty inequal-
ities satisfied by the three measurements in terms of triple-wise joint measurability. Particularly,
uncertainty inequalities for three unbiased qubit measurements are presented with analytical lower
bounds which relates to the necessary and sufficient condition of the triple-wise joint measurability
of the given triple. We show that the measurement uncertainties for a triple measurement are es-
sentially different from the ones obtained by pair wise measurement uncertainties by comparing the
lower bounds of different measurement uncertainties.

PACS numbers: 03.67.Mn, 03.67.-a, 02.20.Hj, 03.65.-w

I. INTRODUCTION

The uncertainty principle is arguably one of the most
famous features of quantum mechanics [I], which limits
the accuracy of measuring some properties of a quantum
system. The well-known Heisenberg-Robertson uncer-
tainty relation says that [2], for any observables A and
B, AAAB > %|<[A, B])|, where AQ = /(22) — ()2 is
the standard deviation for observable Q, (-) denotes the
expectation of an operator with respect to a given state p,
and [A, B] = AB — BA. This state-dependent inequality
implies the impossibility of simultaneously determining
the definite values of non-commuting observables. Such
uncertainty relations based on product form or summa-
tion form of deviation have been generalized and studied
B[4 B [6 7 8 @, M0, [II]. The entropic uncertainty
relations [11), M2 03, 14, 15, 06, 17, 18] and measure-
ment probability based universal uncertainty relations
19, 20, 21, 22, 23, 24, 25], with or without quantum
memory, have been extensively investigated. Besides,
uncertainty relations based on measurement noise and
disturbance have been also derived and experimentally
verified [26], 27, 28] [29].

Since the influence of the measurement on quantum
systems is not always the reason for uncertainty [30],
there are uncertainty relations, of which the uncertainties
are described by approximation error for probabilities of
joint measurements [23] 24}, 311 32], 33| 34 [35]. In [23], 24]
the approximation error for probabilities is quantified by
the sum of relative entropies, while in [31], 2] (33| [34] 35]
the corresponding approximation error for probabilities is
quantified by L;-distances. In addition, in [23| [24] multi
spin-1/2 components measurement uncertainty relations
have been studied. In [31] B2, B3] B4, [35] two measure-
ment uncertainty relations have been investigated. Since

a triple measurement uncertainty relation deduced from
a two observable uncertainty relation [4] is usually not
tight, triple measurement uncertainty relations are es-
sentially different from the ones obtained by pair wise
measurement uncertainties: there exist genuine incom-
patible triple measurements such that they are pair-wise
jointly measurable, just like the case of genuine tripartite
entanglement or genuine non-local correlations.

In this paper, based on statistical distance we formu-
late state-independent tight uncertainty relations satis-
fied by three measurements in terms of their triple-wise
joint measurability. By approximating a given triple of
unbiased qubit measurements to all possible triple mea-
surements that are triple-wise jointly measurable, we
show that the approximation error is lower bounded by a
quantity which relates to the necessary and sufficient con-
dition of the triple-wise joint measurability of the given
triple. We also compare the different uncertainty rela-
tions which are obtained by approximation of triple-wise
jointly measurable measurements and pair-wise jointly
measurable measurements, respectively. FExamples are
given to illustrate the merit our the uncertainty relation.

II. TRIPLE MEASUREMENT UNCERTAINTY
RELATION

Consider three positive operator-valued measures
{M?®}3_,, given by the semi-positive measurement op-
erators {M}| M} > 0, >, Mi =1}, i = 1,2,3, where
[ stands for the identity operator. Let {N{|Nj >
0, Y., N} =1}, i = 1,2,3, be another set of three
positive operator-valued measures which are triple-wise
jointly measurable. For an arbitrary given state p, the
measurement probabilities with respect to M; (Ni) are
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FIG. 1: (Color online) The approximation of {M*}3 =1
to triple-wise jointly measurable measurements {N*}3_,

given by pM' = Tr(pM;}) (pY' = Tr(pN,’C')). The ap-
proximation error between Ineasurements M* and N* is
given by d,(M#; N%) := >, [pM" — pl'|. By maximizing
d, over all p, we obtain state-independent approximation
error, which is the worst case on all states, between the
triple measurements {M*, M2 M3} and the triple-wise
jointly measurable measurements {N!, N? N3} i.e.,

A(M*, M? M3; N', N? N?®) —maXZd (M NY).

=1
(1)
Let Ap(M*Y,M?,M3) denote the minimal value of
A(M?Y, M?, M3; N, N2, N3) over all possible triple-wise
jointly measurable triples N', N2 and N3. Then the
quantity Ap(M?Y, M2, M3) quantifies the degree of in-
compatibility of the trlple measurements {M?}3_,, see
FIG. [1] l It is apparent that Ay, (MY, M2 M3) = 0 if and
only if M, M? and M? are triple-wise jointly measur-
able.
Consider now three unbiased qubit measurements
{M?%}3_, described by positive operator-valued measures

I+m;- o

Mi=—7%— M=—7%—

i=1,2,3,

where the three dimensional vectors m; satisfy |m;| < 1,
I is the 2 x 2 identity matrix, and & is the vector with
the Pauli matrix o; as the i-th entry. Let p be a qubit
state with Bloch vector representation, p = (I + 7 &)/2
( |/ < 1). Maximizing 3°_, d,(M%; N%) over all p, we
obtain

3
A(M', M?, M*; N',N? N®) = 2max Y |- (1#; — ii;)|.
"is
(2)
For simplicity, in the following we denote mii193 = my +
me + Mg, T?Lij = m; + T?Lj, 123 = 71 + 7o + Mg and
fi;j = fi;+7;. It has been demonstrated in [36] that three
unbiased qubit measurements {N} = (I £, - 7)/2}}_;
are triple-wise jointly measurable if and only if

1
> |5k — el <4, (3)

k=1

where §1 = 7123, ¢ = i1 — 723, §3 = Tig — 713, Q4 = Tiz —
fi12 and ¢p is the Fermat-Torricelli point of {qx }4_, [37].
Minimizing A(M*1, M? M3; N1, N2 N3) under all triple-
wise jointly measurable measurements { N*}?_; satisfying
, we have the following theorem,

Theorem The approxirnation error of three unbiased
qubit measurements {M*}?_, to triple-wise JOlnﬂy mea-
surable unbiased qubit measurements {N}3_, satisfies
the following inequality,

4
ZpF Prl—4), (4)

A(MY, M?, M3; N',N? N3) >

w\H

where Py = niia3, P2 = M1 — Mag, P3 = Mo — M3,
Py = m3 — Mo and pr is the Fermat-Torricelli point of
> 14
10273
[Proof] By direct calculation we have the state-
dependent approximation error,
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|7+ (My—23 — T1_23)

!

|7+ (Ma—13 — fia—13)| <

|7+ (Mig—12 — fizg—12)] <

We show that G := 2max; |Gi], ¢ = 1,2,3,4, in can
be reached. Let pg, with ¥ = 7, be the optimal state
maximizing Zle d,(M"; N*). Without loss of generality,
we assume G = |¢1| > 0. Set 7o = g1 /|g1|, we have

[0 - (11 — m11)][70 - (172 — 12)]

= G [ — il o (i — vtag) - Gy — )|

[liia = 1ol + (g — 1) - (75 — 17|

(6)

>0

)

where the inequality holds as (7ieg — Mas) - (i1 — 1) >0
and (’ﬁ:13 — ’rﬁ13) . (ﬁg — T?LQ) Z 0, since |§1| Z |§2| and
g1l > g3l

Similarly fI‘OHl |§1| Z |§4|7 (7_7:12 — 7’7112) . (ﬁg - ’17_”23) Z 0,
we have

[ (fire — 112 [ (3 — 17i3)]
b fis — mg|? + (i — ms) - (e — M
= o {| 3 3"+ (73 3) + (2 12)} -

: [|ﬁ12 — m12|2 + (712 — Mag) - (g — 7713)}

> 0.

@ and @ are just the first constraints in . Therefore,
all together we have

A(MY, M2, M3; N', N? N3)

e e (8)
= 2max{|d1l,|72l, |gal, |94l } := 2G.

|7+ (M123 — Ti123)| < |23 — 23] == |G1],
it [F-(my —m)][F- (Ma —72)] = 0A[F- (Mg — 7ir2)][F - (Mg — 7iz)] > 0;

|M1—23 — Mi—23| := |Gal,
it [7 (Mg —[)][F (Mg — 7ig)] SOA[F- (M1—g — T1_2)][F- (M3 —73)] < 0;

| No_13 — ﬁz-13| = |§3|,
it [Fe (Mg — 7)][F (M —72)] SOA[F- (My—2 — f1—2)]7 - (M3 — 7i3)] > 0;

|Mi3—12 — fiz—12| = |Gal,
if 7 (my — 70)][F - (17 — fla)] > OA [+ (My_o — 7y _o)][F- (s — 7i3)] < 0.

[
Noting that g; = p; — ¢; and Eizl |7F — @k| < 4, we have

A(MY, M?, M3; N',N? N3) = 2G

Y]

4 4

1 L. 1 L . o

§Z|pk*%|:§Z\pk*QF+QF*Qk|
k=1 k=1

4
[Z |ﬁk _ﬁF| - 4]a
k=1

(9)
where the second inequality is due to triangle inequality,
the third one comes from the definition of the Fermat-
Torricelli point of {p) }1_, and the constraint of the triple
wise joint measurability for {N?}3_,. 0

Apparently, if the lower bound of is zero,
then M?!', M? M3 are triple-wise jointly measurable.
From the definition of A; (MY, M2, M3) we then have
Ap(M*, M2, M?) = 0= (X4, [Pr—Pk|—4). It means
that the inequality is tight in the sense that the min-
imal value of A(M*Y, M?, M3; N*, N2, N3) is achieved by
the lower bound. In this case the degree of the incom-
patibility of the given triple measurement is 0. In the
following we call a triple measurement {M?', M? M3}
a genuine incompatible triple measurement if the lower
bound of (@) is strictly greater than zero.

Let us consider three sharp unbiased qubit measure-
ments associated with the Pauli operators o;, i = 1,2, 3.
Set my = (1,0,0), ms = (0,1,0) and m3 = (0,0,1).
Then the three positive operator-valued measures M?,
M? and M3 are just the projective measurements with
respect to the eigenvectors of the three Pauli matrices,
respectively. We have p; = (1,1,1), po = (1,-1,-1),
ps = (=1,1,—-1) and py = (—1,—1,1), which constitute
a regular tetrahedron. And the Fermat-Torricelli point
is exactly the origin, P = 0. One can verify that the

optimal approximation of triple-wise jointly measurable

{N#}3_, is given by i1; = %ﬁii, as shown in FIG.

N =

4
1 L -
> 52“?1@ —qr| = |gr — ail] =
k=1



FIG. 2: (Color online) An optimal approximation of
{M? = 0,}3_, by triple-wise jointly measurable {N?}3_;
given by 7; = %ﬁii.

The minimal value of A(M?', M2, M?3; N' N2 N3) is
actually the lower bound of 7 ie.,

Ap(MY, M2 M) = S(3 7 |pk| —4) =2v3 2. (10)
k=1

N —

Therefore, the uncertainty inequality is tight not on-
ly in trivial case but also tight in this case. Thus the
triple measurement { M1, M? M3} is genuine incompati-
ble triple measurement and it’s degree of incompatibility

is 2v/3 — 2.

III. UNCERTAINTY: TRIPLE-WISE VERSUS
PATIR-WISE JOINT MEASUREMENT
APPROXIMATION

We next investigate the difference between measure-
ment uncertainty relations which are obtained by min-
imizing A(M?', M? M3; N', N2, N?3) over pair-wise and
triple-wise jointly measurable measurements, respective-
ly. In [32, B3] B4] this kind of Heisenberg’s error-
disturbance relation for a pair of measurements has been
studied. For a given pair of measurements M' and
M?, their approximation to a pair of jointly measur-
able measurements N' and N2, A(M?', M?; N' N?) :=
max, Y7, d,(M*; N?), satisfies the following relation
i),

A(Ml,Mz;Nl,N2) Z |7’?L1 +’I7_"L2|+|T?l1 7m2| — 2. (11)

From (11) one may also derive a measurement un-

certainty relation which is obtained by minimizing
A(MY, M? M3; N, N? N3) over pair-wise jointly mea-

surable measurements,

A(M, M? M3; N', N? N3)
1 3
=Y A(M', M7;N*,NY)
25 (12)
1 3
Z5[2(|mi+mj|+‘mi_mj|_2)]~
1<J

Nevertheless, compared with the lower bound of ,
the lower bound of (4f) captures better incompatible mea-
surement uncertainty of the triple measurements M, M?
and M3. Consider the case that one pair of measure-
ments {M* M7} are jointly measurable. From the fact
that

4
VF — D) > D — 1 -
]; |PF — D > i#j#;?gﬁ7273’4}(|pz 75|+ |5k — 7))

> QI?QX(W% + 1| + i — i),

(13)
one easily gets that the lower bound of is greater
or equal to the lower bound of . As an exam-
ple that all pairs of measurements are not jointly mea-
surable, we consider the measurements with respect to
three Pauli operators. By direct calculation we have
L1=2vV3—2> Ly =23v2—-3, where £; and L, are the
lower bounds of the inequalities and , respective-
ly. Therefore, the uncertainties from a triple of measure-
ments are essentially different from the ones from pair
wise measurements.

From one can also analytically show that there ex-
ist triple measurements that are genuinely incompatible
but pair-wise jointly measurable. Particularly, for three
measurements {M% = (I +m,; - &)/2}3_,, with m; =
(1,0,0)/v/2, 1o = (0,1,0)/v/2 and 3 = (0,0,1)/v/2,
which are proved to be pair-wise jointly measurable in
[? ], one verifies easily that the pair-wise lower bounds
of are all zero. However, the lower bound of is
V6 —2>0.

Actually, in [23] [24] Barchielli et al obtained an ap-
proximation error based triple measurement uncertainty
relation, where the approximation error for probabilities
of joint measurements is quantified by the sum of rela-
tive entropies. Similar to Ay (MY, M?, M3), a quantity
Cine(M*, M2, M3) has been introduced in [23], although
it is difficult to calculate the universal and analytical low-
er bound of Cj,.(M*, M?, M?). In [24] a lower bound of
Cine(M*, M?, M?) has been derived for the case of three
incompatible spin-1/2 components, which is not straight-
ly related to the necessary and sufficient condition of the
triple-wise joint measurability of the three incompatible
spin-1/2 components.



IV. DISCUSSION AND CONCLUSION

Our approach may be generalized to the case of mul-
tiple measurements. For n measurements, one has
A(M?Y, ..., M™ NY ... ,N™) > Ap(M?!,..,M"™). How-
ever, for multiple measurements the general necessary
and sufficient jointly measurable conditions are still not
known even for unbiased qubit measurements. Let us
consider the multiple-wise joint measurability for arbi-
trary n (n > 4) unbiased qubit measurements. We
have that the n unbiased qubit measurements {N? =
(I £1;-d)/2}, are n-tuple-wise jointly measurable, if

Z \Zmﬁz\ <2, (14)

pi==£1 i=1

see proof in Appendix A.

Nevertheless, is not both sufficient and necessary
in general. Only for some special n unbiased qubit mea-
surements M's one may have the following relation from

9,

n
A(M17"'7Mn; Nla"'aNn) > ( Z ‘Zﬂzml|_2n)/2n72

pi=£1 i=1

Similar to the triple case, there would exist genuine in-
compatible n-tuple measurements.

By approximating a given triple of unbiased qubit mea-
surements to all possible triple measurements that are
triple-wise jointly measurable, we have formulated state-
independent tight uncertainty inequalities satisfied by
the triple of qubit measurements, with the lower bound
giving by the necessary and sufficient condition of the
triple-wise joint measurability of the given triple. These
uncertainty relations can be experimentally tested, like
the case of two qubit measurements [35]. As the mea-
surement uncertainties from a triple of measurements are
essentially different from the ones from pair wise mea-
surements, it is of significance to explore the measure-
ment uncertainties for triple or n-tuple measurements by
their measurement incompatibilities.
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APPENDIX A: PROOF OF SUFFICIENT
CONDITION FOR n-TUPLE WISE JOINT

MEASURABILITY

Consider ~ n  unbiased  qubit  measurements,

{I“‘#}Ll with g; = =£1. The general measure-

J

Ol"l/“‘?"';u'n
1 n 7
=0+ X TTmale )T+
=2 jl7j27"'7jieI =1
J1<J2<---<J
where a}l Jaei and Z;l jaejs AT€ arbitrary parameters and

vectors, Vi = 1,2,---,n, Z ={1,2,--- ,n}. The positiv-
ity of the operators {O,, ;15.....,, } implies that

~ i n
’ Z Z (H Mjl)Zj?ljz"'.ji + Zuﬂﬁz
=2 12,5 €L FT i=1
J1<Jg2 <<

n
<1+)) >
=2 jlvav"‘vjieI
J1<Jgo <---<Ji

%
(H ujl)a;IjT“ji'

=1

(A2)
We divide the above 2" inequalities into 27! pairs
such that in each pair the two inequalities take the oppo-

J

DS

pi==E1 i=2,i=2t+1

>

j17j2a"'

I+m

g\n

n

>

=2 jlaj27"'

7]261
J1<Jgo <. <Ji

ment with measurement operators O, ..., including

I4p;mi-G\n . . .
{—HP2 1| as the marginal ones is given by

a]leI
J1<ja<---<J

(H #jl)Z’Jl:ljz'“ji + Z'u’ml) ’ 5—'}’
i=1

=1

(A1)

site sign for all u;s. From each pair of such inequalities
we have the following inequality,

n

2

i=2,i=2t+1

>

jlana”'ajieI
J1<Ja<--<J;

7 n
(H W) 25, gyegs + Z 1T
i=1

=1

n %
<1+ Z Z (H ujl)aélj?”ji'
1=2i=2 j17j27"'7ji el =1

J1<j2<--<ji
(A3)
Summing up all these inequalities in (A3]) we obtain

Therefore, n measurements {~=5+%}7 | are n-tuple wise jointly measurable if

1 >

Jiig-dy pi==x1 1=2,4=2t+1 ;
v ’ + J15J2y - -

B min Z | Y Z

ajiGI

J1<Jgo<---<7Ji

Particularly, setting Z;l jarji = 0, the above inequality

reduces to 3, _ 1y | >2im, pimti| < 27, which assures the

(H Mjl)Z;le“‘ji + Z’uimi <2" (A4)
=1 i=1
(H VA Zﬂzmz| <2m (A5)
1=1 i=1
[
n-tuple wise jointly measurability of {%}Ll 0



	Introduction
	Triple measurement uncertainty relation
	Uncertainty: triple-wise versus pair-wise joint measurement approximation
	Discussion and Conclusion
	References
	Proof of sufficient condition (14) for n-tuple wise joint measurability

